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Abstract

We describe a novel approach to coref-
erence resolution which implements a
global decision via hypergraph partition-
ing. In constrast to almost all previ-
ous approaches, we do not rely on sep-
arate classification and clustering steps,
but perform coreference resolution glob-
ally in one step. Our hypergraph-based
global model implemented within an end-
to-end coreference resolution system out-
performs two strong baselines (Soon et al.,
2001; Bengtson & Roth, 2008) using sys-
tem mentions only.

Introduction

(Soon et al., 2001), where a mention is resolved to
its closest possible antecedent, or a best-first deci-
sion (Ng & Cardie, 2002), where a mention is re-
solved to its most confident antecedent (based on
the confidence value returned by step 1). Global
variants attempt to consider all possible cluster-
ing possibilites by creating and searchingall
tree (Luo et al., 2004), by learning the optimal
search strategy itself (Dawmll & Marcu, 2005),

by building a graph representation and applying
graph clustering techniques (Nicolae & Nicolae,
2006), or by employing integer linear program-
ming (Klenner, 2007; Denis & Baldridge, 2009).
Since these methods base their global clustering
step on a local pairwise model, some global infor-
mation which could have guided step 2 is already

o _ lost. The twin-candidate model (Yang et al., 2008)
Coreference resolution is the task of groupingeplaces the pairwise model by learning prefer-
mentions of entities into sets so that all mentiongnces between two antecedent candidates in step

in one set refer to the same entity. Most recent and applies tournament schemes instead of the
approaches to coreference resolution divide thigustering in step 2.

task into two steps: (1) a classification step which

determines whether a pair of mentions is corefer- There is little work which deviates from this
ent or which outputs a confidence value, and (zt o-step scheme. Culotta et al. (2007) introduce a

first-order probabilistic model which implements

a clustering step which groups mentions into entif f ; d th
ties based on the output of step 1. paufes over Se's ol menfions and fhus operates

The classification steps of most approache(;'reCtIy on entities.
vary in the choice of the classifier (e.g. decision In this paper we describe a novel approach to
tree classifiers (Soon et al., 2001), maximum ercoreference resolution which avoids the division
tropy classification (Luo et al., 2004), SVM clas-into two steps and instead performs a global deci-
sifiers (Rahman & Ng, 2009)) and the number o§ion in one step. We represent a document as a hy-
features used (Soon et al. (2001) employ a set pergraph, where the vertices denote mentions and
twelve simple but effective features while e.g., Nghe edges denote relational features between men-
& Cardie (2002) and Bengtson & Roth (2008) detions. Coreference resolution is performed glob-
vise much richer feature sets). ally in one step by partitioning the hypergraph into

The clustering step exhibits much more variasubhypergraphs so that all mentions in one subhy-
tion: Local variants utilize a closest-first decisiorpergraph refer to the same entity. Our model out-
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performs two strong baselines, Soon et al. (200H pairwise model. Also since the search space in
and Bengtson & Roth (2008). the Bell tree is too large they have to apply search

Soon et al. (2001) developed an end-to-enHeuristics. Hence, their approach loses much of
coreference resolution system for the MUC datahe power of a truly global approach.

i.e., a system which processes raw documents Culotta et al. (2007) introduce a first-order
as input and produces annotated ones as outpgtobabilistic model which implements features
However, with the advent of the ACE data, manysver sets of mentions. They use four features for
systems either evaluated only true mentions, i.@heir first-order model. The firstis an enumeration
mentions which are included in the annotationgverpairs of noun phrases. The second is the out-
the so-called key, or even received true informaput of apairwisemodel. The third is the cluster
tion for mention boundaries, heads of mentionsjze. The fourth counts mention type, number and
and mention type (Culotta et al., 2007, inter alia)gender in each cluster. Still, their model is based
While these papers report impressive results it hagostly on information about pairs of mentions.
been concluded that this experimental setup sinFhey assume true mentions as input. It is not clear
plifies the task and leads to an unrealistic surrayhether the improvement in results translates to
gate for the coreference resolution problem (Stoysystem mentions.

anov et al., 2009, p.657, p660). We argue that \jicolae & Nicolae (2006) describe a graph-

the field should move towards a realistic settingy,caq approach which superficially resembles our
using system mentions, i.e. automatically dete%‘lpproach. However, they still implement a two
mined mention boundaries and types. In this pasiey coreference resolution approach and apply
per we report results using our end-to-end corefne global graph-based model only to step 2. They
erence resolution system, COPA, without relyingehort considerable improvements over state-of-
on unrealistic assumptions. the-art systems including Luo et al. (2004). How-
2 Related Work ever, since they not only change the chs’Fering
strategy but also the features for step 1, it is not
Soon et al. (2001) transform the coreference reslear whether the improvements are due to the
olution problem straightforwardly into a pairwisegraph-based clustering technique. We, instead,
classification task making it accessible to standamdescribe a graph-based approach which performs
machine learning classifiers. They use a set afassification and clustering in one step. We com-
twelve powerful features. Their system is basegdare our approach with two competitive systems
solely on information of the mention pair anaphowusing the same feature sets.
and antecedent. It does not take any information
of other mentions into account. However, itturneds  coOpA: Coreference Partitioner
out that it is difficult to improve upon their re-

sults just by applying a more sophisticated learnthe COPA system consists of learning modules
ing method and without improving the featureswhich learn hyperedge weights from the training
We use a reimplementation of their system as firgfata, and resolution modules which create a hy-
baseline. Bengtson & Roth (2008) push this appergraph representation for the testing data and
proach to the limit by devising a much more in-perform partitioning to produce subhypergraphs,
formative feature set. They report the best resulisgch of which represents an entity. An example
to date on the ACE 2004 data using true mentiongnalysis of a short document involving the two en-
We use their system combined with our preprotities, BARACK OBAMA and NCOLAS SARKOZY
cessing components as second baseline. illustrates how COPA works.

.Ll.Jo et al. (2004) perform the clustering SteP [US President Barack Obafmzame to Toronto today.
within a Bell tree representation. Hence their [Obama discussed the financial crisis witlfPresident
system theoretically has access to all possible Sarkozy.

Lo . [He] talked to him[him] about the recent downturn of the
outcomes making it a potentially global system.

e . . European markets.
However, the classification step is still based on [Barack Obamjawill leave Toronto tomorrow.
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A hypergraph (Figure (1a)) is built for this weights which are calculated based on the train-
document based on three features. Two hypeing data as the percentage of the initial edges (as
edges denote the featugrtial string match illustrated in Figure (1a)) being in fact coreferent.
{US President Barack Obama, Barack ObamaThe weights for some of Soon et al. (2001)’s fea-
Obamg and{US President Barack Obama, Pres-tures learned from the ACE 2004 training data are
ident Sarkozy. One hyperedge denotes the feagiven in Table 1.
ture pronoun match{he, hin}. Two hyperedges

denote the featurall speak {Obama, hé and Edge Name Weight
{President Sarkozy, him Alias 0.777

On this initial representation, a spectral clus- StrMatchPron 0.702
tering technique is applied to find two partitions Appositive 0.568
which have the strongest within-cluster connec- StrMatchNpron 0.657
tions and the weakest between-clusters relations. ContinuousDistAgree 0.403

The cut found is calledNormalized Cut which
avoids trivial partitions frequently output by the
min-cut algorithm. The two output subhyper-
graphs (Figure (1b)) correspond to two resolvei;j’2 Coreference Resolution Modules

entities shown on both sides of the bold dashed o

line. In real cases, recursive cutting is applied’nlike pairwise models, COPA processes a docu-

to all the subhypergraphs resulting from previou§'e€nt globally in one step, taking care of the pref-

Table 1: Hyperedge weights for ACE 2004 data

steps, until a stopping criterion is reached. erence information among all the mentions at the
same time and clustering them into sets directly.
(e} HyperGraph Pata Representatian A raw document is represented as a single hyper-
s o graph with multiple edges. The hypergraph re-
president

Barack Obamal Barack Obamal solver partitions the simple hypergraph into sev-

- eral subhypergraphs, each corresponding to one
set of coreferent mentions (see e.g. Figure (1b)
which contains two subhypergraphs).

321 HGModelBuilder

A single document is represented in a hyper-
(b) COPA Output Paritions graph with basic relational features. Each hyper-
edge in a graph corresponds to an instance of one
Bl o of those features with the weight assigned by the
e = e el HyperEdgelLearnerinstead of connecting nodes

7/ - —~

| [Obama] e B PSS with the target relation as usually done in graph
_ T N . models, COPA builds the graph directly out of a
el \\ \\ i1 set of low dimensional features without any as-

S \ S sumptions for a distance metric.

Figure 1: Hypergraph-based representation 3-2-2 HGResolver

In order to partition the hypergraph we adopt
a spectral clustering algorithm. Spectral cluster-
COPA needs training data only for computing theng techniques use information obtained from the
hyperedge weights. Hyperedges represent feaigenvalues and eigenvectors of the graph Lapla-
tures. Each hyperedge corresponds to a featuc&n to cluster the vertices. They are simple to im-
instance modeling a simple relation between twplement and reasonably fast and have been shown
or more mentions. This leads to initially overlap-to frequently outperform traditional clustering al-
ping sets of mentions. Hyperedges are assignewrithms such as k-means. These techniques have

3.1 HyperEdgel earner
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Algorithm 1 R2 partitioner 3.3 Complexity of HGResolver

. o _1 —1 5T _1 3 . . . .
mg:g; % ]LV—tl(g)Dv Qggsz f Pv)f } Since edge weights are assigned using simple de-
. cu = VO —= — e .. .. .
input: target hypergrapti G predefinedh* scriptive statistics, the time HGResolver needs for
Given all G, construct itsD,,, H, W and D building the graph Laplacian matrix is insubstan-
ComputeL for HG . . . .
Solve theL for the second smallest eigenvector tial. For el.gensolvmg, We use _an OPe” _Source L
for each splitting point iz do brary provided by the Colt projelawhich imple-
dc?lculateNcut,-, ments a Householder-QL algorithm to solve the
ena ror

eigenvalue decomposition. When applied to the

Choose the splitting point within (N cut;) i ) )
: symmetric graph Laplacian, the complexity of the

Generate two suliG's

if min(Ncut;) < o then eigensolving is given by)(n?), wheren is the
for each SUB/G do number of mentions in a hypergraph. Since there
Bi-partition the sul/ & with the R2 partitioner are only a few hundred mentions per document in
e,seend for our data, this complexity is not an issue (spectral
Output the current SUBG clustering gets problematic when applied to mil-
end if lions of data points).

output: partitionedHG

4 Features

many applications, e.g. image segmentation (SAihe HGModelBuilderallows hyperedges with a
& Malik, 2000). degree higher than two to grow throughout the

We adopt two variants of spectral clusteringPuilding process. This type of edgertergeable

recursive 2-way partitioning (R2 partitionegnd Edges with a degree of two describe pairwise rela-
flat-K partitioning Since flat-K partitioning did tons- Thus these edges aten-mergeableThis

not perform as well we focus here on recursive 2@ any kind of relational features can be incor-
way partitioning. In contrast to flat-K partitioning, Porated into the hypergraph model.

this method does not need any information about Féatures are represented as types of hyperedges
the number of target sets. Instead a stopping cfih Figure (1b) the two hyperedges marked by -
terion o* has to be provideda* is adjusted on --" are of the same type). Any realized edge is an

development data (see Algorithm 1). instance of the corresponding edge type. All in-

. stances derived from the same type have the same
In order to apply spectral clustering to hyper-

graphs we follow Agarwal et al. (2005). All ex- weight, but they may get reweighted by the dis-
erimental results are obtained using s mmetritéjmce feature (Section 4.4).
P g sy In the following Subsections we describe the

Laplacians Ls,m) (von Luxburg, 2007). features used in our experiments. We use the en-
Given a hypergraptiG, a set of matrices is tjre set for obtaining the final results. We restrict
generatedD, and D, denote the diagonal matri- yrselves to Soon et al. (2001)’s features when we
ces containing the vertex and hyperedge degreggmpare our system with theirs in order to assess

respectively. [V| x |E| matrix H represents the the impact of our model regardless of features (we
HG with the entriesh(v,e) = 1if v € eand0  yge features 1., 2., 3., 6., 7., 11., 13.).

otherwise. H” is the transpose off. W is the

diagonal matrix with the edge weight§is one 41 Hyperedges With a Degree > 2

of the subhypergraphs generated from a cut in thHe. hd q h icul f
HG, whereN cut(S) is the cut's value. 'gn degree edges are ine particuiar property o

_ _ _ the hypergraph which allows to include all types
Using Normalized Cut does not generate sings rg|ational features into our model. The edges
gleton clusters, hence a heuristic singleton detegze pyilt through pairwise relations and, if consis-

tion strategy is used in COPA. We apply a threshgn;  get incrementally merged into larger edges.
old 5 to each node in the graph. If a node’s degree

is below the threshold, the node will be removed. *http://acs.Ibl.gov/ ~ hoschek/colt/
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High degree edges are not sensitive to positiondl3 MentionType and EntityType

information from the documents. In our model(11) mention type can only reason-

(1) StrMatch_Npron & (2) StrMatch_Pron:  aply be used when it is conjoined with other fea-
After discarding stop words, if the strings of men+ures, since mention type itself describes an at-
tions completely match and are not pronouns, theyibute of single mentions. In COPA, it is con-
are put into edges of th8trMatchNpron type. joined with other features to form hyperedges, e.g.
When the matched mentions are pronouns, theyge StrMatchPron edge. We use the same strat-
are put into thestrMatchProntype edges. egy to represen(tl2) entity type.

(3) Alias: Atfter discarding stop words, if men- . )
tions are aliases of each other (i.e. proper naméé Distance Weights
with partial match, full names and acronyms oOur hypergraph model does not have any obvi-
organizations, etc.), they are put into edges of theéus means to encode distance information. How-
Aliastype. ever, the distance between two mentions plays

(4) Synonym: If, according to WordNet, men- an important role in coreference resolution, es-
tions are synonymous, they are put into an edge #€cially for resolving pronouns. We do not en-
the Synonyntype. code distance as feature, because this would intro-
duce many two-degree-hyperedges which would
be computationally very expensive without much
gain in performance. Instead, we use distance to
reweight two-degree-hyperedges, which are sen-
sitive to positional information.

We experimented with two types of distance
: ) weights: One ig13) sentence distance as used in
berandSemantic Clasare strong negative coref- Soon et al. (2001)’s feature set, while the other is

ere(:jn;:]e |nd|catorks N lntpon;rastt 0 eS?hrMatch— 14) compatible mentionsdistanceas introduced
and hence weak positive features, they are co v Bengtson & Roth (2008).

bined into the one featurkgreement

(5) AllSpeak: Mentions which appear within a
window of two words of a verb meaningp say
form an edge of théallSpeaktype.

(6) Agreement: If mentions agree irGender
NumberandSemantic Classhey are put in edges
of the Agreementlype. Becausé&ender Num-

5 Experiments

4.2 Hyperedges With a Degree = 2 We compare COPAs performance with two im-

Features which have been used by pairwise mo#lementations of pairwise models. The first base-
els are easily integrated into the hypergraph modd€ i the BART (Versley et al., 2008) reimple-

by generating edges with only two vertices. InforMmentation of Soon et al. (2001), with few but ef-

mation sensitive to relative distance is representd@Ctive features. Our second baseline is Bengtson
by pairwise edges. & Roth (2008), which exploits a much larger fea-

- . _ ture set while keeping the machine learning ap-
(7)_Appost|_on& (8) R_el_atlvePronoun. If two roach simple. Bengtson & Roth (2008) show
mentions are in a appositive structure, they are p

. " ! at their system outperforms much more sophis-
in an edge of typ&pposition If the latter mention .. . .

. . ) _ticated machine learning approaches such as Cu-
is a relative pronoun, the mentions are put in a

d f tvoeRelativeP fbtta et al. (2007), who reported the best results
edge ot ype=elativerronoun on true mentions before Bengtson & Roth (2008).

(9) HeadModMatch: If the syntactic heads of Hence, Bengtson & Roth (2008) seems to be a rea-
two mentions match, and if their modifiers do nosonable competitor for evaluating COPA.

contradict each other, the mentions are put in an |n order to report realistic results, we neither
edge of typeHeadModMatch assume true mentions as input nor do we evalu-

(10) Substring: If a mention is the substring ate only on true mentions. Instead, we use an in-
of another one, they are put into an edge of typRouse mention tagger for automatically extracting
SubString mentions.
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5.1 Data applied to end-to-end coreference resolution sys-
We use the MUC6 data (Chinchor & Sung-tems, because the similarity metric is influenced

heim, 2003) with standard training/testing divi-PY the number of mentions in key and response.
sions (30/30) as well as the MUC7 data (Chin- Hence, both theB3- and CEAF-algorithms
chor, 2001) (30/20). Since we do not have achave to be extended to deal with system mentions
cess to the official ACE testing data (only availwhich are not in the key and true mentions not
able to ACE participants), we follow Bengtson &é€xtracted by the system, so callednless men-
Roth (2008) for dividing the ACE 2004 Englishtions (Stoyanov et al., 2009). Two variants of
training data (Mitchell et al., 2004) into training, the B*-algorithm are proposed by Stoyanov et al.
development and testing partitions (268/76/107(2009), B2, and B3. B2, tries to assign intu-
We randomly split the 252 ACE 2003 trainingitive precision and recall to the twinless system
documents (Mitchell et al., 2003) using the sam&entions and twinless key mentions, while keep-
proportions into training, development and testingng the size of the system mention set and the key
(151/38/63). The systems were tuned on developrention set unchanged (which are different from

ment and run only once on testing data. each other). For twinless mentiont’” discards
_ twinless key mentions for precision and twinless
5.2 Mention Tagger system mentions for recall. Discarding parts of

We implement a classification-based mention taghe key mentions, however, makes the fair com-
ger, which tags each NP chunk as ACE mention garison of precision values difficuIBg produces
not, with neccessary post-processing for embegounter-intuitive precision by discarding all twin-
ded mentions. For the ACE 2004 testing data, w&ss system mentions. Although it penalizes the
cover75.8% of the heads witlT3.5% accuracy. recall of all twinless key mentions, so that the F-

scores are balanced, it is still too lenient (for fur-
5.3 Evaluation Metrics ther analyses see Cai & Strube (2010)).

We evaluate COPA with three coreference resolu- We devise two variants of thB3- and CEAF
tion evaluation metrics: th&3-algorithm (Bagga algorithms, namel;Bg’yS andCEAF,;,,. For com-
& Baldwin, 1998), theCEAF-algorithm (Luo, puting precision, the algorithms put all twinless
2005), and, for the sake of completeness, thgue mentions into the response even if they were
MUC-score (Vilain et al., 1995). not extracted. All twinless system mentions which
Since theMUC-score does not evaluate singlewere deemed not coreferent are discarded. Only
ton entities, it only partially evaluates the perfortwinless system mentions which were mistakenly
mance for ACE data, which includes singletorresolved are put into the key. Hence, the system
entities in the keys. The33-algorithm (Bagga is penalized for resolving mentions not found in
& Baldwin, 1998) addresses this problem of thehe key. For recall the algorithms only consider
MUC-score by conducting calculations based omentions from the original key by discarding all
mentions instead of coreference relations. Howhe twinless system mentions and putting twin-
ever, another problematic issue emerges wheeass true mentions into the response as singletons
system mentions have to be dealt witl3 as- (algorithm details, simulations and comparison of
sumes the mentions in the key and in the responséfferent systems and metrics are provided in Cai
to be identical, which is unlikely when a men-& Strube (2010)). FOCEAF,;, ¢3 (Luo, 2005)
tion tagger is used to create system mentionis used.3? , andCEAF,,, report results for end-
The CEAFR-algorithm aligns entities in key and to-end coreference resolution systems adequately.
response by means of a similarity metric, which
is motivated byB?3's shortcoming of using one 54 Basdines
entity multiple times (Luo, 2005). However, al-
though CEAF theoretically does not require to We compare COPAs performance with two base-
have the same number of mentions in key anlihes: SOON- the BART (Versley et al., 2008)
response, the algorithm still cannot be directlyeimplementation of Soon et al. (2001) — and
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SOON COPA with R2 partitioner

R P F R P F a* 8

MUC MUC6 59.4 679 634 628 66.4 645 0.08 0.03
MUC7 523 67.1 588 55.2 66.1 60.1 0.05 0.01
ACE 2003 | 56.7 75.8 64.9/ 60.8 75.1 672 0.07 0.03
ACE 2004 | 50.4 67.4 57.71 541 67.3 600 0.05 0.04
Bg’ys MUC6 531 789 635 564 76.3 641 0.08 0.03
MUC7 49.8 80.0 61.4| 533 76.1 627 0.05 0.01
ACE 2003 | 66.9 87.7 75.9 715 833 770 0.07 0.03
ACE 2004 | 64.7 85.7 73.8/ 67.3 834 745 0.07 0.03
CEAF,,s | MUC6 569 53.0 54.9 622 575 59.8 0.08 0.03
MUC7 57.3 543 557 583 542 56.2 0.06 0.01
ACE 2003 | 71.0 68.7 69.8 71.1 68.3 69.7 0.07 0.03
ACE 2004 | 67.9 65.2 66.5 685 655 67.0 0.07 0.03

Table 3:SOONvs. COPA R2 §OONfeatures, system mentions, bold indicates significant improvement
in F-score oveSOONaccording to a paired-t test wigh< 0.05)

g SOON | BER 55.1 COPA vs. SOON
B3, | 647 857 738/ 663 858 748 In Table 3 we compare thEOONbaseline with
COPA using the R2 partitioner (parametatsand
Table 2: Baselines on ACE 2004 B optimized on development data). Even though

COPA andSOONuse the same features, COPA
consistently outperformSOONon all data sets
ursing all evaluation metrics. With the exception of
mhouse ACE montion taggur the MUC7, the ACE 2003 and the ACE 2004 data
evaluated withCEAF,,,, all of COPA's improve-

In Table 2 we report the performance®0ON  ans are statistically significant. When evaluated
and B&R on the ACE 2004 testing data USINgysing MUC and B3,., COPA with the R2 parti-

. . sys?
the BART preprocessing components and our ifjoner hoosts recall in all datasets while losing in

h%use ACE mention tagger. For evaluation’ We USSrecision. This shows that global hypergraph par-
By, only, since Bengtson & Roth (2008)'s syS-itioning models the coreference resolution task
tem does not allow to easily integraBAF. more adequately than Soon et al. (2001)'s local

B&R considerably outperforr8OON(we can-  model — even when using the very same features.
not compute statistical significance, because we
do not have access to results for single documente>2 COPA Vs B&R
in B&R). The difference, however, is not as big/n Table 4 we compare tH&&R system (using our
as we expected. Bengtson & Roth (2008) rePreprocessing components and mention tagger),
ported very good results when using true mer@nd COPA with the R2 partitioner usifBiR fea-
tions. For evaluating on system mentions, howttres. COPA does not use the learned features
ever, they were using a too lenient Variam‘_@’-f from B&R, as this would have |mp|IEd to embed a
(Stoyanov et al., 2009) which discards all twinlesairwise coreference resolution system in COPA.
mentions. When replacing this W“Bgys the dif- We report results for ACE 2003 and ACE 2004.
ference betweeBOONandB&R shrinks. The parameters are optimized on the ACE 2004
data. COPA with the R2 partitioner outperforms
B&R on both datasets (we cannot compute statisti-
cal significance, because we do not have access to
In both comparisons, COPA uses the same fe&esults for single documents B&R). Bengtson &
tures as the corresponding baseline system.  Roth (2008) developed their system on ACE 2004

data and never exposed it to ACE 2003 data. We

" Phupi/fi2r.cs.uiuc.edu/ - cogcomp! suspect that the relatively poor result@&R on
asoftware.php?skey=FLBJCOREF ACE 2003 data is caused by overfitting to ACE

55 Results
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B&R COPA with R2 partitioner
R P F | R P F
ACE 2003‘ 56.4 97.3 71.4‘ 70.3 86.5 77.5

BS

sYs

ACE 2004 | 66.3 85.8 74.8| 68.4 844 75.6
Table 4:B&R vs. COPA R2 B&R features, system mentions)

2004. Again, COPA gains in recall and losegerior models achieved superior results on sys-
in precision. This shows that COPA is a highlytem mentions, COPA was able to outperform

competetive system as it outperforms Bengtson 8engtson & Roth (2008)’s system which has been
Roth (2008)’s system which has been claimed tolaimed to achieve the best performance on the
have the best performance on the ACE 2004 datACE 2004 data (using true mentions, Bengtson &
Roth (2008) did not report any comparison with

other systems using system mentions).

On a machine with 2 AMD Opteron CPUs and 8 An error analysis revealed that there were some
GB RAM, COPA finishes preprocessing, trainingcluster-level inconsistencies in the COPA output.

and partitioning the ACE 2004 dataset in 15 minEnforcing this consistency would require a global

utes, which is slightly faster than our duplicatedtrategy to propagate constraints, so that con-

55.3 Running Time

SOONDbaseline. straints can be included in the hypergraph parti-
_ _ tioning properly. We are currently exploring con-
6 Discussion and Outlook strained clustering, a field which has been very

_ active recently (Basu et al., 2009). Using con-
Most previous attempts to solve the coreferencsetr‘,Jlineol clustering methods may allow us to in-
reso:utlpn taslk glloballly.have be";’? h?]mp?red.fp%grate negative information as constraints instead
employing a local pairwise model in the classi "of combining several weak positive features to one

(r:atll?zn step I(Skt)eﬁ) 1) V\r/hllehonly thf Clusttelrm%géii/hich is still weak (e.g. ouAgreementeature).
ealizes a global approach, e.g. Luo et al. ( or an application of constrained clustering to the

N.'C%[ag 8|‘ dl\_l(ljcolaezégg%l), Klenner éz??t?) ItDe-I related task of database record linkage, see Bhat-
nis aldridge ( ), lesser so Culotta e atacharya&Getoor (2009).

(2007). It has been also observed that improve- Graph models cannot deal well with positional

ments in performance on true mentions do not . . .
.p . ) information, such as distance between mentions
necessarily translate into performance improve-

. or the sequential ordering of mentions in a doc-
ments on system mentions (Ng, 2008). d d

ument. We implemented distance as weights on

In this paper we describe a coreference res‘ﬁzfyperedges which resulted in decent performance.

lution system, COPA, which implements a gIOba‘—Iowever, this is limited to pairwise relations and

decision in one step via hypergraph partitioning[hus does not exploit the power of the high de-
COPA looks at the whole graph at once which en-

_ _ ree relations available in COPA. We expect fur-
ables it to outperform two strong baselines (So'oﬁ1er improvements, once we manage to include
et al., 2001; Bengtson & Roth, 2008). COPAs ositional information directly.
hypergraph-based strategy can be taken as a gen-
eral preference model, where the preference fékcknowledgements. This work has been
one mention depends on information on all othefunded by the Klaus Tschira Foundation, Hei-
mentions. delberg, Germany. The first author has been

We follow Stoyanov et al. (2009) and arguesupported by a HITS PhD. scholarship. We would
that evaluating the performance of coreferenclke to thank Byoung-Tak Zhang for bringing
resolution systems on true mentions is unrealidypergraphs to our attention aa Mujdricza-
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