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Abstract

We describe a novel approach to coref-
erence resolution which implements a
global decision via hypergraph partition-
ing. In constrast to almost all previ-
ous approaches, we do not rely on sep-
arate classification and clustering steps,
but perform coreference resolution glob-
ally in one step. Our hypergraph-based
global model implemented within an end-
to-end coreference resolution system out-
performs two strong baselines (Soon et al.,
2001; Bengtson & Roth, 2008) using sys-
tem mentions only.

1 Introduction

Coreference resolution is the task of grouping
mentions of entities into sets so that all mentions
in one set refer to the same entity. Most recent
approaches to coreference resolution divide this
task into two steps: (1) a classification step which
determines whether a pair of mentions is corefer-
ent or which outputs a confidence value, and (2)
a clustering step which groups mentions into enti-
ties based on the output of step 1.

The classification steps of most approaches
vary in the choice of the classifier (e.g. decision
tree classifiers (Soon et al., 2001), maximum en-
tropy classification (Luo et al., 2004), SVM clas-
sifiers (Rahman & Ng, 2009)) and the number of
features used (Soon et al. (2001) employ a set of
twelve simple but effective features while e.g., Ng
& Cardie (2002) and Bengtson & Roth (2008) de-
vise much richer feature sets).

The clustering step exhibits much more varia-
tion: Local variants utilize a closest-first decision

(Soon et al., 2001), where a mention is resolved to
its closest possible antecedent, or a best-first deci-
sion (Ng & Cardie, 2002), where a mention is re-
solved to its most confident antecedent (based on
the confidence value returned by step 1). Global
variants attempt to consider all possible cluster-
ing possibilites by creating and searching aBell
tree (Luo et al., 2004), by learning the optimal
search strategy itself (Daumé III & Marcu, 2005),
by building a graph representation and applying
graph clustering techniques (Nicolae & Nicolae,
2006), or by employing integer linear program-
ming (Klenner, 2007; Denis & Baldridge, 2009).
Since these methods base their global clustering
step on a local pairwise model, some global infor-
mation which could have guided step 2 is already
lost. The twin-candidate model (Yang et al., 2008)
replaces the pairwise model by learning prefer-
ences between two antecedent candidates in step
1 and applies tournament schemes instead of the
clustering in step 2.

There is little work which deviates from this
two-step scheme. Culotta et al. (2007) introduce a
first-order probabilistic model which implements
features over sets of mentions and thus operates
directly on entities.

In this paper we describe a novel approach to
coreference resolution which avoids the division
into two steps and instead performs a global deci-
sion in one step. We represent a document as a hy-
pergraph, where the vertices denote mentions and
the edges denote relational features between men-
tions. Coreference resolution is performed glob-
ally in one step by partitioning the hypergraph into
subhypergraphs so that all mentions in one subhy-
pergraph refer to the same entity. Our model out-
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performs two strong baselines, Soon et al. (2001)
and Bengtson & Roth (2008).

Soon et al. (2001) developed an end-to-end
coreference resolution system for the MUC data,
i.e., a system which processes raw documents
as input and produces annotated ones as output.
However, with the advent of the ACE data, many
systems either evaluated only true mentions, i.e.
mentions which are included in the annotation,
the so-called key, or even received true informa-
tion for mention boundaries, heads of mentions
and mention type (Culotta et al., 2007, inter alia).
While these papers report impressive results it has
been concluded that this experimental setup sim-
plifies the task and leads to an unrealistic surro-
gate for the coreference resolution problem (Stoy-
anov et al., 2009, p.657, p660). We argue that
the field should move towards a realistic setting
using system mentions, i.e. automatically deter-
mined mention boundaries and types. In this pa-
per we report results using our end-to-end coref-
erence resolution system, COPA, without relying
on unrealistic assumptions.

2 Related Work

Soon et al. (2001) transform the coreference res-
olution problem straightforwardly into a pairwise
classification task making it accessible to standard
machine learning classifiers. They use a set of
twelve powerful features. Their system is based
solely on information of the mention pair anaphor
and antecedent. It does not take any information
of other mentions into account. However, it turned
out that it is difficult to improve upon their re-
sults just by applying a more sophisticated learn-
ing method and without improving the features.
We use a reimplementation of their system as first
baseline. Bengtson & Roth (2008) push this ap-
proach to the limit by devising a much more in-
formative feature set. They report the best results
to date on the ACE 2004 data using true mentions.
We use their system combined with our prepro-
cessing components as second baseline.

Luo et al. (2004) perform the clustering step
within a Bell tree representation. Hence their
system theoretically has access to all possible
outcomes making it a potentially global system.
However, the classification step is still based on

a pairwise model. Also since the search space in
the Bell tree is too large they have to apply search
heuristics. Hence, their approach loses much of
the power of a truly global approach.

Culotta et al. (2007) introduce a first-order
probabilistic model which implements features
over sets of mentions. They use four features for
their first-order model. The first is an enumeration
overpairsof noun phrases. The second is the out-
put of apairwisemodel. The third is the cluster
size. The fourth counts mention type, number and
gender in each cluster. Still, their model is based
mostly on information about pairs of mentions.
They assume true mentions as input. It is not clear
whether the improvement in results translates to
system mentions.

Nicolae & Nicolae (2006) describe a graph-
based approach which superficially resembles our
approach. However, they still implement a two
step coreference resolution approach and apply
the global graph-based model only to step 2. They
report considerable improvements over state-of-
the-art systems including Luo et al. (2004). How-
ever, since they not only change the clustering
strategy but also the features for step 1, it is not
clear whether the improvements are due to the
graph-based clustering technique. We, instead,
describe a graph-based approach which performs
classification and clustering in one step. We com-
pare our approach with two competitive systems
using the same feature sets.

3 COPA: Coreference Partitioner

The COPA system consists of learning modules
which learn hyperedge weights from the training
data, and resolution modules which create a hy-
pergraph representation for the testing data and
perform partitioning to produce subhypergraphs,
each of which represents an entity. An example
analysis of a short document involving the two en-
tities, BARACK OBAMA and NICOLAS SARKOZY

illustrates how COPA works.
[US President Barack Obama] came to Toronto today.
[Obama] discussed the financial crisis with[President
Sarkozy].
[He] talked to him[him] about the recent downturn of the
European markets.
[Barack Obama] will leave Toronto tomorrow.
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A hypergraph (Figure (1a)) is built for this
document based on three features. Two hyper-
edges denote the featurepartial string match,
{US President Barack Obama, Barack Obama,
Obama} and{US President Barack Obama, Pres-
ident Sarkozy}. One hyperedge denotes the fea-
ture pronoun match, {he, him}. Two hyperedges
denote the featureall speak, {Obama, he} and
{President Sarkozy, him}.

On this initial representation, a spectral clus-
tering technique is applied to find two partitions
which have the strongest within-cluster connec-
tions and the weakest between-clusters relations.
The cut found is calledNormalized Cut, which
avoids trivial partitions frequently output by the
min-cut algorithm. The two output subhyper-
graphs (Figure (1b)) correspond to two resolved
entities shown on both sides of the bold dashed
line. In real cases, recursive cutting is applied
to all the subhypergraphs resulting from previous
steps, until a stopping criterion is reached.

Figure 1: Hypergraph-based representation

3.1 HyperEdgeLearner

COPA needs training data only for computing the
hyperedge weights. Hyperedges represent fea-
tures. Each hyperedge corresponds to a feature
instance modeling a simple relation between two
or more mentions. This leads to initially overlap-
ping sets of mentions. Hyperedges are assigned

weights which are calculated based on the train-
ing data as the percentage of the initial edges (as
illustrated in Figure (1a)) being in fact coreferent.
The weights for some of Soon et al. (2001)’s fea-
tures learned from the ACE 2004 training data are
given in Table 1.

Edge Name Weight
Alias 0.777
StrMatchPron 0.702
Appositive 0.568
StrMatchNpron 0.657
ContinuousDistAgree 0.403

Table 1: Hyperedge weights for ACE 2004 data

3.2 Coreference Resolution Modules

Unlike pairwise models, COPA processes a docu-
ment globally in one step, taking care of the pref-
erence information among all the mentions at the
same time and clustering them into sets directly.
A raw document is represented as a single hyper-
graph with multiple edges. The hypergraph re-
solver partitions the simple hypergraph into sev-
eral subhypergraphs, each corresponding to one
set of coreferent mentions (see e.g. Figure (1b)
which contains two subhypergraphs).

3.2.1 HGModelBuilder

A single document is represented in a hyper-
graph with basic relational features. Each hyper-
edge in a graph corresponds to an instance of one
of those features with the weight assigned by the
HyperEdgeLearner. Instead of connecting nodes
with the target relation as usually done in graph
models, COPA builds the graph directly out of a
set of low dimensional features without any as-
sumptions for a distance metric.

3.2.2 HGResolver

In order to partition the hypergraph we adopt
a spectral clustering algorithm. Spectral cluster-
ing techniques use information obtained from the
eigenvalues and eigenvectors of the graph Lapla-
cian to cluster the vertices. They are simple to im-
plement and reasonably fast and have been shown
to frequently outperform traditional clustering al-
gorithms such as k-means. These techniques have
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Algorithm 1 R2 partitioner

Note:{ L = I −Dv
− 1

2HWDe
−1HTDv

− 1
2 }

Note:{ Ncut(S) := vol∂S( 1
volS

+ 1
volSc )}

input: target hypergraphHG, predefinedα⋆

Given aHG, construct itsDv, H, W andDe

ComputeL for HG
Solve theL for the second smallest eigenvectorV2

for each splitting point inV2 do
calculateNcuti

end for
Choose the splitting point withmin

i
(Ncuti)

Generate two subHGs
if min

i
(Ncuti) < α∗ then

for each subHG do
Bi-partition the subHG with theR2 partitioner

end for
else

Output the current subHG
end if
output: partitionedHG

many applications, e.g. image segmentation (Shi
& Malik, 2000).

We adopt two variants of spectral clustering,
recursive 2-way partitioning (R2 partitioner)and
flat-K partitioning. Since flat-K partitioning did
not perform as well we focus here on recursive 2-
way partitioning. In contrast to flat-K partitioning,
this method does not need any information about
the number of target sets. Instead a stopping cri-
terion α⋆ has to be provided.α⋆ is adjusted on
development data (see Algorithm 1).

In order to apply spectral clustering to hyper-
graphs we follow Agarwal et al. (2005). All ex-
perimental results are obtained using symmetric
Laplacians (Lsym) (von Luxburg, 2007).

Given a hypergraphHG, a set of matrices is
generated.Dv andDe denote the diagonal matri-
ces containing the vertex and hyperedge degrees
respectively. |V | × |E| matrix H represents the
HG with the entriesh(v, e) = 1 if v ∈ e and0
otherwise.HT is the transpose ofH. W is the
diagonal matrix with the edge weights.S is one
of the subhypergraphs generated from a cut in the
HG, whereNcut(S) is the cut’s value.

Using Normalized Cut does not generate sin-
gleton clusters, hence a heuristic singleton detec-
tion strategy is used in COPA. We apply a thresh-
oldβ to each node in the graph. If a node’s degree
is below the threshold, the node will be removed.

3.3 Complexity of HGResolver

Since edge weights are assigned using simple de-
scriptive statistics, the time HGResolver needs for
building the graph Laplacian matrix is insubstan-
tial. For eigensolving, we use an open source li-
brary provided by the Colt project1which imple-
ments a Householder-QL algorithm to solve the
eigenvalue decomposition. When applied to the
symmetric graph Laplacian, the complexity of the
eigensolving is given byO(n3), wheren is the
number of mentions in a hypergraph. Since there
are only a few hundred mentions per document in
our data, this complexity is not an issue (spectral
clustering gets problematic when applied to mil-
lions of data points).

4 Features

The HGModelBuilderallows hyperedges with a
degree higher than two to grow throughout the
building process. This type of edge ismergeable.
Edges with a degree of two describe pairwise rela-
tions. Thus these edges arenon-mergeable. This
way any kind of relational features can be incor-
porated into the hypergraph model.

Features are represented as types of hyperedges
(in Figure (1b) the two hyperedges marked by “–
··” are of the same type). Any realized edge is an
instance of the corresponding edge type. All in-
stances derived from the same type have the same
weight, but they may get reweighted by the dis-
tance feature (Section 4.4).

In the following Subsections we describe the
features used in our experiments. We use the en-
tire set for obtaining the final results. We restrict
ourselves to Soon et al. (2001)’s features when we
compare our system with theirs in order to assess
the impact of our model regardless of features (we
use features 1., 2., 3., 6., 7., 11., 13.).

4.1 Hyperedges With a Degree > 2

High degree edges are the particular property of
the hypergraph which allows to include all types
of relational features into our model. The edges
are built through pairwise relations and, if consis-
tent, get incrementally merged into larger edges.

1http://acs.lbl.gov/ ˜ hoschek/colt/
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High degree edges are not sensitive to positional
information from the documents.

(1) StrMatch Npron & (2) StrMatch Pron:
After discarding stop words, if the strings of men-
tions completely match and are not pronouns, they
are put into edges of theStrMatchNpron type.
When the matched mentions are pronouns, they
are put into theStrMatchPron type edges.

(3) Alias: After discarding stop words, if men-
tions are aliases of each other (i.e. proper names
with partial match, full names and acronyms of
organizations, etc.), they are put into edges of the
Alias type.

(4) Synonym: If, according to WordNet, men-
tions are synonymous, they are put into an edge of
theSynonymtype.

(5) AllSpeak: Mentions which appear within a
window of two words of a verb meaningto say
form an edge of theAllSpeaktype.

(6) Agreement: If mentions agree inGender,
NumberandSemantic Classthey are put in edges
of the Agreementtype. BecauseGender, Num-
ber andSemantic Classare strong negative coref-
erence indicators – in contrast to e.g.StrMatch–
and hence weak positive features, they are com-
bined into the one featureAgreement.

4.2 Hyperedges With a Degree = 2

Features which have been used by pairwise mod-
els are easily integrated into the hypergraph model
by generating edges with only two vertices. Infor-
mation sensitive to relative distance is represented
by pairwise edges.

(7) Apposition & (8) RelativePronoun: If two
mentions are in a appositive structure, they are put
in an edge of typeApposition. If the latter mention
is a relative pronoun, the mentions are put in an
edge of typeRelativePronoun.

(9) HeadModMatch: If the syntactic heads of
two mentions match, and if their modifiers do not
contradict each other, the mentions are put in an
edge of typeHeadModMatch.

(10) SubString: If a mention is the substring
of another one, they are put into an edge of type
SubString.

4.3 MentionType and EntityType

In our model(11) mention type can only reason-
ably be used when it is conjoined with other fea-
tures, since mention type itself describes an at-
tribute of single mentions. In COPA, it is con-
joined with other features to form hyperedges, e.g.
the StrMatchPron edge. We use the same strat-
egy to represent(12) entity type.

4.4 Distance Weights

Our hypergraph model does not have any obvi-
ous means to encode distance information. How-
ever, the distance between two mentions plays
an important role in coreference resolution, es-
pecially for resolving pronouns. We do not en-
code distance as feature, because this would intro-
duce many two-degree-hyperedges which would
be computationally very expensive without much
gain in performance. Instead, we use distance to
reweight two-degree-hyperedges, which are sen-
sitive to positional information.

We experimented with two types of distance
weights: One is(13) sentence distance as used in
Soon et al. (2001)’s feature set, while the other is
(14) compatible mentions distance as introduced
by Bengtson & Roth (2008).

5 Experiments

We compare COPA’s performance with two im-
plementations of pairwise models. The first base-
line is the BART (Versley et al., 2008) reimple-
mentation of Soon et al. (2001), with few but ef-
fective features. Our second baseline is Bengtson
& Roth (2008), which exploits a much larger fea-
ture set while keeping the machine learning ap-
proach simple. Bengtson & Roth (2008) show
that their system outperforms much more sophis-
ticated machine learning approaches such as Cu-
lotta et al. (2007), who reported the best results
on true mentions before Bengtson & Roth (2008).
Hence, Bengtson & Roth (2008) seems to be a rea-
sonable competitor for evaluating COPA.

In order to report realistic results, we neither
assume true mentions as input nor do we evalu-
ate only on true mentions. Instead, we use an in-
house mention tagger for automatically extracting
mentions.
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5.1 Data

We use the MUC6 data (Chinchor & Sund-
heim, 2003) with standard training/testing divi-
sions (30/30) as well as the MUC7 data (Chin-
chor, 2001) (30/20). Since we do not have ac-
cess to the official ACE testing data (only avail-
able to ACE participants), we follow Bengtson &
Roth (2008) for dividing the ACE 2004 English
training data (Mitchell et al., 2004) into training,
development and testing partitions (268/76/107).
We randomly split the 252 ACE 2003 training
documents (Mitchell et al., 2003) using the same
proportions into training, development and testing
(151/38/63). The systems were tuned on develop-
ment and run only once on testing data.

5.2 Mention Tagger

We implement a classification-based mention tag-
ger, which tags each NP chunk as ACE mention or
not, with neccessary post-processing for embed-
ded mentions. For the ACE 2004 testing data, we
cover75.8% of the heads with73.5% accuracy.

5.3 Evaluation Metrics

We evaluate COPA with three coreference resolu-
tion evaluation metrics: theB3-algorithm (Bagga
& Baldwin, 1998), theCEAF-algorithm (Luo,
2005), and, for the sake of completeness, the
MUC-score (Vilain et al., 1995).

Since theMUC-score does not evaluate single-
ton entities, it only partially evaluates the perfor-
mance for ACE data, which includes singleton
entities in the keys. TheB3-algorithm (Bagga
& Baldwin, 1998) addresses this problem of the
MUC-score by conducting calculations based on
mentions instead of coreference relations. How-
ever, another problematic issue emerges when
system mentions have to be dealt with:B3 as-
sumes the mentions in the key and in the response
to be identical, which is unlikely when a men-
tion tagger is used to create system mentions.
The CEAF-algorithm aligns entities in key and
response by means of a similarity metric, which
is motivated byB3’s shortcoming of using one
entity multiple times (Luo, 2005). However, al-
though CEAF theoretically does not require to
have the same number of mentions in key and
response, the algorithm still cannot be directly

applied to end-to-end coreference resolution sys-
tems, because the similarity metric is influenced
by the number of mentions in key and response.

Hence, both theB3- and CEAF-algorithms
have to be extended to deal with system mentions
which are not in the key and true mentions not
extracted by the system, so calledtwinless men-
tions (Stoyanov et al., 2009). Two variants of
theB3-algorithm are proposed by Stoyanov et al.
(2009), B3

all andB3
0 . B3

all tries to assign intu-
itive precision and recall to the twinless system
mentions and twinless key mentions, while keep-
ing the size of the system mention set and the key
mention set unchanged (which are different from
each other). For twinless mentions,B3

all discards
twinless key mentions for precision and twinless
system mentions for recall. Discarding parts of
the key mentions, however, makes the fair com-
parison of precision values difficult.B3

0 produces
counter-intuitive precision by discarding all twin-
less system mentions. Although it penalizes the
recall of all twinless key mentions, so that the F-
scores are balanced, it is still too lenient (for fur-
ther analyses see Cai & Strube (2010)).

We devise two variants of theB3- andCEAF-
algorithms, namelyB3

sys andCEAFsys. For com-
puting precision, the algorithms put all twinless
true mentions into the response even if they were
not extracted. All twinless system mentions which
were deemed not coreferent are discarded. Only
twinless system mentions which were mistakenly
resolved are put into the key. Hence, the system
is penalized for resolving mentions not found in
the key. For recall the algorithms only consider
mentions from the original key by discarding all
the twinless system mentions and putting twin-
less true mentions into the response as singletons
(algorithm details, simulations and comparison of
different systems and metrics are provided in Cai
& Strube (2010)). ForCEAFsys, φ3 (Luo, 2005)
is used.B3

sys andCEAFsys report results for end-
to-end coreference resolution systems adequately.

5.4 Baselines

We compare COPA’s performance with two base-
lines: SOON– the BART (Versley et al., 2008)
reimplementation of Soon et al. (2001) – and
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SOON COPA with R2 partitioner
R P F R P F α⋆ β

MUC MUC6 59.4 67.9 63.4 62.8 66.4 64.5 0.08 0.03
MUC7 52.3 67.1 58.8 55.2 66.1 60.1 0.05 0.01
ACE 2003 56.7 75.8 64.9 60.8 75.1 67.2 0.07 0.03
ACE 2004 50.4 67.4 57.7 54.1 67.3 60.0 0.05 0.04

B3
sys MUC6 53.1 78.9 63.5 56.4 76.3 64.1 0.08 0.03

MUC7 49.8 80.0 61.4 53.3 76.1 62.7 0.05 0.01
ACE 2003 66.9 87.7 75.9 71.5 83.3 77.0 0.07 0.03
ACE 2004 64.7 85.7 73.8 67.3 83.4 74.5 0.07 0.03

CEAFsys MUC6 56.9 53.0 54.9 62.2 57.5 59.8 0.08 0.03
MUC7 57.3 54.3 55.7 58.3 54.2 56.2 0.06 0.01
ACE 2003 71.0 68.7 69.8 71.1 68.3 69.7 0.07 0.03
ACE 2004 67.9 65.2 66.5 68.5 65.5 67.0 0.07 0.03

Table 3:SOONvs. COPA R2 (SOONfeatures, system mentions, bold indicates significant improvement
in F-score overSOONaccording to a paired-t test withp < 0.05)

SOON B&R
R P F R P F

B3
sys 64.7 85.7 73.8 66.3 85.8 74.8

Table 2: Baselines on ACE 2004

B&R – Bengtson & Roth (2008)2. All systems
share BART’s preprocessing components and our
in-house ACE mention tagger.

In Table 2 we report the performance ofSOON
and B&R on the ACE 2004 testing data using
the BART preprocessing components and our in-
house ACE mention tagger. For evaluation we use
B3

sys only, since Bengtson & Roth (2008)’s sys-
tem does not allow to easily integrateCEAF.

B&R considerably outperformsSOON(we can-
not compute statistical significance, because we
do not have access to results for single documents
in B&R). The difference, however, is not as big
as we expected. Bengtson & Roth (2008) re-
ported very good results when using true men-
tions. For evaluating on system mentions, how-
ever, they were using a too lenient variant ofB3

(Stoyanov et al., 2009) which discards all twinless
mentions. When replacing this withB3

sys the dif-
ference betweenSOONandB&R shrinks.

5.5 Results

In both comparisons, COPA uses the same fea-
tures as the corresponding baseline system.

2http://l2r.cs.uiuc.edu/ ˜ cogcomp/
asoftware.php?skey=FLBJCOREF

5.5.1 COPA vs. SOON

In Table 3 we compare theSOON-baseline with
COPA using the R2 partitioner (parametersα⋆ and
β optimized on development data). Even though
COPA andSOONuse the same features, COPA
consistently outperformsSOONon all data sets
using all evaluation metrics. With the exception of
the MUC7, the ACE 2003 and the ACE 2004 data
evaluated withCEAFsys, all of COPA’s improve-
ments are statistically significant. When evaluated
using MUC andB3

sys, COPA with the R2 parti-
tioner boosts recall in all datasets while losing in
precision. This shows that global hypergraph par-
titioning models the coreference resolution task
more adequately than Soon et al. (2001)’s local
model – even when using the very same features.

5.5.2 COPA vs. B&R

In Table 4 we compare theB&R system (using our
preprocessing components and mention tagger),
and COPA with the R2 partitioner usingB&R fea-
tures. COPA does not use the learned features
from B&R, as this would have implied to embed a
pairwise coreference resolution system in COPA.
We report results for ACE 2003 and ACE 2004.
The parameters are optimized on the ACE 2004
data. COPA with the R2 partitioner outperforms
B&R on both datasets (we cannot compute statisti-
cal significance, because we do not have access to
results for single documents inB&R). Bengtson &
Roth (2008) developed their system on ACE 2004
data and never exposed it to ACE 2003 data. We
suspect that the relatively poor result ofB&R on
ACE 2003 data is caused by overfitting to ACE
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B&R COPA with R2 partitioner
R P F R P F

B3
sys ACE 2003 56.4 97.3 71.4 70.3 86.5 77.5

ACE 2004 66.3 85.8 74.8 68.4 84.4 75.6

Table 4:B&R vs. COPA R2 (B&R features, system mentions)

2004. Again, COPA gains in recall and loses
in precision. This shows that COPA is a highly
competetive system as it outperforms Bengtson &
Roth (2008)’s system which has been claimed to
have the best performance on the ACE 2004 data.

5.5.3 Running Time

On a machine with 2 AMD Opteron CPUs and 8
GB RAM, COPA finishes preprocessing, training
and partitioning the ACE 2004 dataset in 15 min-
utes, which is slightly faster than our duplicated
SOONbaseline.

6 Discussion and Outlook

Most previous attempts to solve the coreference
resolution task globally have been hampered by
employing a local pairwise model in the classifi-
cation step (step 1) while only the clustering step
realizes a global approach, e.g. Luo et al. (2004),
Nicolae & Nicolae (2006), Klenner (2007), De-
nis & Baldridge (2009), lesser so Culotta et al.
(2007). It has been also observed that improve-
ments in performance on true mentions do not
necessarily translate into performance improve-
ments on system mentions (Ng, 2008).

In this paper we describe a coreference reso-
lution system, COPA, which implements a global
decision in one step via hypergraph partitioning.
COPA looks at the whole graph at once which en-
ables it to outperform two strong baselines (Soon
et al., 2001; Bengtson & Roth, 2008). COPA’s
hypergraph-based strategy can be taken as a gen-
eral preference model, where the preference for
one mention depends on information on all other
mentions.

We follow Stoyanov et al. (2009) and argue
that evaluating the performance of coreference
resolution systems on true mentions is unrealis-
tic. Hence we integrate an ACE mention tag-
ger into our system, tune the system towards the
real task, and evaluate only using system men-
tions. While Ng (2008) could not show that su-

perior models achieved superior results on sys-
tem mentions, COPA was able to outperform
Bengtson & Roth (2008)’s system which has been
claimed to achieve the best performance on the
ACE 2004 data (using true mentions, Bengtson &
Roth (2008) did not report any comparison with
other systems using system mentions).

An error analysis revealed that there were some
cluster-level inconsistencies in the COPA output.
Enforcing this consistency would require a global
strategy to propagate constraints, so that con-
straints can be included in the hypergraph parti-
tioning properly. We are currently exploring con-
strained clustering, a field which has been very
active recently (Basu et al., 2009). Using con-
strained clustering methods may allow us to in-
tegrate negative information as constraints instead
of combining several weak positive features to one
which is still weak (e.g. ourAgreementfeature).
For an application of constrained clustering to the
related task of database record linkage, see Bhat-
tacharya & Getoor (2009).

Graph models cannot deal well with positional
information, such as distance between mentions
or the sequential ordering of mentions in a doc-
ument. We implemented distance as weights on
hyperedges which resulted in decent performance.
However, this is limited to pairwise relations and
thus does not exploit the power of the high de-
gree relations available in COPA. We expect fur-
ther improvements, once we manage to include
positional information directly.
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