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Abstract 

Seed sampling is critical in semi-supervised 
learning. This paper proposes a clustering-
based stratified seed sampling approach to 
semi-supervised learning.  First, various clus-
tering algorithms are explored to partition the 
unlabeled instances into different strata with 
each stratum represented by a center. Then, 
diversity-motivated intra-stratum sampling is 
adopted to choose the center and additional 
instances from each stratum to form the unla-
beled seed set for an oracle to annotate. Fi-
nally, the labeled seed set is fed into a 
bootstrapping procedure as the initial labeled 
data. We systematically evaluate our stratified 
bootstrapping approach in the semantic rela-
tion classification subtask of the ACE RDC 
(Relation Detection and Classification) task. 
In particular, we compare various clustering 
algorithms on the stratified bootstrapping per-
formance. Experimental results on the ACE 
RDC 2004 corpus show that our clustering-
based stratified bootstrapping approach 
achieves the best F1-score of 75.9 on the sub-
task of semantic relation classification, ap-
proaching the one with golden clustering. 

1 Introduction 

Semantic relation extraction aims to detect and 
classify semantic relationships between a pair of 
named entities occurring in a natural language text. 
Many machine learning approaches have been pro-
posed to attack this problem, including supervised 
(Miller et al., 2000; Zelenko et al., 2003; Culotta 
and Soresen, 2004; Kambhatla, 2004; Zhao and 

Grishman, 2005; Zhou et al., 2005; Zhang et al., 
2006; Zhou and Zhang, 2007; Zhou et al., 2007; 
Qian et al., 2008; Zhou et al., 2010), semi-
supervised (Brin, 1998; Agichtein and Gravano, 
2000; Zhang, 2004; Chen et al., 2006; Qian et al., 
2009; Zhou et al., 2009), and unsupervised meth-
ods (Hasegawa et al., 2004; Zhang et al., 2005; 
Chen et al., 2005). 

Current work on relation extraction mainly 
adopts supervised learning methods, since they 
achieve much better performance. However, they 
normally require a large number of manually la-
beled relation instances, whose acquisition is both 
time consuming and labor intensive. In contrast, 
unsupervised methods do not need any manually 
labeled instances. Nevertheless, it is difficult to 
assess their performance due to the lack of evalua-
tion criteria. As something between them, semi-
supervised learning has received more and more 
attention recently. With the plenitude of unlabeled 
natural language text at hand, semi-supervised 
learning can significantly reduce the need for la-
beled data with only limited sacrifice in perform-
ance. For example, Abney (2002) proposes a 
bootstrapping algorithm which chooses the unla-
beled instances with the highest probability of be-
ing correctly labeled and add them in turn into the 
labeled training data iteratively. 

This paper focuses on bootstrapping-based semi-
supervised learning in relation extraction. Since the 
performance of bootstrapping depends much on the 
quality and quantity of the seed set and researchers 
tend to employ as few seeds as possible (e.g. 100 
instances) to save time and labor, the quality of the 
seed set plays a critical role in bootstrapping. Fur-
thermore, the imbalance of different classes and 
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the inherent structural complexity of instances will 
severely weaken the strength of bootstrapping and 
semi-supervised learning as well. Therefore, it is 
critical for a bootstrapping procedure to select an 
appropriate seed set, which should be representa-
tive and diverse. However, most of current semi-
supervised relation extraction systems (Zhang, 
2004; Chen et al., 2006) use a random seed sam-
pling strategy, which fails to fully exploit the affin-
ity nature in the training data to derive the seed set. 
Alternatively, Zhou et al. (2009) bootstrap a set of 
weighted support vectors from both labeled and 
unlabeled data using SVM and feed these instances 
into semi-supervised relation extraction. However, 
their seed set is sequentially generated only to en-
sure that there are at least 5 instances for each rela-
tion class. Our previous work (Qian et al., 2009) 
attempts to solve this problem via a simple strati-
fied sampling strategy for selecting the seed set. 
Experimentation on the ACE RDC 2004 corpus 
shows that the stratified sampling strategy achieves 
promising results for semi-supervised learning. 
Nevertheless, the success of the strategy relies on 
the assumption that the true distribution of all rela-
tion types is already known, which is impractical 
for real NLP applications. 

This paper presents a clustering-based stratified 
seed sampling approach for semi-supervised rela-
tion extraction, without the assumption on the true 
distribution of different relation types. The motiva-
tions behind our approach are that the unlabeled 
data can be partitioned into a number of strata us-
ing a clustering algorithm and that representative 
and diverse seeds can be derived from such strata 
in the framework of stratified sampling (Neyman, 
1934) for an oracle to annotate. Particularly, we 
employ a diversity-motivated intra-stratum sam-
pling scheme to pick a center and additional in-
stances as seeds from each stratum. Experimental 
results show the effectiveness of the clustering-
based stratified seed sampling for semi-supervised 
relation classification. 

The rest of this paper is organized as follows. 
First an overview of the related work is given in 
Section 2. Then, Section 3 introduces the stratified 
bootstrapping framework including an intra-
stratum sampling scheme while Section 4 describes 
various clustering algorithms. The experimental 
results on the ACE RDC 2004 corpus are reported 
in Section 5. Finally we conclude our work and 
indicate some future directions in Section 6. 

2 Related Work 

In semi-supervised learning for relation extraction, 
most of previous work construct the seed set either 
randomly (Zhang, 2004; Chen et al., 2006) or se-
quentially (Zhou et al., 2009). Qian et al. (2009) 
adopt a stratified sampling strategy to select the 
seed set. However, their method needs a stratifica-
tion variable such as the known distribution of the 
relation types, while our method uses clustering to 
divide relation instances into different strata. 

In the literature, clustering techniques have been 
employed in active learning to sample representa-
tive seeds in a certain extent (Nguyen and 
Smeulders, 2004; Tang et al., 2002; Shen et al., 
2004). Our work is similar to the formal frame-
work, as proposed in Nguyen and Smeulders 
(2004), in which K-medoids clustering is incorpo-
rated into active learning. The cluster centers are 
used to construct a classifier and which in turn 
propagates classification decision to other exam-
ples via a local noise model. Unlike their probabil-
istic models, we apply various clustering 
algorithms together with intra-stratum sampling to 
select a seed set in discriminative models like 
SVMs. In active learning for syntactic parsing, 
Tang et al. (2002) employ a sampling strategy of 
“most uncertain per cluster” to select representa-
tive examples and weight them using their cluster 
density, while we pick a few seeds (the number of 
the sampled seeds is proportional to the cluster 
density) from a cluster in addition to its center. 
Shen et al. (2004) combine multiple criteria to 
measure the informativeness, representativeness, 
and diversity of examples in active learning for 
named entity recognition. Unlike our sampling 
strategy of clustering for representativeness and 
stratified sampling for diversity, they either select 
cluster centroids or diverse examples from a pre-
chosen set in terms of some combined metrics. To 
the best of our knowledge, this is the first work to 
address the issue of seed selection using clustering 
techniques for semi-supervised learning with dis-
criminative models. 

3 Stratified Bootstrapping Framework 

The stratified bootstrapping framework consists of 
three major components: an underlying supervised 
learner and a bootstrapping algorithm on top of it 

347



as usual, plus a clustering-based stratified seed 
sampler. 

3.1 Underlying Supervised Learner 

Due to recent success in tree kernel-based relation 
extraction, this paper adopts a tree kernel-based 
method in the underlying supervised learner. Fol-
lowing the previous work in relation extraction 
(Zhang et al., 2006; Zhou et al., 2007; Qian et al., 
2008), we use the standard convolution tree kernel 
(Collins and Duffy, 2001) to count the number of 
common sub-trees as the structural similarity be-
tween two parse trees. Besides, to properly repre-
sent a relation instance, this paper adopts the 
Unified Parse and Semantic Tree (UPST), as pro-
posed in Qian et al. (2008). To our knowledge, the 
USPT has achieved the best performance in rela-
tion extraction so far on the ACE RDC 2004 cor-
pus. 

In particular, we use the SVMlight-TK1 package 
as our classifier. Since the package is a binary clas-
sifier, we adapt it to the multi-class tasks of rela-
tion extraction by applying the one vs. others 
strategy, which builds K binary classifiers so as to 
separate one class from all others. The final classi-
fication decision of an instance is determined by 
the class that has the maximal SVM output margin. 

3.2 Bootstrapping Algorithm 

Following Zhang (2004), we have developed a 
baseline self-bootstrapping procedure, which keeps 
augmenting the labeled data by employing the 
models trained from previously available labeled 
data, as shown in Figure 1. 

Since the SVMlight-TK package doesn’t output 
any probability that it assigns to the class label on 
an instance, we devise a metric to measure the con-
fidence with regard to the classifier’s prediction. 
Given a sequence of output margins of all K binary 
classifiers at some iteration, denoted as 
{m1,m2,…mK} with mi the margin for the i-th clas-
sifier, we compute the margin gap between the 
largest and the mean of the others, i.e. 
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Where K denotes the total number of relation 
classes, and mi denotes the output margin of the i-

                                                           
1 http://ai-nlp.info.uniroma2.it/moschitti/ 

Require: labeled seed set L
Require: unlabeled data set U
Require: batch size S
Repeat
    Train a single classifier on L
    Run the classifier on U
    Find at most S instances in U that the classifier has
the highest prediction confidence
    Add them into L
Until: no data points available or the stoppage
condition is reached

Algorithm self-bootstrapping

 
Figure 1: Self-bootstrapping algorithm 

th classifier. Intuitively, the bigger the H, the 
greater the difference between the maximal margin 
and all others, and thus the more reliably the classi-
fier makes the prediction on the instance.  

3.3 Clustering-based Stratified Seed Sampler 

Stratified sampling is a method of sampling in 
statistics, in which the members of a population are 
grouped into relatively homogeneous subgroups 
(i.e. strata) according to one certain property, and 
then a sample is selected from each stratum. This 
process of grouping is called stratification, and the 
property on which the stratification is performed is 
called the stratification variable. Previous work 
justifies theoretically and practically that stratified 
sampling is more appropriate than random sam-
pling for general use (Neyman, 1934) as well as for 
relation extraction (Qian et al., 2009). However, 
the difficulty lies in how to find the appropriate 
stratification variable for complicated tasks, such 
as relation extraction. 

The idea of clustering-based stratification cir-
cumvents this problem by clustering the unlabeled 
data into a number of strata without the need to 
explicitly specify a stratification variable. Figure 2 
illustrates the clustering-based stratified seed sam-
pling strategy employed in the bootstrapping pro-
cedure, where RSET denotes the whole unlabeled 
data, SeedSET the seed set to be labeled and 
|RSETi| the number of instances in the i-th cluster2 
RSETi. Here, a relation instance is represented us-
ing USPT and the similarity between two instances 
is computed using the standard convolution tree 
                                                           
2 Hereafter, when we refer to clusters from the viewpoint of 
stratified sampling, they are often called “strata”. 
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kernel, as described in Section 3.1 (i.e., both the 
clustering and the classification adopt the same 
structural representation, since we want the repre-
sentative seeds in the clustering space to be also 
representative in the classification space). After 
clustering, a certain number of instances from 
every stratum are sampled using an intra-stratum 
scheme (c.f. Subsection 3.4). Normally, this num-
ber is proportional to the size of that stratum in the 
whole data set. However, in case this number is 0 
due to the rounding of real numbers, it is set to 1 to 
ensure the existence of at least one seed from that 
stratum. Furthermore, to ensure that the total num-
ber of instances being sampled equals the pre-
scribed NS, the number of seeds from dominant 
strata may be slightly adjusted accordingly. Finally, 
these instances form the unlabeled seed set for an 
oracle to annotate as the input to the underlying 
supervised learner in the bootstrapping procedure. 

3.4 Intra-stratum sampling 

Given the distribution of clusters, a simple way to 
select the most representative instances is to 
choose the center of each cluster with the cluster 
prior as the weight of the center (Tang et al., 2002; 
Nguyen and Smeulders, 2004). Nevertheless, for 
the complicated task of relation extraction on the 
ACE RDC corpora, which is highly skewed across 
different relation classes, only considering the cen-
ter of each cluster would severely under-represent 
the high-density data. To overcome this problem, 
we adopt a sampling approach, in particular strati-
fied sampling, which takes the size of each stratum 
into consideration. 

Given the size of the seed set NS and the number 
of strata K, a natural question will arise as how to 
select the remaining (NS-K) seeds after we have 
extracted the K centers from the K strata. We view 
this problem as intra-stratum sampling, which is 
required to choose the remaining number of seeds 
from inside individual stratum (excluding the cen-
ters themselves).  

At the first glance, sampling a certain number of 
seeds from one particular stratum (e.g., RSETi), 
seems to be the same sampling problem as we have 
encountered before, which aims to select the most 
representative and diverse seeds. This will natu-
rally lead to another application of a clustering al-
gorithm to the stratification of the stratum RSETi.  

Require: RSET ={R1,R2,…,RN}, the set of unlabeled 
relation instances and K, the number of strata being 
clustered 
Output: SeedSET with the size of NS (100) 
Procedure 

Initialize SeedSET = NULL 
Cluster RSET into K strata using a clustering 

algorithm and perform stratum pruning if 
necessary. 

Calculate the number of instances being sampled 
for each stratum i={1,2,…,K} 

S
i

i N
N

RSETN ∗=
||    (2) 

and adjust this number if necessary. 
Perform intra-strata sampling to form SeedSETi 

from each stratum RSETi, by selecting the center 
Ci and (Ni-1) additional instances 

Generate SeedSET by summating RSETi from each 
stratum 

 
Figure 2: Clustering-based stratified seed sampling  

Nevertheless, remember the fact that, this time for 
the stratum RSETi, the center Ci has been chosen, 
so it may not be reasonable to extract additional 
centers in this way. Therefore, in order to avoid 
recursion and over-complexity, we employ a diver-
sity-motivated intra-stratum sampling scheme 
(Shen et al., 2004), called KDN (K-diverse 
neighbors), which aims to maximize the training 
utility of all seeds from a stratum. The motivation 
is that we prefer the seeds with high variance to 
each other, thus avoiding repetitious seeds from a 
single stratum. The basic idea is to add a candidate 
instance to the seed set only if it is sufficiently dif-
ferent from any previously selected seeds, i.e., the 
similarity between the candidate instance and any 
of the current seeds is less than a threshold β. In 
this paper, the threshold β is set to the average 
pair-wise similarity between any two instances in a 
stratum.  

4 Clustering Algorithms 

This section describes several typical clustering 
algorithms in the literature, such as K-means, HAC, 
spectral clustering and affinity propagation, as well 
as their application in this paper. 

4.1 K-medoids (KM) 

As a simple yet effective clustering method, the K-
means algorithm assigns each instance to the clus-
ter whose center (also called centroid) is nearest. In 
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particular, the center is the average of all the in-
stances in the cluster, i.e., with its coordinates the 
arithmetic means for each dimension separately 
over all the instances in the cluster. 

One problem with K-means is that it does not 
yield the same result with each run while the other 
problem is the requirement for the concept of a 
mean to be definable, which is unfortunately not 
available in our setting (we employ a parse tree 
representation for a relation instance). Hence, we 
adopt a variant of K-means, namely, K-medoids, 
where a medoid, rather than a centroid, is defined 
as a representative of a cluster. Besides, K-
medoids has proved to be more robust to noise and 
outliers in comparison with K-means. 

4.2 Hierarchical Agglomerative Clustering 
(HAC) 

Different from K-medoids, hierarchical clustering 
creates a hierarchy of clusters which can be 
represented in a tree structure called a dendrogram. 
The root of the tree consists of a single cluster 
containing all objects, and the leaves correspond to 
individual object.  

Typically, hierarchical agglomerative clustering 
(HAC) starts at the leaves and successively merges 
two clusters together as long as they have the 
shortest distance among all the pair-wise distances 
between any two clusters.  

Given a specified number of clusters, the key 
problem is to determine where to cut the hierarchi-
cal tree into clusters. In this paper, we generate the 
final flat cluster structures greedily by maximizing 
the equal distribution of instances among different 
clusters. 

4.3 Spectral Clustering (SC) 

Spectral clustering has become more and more 
popular recently. Taking as input a similarity 
matrix between any two instances, spectral 
clustering makes use of the spectrum of the 
similarity matrix of the data to perform 
dimensionality reduction for clustering in fewer 
dimensions.  

Compared to the “traditional algorithms” such 
as K-means or HAC, spectral clustering has many 
fundamental advantages. Results obtained by 
spectral clustering often outperform the traditional 
approaches. Furthermore, spectral clustering is 
very simple to implement and can be solved 

efficiently using standard linear algebra methods 
(von Luxburg, 2006). 

4.4 Affinity Propagation (AP) 

As a new emerging clustering algorithm, affinity 
propagation (AP) (Frey and Dueck, 2007) is basi-
cally an iterative message-passing procedure in 
which the instances being clustered compete to 
serve as cluster exemplars by exchanging two 
types of messages, namely, “responsibility” and 
“availability”.  After the procedure converges or 
has repeated a finite number of iterations, each 
cluster is represented by an exemplar. AP was re-
ported to find clusters with much lower error than 
those found by other methods. 

For our application, affinity propagation takes as 
input a similarity matrix, whose elements represent 
either the similarity between two different in-
stances or the preference (a real number p) for an 
instance when two instances are the same. One 
problem with AP is that the number of clusters 
cannot be pre-defined, which is indirectly deter-
mined by the preference as well as the convergence 
procedure itself. 

5 Experimentation 

This section systematically evaluates the boot-
strapping approach using clustering-based strati-
fied seed sampling, in the relation classification 
(i.e., given the relationship already detected) sub-
task of relation extraction on the ACE RDC 2004 
corpus. 

5.1 Experimental Setting 

The ACE RDC 2004 corpus 3  is gathered from 
various newspapers, newswire and broadcasts. It 
contains 451 documents and 5702 positive relation 
instances of 7 relation types and 23 subtypes be-
tween 7 entity types. For easy reference with re-
lated work in the literature, evaluation is done on 
347 documents (from nwire and bnews domains), 
which include 4305 relation instances. Table 1 lists 
the major relation types and subtypes, including 
their corresponding instance numbers and ratios in 
our evaluation set. One obvious observation from 
the table is that the numbers of different relation 
types is highly imbalanced. These 347 documents 
are then divided into 3 disjoint sets randomly, with 
                                                           
3 http//www.ldc.upenn.edu/ Projects/ACE/ 
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Types Subtypes # % 
Located 738 17.1 
Near 87 2.0 PHYS 
Part-Whole 378 8.8 
Business 173 4.0 
Family 121 2.8 PER-SOC 
Other 55 1.3 
Employ-Executive 489 11.4 
Employ-Staff 539 12.5 
Employ-Undeter. 78 1.8 
Member-of-Group 191 4.4 
Subsidiary 206 4.8 
Partner 12 0.3 

EMP-
ORG 

Other 80 1.9 
User-or-Owner 200 4.6 
Inventor-or-Man. 9 0.2 ART 
Other 2 0.0 
Ethnic 39 0.9 
Ideology 48 1.1 OTHER-

AFF 
Other 54 1.3 
Citizen-or-Resid. 273 6.3 
Based-In 215 5.0 GPE-AFF 
Other 39 0.9 

DISC   279 6.5 
Total   4305 100.0 

Table 1: Relation types and their corresponding instance 
numbers and ratios in the ACE RDC 2004 corpus 
 
10% of them (35 files, around 400 instances) held 
out as the test data set, 10% of them (35 files, 
around 400 instances) used as the development 
data set to fine-tune various settings and parame-
ters, while the remaining 277 files (over 3400 in-
stances) used as the training data set, from which 
the seed set will be sampled. 

The corpus is parsed using Charniak’s parser 
(Charniak, 2001) and relation instances are gener-
ated by extracting all pairs of entity mentions oc-
curring in the same sentence with positive 
relationships. For easy comparison with related 
work, we only evaluate the relation classification 
task on the 7 major relation types of the ACE RDC 
2004 corpus. For the SVMlight-TK classifier, the 
training parameters C (SVM) and λ (tree kernel) 
are fine-tuned to 2.4 and 0.4 respectively.  

The performance is measured using the standard 
P/R/F1 (Precision/Recall/F1-measure). For each 

relation type, P is the ratio of the true relation in-
stances in all the relation instances being identified, 
R is the ratio of the true relation instances being 
identified in all the true relation instances in the 
corpus, and F1 is the harmonic mean of P and R. 
The overall performance P/R/F1 is then calculated 
using the micro-average measure over all major 
class types. 

5.2 Experimental Results 

Comparison of various seed sampling strategies 
without intra-stratum sampling on the devel-
opment data 

Table 2 compares the performance of bootstrap-
ping-based relation classification using various 
seed sampling strategies without intra-stratum 
sampling on the development data. Here, the size 
of the seed set L is set to 100, and the top 100 in-
stances with the highest confidence (c.f. Formula 1) 
are augmented at each iteration. For sampling 
strategies marked with an asterisk, we performed 
10 trials and calculated their averages. Since for 
these strategies the seed sets sampled from differ-
ent trials may be quite different, their performance 
scores vary in a great degree accordingly. This ex-
perimental setting and notation are also used in all 
the subsequent experiments unless specified. Be-
sides, two additional baseline sampling strategies 
are included for comparison: sequential sampling 
(SEQ), which selects a sequentially-occurring L 
instances as the seed set, and random sampling 
(RAND), which randomly selects L instances as 
the seed set. 

Table 2 shows that 
1) RAND outperforms SEQ by 1.2 units in F1-

score. This is due to the fact that the seed set 
via RAND may better reflect the distribution of 
the whole training data than that via SEQ, nev-
ertheless at the expense of collecting the whole 
training data in advance. 

2) While HAC performs moderately better than 
RAND, it is surprising that both KM and AP 
perform even worse than SEQ, and that SC per-
forms worse than RAND. Furthermore, all the 
four clustering-based seed sampling strategies 
achieve much smaller performance improve-
ment in F1-score than RAND, among which 
KM performs worst with performance im-
provement of only 0.1 in F1-score. 
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Sampling 
strategies P(ΔP) R(ΔR) F1(ΔF1) 

RAND* 69.1(3.1) 66.4(0.2) 67.8(2.0) 
SEQ* 65.8(2.6) 68.0(0.1) 66.6(1.3) 
KM* 62.0(0.9) 61.0(-0.5) 61.3(0.1) 
HAC 69.9(1.3) 70.4(0.4) 70.1(0.8) 
SC* 67.1(1.5) 68.1(0.0) 67.5(0.8) 
AP 66.6(2.0) 66.2(0.1) 66.4(1.1) 
Table 2: Comparison of various seed sampling strate-
gies without intra-stratum sampling on the development 
data 

3) All the performance improvements from boot-
strapping largely come from the improvements 
in precision. While the bootstrapping procedure 
makes the SVM classifier more accurate, it 
lacks enough generalization ability.  

To explain above special phenomena, we have a 
look at the clustering results. Our inspection re-
veals that most of them are severely imbalanced, 
i.e., some clusters are highly dense while others are 
extremely sparse. This indicates that merely select-
ing the centers from each cluster cannot properly 
represent the overall distribution. Moreover, the 
centers with high density lack the generalization 
ability due to its solitude in the cluster, leading to 
less performance enhancement than expected. 

The only exception is HAC, which much outper-
forms RAND by 2.3 in F1-score, although HAC is 
usually not considered as an effective clustering 
algorithm. The reason may be that HAC creates a 
hierarchy of clusters in the top-down manner by 
cutting a cluster into two. Therefore, the centers in 
the two sibling clusters will be closer to each other 
than they are to the centers in other clusters. Be-
sides, the final flat cluster structures given a spe-
cial number of clusters are generated greedily from 
the cluster hierarchy by maximizing the equal dis-
tribution of instances among different clusters. In 
other words, when the cluster number reaches a 
certain threshold, the dense area will get more 
seeds represented in the seed set. As a consequence, 
the distribution of all the seeds sampled by HAC 
will approximate the distribution of the whole 
training data in some degree, while the seeds sam-
pled by other clustering algorithm are kept as far as 
possible due to the objective of clustering and the 
lack of intra-stratum sampling. 

These observations also justify the application 
of the stratified seed sampling to the bootstrapping 
procedure, which enforces the number of seeds 

sampled from a cluster to be proportional to its 
density, presumably approximated by its size in 
this paper. 
 
Comparison of different cluster numbers with 
intra-stratum sampling on the development 
data 

In order to fine-tune the optimal cluster numbers 
for seed sampling, we compare the performance of 
different numbers of clusters for each clustering 
algorithm on the development data set and report 
their F-scores in Table 3. For reference, we also 
list the F-score for golden clustering (GOLD), in 
which all instances are grouped in terms of their 
annotated ground relation major types (7), major 
types considering relation direction (13), subtypes 
(23), and subtypes considering direction (38). Be-
sides, the performance of clustering-based semi-
supervised relation classification is also measured 
over other typical cluster numbers (i.e., 1, 50, 60, 
80, 100). Particularly, when the cluster number 
equals 1, it means that only diversity other than 
representativeness is considered in the seed sam-
pling. Among these clustering algorithms, one of 
the distinct characteristics with the AP algorithm is 
that the number of clusters cannot be specified in 
advance, rather, it is determined by the pre-defined 
preference parameter (c.f. Subsection 4.4). There-
fore, we should tune the preference parameter so as 
to get the pre-defined cluster number. However, 
sometimes we still couldn’t get the exact number 
of clusters as we expected. In these cases, we use 
the approximate cluster numbers for AP instead.  

Table 3 shows that 
1) The performance for all the clustering algo-

rithms varies in some degree with the number 
of clusters being grouped. Interestingly, the 
performance with only one cluster is better 
than those of clustering-based strategies with 
100 clusters, at most cases. This implies that 
the diversity of the seeds is at least as impor-
tant as their representativeness. And this could 
be further explained by our observation that, 
with the increase of cluster numbers, the clus-
ters get smaller and denser while their centers 
also come closer to each other. Therefore, the 
representativeness and diversity as well as the 
distribution of the seeds sampled from them 
may vary accordingly, leading to different per-
formance. 
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# of  
 Clusters GOLD KM* HAC SC* AP 

1 -  68.7  68.7  - - 
7 73.9 70.3  73.3 72.1 - 

13 70.2 68.9  70.3 67.3 - 
23 64.9 72.3  72.9 68.9 71.1 
38 60.8 69.9  71.6 68.0 71.6 
50 - 68.5  69.9 68.5 70.4 
60 - 66.3  68.5 68.6 69.7 
80 - 64.2  65.9 68.0 68.1 

100 - 61.3  70.1 67.5 66.4 
Table 3: Performance in F1-score over different cluster 
numbers with intra-stratum sampling on the develop-
ment data 

2) Golden clustering achieves the best performance 
of 73.9 in F1-score when the cluster number is 
set to 7, significantly higher than the perform-
ance using other cluster numbers. Interestingly, 
this number coincides with the number of major 
relation types needed to be classified in our task. 
This is reasonable since the instances with the 
same relation type should be much more similar 
than those with different relation types and it is 
easy to discriminate the seed set of one relation 
type from that of other relation types. 

3) Among the four clustering algorithms, HAC 
achieves best performance over most of cluster 
numbers. This further verifies the aforemen-
tioned analysis. That is, as a hierarchical clus-
tering algorithm, HAC can sample seeds that 
better capture the distribution of the training 
data. 

4) For KM, the best performance is achieved 
around the number of 23 while for both HAC 
and SC, the optimal cluster number is consis-
tent with GOLD clustering, namely, 7. For AP, 
the optimal cluster number for AP is 38. This is 
largely due to that we fail to cluster the training 
data into about 7 and 13 groups no matter how 
we vary the preference parameter.  

 
Final comparison of different clustering algo-
rithms on the held-out test data  

After the optimal cluster numbers are determined 
for each clustering algorithm, we apply these num-
bers on the held-out test data and report the per-
formance results (P/R/F1 and their respective 
improvements) in Table 4. For easy reference, we 
also include the performance for GOLD, RAND, 
and SEQ sampling strategies.  
 

Sampling 
strategies P(ΔP) R(ΔR) F1(ΔF1) 

GOLD 79.5(7.8) 72.7(2.1) 76.0(4.8) 
RAND* 71.9(3.7) 69.7(0.1) 70.8(1.8) 
SEQ* 71.9(2.6) 65.2(0.1) 69.3(1.3) 
KM* 73.6(2.1) 72.3(0.3) 72.9(1.2) 
HAC 79.0(10.2) 73.0(1.1) 75.9(5.6) 
SC* 72.3(2.1) 72.1(0.4) 72.2(1.2) 
AP 75.7(2.5) 72.0(0.4) 73.7(1.4)
Table 4: Performance of various clustering-based seed 
sampling strategies on the held-out test data with the 
optimal cluster number for each clustering algorithm 

 
Table 4 shows that 

1) Among all the clustering algorithms, HAC 
achieves the best F1-score of 75.9, significantly 
higher than RAND and SEQ by 5.1 and 6.6 re-
spectively. The improvement comes not only 
from significant precision boost, but also from 
moderate recall increase. This further justifies 
the merits of HAC as a clustering algorithm for 
stratified seed sampling in semi-supervised re-
lation classification.  

2) HAC approaches the best F1-score of 76.0 for 
golden clustering. Obviously, this doesn’t mean 
HAC performs as well as golden clustering in 
terms of clustering quality measures, rather it 
does imply that HAC achieves the performance 
improvement by making the seed set better rep-
resent the overall distribution over inherent 
structure of relation instances, while golden 
clustering accomplishes this using the distribu-
tion over relation types. Since the distribution 
over relation types doesn’t always conform to 
that over instance structures, and for a statistical 
discriminative classifier, often the latter is more 
important than the former, it will be no surprise 
if HAC outperforms golden clustering in some 
real applications, e.g. clustering-based stratified 
sampling. 

6 Conclusion and Future Work 

This paper presents a stratified seed sampling 
strategy based on clustering algorithms for semi-
supervised learning. Our strategy does not rely on 
any stratification variable to divide the training 
instances into a number of strata. Instead, the strata 
are formed via clustering, given a metric measur-
ing the similarity between any two instances. Fur-
ther, diversity-motivated intra-strata sampling is 

353



employed to sample additional instances from 
within each stratum besides its center. We compare 
the effect of various clustering algorithms on the 
performance of semi-supervised learning and find 
that HAC achieves the best performance since the 
distribution of its seed set better approximates that 
of the whole training data. Extensive evaluation on 
the ACE RDC 2004 benchmark corpus shows that 
our clustering-based stratified seed sampling strat-
egy significantly improves the performance of 
semi-supervised relation classification. 

We believe that our clustering-based stratified 
seed sampling strategy can not only be applied to 
other semi-supervised learning tasks, but also can 
be incorporated into active learning, where the in-
stances to be labeled at each iteration as well as the 
seed set could be selected using clustering tech-
niques, thus further reducing the amount of in-
stances needed to be annotated.  

For the future work, it is possible to adapt our 
one-level clustering-based sampling to the multi-
level one, where for every stratum it is still possi-
ble to divide it into lower sub-strata for further 
stratified sampling in order to make the seeds bet-
ter represent the true distribution of the data. 
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