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Abstract
Multimodal interfaces require effective parsing and
understanding of utterances whose content is dis-
tributed across multiple input modes. Johnston 1998
presents an approach in which strategies for mul-
timodal integration are stated declaratively using a
unification-based grammar that is used by a multi-
dimensional chart parser to compose inputs. This
approach is highly expressive and supports a broad
class of interfaces, but offers only limited potential
for mutual compensation among the input modes, is
subject to significant concerns in terms of computa-
tional complexity, and complicates selection among
alternative multimodal interpretations of the input.
In this paper, we present an alternative approach
in which multimodal parsing and understanding are
achieved using a weighted finite-state device which
takes speech and gesture streams as inputs and out-
puts their joint interpretation. This approach is sig-
nificantly more efficient, enables tight-coupling of
multimodal understanding with speech recognition,
and provides a general probabilistic framework for
multimodal ambiguity resolution.

1 Introduction
Multimodal interfaces are systems that allow input
and/or output to be conveyed over multiple different
channels such as speech, graphics, and gesture. They
enable more natural and effective interaction since
different kinds of content can be conveyed in the
modes to which they are best suited (Oviatt, 1997).
Our specific concern here is with multimodal inter-
faces supporting input by speech, pen, and touch, but
the approach we describe has far broader applicabil-
ity. These interfaces stand to play a critical role in the
ongoing migration of interaction from the desktop
to wireless portable computing devices (PDAs, next-
generation phones) that offer limited screen real es-
tate, and other keyboard-less platforms such as pub-
lic information kiosks.

To realize their full potential, multimodal inter-
faces need to support not just input from multiple
modes, but synergistic multimodal utterances opti-
mally distributed over the available modes (John-

ston et al., 1997). In order to achieve this, an ef-
fective method for integration of content from dif-
ferent modes is needed. Johnston (1998b) shows
how techniques from natural language processing
(unification-based grammars and chart parsing) can
be adapted to support parsing and interpretation of
utterances distributed over multiple modes. In that
approach, speech and gesture recognition producen-
best lists of recognition results which are assigned
typed feature structure representations (Carpenter,
1992) and passed to a multidimensional chart parser
that uses a multimodal unification-based grammar to
combine the representations assigned to the input el-
ements. Possible multimodal interpretations are then
ranked and the optimal interpretation is passed on
for execution. This approach overcomes many of
the limitations of previous approaches to multimodal
integration such as (Bolt, 1980; Neal and Shapiro,
1991) (See (Johnston et al., 1997)(p. 282)). It sup-
ports speech with multiple gestures, visual parsing
of unimodal gestures, and its declarative nature fa-
cilitates rapid prototyping and iterative development
of multimodal systems. Also, the unification-based
approach allows for mutual compensation of recog-
nition errors in the individual modalities (Oviatt,
1999).

However, the unification-based approach does not
allow for tight-coupling of multimodal parsing with
speech and gesture recognition. Compensation ef-
fects are dependent on the correct answer appear-
ing in then-best list of interpretations assigned to
each mode. Multimodal parsing cannot directly in-
fluence the progress of speech or gesture recognition.
The multidimensional parsing approach is also sub-
ject to significant concerns in terms of computational
complexity. In the worst case, the multidimensional
parsing algorithm (Johnston, 1998b) (p. 626) is ex-
ponential with respect to the number of input ele-
ments. Also this approach does not provide a nat-
ural framework for combining the probabilities of
speech and gesture events in order to select among
multiple competing multimodal interpretations. Wu
et.al. (1999) present a statistical approach for select-
ing among multiple possible combinations of speech



and gesture. However, it is not clear how the ap-
proach will scale to more complex verbal language
and combinations of speech with multiple gestures.

In this paper, we propose an alternative approach
that addresses these limitations: parsing, understand-
ing, and integration of speech and gesture are per-
formed by a single finite-state device. With certain
simplifying assumptions, multidimensional parsing
and understanding with multimodal grammars can
be achieved using a weighted finite-state automa-
ton (FSA) running on three tapes which represent
speech input (words), gesture input (gesture sym-
bols and reference markers), and their combined in-
terpretation. We have implemented our approach in
the context of a multimodal messaging application
in which users interact with a company directory
using synergistic combinations of speech and pen
input; a multimodal variant of VPQ (Buntschuh et
al., 1998). For example, the user might sayemail
this person and this person and gesture
with the pen on pictures of two people on a user inter-
face display. In addition to the user interface client,
the architecture contains speech and gesture recog-
nition components which process incoming streams
of speech and electronic ink, and a multimodal lan-
guage processing component (Figure 1).

Multimodal Parser/Understander

UI

ASR

Backend

Gesture Recognizer

Figure 1: Multimodal architecture

Section 2 provides background on finite-state lan-
guage processing. In Section 3, we define and exem-
plify multimodal context-free grammars (MCFGS)
and their approximation as multimodal FSAs. We
describe our approach to finite-state representation
of meaning and explain how the three-tape finite
state automaton can be factored out into a number
of finite-state transducers. In Section 4, we explain
how these transducers can be used to enable tight-
coupling of multimodal language processing with
speech and gesture recognition.

2 Finite-state Language Processing
Finite-state transducers (FST) are finite-state au-
tomata (FSA) where each transition consists of an
input and an output symbol. The transition is tra-
versed if its input symbol matches the current sym-
bol in the input and generates the output symbol as-
sociated with the transition. In other words, an FST
can be regarded as a 2-tape FSA with an input tape
from which the input symbols are read and an output
tape where the output symbols are written.

Finite-state machines have been extensively ap-
plied to many aspects of language processing in-
cluding, speech recognition (Pereira and Riley, 1997;
Riccardi et al., 1996), phonology (Kaplan and Kay,
1994), morphology (Koskenniemi, 1984), chunk-
ing (Abney, 1991; Joshi and Hopely, 1997; Ban-
galore, 1997), parsing (Roche, 1999), and machine
translation (Bangalore and Riccardi, 2000).

Finite-state models are attractive mechanisms for
language processing since they are (a) efficiently
learnable from data (b) generally effective for decod-
ing and (c) associated with a calculus for composing
machines which allows for straightforward integra-
tion of constraints from various levels of language
processing. Furthermore, software implementing
the finite-state calculus is available for research pur-
poses (Mohri et al., 1998). Another motivation for
our choice of finite-state models is that they enable
tight integration of language processing with speech
and gesture recognition.

3 Finite-state Multimodal Grammars
Multimodal integration involves merging semantic
content from multiple streams to build a joint inter-
pretation for a multimodal utterance. We use a finite-
state device to parse multiple input streams and to
combine their content into a single semantic repre-
sentation. For an interface withn modes, a finite-
state device operating overn+1 tapes is needed. The
first n tapes represent the input streams andn+ 1 is
an output stream representing their composition. In
the case of speech and pen input there are three tapes,
one for speech, one for pen gesture, and a third for
their combined meaning.

As an example, in the messaging application
described above, users issue spoken commands
such as email this person and that
organization and gesture on the appropriate
person and organization on the screen. The struc-
ture and interpretation of multimodal commands of
this kind can be captured declaratively in a multi-
modal context-free grammar. We present a fragment
capable of handling such commands in Figure 2.



S! V NP ":":]) NP! DET N
CONJ! and:":, NP! DET N CONJ NP
V ! email:":email([ DET! this:":"
V ! page:":page([ DET! that:":"
N! person:Gp:person( ENTRY
N! organization:Go:org( ENTRY
N! department:Gd:dept( ENTRY
ENTRY! ":e1:e1 ":":)
ENTRY! ":e2:e2 ":":)
ENTRY! ":e3:e3 ":":)
ENTRY! ...

Figure 2: Multimodal grammar fragment

The non-terminals in the multimodal grammar are
atomic symbols. The multimodal aspects of the
grammar become apparent in the terminals. Each
terminal contains three componentsW :G:M corre-
sponding to then+1 tapes, whereW is for the spo-
ken language stream,G is the gesture stream, and
M is the combined meaning. The epsilon symbol is
used to indicate when one of these is empty in a given
terminal. The symbols inW are words from the
speech stream. The symbols inG are of two types.
Symbols likeGo indicate the presence of a particular
kind of gesture in the gesture stream, while those like
e1 are used as references to entities referred to by the
gesture (See Section 3.1). Simple deictic pointing
gestures are assigned semantic types based on the en-
tities they are references to.Gp represents a gestural
reference to a person on the display,Go to an orga-
nization, andGd to a department. Compared with
a feature-based multimodal grammar, these types
constitute a set of atomic categories which make
the relevant distinctions for gesture events predict-
ing speech events and vice versa. For example, if
the gesture isGp then phrases likethis person
andhim are preferred speech events and vice versa.
These categories also play a role in constraining the
semantic representation when the speech is under-
specified with respect to semantic type (e.g.email
this one ). These gesture symbols can be orga-
nized into a type hierarchy reflecting the ontology
of the entities in the application domain. For exam-
ple, there might be a general typeG with subtypes
Go andGp, whereGp has subtypesGpm andGpf for
male and female.

A multimodal CFG (MCFG) can be defined for-
mally as quadruple< N;T; P; S >. N is the set of
nonterminals.P is the set of productions of the form
A ! � whereA 2 N and� 2 (N [ T )�. S is
the start symbol for the grammar.T is the set of ter-
minals of the form(W [ ") : (G [ ") : M� where
W is the vocabulary of speech,G is the vocabulary
of gesture=GestureSymbols [ EventSymbols;

GestureSymbols =fGp, Go, Gpf , Gpm, : : :g and
a finite collections ofEventSymbols =fe1,e2,
: : : ; eng. M is the vocabulary to represent meaning
and includes event symbols (EventSymbols �M ).

In general a context-free grammar can be approx-
imated by an FSA (Pereira and Wright 1997, Neder-
hof 1997). The transition symbols of the approx-
imated FSA are the terminals of the context-free
grammar and in the case of multimodal CFG as de-
fined above, these terminals contain three compo-
nents,W , G andM . The multimodal CFG frag-
ment in Figure 2 translates into the FSA in Figure 3,
a three-tape finite state device capable of composing
two input streams into a single output semantic rep-
resentation stream.

Our approach makes certain simplifying assump-
tions with respect to temporal constraints. In multi-
gesture utterances the primary function of tempo-
ral constraints is to force an order on the gestures.
If you saymove this here and make two ges-
tures, the first corresponds tothis and the second to
here . Our multimodal grammars encode order but
do not impose explicit temporal constraints. How-
ever, general temporal constraints between speech
and the first gesture can be enforced before the FSA
is applied.

3.1 Finite-state Meaning Representation
A novel aspect of our approach is that in addition
to capturing the structure of language with a finite
state device, we also capture meaning. This is very
important in multimodal language processing where
the central goal is to capture how the multiple modes
contribute to the combined interpretation. Our ba-
sic approach is to write symbols onto the third tape,
which when concatenated together yield the seman-
tic representation for the multimodal utterance. It
suits our purposes here to use a simple logical repre-
sentation with predicatespred(....)and lists[a,b,...].
Many other kinds of semantic representation could
be generated. In the fragment in Figure 2, the word
email contributesemail([ to the semantics tape,
and the list and predicate are closed when the rule
S ! V NP ":":]) applies. The wordperson
writesperson( on the semantics tape.

A significant problem we face in adding mean-
ing into the finite-state framework is how to repre-
sent all of the different possible specific values that
can be contributed by a gesture. For deictic refer-
ences a unique identifier is needed for each object in
the interface that the user can gesture on. For ex-
ample, if the interface shows lists of people, there
needs to be a unique identifier for each person. As
part of the composition process this identifier needs
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Figure 3: Multimodal three-tape FSA

to be copied from the gesture stream into the seman-
tic representation. In the unification-based approach
to multimodal integration, this is achieved by fea-
ture sharing (Johnston, 1998b). In the finite-state ap-
proach, we would need to incorporate all of the dif-
ferent possible IDs into the FSA. For a person with
id objid345 you need an arc":objid345:objid345
to transfer that piece of information from the ges-
ture tape to the meaning tape. All of the arcs for
different IDs would have to be repeated everywhere
in the network where this transfer of information is
needed. Furthermore, these arcs would have to be
updated as the underlying database was changed or
updated. Matters are even worse for more complex
pen-based data such as drawing lines and areas in an
interactive map application (Cohen et al., 1998). In
this case, the coordinate set from the gesture needs
to be incorporated into the semantic representation.
It might not be practical to incorporate the vast num-
ber of different possible coordinate sequences into an
FSA.

Our solution to this problem is to store these
specific values associated with incoming gestures
in a finite set of buffers labelede1,e2,e3, : : : and
in place of the specific content write in the name
of the appropriate buffer on the gesture tape. In-
stead of having the specific values in the FSA, we
have the transitions":e1:e1, ":e2:e2, ":e3:e3: : : in
each location where content needs to be transferred
from the gesture tape to the meaning tape (See Fig-
ure 3). These are generated from theENTRY pro-
ductions in the multimodal CFG in Figure 2. The
gesture interpretation module empties the buffers
and starts back ate1 after each multimodal com-
mand, and so we are limited to a finite set of ges-
ture events in a single utterance. Returning to
the exampleemail this person and that
organization , assume the user gestures on en-
tities objid367 andobjid893. These will be stored
in bufferse1 ande2. Figure 4 shows the speech and
gesture streams and the resulting combined meaning.

The elements on the meaning tape are concate-
nated and the buffer references are replaced to yield

S: email this person and that organization
G: Gp e1 Go e2
M: email([ person(e1) , org(e2) ])

Figure 4: Messaging domain example

email([person(objid367); org(objid893)]). As
more recursive semantic phenomena such as pos-
sessives and other complex noun phrases are added
to the grammar the resulting machines become
larger. However, the computational consequences
of this can be lessened by lazy evaluation tech-
niques (Mohri, 1997) and we believe that this finite-
state approach to constructing semantic representa-
tions is viable for a broad range of sophisticated lan-
guage interface tasks. We have implemented a size-
able multimodal CFG for VPQ (See Section 1): 417
rules and a lexicon of 2388 words.

3.2 Multimodal Finite-state Transducers

While a three-tape finite-state automaton is feasi-
ble in principle (Rosenberg, 1964), currently avail-
able tools for finite-state language processing (Mohri
et al., 1998) only support finite-state transducers
(FSTs) (two tapes). Furthermore, speech recogniz-
ers typically do not support the use of a three-tape
FSA as a language model. In order to implement our
approach, we convert the three-tape FSA (Figure 3)
into an FST, by decomposing the transition symbols
into an input component (G�W ) and output compo-
nentM , thus resulting in a function,T :(G�W )!
M . This corresponds to a transducer in which ges-
ture symbols and words are on the input tape and the
meaning is on the output tape (Figure 6). The do-
main of this functionT can be further curried to re-
sult in a transducer that mapsR:G!W (Figure 7).
This transducer captures the constraints that gesture
places on the speech stream and we use it as a lan-
guage model for constraining the speech recognizer
based on the recognized gesture string. In the fol-
lowing section, we explain howT andR are used in
conjunction with the speech recognition engine and
gesture recognizer and interpreter to parse and inter-



pret multimodal input.

4 Applying Multimodal Transducers
There are number of different ways in which multi-
modal finite-state transducers can be integrated with
speech and gesture recognition. The best approach
to take depends on the properties of the particular
interface to be supported. The approach we outline
here involves recognizing gesture first then using the
observed gestures to modify the language model for
speech recognition. This is a good choice if there
is limited ambiguity in gesture recognition, for ex-
ample, if the majority of gestures are unambiguous
deictic pointing gestures.

The first step is for the gesture recognition and
interpretation module to process incoming pen ges-
tures and construct a finite state machineGesture
corresponding to the range of gesture interpretations.
In our example case (Figure 4) the gesture input is
unambiguous and theGesturefinite state machine
will be as in Figure 5. If the gestural input involves
gesture recognition or is otherwise ambiguous it is
represented as a lattice indicating all of the possi-
ble recognitions and interpretations of the gesture
stream. This allows speech to compensate for ges-
ture errors and mutual compensation.

0 1
Gp

2
e1

3
Go

4
e2

Figure 5:Gesturefinite-state machine

This Gesturefinite state machine is then com-
posed with the transducerR which represents the
relationship between speech and gesture (Figure 7).
The result of this composition is a transducerGest-
Lang (Figure 8). This transducer represents the re-
lationship between this particular stream of gestures
and all of the possible word sequences that could co-
occur with those gestures. In order to use this in-
formation to guide the speech recognizer, we then
take a projection on the output tape (speech) ofGest-
Lang to yield a finite-state machine which is used
as a language model for speech recognition (Fig-
ure 9). Using this model enables the gestural in-
formation to directly influence the speech recog-
nizer’s search. Speech recognition yields a lattice
of possible word sequences. In our example case it
yields the word sequenceemail this person
and that organization (Figure 10). We
now need to reintegrate the gesture information that
we removed in the projection step before recog-
nition. This is achieved by composingGest-
Lang (Figure 8) with the result lattice from speech
recognition (Figure 10), yielding transducerGest-
SpeechFST(Figure 11). This transducer contains

the information both from the speech stream and
from the gesture stream. The next step is to gen-
erate the combined meaning representation. To
achieve thisGestSpeechFST(G : W ) is converted
into an FSM GestSpeechFSMby combining out-
put and input on one tape (G � W ) (Figure 12).
GestSpeechFSMis then composed withT (Fig-
ure 6), which relates speech and gesture to mean-
ing, yielding the result transducerResult(Figure 13).
The meaning is read from the output tape yield-
ing email([person(e1); org(e2)]). We have imple-
mented this approach and applied it in a multimodal
interface to VPQ on a wireless PDA. In prelimi-
nary speech recognition experiments, our approach
yielded an average of 23% relative sentence-level er-
ror reduction on a corpus of 1000 utterances (John-
ston and Bangalore, 2000).

5 Conclusion

We have presented here a novel approach to mul-
timodal language processing in which spoken lan-
guage and gesture are parsed and integrated by a
single weighted finite-state device. This device pro-
vides language models for speech and gesture recog-
nition and composes content from speech and ges-
ture into a single semantic representation. Our ap-
proach is novel not just in addressing multimodal
language but also in the encoding of semantics as
well as syntax in a finite-state device.

Compared to previous approaches (Johnston et al.,
1997; Johnston, 1998a; Wu et al., 1999) which com-
pose elements fromn-best lists of recognition re-
sults, our approach provides an unprecedented po-
tential for mutual compensation among the input
modes. It enables gestural input to dynamically
alter the language model used for speech recogni-
tion. Furthermore, our approach avoids the com-
putational complexity of multidimensional multi-
modal parsing and our system of weighted finite-
state transducers provides a well understood prob-
abilistic framework for combining the probability
distributions associated with speech and gesture in-
put and selecting among multiple competing multi-
modal interpretations. Since the finite-state approach
is more lightweight in computational needs, it can
more readily be deployed on a broader range of plat-
forms.

In ongoing research, we are collecting a corpus of
multimodal data in order to formally evaluate the ef-
fectiveness of our approach and to train weights for
the multimodal finite-state transducers. While we
have concentrated here on understanding, in princi-
ple the same device could be applied to multimodal
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Figure 6: Transducer relating gesture and speech to meaning (T :(G�W )!M )
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Figure 7: Transducer relating gesture and speech (R:G!W )
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Figure 9: Projection of Output tape of GestLang Transducer
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Figure 10: Result from speech recognizer
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generation which we are currently investigating. We
are also exploring techniques to extend compilation
from feature structures grammars to FSTs (Johnson,
1998) to multimodal unification-based grammars.

References

Steven Abney. 1991. Parsing by chunks. In Robert
Berwick, Steven Abney, and Carol Tenny, editors,
Principle-based parsing. Kluwer Academic Pub-
lishers.

Srinivas Bangalore and Giuseppe Riccardi. 2000.
Stochastic finite-state models for spoken language
machine translation. InProceedings of the Work-
shop on Embedded Machine Translation Systems.

Srinivas Bangalore. 1997.Complexity of Lexical
Descriptions and its Relevance to Partial Pars-
ing. Ph.D. thesis, University of Pennsylvania,
Philadelphia, PA, August.

Robert A. Bolt. 1980. ”put-that-there”:voice and
gesture at the graphics interface.Computer
Graphics, 14(3):262–270.

Bruce Buntschuh, C. Kamm, G. DiFabbrizio,
A. Abella, M. Mohri, S. Narayanan, I. Zeljkovic,
R.D. Sharp, J. Wright, S. Marcus, J. Shaffer,
R. Duncan, and J.G. Wilpon. 1998. Vpq: A
spoken language interface to large scale directory
information. In Proceedings of ICSLP, Sydney,
Australia.

Robert Carpenter. 1992.The logic of typed feature
structures. Cambridge University Press, England.

Philip R. Cohen, M. Johnston, D. McGee, S. L.
Oviatt, J. Pittman, I. Smith, L. Chen, and
J. Clow. 1998. Multimodal interaction for dis-
tributed interactive simulation. In M. Maybury
and W. Wahlster, editors,Readings in Intelligent
Interfaces. Morgan Kaufmann Publishers.

Mark Johnson. 1998. Finite-state approximation
of constraint-based grammars using left-corner
grammar transforms. InProceedings of COLING-
ACL, pages 619–623, Montreal, Canada.

Michael Johnston and Srinivas Bangalore. 2000.
Tight-coupling of multimodal language process-
ing with speech recognition. Technical report,
AT&T Labs – Research.

Michael Johnston, P.R. Cohen, D. McGee, S.L. Ovi-
att, J.A. Pittman, and I. Smith. 1997. Unification-
based multimodal integration. InProceedings of
the 35th ACL, pages 281–288, Madrid, Spain.

Michael Johnston. 1998a. Multimodal language
processing. InProceedings of ICSLP, Sydney,
Australia.

Michael Johnston. 1998b. Unification-based multi-
modal parsing. InProceedings of COLING-ACL,
pages 624–630, Montreal, Canada.

Aravind Joshi and Philip Hopely. 1997. A parser
from antiquity. Natural Language Engineering,
2(4).

Ronald M. Kaplan and M. Kay. 1994. Regular mod-
els of phonological rule systems.Computational
Linguistics, 20(3):331–378.

K. K. Koskenniemi. 1984.Two-level morphology: a
general computation model for word-form recog-
nition and production. Ph.D. thesis, University of
Helsinki.

Mehryar Mohri, Fernando C. N. Pereira, and
Michael Riley. 1998. A rational design for a
weighted finite-state transducer library. Num-
ber 1436 in Lecture notes in computer science.
Springer, Berlin ; New York.

Mehryar Mohri. 1997. Finite-state transducers in
language and speech processing.Computational
Linguistics, 23(2):269–312.

J. G. Neal and S. C. Shapiro. 1991. Intelligent multi-
media interface technology. In J. W. Sullivan and
S. W. Tyler, editors,Intelligent User Interfaces,
pages 45–68. ACM Press, Addison Wesley, New
York.

Sharon L. Oviatt. 1997. Multimodal interactive
maps: Designing for human performance. In
Human-Computer Interaction, pages 93–129.

Sharon L. Oviatt. 1999. Mutual disambiguation of
recognition errors in a multimodal architecture. In
CHI ’99, pages 576–583. ACM Press, New York.

Fernando C.N. Pereira and Michael D. Riley. 1997.
Speech recognition by composition of weighted fi-
nite automata. In E. Roche and Schabes Y., ed-
itors, Finite State Devices for Natural Language
Processing, pages 431–456. MIT Press, Cam-
bridge, Massachusetts.

Giuseppe Riccardi, R. Pieraccini, and E. Bocchieri.
1996. Stochastic Automata for Language Model-
ing. Computer Speech and Language, 10(4):265–
293.

Emmanuel Roche. 1999. Finite state transducers:
parsing free and frozen sentences. In Andr´as Ko-
rnai, editor,Extended Finite State Models of Lan-
guage. Cambridge University Press.

A.L. Rosenberg. 1964. On n-tape finite state accep-
tors. FOCS, pages 76–81.

Lizhong Wu, Sharon L. Oviatt, and Philip R. Cohen.
1999. Multimodal integration – a statistical view.
IEEE Transactions on Multimedia, 1(4):334–341,
December.


