Towards Robust PATR

Shona Douglas* and Robert Dale'
Centre for Cognitive Science
University of Edinburgh
Edinburgh a8 91w, Scotland

Abstract

We report on the initial stages of development of a
robust parsing system, to be used as part of The
Editor’s Assistant, a program that detects and cor-
rects textual errors and infelicities in the area of
syntax and style. Our mechanism extends the stan-
dard PATR-11 formalism by indexing the constraints
on rules and abstracting away control of the appli-
cation of these constraints. This allows independent
specification of grouping and ordering of the con-
straints, which can improve the efliciency of process-
ing, and in conjunction with information specifying
whether constraints are necessary or optional, allows
detection of syntactic errors.

Introduction

The Editor's Assistant [Dale 1989, 1990] is a rule-
based system which assists a copy editor in massag-
ing a text to conform to a house style. The central
idea is that publishers’ style rules can be maintained
as rules in a knowledge base, and a special inference
engine that encodes strategies for examining text can
be used to apply these rules. The program then op-
erates by interactively detecting and, where possible,
offering corrections for those aspects of a text which
do not conform to the rules in the knowledge base.
The expert-system-like architecture makes it easy to
modify the system’s behaviour by adding new rules
or switching rule bases for specific purposes.

Our previous work in this area has been oriented to-
wards the checking of low-level details in text: for
example, the format and punctuation of dates, num-
bers and numerical values; the punctuation and use
of abbreviations; and the typefaces and abbrevia-
tions to be used for words from foreign languages.
In this paper, we describe some recent work we have
carried out in extending this mechanism to deal with
syntactic errors; this has led us to a general mecha-
nism for robust parsing which is applicable outside
the context of our own work.

*E-mail addess is S,Douglas@aed.ac. uk.

tAlso of the Department of Artificial Intelligence
at the University of Edinburgh; email address is
R.Dale@ed.ac.uk.

ACTES DE COLING-92, NANTES, 23-28 A0UT 1992 468

Syntactic Errors

Categories of Errors

Ultimately, the aim of The Editor’s Assistant is to
deal with real language—unrestricted natural lan-
guage text in all its richness, with all its idiosyn-
cracies. The system is therefore an experiment in
what we call intelligent text processing: an in-
tersection of techniques from natural language pro-
cessing and from more mundane text processing ap-
plications, with the intelligence being derived from
the addition of language sensitivity to the basic text
processing mechanisms.

Many of the corrections made routinely in the course
of human proofreading require subleties of semantic
and pragmatic expertise that are simply beyond cur-
rent resources to emulate. However, examination of
common syntactic errors and infelicities, both as de-
seribed in the literature (see, for example, [Miller
1986]) and as appearing in data we have analysed,
has led us to distinguish a number of tractable er-
ror types, and we have based the development of our
system on the various requirements imposed by these
classes. The error types are defined very much with
processing requirements in mind; orthogonal cate-
gorisations are of course possible. We give summary
descriptions of these classes here; examples are pro-
vided in Figure 1.

Constraint Violation Errors:

These involve what, in most contemporary syn-
tactic theories, are best viewed as the violation of
constraints on feature values. All errors in agree-
ment fall into this category.

Lexical Confusion: These involve the confusion of
one lexical item with another. We specifically in-
clude in this category cases where a word contain-
ing an apostrophe is confused with a similar word
that does not, or vice versa.

Syntactic Awkwardness: We include here cases
where the problem is either stylistic or likely to
cause processing problems for the reader. Note
that these ‘errors’ are not syntactically incorrect,
but are constructions which, if overused, may re-
sult in poor writing, and as such are often in-
cluded in style-checker ‘hit-lists’; thus, we would
include multiple embedding constructions, poten-

Proc. of COLING-92, NANTES, AUG. 23-28, 1992

Constraint Violation Errors:

8]

@

)

(4)

Subject-verb number disagreement:

a. *John and Mary runs.

b. ¥The dogs runs.

Premodifier-noun number disagreement:

a. ¥T'his dogs rumns.

b. *All the dog run.

Subject-complement mumber disagreement:
a. «There is five dogs here.

b. ¥There arz a dog,.

Wrong pronoun case:

a. *lIc and me ran to the dog.
b. ¥This stays between you and 1.

Wrong indelinite article:

a. *A apple and an rotten old pear.
b. A NeX'T' workstation and *a NEC laptop.!

Lexical Confusiou:

(6)

™M

(8)

Confusion of its and it's:

a. [ts late.

b. ¥The dog ate it’s bone.

Confusion of there, their, and they’re:
a. *T'heir is a dog here.

b. ¥They're is a dog here.

c. *I'here dog was cold.

«T’hey’re dog was cold.

e. «There here now.

qa.

{. *Their here now.
Confusion of possessive ’s and plural s:

a. *T'he dog’s are cold.
b. #The boy ate the dogs biscuit.

Syntactic Awkwardness:

®

Too many prepositional phrases:

a. The boy gave the dog in the window at the end
with the red collar with the address on the back
of it a biscuit.

(10) Passive constructions:

4. The boy was seen by the dog.

Missing or extra elements:

(11) Unpaired delimiters:

a. «The dog, which was in the garden was quiet.

(12) Missing delimiters:

a, *The dog I think was in the garden,
b. *In the garden dogs arc a menace.

(13) Missing list separators:

a. ¥There were two dogs three cats and b canary.

(14) Double syntactic function:

ACTES DE COLING-92, NANTES, 23-28 AGUT 1992

a, [t seems to be is a dog,
b. I think know I've been there before.

Figure 1: Examples of Syntactic Errors

469

tially ambiguous syntactic structures, and garden
path sentences in this category. These problems
are detectable by simple counting or recognition
of syntactic forms.

Missing or Extra Elements:
These are cases where elements (either words or
punctuation symbols) are omitted or mistakenly
included in a text. An interesting sub-category
here, which is surprisingly frequent, is the pres-
ence of two constituents which serve the same or
a similar purpose; by analogy with double-word
errors (where u word appears twice in succession
when only one occurrence was intended), we refer
Lo these as cascs of double syntactic function.

The errors dealt with in this paper all fall into the
first class, i.e, those that can be seen as breaking
constraints on feature values. At the end of the paper
we make some observations on how the mechanism
can be extended to the other classes.

Previous Work

Of course, there exists a significant body of work
dealing with computational approaches to syntactic
errors like those just discussed. Broadly, work deal-
ing with ungrummatical input falls into two cate-
gories: approaches where the principal objective is
to determine what meaning the speaker intended,
wnd approaches where the principal objective is to
construct an appropriate correction. The first kind
of approach is most appropriate in the development
of natural language interfaces, where syntactic dys-
fluencies con oiten be ignored if the user’s intentions
can be determined by means of other evidence. How-
ever, these approaches (in the simplest cases, based
on detecting content words) are inappropriate where
the system must also propose a correction for the
hypothesised error.

Of the different techniques that have been proposed
under the second category, the most useful is that
usually referred to as relaxation. This is a rather
elegant method for extending a grammar’s coverage
to include ill-formed input, while retaining a princi-
pled connection between the constructions accepted
by the more restrictive grammar and those accepted
by the extended one. If a grammar expresses in-
formation in terms of constraints or conditions on
features, a slightly less restrictive grammar can be
constructed by relaxing some subsct of these con-
straints. Work commonly referred to in this con-
text includes Kwasny and Sondheimer [1981] and
Weischedel and Black [1980], but very many systems
use some kind of relaxation process, whether of syn-
tactic or semantic constraints. The most well known
is 18BM’s work on the Epistle and Critique systems
[Heidorn et al. 1982; Jensen et al. 1983; Richardson
and Braden-Harder 1988].

n Briti;ﬁ—linglish, NEC is spelled out, rather than
being pronounced like the word neck; thus, the correct
form here is an NEC.

Proc. or COLING-92, NANTES, AUG. 23-28, 1992

Epistle parses text in a left-to-right, bottom-up fash-
ion, using grammar rules written using an augmented
phrase structure grammar (APSG). In APsG, each
grammar rule looks like a conventional context-free
phrase structure rule, but may have arbitrary tests
and actions specified on both sides of the rule. So,
for example, we might have a rule like the follow-
ing:

(15) NP VP (NUMB.AGREE.NUMB(NP)) —
VP(SUBJECT = NP)

This rule states that a noun phrase followed by a verb
phrase together form a VP,? provided the number of
the NP and the original VP agree. The resulting VP
structure then has the original NP as the value of its
SUBJECT attribute.

Using rules like these, the system attempts to parse &
sentence as if it were completely grammatical. Then,
if no parse is found, the system relaxes some condi-
tions on the rules and tries again; if a parse is now
obtained, the system can hypothesise the nature of
the problem on the basis of the particular condition
that was relaxed. Thus, if the above rule was used
in analysing the sentence FEither of the models are
acceptable, no parse would be obtained, since the
number of the NP FEither of the models is singular
whereas the number of the VP are acceptable is plu-
ral. However, if the number agreement constraint
is relaxed, a parse will be obtained; the system can
then suggest that the source of the ungrammatical-
ity is the lack of number agreement between subject
and verb.

One thing that must be borne in mind when con-
sidering the merits and demerits of relaxation meth-
ods is that they depend crucially on how much of
the particular grammar’s information is expressed
as constraints on feature values. Where the basic
form of a grammar is, say, complex phrase struc-
ture rules, the use of features may be confined to
checking of number and person agreement. If, on
the other hand, more of the informative content of
the grammar is represented as constraints, as in re-
cently popular unification-based grammars [Sheiber
1986), relaxation can be used to transform grammars
to less closely related ones.

In the remainder of this paper, we show how a
unification-based formalism, PATR-11, may be ex-
tended by a declarative specification of relaxations
so that it can be used flexibly for detecting syntactic
errors. Under one view, what we are doing here is
rationally reconstructing the Epistle system within a
unification-based framework. A useful consequence
of this exercise is that the adoption of a declarative
approach to the specification of relaxations makes it
much easier to explore different processing regimes
for handling syntactic errors.

2This second, higher-level VP plays the role of what we
would normally think of as an S node.

ACTES DE COLING-92, NANTES, 23-28 AOUT 1992 470

X0 o X1 X2
(X0 cat) = VP
(X1 cat) = NP
(X2 cat) = VP
(X0 subject) = Xl
{X1 num) = (X2 num)

Figure 2: pATR version of the Epistle rule

Making PATR Robust
The Basic Mechanism

In this section, we describe an experimental system,
written in Prolog, that is designed to support the
mechanisms necessary to apply PATR-type rules to
solve constraints selectively. The major components
of the system are (a) the parsing mechanism; (b) the
underlying PATR system; and (c) the rule application
mechanism that mediates between these two.

The parser encodes the chosen strategy for applying
particular grammar rules in a particular order. At
this stage, the parser is not a crucial component of
the system; all we require is that it apply rules in
a bottom-up fashion. Accordingly, we use a simple
shift-reduce mechanism. The parser will be the focus
for many of the proposed extensions discussed later;
in particular, we are in the process of implementing
a chart-based mechanism to allow handling of errors
resulting from missing or extra elements.

The basic PATR system provides a unification based
mechanism for solving sets of constraints on feature
structures. A PATR rule corresponding to the gram-
mar rule discussed in the context of Epistle above is
shown in Figure 2.

It is fairly obvious that, given some mechanism that
allows us to remove the final constraint in this rule,
we can emulate the behaviour of the Epistle system.
In our model, the rule application mechanism pro-
vides the interface between the parsing mechanism,
which accesses the lexicon and decides the order in
which to try rules, and the PATR system. To see how
this works, we will consider a slightly more complex
rule, shown in Figure 3; the use of the numbers on
the constraints will be explained below.

Given this rule, a constituent of category Np will be
found given two lexical items which are respectively
a determiner and a noun, provided all the constraints
numbered 1 through 6 are found to hold. Note the
constraint numbered 4: we suppose that the features
addressed by (X1 agr precedes) and (X2 agr begins)
may have the values vowel and consonant. This al-
lows us to specify the appropriate restrictions on the
use of the two forms a and an.?

30f course, the implication here that a is used be-
fore words beginning with a vowel and an is used before
words beginning with a consonant is an oversimplification.
There are also, of course, other means by which this con-

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

X0 - X1 X2
1 (X0 cat) = NP
2 (X1 cat) = Det
3 (X2 cat) —~ N
4 (X1 agr precedes) = (X2 agr begins)
5 (X1 agr num) = (X2 agr num)
6 (X0 agr num) = (X2 agr num)

Figure 3: Simple Np rule in the PATR formalism

Relaxing Constraints

Given the rule in Figure 3, and a standard parsing
mechauism, there will be no problem in parsing cor-
rect NPs like these dogs. However, consider our target
errors in (16a—c):

(16) a. =this dogs
b. xan dog
c. *an dogs

Example (16a) exhibits premodifier-noun number
disgreement,; (16b) exhibits use of the wrong indefi-
nite article; and (16¢) contains both of these errors.
If the parser is to make any sense of these strings, we
must introduce a more elaborate control structure.

Premodifier-noun number agreement is enforced by
constraint 5; constraint 4 enforces the use of the
proper indefinite article. We need to be able to relax
constraint 5 to parse (16a), and to relax constraint 4
to parse (16b); to parse (16c), we want to relax both
constraints $ and 4 at once.

To deal with this, we make use of the notion of
a relaxation level. Instead of applying all con-
straints associated with a rule, we specify for every
rule, at any given relaxation level, those constraints
that are necessary and those that are optional.
At relaxation level 0, which is equivalent to the be-
haviour of the standard PATR system, all constraints
arc decmed necessary. At relaxation level 1, how-
ever, constraints 4 and 5 are optional. Opiional con-
straints, if violated, need not result in a failed parse,
but do correspond to particular errors,

The algorithm in Figure 4 applies all constraints ap-
propriately, given a specification as just described.
Here, N is the set of necessary constraints and O
is the sct of optional constraints, both for a given
relaxation level L; R is the set of constraints which
have to be relaxed in order for the rule to be used.
R will always be a subset of O, of course; we re-
turn the actual value of R as a result of parsing
with the rule. The outer conditional ensures that
all the necessary constraints are satisfied. The inner
conditional takes appropriate action for each relax-
able constraint whether or not it is satisfied: if the
straint could be checked; however, we include it here as
a constraint on the application of the rule for expository
purposes,

ACIES DE COLING-92, NANTES, 23-28 A0UT 1992 471

‘When applying rule r at relaxation level L:

N + necessary constraints on r at I
O « optional constraints on r at I,
e {}
if all n € N can be solved
then incorporate any instantiations required
for each o; € O do
if o4 can be solved
then incorporate instantiations
else R + C U o;
endif
next
else return failure
endif
return C

Figure 4: The relaxation algorithm, version 1

Relaxation level 0:
necessary constraints = {1,2,3,4,5,6}
optional constraints = {}

Relaxation level 1:
necessary constraints == {1,2,3,6}
optional constraints = {5,4}

Figure 5: The relaxation specification for the Np rule,
version 1: optional constraints

Relaxation level 1:
necessary constraints: {1,2,3}
relaxation packages:

(a) {5, 6}: Premodificr-noun number disagreement
(b) {4}: a/an error

Figure 6: The relaxation specification for the Np rule,
version 2: grouped constraints

constraint is satisfied, it has exactly the same effect
as a necessary constraint; if not, the constraint is
recorded as having been relaxed.

Once parsing is complete, the information in R can
then be used to generate an appropriate error mes-
sage.

The operation of this algorithm is supported by ex-
plicitly indexing each constraint within a rule, us
in Figure 3, and abstracting out the specification of
which constraints may be relaxed at a given relax-
ation level. The constraint application specification
for the NP rule is given in Figure 5.

Grouping Constraints

This is not the whole story, however. Consider the
NP this dogs, which would be correctly parsed at re-

Proc. oF COLING-92, NANTES, AUG. 23-28, 1992

laxation level 1 as exhibiting premodifier-noun num-
ber disagreement under the system described so far.
The instantiation of X0 resulting from this rule ap-
plication would be as follows:

cat: np

(17) X0 = agr: [num: plu]

Note in particular that (X0 agr num) has the value
plu. This results from the solution of constraint 6,
which is one of the necessary constraints at relax-
ation level 1 as specified in Figure 5. This ‘feature
transport’ constraint propagates the number of the
head noun to the superordinate noun phrase. It is
not, appropriate to perform such a propagation under
the current circumstances, however, because once a
case of premodifier-noun number disagreement has
been identified, we cannot tell whether it is the num-
ber of the noun or the number of the determiner that
is in error. One might argue that one of the two
is more likely than the other, but such a heuristic
belongs in the mechanism that offers replacements
rather than in the relaxation mechanism itself. If
the number of the noun is always propagated to the
noun phrase, spurious error reports may emerge in
subsequent parsing: for example, in the text This
dogs runs, a subject-verb number disagreement will
be flagged in addition to the premodifier-noun num-
ber disagreement error. This will be at best mislead-
ing.

We would like to be able to express the intuition
that it is not really meaningful to apply constraint 6
if constraint 5 has failed; these constraints should be
grouped together, to be applied together or not at
all. So we introduce an addition to the specification
for relaxation level 1, shown in Figure 6.

We refer to a group of constraints to be relaxed to-
gether or not at all, plus the error message that cor-
responds to the failure of the group of constraints, as
a relaxation package. The algorithm of Figure 4
has been adapted to apply such relaxation packages,
resulting in the algorithm in Figure 7. Here, R is
the set of relaxation packages required in order to
complete the parse.

Note that if all the constraints in a relaxation pack-
age can be applied successfully, they have exactly the
samc effect as necessary ones, in terms of contribut-
ing to the building of structure. Thus, if the number
agreement condition constraint 5 is satisfied, as in
the case of the text an dogs, then the associated fea-
ture percolation constraint, 6, will add the feature
{agr num) to X0, with value (X2 agr num).

Ordering Constraints

In the previous section, we altered the mechanism
to allow for the fact that it is not meaningful to
apply some constraints if others have failed; in the
worst case, this avoided confusing error diagnoses.
Even if no such confusion would result, however, con-

ACTES DE COLING-92, NANTES, 23-28 A0UT 1992 472

When applying rule r at relaxation level L:

N « necessary constraints on r at L
O «- relaxation packages for r at L
R« {}
if all n € N can be solved
then incorporate any instantiations
for each relaxation package P, € O do
if all constraints ¢; € F; can be solved
then incorporate any instantiations
else R— R+ B
endif
next
else return failure
endif
return R

Figure 7: The relaxation algorithm, version 2

siderable efficiency gains can be made by ordering
constraints in such a way as to minimise unneces-
sary structure building. A similar point is made by
Uszkoriet [1991], who talks of the need for a flex-
ible control strategy for efficient unification based
parsers, to ensure that the conditions that are most
likely to fail are tried first.

Ideally, the ordering of constraints would be derived
automatically from other information; but it is un-
clear how this would be done. Currently, we make
use of one central ordering principle:

(18) Category constraints on RHS items come first,

In the bottom-up parsing system we use, all RHS
items will be instantiated with feature structures cor-
responding to lexical entries, or to syntactic cate-
gories built up by rule from lexical entries; it is a
discipline on our lexicon and our structure build-
ing rules that all such feature structures will have
a cat feature. This means that a query about the cat
value will involve no structure building, However,
if, before checking the category, we were to enquire
about the (agr num) feature, we might involve our-
selves in some unnecessary structure building, be-
cause if applied to a feature structure that does not
have an (agr num) feature, what was thought of as a
conditional constraint will in fact result in structure
building. For example, the constraint in (19) ap-
plied against the structure in (20) will result in the
structure shown in (21); this is clearly not desirable.

(19) (X1 agr num) = plu

cat: conjunction

(20) X1 = lex: and
cat: conjunction
@21) X1 = lex: and

agr: [num: plu]

Proc. of COLING-92, NANTES, AUG. 23-28, 1992

Relaxation level 0:
necessary constraints: {2,3,5,4,1,6}
relaxation packages: {}
Relaxation level 1:
necessary constraints: {2,3,1}
relaxation packages:

(a) {5, 6}: Premodifier-noun number disagreement
(b) {4}: a/an error

Figure 8: The relaxation specification for the Ny rule,
version 3: constraint ordering

These considerations give rise to the ordering of con-
straints given in Figure 8; we assume that when the
algorithm in Figure 7 tests whether all members of
a constraint set can be solved, the constraints are
solved in the order given in the specification, and the
test halts as soon as any member of the constraint
set cannot be solved:

Discussion

We have argued that combining the relaxation tech-
nique for syntactic error correction with a grammar
(such as is found in recent unification formalisms)
that expresses most of its information in the form of
constraints provides a good starting point for a flexi-
ble mechanisin for detecting and correcting syntactic
errors. Our work in this area so far raises a number
of interesting questions which need to be pursued
further.

Dependencies between Constraints: As
we have seen, the ordering of constraints in the
relaxation specifications is very important. How-
ever, the particular role a specific constraint per-
forms will of course depend on the particular pars-
ing strategy being used. Ideally, we would like to
generate the ordering information automatically,
although it is not entirely clear how this might
be done. One source of some ordering constraints
might come from using typed feature structures
in the lexicon, so that the rule application mech-
anism can determine ahead of time what the pri-
mary source of inforination is. Another approach
might be to require the grammar writer to spec-
ify the constraints on rules as belonging to specific
categories, and then to allow the rule application
mechanism to impose a predefined ordering be-
tween categories; in particular, the most trouble-
somne constraints are those which transport feature
values around a structure, since they may trans-
port the wrong values, as we saw in the example
discussed earlier.

Generation of Replacement Text: A topic we
have not addressed in the present paper is the gen-
eration of corrections for hypothesised errors. The
result of parsing using relaxation provides sufi-

Acigs DE COLING-92, NANTES, 23-28 AcUT 1992 413

cient information to generate such replacements,
but once again we need to maintain information
about the dependencies between elements of a
structure so that, when a new structure is created,
any conflicts that arise can be resolved: for exam-
ple, if generating a correction involves changing
the num feature of a noun from plural to singu-
lar, we need to encode the information that the
tex feature is dependent upon the num feature and
some specification of the root form, so that the re-
placement mechanisin knows which features take
priority and which may be overridden.

Deciding between Error Hypaotheses: When a
constraint unifying two incompatible values vy and
w2 has to be relaxed, then in the absence of further
information there are two equally likely error hy-
potheses: one, that v; is the correct value and vy
is wrong, and the other that vy is correct and vy
is wrong. However, therc are two types of situa-
tion in which further iuformation available during
parsing may enable one hypothesis to be preferred.
The first is where the absolute likelihood of one
error seems greater than that of the other. For ¢x-
ample, in the case of the noun phrase these dog it
might prove to be much more likely for a writer to
mistakenly omit the single letter s than to choose
the wrong determiner, which involves a change of
two letters—there may be quantifiable difference
between the assumptions behind the two hypothe-
ses. The second is where a number of possible er-
rors are linked, for example if the whole sentence
was These doy are fierce. Here, two possible errors
involving different rules are interdependent, and
once again it is possible to argue that one error
hypothesis requires a quantifiably different set of
assumptions; here, both these and arc would have
to be wrong if dog were to be assumed correct.

To a certain extent, it may be possible to rely on
unification to deal with these conflicts. The relax-
ation package dealing with the noun phrase num-
ber disagreement might ‘hold its fire™- not signal
an error immediately- -leaving the number feature
of the noun phrase uninstantiated. Then there will
be no clash with the number of the verb phrase,
which will be propagated down ta the noun phrase.
It may be possible to hook this value up to the sub-
sequent processing of the error suggestion from the
noun phrase rule.

Alternatively, the idea that there are a number of
assumptions behind a given error hypothesis could
be formalised, perhaps by using an ArMs [de Kleer
1986n, 1986b) to keep track of inconsistencies. Hy-
potheses could be weighted both by their absolute
likelihood and the contextual evidence (i.e., the
number and weight of related errors consistent and
inconsistent with the hypotheses).

Much depends on where during the parsing pro-
cess errors arise and are notified, and so detailed
consideration of this issuc has been deferred until
our chart parser extension to this system has been
explored.

Proc. or COLING-92, NANTES, AuG. 23.28, 1992

Levels of Relaxation: The examples we have pro-
vided have only explicitly mentioned one level
of relaxation. One can imagine situations where
other, further levels of relaxation are available.
In particular, note that, since categorial informa-
tion can be specified by means of constraints, we
can also consider handling instances of words mis-
spelled as words of other syntactic categories by
means of the same mechanism; relaxing category
feature constraints might be an appropriate can-
didate for a further level of relaxation. There is
of course the question of how one decides what re-
laxations should be available at what levels; deter-
mining this requires more detailed statistical anal-
ysis of the frequencies of different kinds of errors.
It is also likely to be required that individual error
rules, spread across a number of grammar rules, be
capable of being treated as a unit, that is, switched
on or off together, orthogonal to the idea of relax-
ation levels.

Different Kinds of Relaxation: In the forego-
ing, we assumed that relaxing a constraint sim-
ply meant removing it. There are other notions of
constraint relaxation that could be used, of course;
for cxample, if a constraint assigns a value to some
feature, we could relax this constraint by assigning
a less specific value to that feature. There may be
other cases where we would want to generalise the
notion of relaxation to include the possibility that
4 constraint could be replaced by a quite different
constraint.

Conclusions and Future Work

We have described a simple extension to the PATR-
1t formalism which allows us to provide declarative
specilications of possible relaxations on rules. This
provides a good starting point for a flexible mech-
anism for detecting and correcting syntactic errors.
One reason for this is that relaxation provides a pre-
cise and systematic way of specifying the relation-
ship between errorful and ‘correct’ forms, making it
easier Lo generate suggestions for cotrections. A sce-
ond reason is that the very uniform representation
of linguistic information will allow flexible stratcgies
for relaxation to be applied; this is particularly im-
portant when dealing with text that may contain
unpredictable errors.

As we have shown, the mechanism described here can
be applied straightforwarly to Constraint Violation
Errors as described at the beginning of the paper.
At the moment we have a rather ad hoc mechanism
that deals with cases of Lexical Confusion by pro-
viding altcrnative lexical entries in the case of parse
failure, but, this nceds to be integrated better with
the relaxation mechanism. Cases of Stylistic Awk-
wardness simply require the addition of a critic that
walks over the structures produced by the parser.
The major focus of our current work is the replace-
ment of the shift-reduce parser by a chart parser, to
enable us to handle cases of Missing or Extra Fle-
ments.

AcTEs DE COLING-92, NaNTES, 23-28 A0UT 1992 474

Acknowledgements

This work was carried out as part of 1ED Project
1679, The Editor’s Assistant; Douglas is supported
by SERC grant GRF 35654. Much of our thinking on
this topic was inspired by conversations with Pablo
Romero-Mares, who constructed an early version of
the parser as an MSc project.

References

R Dale [1989] Computer-based Editorial Aids. Pages
12-20 in Recent Developments and Applications of
Natural Language Understanding, edited by Jeremy
Peckham. Kogan Page, London.

R Dale [1990] A Rule-based approach to Computer-
Assisted Copy Editing. Computer Assisted Language
Leaming, 2, 59-67.

G E Heidorn, K Jensen, L A Miller, R J Byrd, and
M § Chodorow [1982]] The Epistle text-critiquing
system. IBM Systems Journal, 21, 305-326.

J de Kleer [1986a] An Assumption-based Truth
Maintenance System. Artificial Intelligence, 28,
127-162.

J de Kleer (1986b] Extending the T™s. Artificial
Intelligence, 28, 163-196.

S C Kwasny and N K Sondheimer [1981] Relaxation
Theories for Parsing Ill-Formed Input. American
Journal of Computational Linguistics, 7, 99-108.

K Jensen, G E Heidorn, I, A Miller, and Y Ravin
[1983] Parse fitting and prose fixing: getting a hold
on jll-formedness. American Journal of Computa-
tional Linguistics, 9, 147-160.

I A Miller [1986] Computers for Composition: A
Stage Model Approach to Helping. Visible Lan-
guage, XX(2), 188-218.

S D Richardson and L C Braden-Harder [1988] The
Experience of Developing a Large-Scale Natural Lan-
guage Text Processing System: CRITIQUE, In Pro-
veedings of the 2nd Applied Natural Language Pro-
cessing Conference, pp195-202.

S M Shicber [1986] An Introduction to Unification-
based Approaches to Grammar. The University of
Chicago Press, Chicago, lllinois.

H Uszkoreit [1990] Strategies for Adding Control In-
formation to Declarative Grammars. In Proceedings
of the 29th Annual Meeting of the Association for
Computational Linguistics, pp237-245,

R M Weischedel and J E Black {1980] Responding In-
telligently to Unparsable Inputs. American Journal
of Computational Linguistics, 6, 87-109.

PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

