
Towards a Dedicated Database Management System for I)ictionaries

Marc Domenig, Patrick Shann
lnstitut Dalle Molle pour les Etudes
Semantiques et Cognitives (ISSCO)

Route des Acacias 54
1227 GENEVA, Switzerland

Abstract

This paper argues that a lexical database should be
implemented with a special kind of database
management system (DBMS) and outlines the design of
such a system. The major difference between this
proposal and a general purpose DBMS is that its data
definition language (DDL) allows the specification of
the entire morphology, which turns the lexical database
from a mere collection of 'static' data into a real-time
word-analyser. Moreover, the dedication of the system
conduces to the feasibility of user interfaces with very
comfortable monitor- and manipulation functions.

1. Introduction

As the means of natural language processing axe
gradually reaching a stage where the realisation of
large-scale projects like EUROTRA becomes more and
more feasible, the demand for lexical databases
increases. Unfortunately, this is not a demand which is
easy to meet, because lexical databases are exceedingly
expensive. ~[he two main reasons for this are the
following:

• The mmmal labour involved with the coding of
entries is time-consuming.

• The possibilities to take over or to cumulate existing
machine-readable dictionaries are rather limited
because existing dictionaries usually contain only a
part of the information needed fox" a certain project.
Severe consistency problems and the need for
manual post-editing are the result of this (->[Hess,
et. al. 1983]).

As long as there is no general agreement on the kind
of information which should be stored in a dictionary
and therefore no universally applicable lexical database,
we will have to live with these problems. The important
question for the time being is, whether we can alleviate
them. This paper ,argues that the best way to do that is to
construct a dedicated database management system
(DBMS). It presents a prototype proposal which has

been conceived in a doctoral thesis [Domenig 1986] and
which is the basis for a project that ISSCO 1 has recently
started in conjunction with the Swiss National Fnnd.
Because of the limited space at disposal we will mainly
explain the most uncommon feature of the system, its
morphological capabilities. We will not go into all of
the monitor- and manipulation flmctions which alleviate
the task of lexicography. The reader may infer the
potential for them, however, if he remembers the
following fact: as both the 'static' and 'dynamic'
informations about entries (features and morphological
processes, respectively) are coded within the system,
they can both be accessed and controlled quite easily.

2. Tile requirements for a lexical database

According to our opinion, a lexical database should
not be a mere collection of 'static' data, i.e. a set of
morphemes with associated features. It should comprise
morphological processes which enable it to serve as a
real-time word-analyser used in a message-switching
environment (e..g. a local area network). Moreover, the
DBMS should control the consistency of the data as far
as possible so that only plausible combinations of
features and morphological processes can be associated
with entries. This differs very much from tile
'traditional' concept of lexical databases, where the
entries consist of strings with associated features and the
morphological interpretation is done outside of the
database in a program. Naturally, the control over
consistency is much more efficient and also easier to
maintain if both 'static' and 'dynamic' information are
coded within the database.

1. ISSCO stands for 'Institut dalle Molle pour des Etudes
Semantiques et Cognitives'.

91

database rfianager

. i

linguist
interface

I
I

DDL- J
compiler

internal schema

LDB

interface
definitionen

l i

DML-
compiler

I
I

lexicographer
interface

i
I
I
I
I
I
v

-- process
interface

r

I user

, []
k_ J

r " "~

I user I

I
: I

I
i [] i
I._ _1

Fig. 1: The DBS according to the ANSI/SPARC 3-Schema-Model

3. The inadequacy of general purpose DBMS

General purpose DBMS - be they relational or
whatever - do not live up to the formulated requirements
for a real-time dictionary database. On the one hand,
they are in many areas much too powerful for the task at
hand, i.e. they can be adapted to a wealth of problems
which have nothing to do with dictionaries. This flexi-
bility ensues both a relatively low level of abstraction
and a massive overhead. On the other hand, general
purpose DBMS are not powerful enough; for example, a
relational data definition language (DDL) provides no
transparent means to express morphological processes.

4. The design of the dedicated DBMS

The design of the dedicated DBMS put forward in
[Domenig 1986] follows the ANSI/SPARC 3-Schema-
Model. As shown in Fig. 1, it assumes that three
different interfaces are needed:

• A linguist interface with which the conceptual
schema is defined, i.e. the structure and the consis-
tency rules of the database.

92

• A lexicographer interface for the editing of entries.

• A process interface for the real-time question-
answering service in the message-switching
environment.

From the point of view of the software-design, the most
complex part of this conception is the linguist interface
with the DDL and its compiler. All the other parts of the
system depend very much on it because of its far-
reaching dedication. We will therefore concentrate on
the linguist interface and the DDL in this paper. The
principal guidelines for their definition have been the
following:

° The syntax of the DDL should be intelligible for
linguists.

• The linguist interface should be interactive and give
some leeway for experiments in order to test
different morphological strategies.

The proposed solution foresees the implementation of
the system on a high-performance workstation. It
includes multiple window technology with pop-up

menus for monitor- and manipulation functions as well
as incremental compilation. Some brief examples: q-he
top-level window of the interface looks as follows (if we
assume that we have seven dictionaries):

schema

Dani,~h
Dutch

English
French
German
Greek
Italian

end ~hema

If the linguist wants to define the conceptual schema
of the Danish dictionary he selects - with a mouse - the
according string on the screen, whereupon a second
window is pasted on top of the existing one:

schema ~]

Danish

alphabet
type
grammar
root

end Danish
end schema

Identically to the top-level window, this window is
unalterable, i.e. all the dictionary schemas consist of
four different definition parts, an alphabet-, a type-, a
grammar- and a structure-definition (the structure-
definition is represented by the keyword root). If the
linguist wants to edit one of the definition parts, he
again selects the according string:

schema

end

Danish

alphabet

end

end alphabet

In contrast to the two top-levels, this window can be
edited. We will not go into the function or the syntax of
the alphabet-definition as both are quite trivial. As
might be inferred from the name, this is the place where
character sets and the like are defined (because the
system discerns a lexical and a surface level, some
metacharacters denoting morphological classes etc., the
character set is not quite as trivial as might be imagined
at first glance). If something is entered into this window,
the according string in the window above appears
henceforth with an icon (1:3) behind it:

schema

Danish

alphabet []
type

grammar
root

end Danish
end schema

In a similar fashion the other three definition parts of
the conceptual schema can be defined: The type
definition comprises name- and domain-specifications
of all but the string-typed features allowed in the data-
base. We will not go into its syntax here either.

The grammar definition contains morphonological
rules which mediate between the lexical and the surface
level. We have adapted their concept from Koskenniemi
([Koskenniemi 1983, 1984]), whose formalism has been
widely acknowledged by now, especially in the US (at
SRI [Shieber 1984], University of Texas
[Karttunen 1983], by M. Kay of Xerox etc.). A few
examples:

example 1: epenthesis

rule SY'ils
example 2: consonant-doubling

rule: + / < C I > < - - > [' I #] C * V < C I > V

where <CI> = {b, d,f, g, l, m, n, p, r, s, t}

example 3: surface-'i' for lexieai 'y'

rule: y/i<--> C +/=^[il a]

93

example 4: el is ion

rule: elO < - -> <C2> _ +10 V,

AVV +/Oe,

where <C2> = {CP; CP in AV & CP in A{c, g} }

example 5: surfaee . 'y ' for lexieal 'i'

rule: ily < - -> _ elO +/0 i

The structure definition is at least syntactically the
most complex part of the conceptual schema. It contains
an arbitrary number of hierarchical levels which define a
collection of so called l ex ica l uni t c lasses (luclasses) on
the one hand, i r r egu lar en t r ies (luentries) on the other.
The fundamental ideas behind it are:

• Entries which obey the same morphological rules
should be grouped into c lasses so that those rules
have to be specified only once.

• Entries which are too i r regu lar to fit into such a
class should be defined as i r regu lar . T h e b o u n d a r y

between regularity/irregularity should be defined by
the database manager (linguist) and hence be
unalterable by lexicographers. Irregular entries are
therefore defined in the conceptual schema (the
interactivity of the interface, the powerful editing
functions and the incremental compilation provide
for the feasibility of this approach).

The consequence of this approach is that the structure
definition consists of a set of l uc las s -de f in i t i ons on the
one hand, a set of l uen t ry -de f in i t i ons on the other. In
order to facilitate the management of the members of
these sets, they are organized in a hierarchical structure,
whereas the criteria for the hierarchy are s o m e o f the

f e a t u r e s w h i c h qua l i f y the sets. Syntactically, this looks
e.g. as follows:

root
dcl []
gcase []
dcase

[{Cat:N, node 13} I
{Cat:V, node 13} I
{Cat:ADJ, node 13}
{Cat:ADV, node 13}
{Cat:AUX, node •}
{Cat:DET, node •}
{Cat:PRO, node U}
{Cat:PRE, node []) I
{Cat:CON, node •} I
{Cat:INT, node []}]

end dcase
end root

This window defines one hierarchical level (the top)
of the organization of the luclasses and luentries
respectively. The meaning of it should be quite obvious
if we leave out del [] and gease [] and concentrate on the
case-distinction enclosed in the square brackets: The
features Cat:N, Cat:V,.. are defined to be distinctive for
certain subsets out of the collection of luclasses and
luentries. Note that the names of the attributes and
values are entirely arbitrary (they must be defined in the
type-definition, of course). Subordinate levels of the
definition are again abstracted by icons (node U), i.e.
they are defined and viewed in separate windows:

root
dcl []
gcase []
dcase

[{Cat:N,
{Cat:V,
{Cat:ADJ,
{Cat:ADV,
{Cat:AUX,
{Cat:DET,
{Cat:PRO,
{Cat:PRE,
{Cat:CON,

node t3} I
node

dcl []
gcase []
dcase

[{VCat:REG, node •} [
{VCat:IRREG, node []}]

end dcase
end node

{Cat:INT, node D}]
end dcase

end root

In the leaves of this tree the keyword node is
replaced by either luclass or luentry. Their syntax is
almost identical, so let us just give an example of an
luelass-definition:

94

luc|a,,~;
trans LI
geese I~J

li~e~ltltea ' +[{Case:NON1, Number:SG} I
{Cnse:NOM, Number:PL} I
{Ca.~e:DAT, Number:SG} [
{Case:GEN, Number:PL} I
{Case:AKK, Number:SG} [
{Case:AKK, Nmnber:lq~}

+a + {Cuse:GFN, NUMBER:SG}

+~l + {Case:DAT, NUMBEII:PL}
end luclass

Apart from the strings transL7 and gcaseC?, the
meaning of it should again be quite obvious. In prose
we might summarize it as follows: All entries of this

class m'e nouns of a certain subclass - the features
Cat:N denoting this qualification are specified on the
path from the root to this leaf - and within this subclass
a zero-morpheme attached to the stem is interpreted as
one of the following alternatives of feature sets:

[{Ca~:NOM, Number:SG}l
{Case:NOM, Number:PL} [
{Ca~:DAT, Number:SG} I
{Ca~:GEN, Number:PL} [
{Case:AKK, Number:SG} I
{Cas~:AKK, Number:]PL}]

An 's ' -morpheme attached to the stem is interpreted
as {Case:GEN, NUMBER:SG}, an 'n'..morpheme as
{Case:AKK, Nl,mber:PL}. The string Fenster acts in tiffs
definition mainly as an illustrative example, i.e. it has no
conceptual function and may be replaced by all noun-
stems belonging to this class. Conceptually speaking,
the definition therefore specifies all the inflectional
fmxns of this noun class. The consequence of this is that
lexicographers have to enter only the stems of words,
the inflections are defined in the system. Together with
some additional language constructs, the regularitics of
morphology can thus be quite thoroughly grasped. The
additional constructs are:

o a fommlism with approximately the power of a
context-free grammm' for compounding and
deriwltion which allows the combination of different
luclasses and luentries.

o a formalism for the specification of stem-alterations
(e.g. German Umlaut).

50 Coilclusioh

The impml:ant difference of this approach compared
to other systems is the definition of morphological
phenomena in the conceptual schema of the DBMS
itself. This conceptual schema can be easily compiled
into a redundancy-optimized internal schema. This in
turn provides for two things: first for an efficient real-
time access to the lexical units etc., second for very
comfortable monitor- and manipulation-functions for
the linguist interface. For example, it is trivial to
implement functions which generate all forms which are
associated with certain features or combinations thereof.
It is equally easy to test the impact of complex rules, be
they grammar-rules of the Koskenniemi-style or
difficult to handle compounding roles (implemented by
the fommlism which is similar to a context4ree
grammar), q%e most intriguing quality of the internal
schema, however, is probably that it enables the
database manager (linguist) to alter the morphological
strategies dynamically, i.e. to experiment with them.
This is possible, because the system always knows
which syntactico-semantic features and which morpho-
logical rules have to be associated with the different
classes of entries; whenever those associations -- you
could also call them consistency rules - are altered, the
system can determine whether the entries belonging to
the according classes lose or gain information, whether
the alteration is legal etc.. We do not want to go further
into those consistency problems as we haw; not really
explained them in this summary. We would like to
stress, however, that we consider their integration in the
DBMS a major' advantage and necessity as they autono-
mize the whole system. Apart from the possibilities for
experiments they facilitate tim integration of existing
machine-readable dictionaries, again, because the
system always knows which kind of inRmnation is
distinctive and which is mandatory for which class of
entries.

Summarising we could say that the kind of
morphology supported by the DBMS is rather a
traditional one, i.e. the biggest eftort has been spent on
truly regular phenomena like inflection. For compoun-
ding and derivation the offered choice is either a full
implementation (-->redundancy) or the rather dangerous
• - potentially overgenerating -. formalism resembling a
context-free grammar. It has to be stressed that we
conceive this system as a prototype which will probably

be subject to some alterations in tim ft, ture. q he
proposed software-design is accordingly tuned, i.e. it
relies on the availability of powerful software tools
(EMACS, LEX, YACC, LISP etc.) nmning in a UNIX-
environment.

95

6. References

Amsler R.A.: "Machine-Readable Dictionaries."
Annual Review of Information Science and
Technology (ARIST), Vol. 19, 1984, 161-209.

ANSI/X3/SPARC Study Group on Data Base
Management Systems: "Interim Report 75-02-
08."
FDT (Bull. of the ACM SIGMOD) 7, 1975.

Cignoni L., et al. eds: Survey of Lexicographic Projects.
Istituto di Linguistica Computazionale, Pisa,
Italy, 1983.

Domenig M.: Entwurf eines dedizierten Datenbank-
systems fiir Lexika.
Doctoral thesis at the University of Zfirich. in
print.

Hess K., Brustkern J., Lenders W.: Maschinenlesbare
deutsche W6rterbiicher.
Niemeyer, Tfibingen, 1983.

Jaspaert L.: Matters of Morphology. EUROTRA
Morphology Legislation, Second Draft.
Internal EUROTRA paper, Nov. 1984.

Karttunen L.: "KIMMO: A Two Level Morphological
Analyzer."
Texas Linguistic Forum 22, 1983, 165-186.

Koskenniemi K.: Two-Level Morphology: A General
Computational Model for Word-Form
Recognition and Production.
Doctoral thesis at the University of Helsinki,
Department of General Linguistics, Publications
No. 11, 1983.

Koskenniemi K.: "A General Model for Word-Form
Recognition and Production." in
Proceedings: lOth International Conference on
Computational Linguistics, Stanford Univ.,
Calif., July 2-6, 1984.

96

