
Fores t -Based Stat ist ical Sentence Generat ion

I r e n e L a n g k i l d e
Informat ion Sciences Ins t i tu te

Univers i ty of Southern California
Mar ina del Rey CA 90292

ilangkil©isi .edu

A b s t r a c t
This paper presents a new approach to sta-
tistical sentence generation in which Mterna-
tive phrases are represented as packed sets of
trees, or forests, and then ranked statistically to
choose the best one. This representation offers
advantages in compactness and in the ability
to represent syntactic information. It also fa-
cilitates more efficient statistical ranking than
a previous approach to statistical generation.
An efficient ranking algorithm is described, to-
gether with experimental results showing signif-
icant improvements over simple enumeration or
a lattice-based approach.

1 I n t r o d u c t i o n
Large textual corpora offer the possibility of
a statistical approach to the task of sentence
generation. Like any large-scale NLP or AI
task, the task of sentence generation requires
immense amounts of knowledge. The knowledge
needed includes lexicons, grammars, ontologies,
collocation lists, and morphological tables. Ac-
quiring and applying accurate, detailed knowl-
edge of this breadth poses difficult problems.

Knight and Hatzivassiloglou (1995) suggested
overcoming the knowledge acquisition bottle-
neck in generation by tapping the information
inherent in textual corpora. They performed ex-
periments showing that automatically-acquired,
corpus-based knowledge greatly reduced the
need for deep, hand-crafted knowledge. At
the same time, this approach to generation im-
proved scalability and robustness, offering the
potential in the future for higher quality out-
put.

In their approach, K ~: H adapted techniques
used in speech recognition. Corpus-based sta-
tistical knowledge was applied to the generation
process after encoding many alternative phras-

ings into a structure called a lattice (see Fig-
ure 1). A lattice was able to represent large
numbers alternative phrases without requiring
the large amount of space that an explicitly enu-
merated list of individual alternatives would re-
quire. The Mternative sentences in the lattice
were then ranked according to a statistical lan-
guage model, and the most likely sentence was
chosen as output . Since the number of phrases
that needed be considered typically grew ex-
ponentially with the length of the phrase, the
lattice was usually too large for an exhaustive
search, and instead an n-best algorithm was
used to heuristically narrow the search.

The lattice-based method, though promising,
had several drawbacks that will be discussed
shortly. This paper presents a different method
of statistical generation based on a forest struc-
ture (a packed set of trees). A forest is more
compact than a lattice, and it offers a hierar-
chical organization that is conducive to repre-
senting syntactic information. Furthermore, it
facilitates dramatically more efficient statistical
ranking, since constraints can be localized, and
the combinatorial explosion of possibilities that
need be considered can be reduced. In addition
to describing the forest data structure we use,
this paper presents a forest-based ranking algo-
ri thm, and reports experimental results on its
efficiency in both time and space. It also favor-
ably compares these results to the performance
of a lattice-based approach.

2 R e p r e s e n t i n g A l t e r n a t i v e P h r a s e s
2.1 E n u m e r a t e d lists and latt ices
The task of sentence generation involves map-
ping from an abstract representation of mean-
ing or syntax to a linear ordering of words.
Subtasks of generation usually include choosing
content words, determining word order,

170

.g

.~

Figure 1: A lattice representing 576 different sen-
tences, including "You may have to eat chicken",
"The chicken may have to be eaten by you", etc.

171

deciding when to insert function words, per-
forming morphological inflections, and satis-
fying agreement constraints, as well as other
tasks.

One way of leveraging corpus-based knowl-
edge is to explicitly enumerate many alternate
possibilities and select the most likely according
to a corpus-based statistical model. Since many
subphrases and decisions will be common across
propose d sentences, a lattice is a more efficient
way than one-by-one enumerat ion to represent
them. A lattice is a graph where each arc is la-
beled with a word. A complete path from the
left-most node to right-most node through the
lattice represents a possible sentence. Multiple
arcs leaving a particular node represent alter-
nate paths. A lattice thus allows structure to
be shared between sentences. An example of a
lattice is shown in Figure 1. This lattice encodes
576 unique sentences. In practice, a lattice may
represent many trillions of sentences. Without
a compact representation for so many sentences,
statistical generation would be much less feasi-
ble.

The lattice in Figure 1 illustrates several
types of decisions that need to be made in gen-
eration. For example, there is a choice be-
tween the root words "chicken" and "poulet",
the choice of whether to use singular or plural
forms of these words, the decision whether to
use an article or not, and if so, which one - -
definite or indefinite. There are also other word
choice decisions such as whether to use the aux-
iliary verb "could", "might", or "may", and
whether to express the mode of eating with the
predicate "have to", "be obliged to", or "be re-
quired to". Finally, there is a choice between
active voice (bot tom half of lattice), and pas-
sive voice (top half).

Inspection of the lattice reveals some un-
avoidable duplication, however. For example,
the word "chicken" occurs four times, while
the sublattice for the noun phrase contain-
ing "chicken" is repeated twice. So is the
verb phrase headed by the auxiliaries "could",
"might", and "may". Such repetition is com-
mon in a lattice representation for text genera-
tion, and has a negative impact on the efficiency
of the ranking algorithm because the same set
of score calculations end up being made several
times. Another drawback of the duplication is

that the representation consumes more storage
space than necessary.

Yet another drawback of the lattice represen-
tation is that the independence between many
choices cannot be fully exploited. Stolcke et al.
(1997) noted that 55% of all word dependencies
occur between adjacent words. This means that
most choices that must be made in non-adjacent
parts of a sentence are independent. For ex-
ample, in Figure 1, the choice between "may",
"might", or "could" is independent of the choice
between "a", "an" or "the" to precede "chicken"
or "poulet". Independence reduces the combi-
nation of possibilities that must be considered,
and allows some decisions to be made with-
out taking into account the rest of the context.
Even adjacent words are sometimes indepen-
dent of each other, such as the words "tail" and
"ate" in the sentence "The dog with the short
tail ate the bone". A lattice does not offer any
way of representing which parts of a sentence
are independent of each other, and thus can-
not take advantage of this independence. This
negatively impacts both the amount of process-
ing needed and the quality of the results. In
contrast, a forest representation, which we will
discuss shortly, does allow the independence to
be explicitly annotated.

A final difficulty with using lattices is that
the search space grows exponentially with the
length of the sentence(s), making an exhaustive
search for the most likely sentence impractical
for long sentences. Heuristic-based searches of-
fer only a poor approximation. Any pruning
that is done renders the solution theoretically
inadmissable, and in practice, frequently ends
up pruning the mathematical ly optimal solu-
tion.

2.2 F o r e s t s

These weaknesses of the lattice representation
can be overcome with a forest representation. If
we assign a label to each unique arc and to each
group of arcs that occurs more than once in a
lattice, a lattice becomes a forest, and the prob-
lems with duplication in a lattice are eliminated.
The resulting structure can be represented as a
set of context-free rewrite rules. Such a forest
need not necessarily comply with a particular
theory of syntactic structure, but it can if one
wishes. It also need not be derived specifically
from a lattice, but can be generated directly

172

from a semantic input.

With a forest representation, it is quite nat-
ural to incorporate syntactic information. Syn-
tactic information offers some potentially signif-
icant advantages for statistical language model-
ing. However, this paper will not discuss statis-
tical modeling of syntax beyond making men-
tion of it, leaving it instead for future work. In-
stead we focus on the nature of the forest repre-
sentation itself and describe a general algorithm
for ranking alternative trees that can be used
with any language model.

A forest representation corresponding to the
lattice in Figure 1 is shown in Figure 3. This
forest structure is an AND-OR graph, where the
AND nodes represent sequences of phrases, and
the OR nodes represent mutually exclusive al-
ternate phrasings for a particular relative po-
sition in the sentence. For example, at the top
level of the forest, node S.469 encodes the choice
between active and passive voice versions of the
sentence. The active voice version is the left
child node, labelled S.328, and the passive voice
version is the right child node, S.358. There
are eight OR-nodes in the forest, corresponding
to the eight distinct decisions mentioned earlier
that need to be made in deciding the best sen-
tence to output.

The nodes are uniquely numbered, so that re-
peated references to the same node can be iden-
tified as such. In the forest diagram, only the
first (left-most) reference to a node is drawn
completely. Subsequent references only show
the node name written in italics. This eases
readability and clarifies which portions of the
forest actually need to have scores computed
during the ranking process. Nodes N.275,
NP.318, VP.225 and PRP.3 are repeated in the
forest of Figure 3.

S.469 ~ S.328
S.469 ==~ S.358
S.328 ~ PRP.3 VP.327
PRP.3 ~ "you"
VP.327 ==ez VP.248 NP.318
S.358 ~ NP.318 VP.357
NP.318 ~ NP.317
NP.318 ~ N.275

Figure 2: Internal representation of top nodes in
forest

Figure 2 illustrates how the forest is repre-
sented internally, showing context-free rewrite
rules for some of the top nodes in the forest.
OR-nodes are indicated by the same label oc-
curing more than once on the left-hand side of a
rule. This sample of rules includes an example
of multiple references to a node, namely node
NP.318, which occurs on the right-hand side of
two different rules.

A generation forest differs from a parse forest
in that a parse forest represents different pos-
sible hierarchicM structures that cover a single
phrase. Meanwhile a generation forest gener-
ally represents one (or only a few) heirarchi-
cal structures for a given phrase, but represents
many different phrases that generally express
the same meaning.

2.3 P r e v i o u s work on packed
g e n e r a t i o n t r ees

There has been previous work on developing
a representation for a packed generation forest
structure. Shemtov (1996) describes extensions
to a chart structure for generation originally
presented in (Kay, 1996) that is used to gen-
erate multiple paraphrases from a semantic in-
put. A prominent aspect of the representation
is the use of boolean vector expressions to asso-
ciate each sub-forest with the portions of the in-
put that it covers and to control the unification-
based generation process. A primary goM of the
representation is to guarantee that each part of
the semantic input is expressed once and only
once in each possible output phrase.

In contrast, the packed forest in this paper
keeps the association between the semantic in-
put and nodes in the forest separate from the
forest representation itself. (In our system,
these mappings are maintained via an external
cache mechanism as described in (Langkilde and
Knight, 1998)). Once-and-only-once coverage of
the semantic input is implicit, and is achieved
by the process that maps from the input to a
forest.

3 F o r e s t r a n k i n g a l g o r i t h m

The algorithm proposed here for ranking sen-
tences in a forest is a bottom-up dynamic pro-
gramming algorithm. It is analogous to a
chart parser, but performs an inverse compari-
son. Rather than comparing alternate syntactic
structures indexed to the same positions of an

173

7

/t 71

\ / \ ,-

tit
.~ ~ = - ~

\ / \ / > ,;-.

}
i g - ~

}

• ~ -~

- -~-~.

Figure 3: A generation forest

174

input sentence, it compares alternate phrases
corresponding to the same semantic input.

As in a probabilistic chart parser, the key
insight of this algorithm is that the score for
each of the phrases represented by a particu-
lar node in the forest can be decomposed into
a context-independent (internal) score, and a
context-dependent (external) score. The inter-
nal score, once computed, is stored with the
phrase, while the external score is computed in
combination with other sibling nodes.

In general, the internal score for a phrase as-
sociated with a node p can be defined recur-
sively as:

I(p) = 1-Ij=lJ I(cj) • E(cjJcontext(cl. .Cj_l))

where I stands for the internal score, E the ex-
ternal score, and cj for a child node of p. The
specific formulation of I and E, and the pre-
cise definition of the context depends on the lan-
guage model being used. As an example, in a
bigram model, I I=1 for leaf nodes, and E can
be expressed as:

E = P(E i r s tWord (e j) lLas tWord (c j_ l))

Depending on the language model being used,
a phrase will have a set of externally-relevant
features. These features are the aspects of the
phrase that contribute to the context-dependent
scores of sibling phrases. In the case of the bi-
gram model, the features are the first and last
words of the phrase. In a trigram model it is the
first and last two words. In more elaborate lan-
guage models, features might include elements
such as head word, part-of-speech tag, constitu-
tent category, etc.

A crucial advantage of the forest-based
method is that at each node only the best in-
ternally scoring phrase for each unique combi-
nation of externally relevant features needs to
be maintained. The rest can be pruned with-
out sacrificing the guarantee of obtaining the
overall optimal solution. This pruning reduces
exponentially the total number of phrases that
need to be considered. In effect, the ranking

IA bigram model is based on conditional probabil-
ities, where the likelihood of each word in a phrase is
assumed to depend on only the immediately previous
word. The likelihood of a whole phrase is the product of
the conditional probabilities of each of the words in the
phrase.

VP.344 ~ VP.225 TO.341 VB.342 VBN.330

225: 341: 342: 330:
might have
may have
could have
might be required
may be required
could be required
might be having
may be having
could be having
might be obliged
may be obliged
could be obliged

to be eaten

344:
might ... eaten
may ... eaten
could ... eaten

Figure 4: Pruning phrases from a forest node,
assuming a bigram model

algorithm exploits the independence that exists
between most disjunctions in the forest.

To illustrate this, Figure 4 shows an exam-
ple of how phrases in a node are pruned, as-
suming a bigram model. The rule for node
VP.344 in the forest of Figure 3 is shown, to-
gether with the phrases corresponding to each
of the child nodes. If every possible com-
bination of phrases is considered for the se-
quence of nodes on the right-hand side, there
are three unique first words, namely "might",
"may" and "could", and only one unique final
word, "eaten". Given that only the first and
last words of a phrase are externally relevant
features in a bigram model, only the three best
scoring phrases (out of the 12 total) need to
be maintained for node VP.344--one for each
unique first-word and last-word pair. The other
nine phrases can never be ranked higher, no
matter what constituents VP.344 later combines
with.

Pseudocode for the ranking algorithm is
shown below. "Node" is assumed to be
a record composed at least of an array of
child nodes, "Node->c[1..N]," and best-ranked
phrases, "Node->p[1..M]." The function Con-
catAndScore concatenates two strings together,
and computes a new score for it based on the
formula given above. The function Prune guar-

175

antees that only the best phrase for each unique
set of features values is maintained. The core
loop in the algorithm considers the children of
the node one-by-one, concatenating and scoring
the phrases of the first two children and prun-
ing the results, before considering the phrases
of the third child, and concatenating them with
the intermediate results, and so on. From the
pseudocode, it can be seen that the complex-
ity of the algorithm is dominated by the num-
ber of phrases associated with a node (not the
number of rules used to represent the forest,
nor the number of children in a an AND node).
More specifically, because of the pruning, it de-
pends on the number of features associated with
the language model, and the average number of
unique combinations of feature values that are
seen. If f is the number of features, v the av-
erage number of unique values seen in a node
for each feature, and N the number of N best
being maintained for each unique set of fea-
ture values (but not a cap on the number of
phrases), then the algorithm has the complex-
ity O((vN) 2/) (assuming that children of AND
nodes are concatenated in pairs). Note that f=2
for the bigram model, and f=4 for the trigram
model.

In comparison, the complexity of an exhaus-

RankFores t (Node)
{

if (Leafp(Node)) LeafScore(Node);
f o r j = l t o J {

if (not(ranked?(Node->e[j])))
RankForest(Node- > c[j]);

}
for m = l to NumberOfPhrasesIn(Node->c[1])

Node->p[m] = (Node->c[1])->p[m];
k=ffpr j=2 to J {

for m = l to NumberOfPhrasesIn(Node)
for n = l to NumberOfPhrasesIn(

Node->c[j])
temp[k++] = ConcatAndScore(

Node->p[m],
(Node- >c[j])- >Pin]);

Prune(temp);
for m = l to NumberOfPhrasesIn(temp)

Node->p[m] = (temp[m]);
}

tive search algorithm on a lattice is O((vN)~),
where l is approximately the length of the
longest sentence in the lattice. The forest-based
algorithm thus offers an exponential reduction
in complexity while still guaranteeing an opti-
mal solution. A capped N-best heuristic search
algorithm on the other hand has complexity
O(vN1). However, as mentioned earlier, it typ-
ically fails to find the optimal solution with
longer sentences.

In conclusion, the tables in Figure 5 and Fig-
ure 6 show experimental results comparing a
forest representation to a lattice in terms of the
time and space used to rank sentences. These
results were generated from 15 test set inputs,
whose average sentence length ranged from 14
to 36 words. They were ranked using a bigram
model. The experiments were run on a Sparc
Ultra 2 machine. Note that the time results for
the lattice are not quite directly comparable to
those for a forest because they include overhead
costs for loading portions of a hash table. It was
not possible to obtain timing measurements for
the search algorithm alone. We estimate that
roughly 80% of the time used in processing the
lattice was used for search alone. Instead, the
results in Figure 5 should be interpreted as a
comparison between different kinds of systems.

In that respect, it can be observed from Ta-
ble 5 that the forest ranking program performs
at least 3 or 4 seconds faster, and that the time
needed does not grow linearly with the num-
ber of paths being considered as it does with
the lattice program. Instead it remains fairly
constant. This is consistent with the theoreti-
cal result that the forest-based algorithm does
not depend on sentence length, but only on the
number of different alternatives being consid-
ered at each position in the sentence.

From Table 6 it can be observed that when
there are a relatively moderate number of sen-
tences being ranked, the forest and the lattice
are fairly comparable in their space consump-
tion. The forest has a little extra overhead in
representing hierarchical structure. However,
the space requirements of a forest do not grow
linearly with the number of paths, as do those
of the lattice. Thus, with very large numbers
of paths, the forest offers significant savings in
space.

The spike in the graphs deserves particular

176

comment. Our current system for producing 2 s o ~

forests from semantic inputs generally produces
OR-nodes with about two branches. The par- 20o00o
ticular input that triggered the spike produced
a forest where some high-level OR-nodes had a
much larger number of branches. In a lattice, 150~o
any increase in the number of branches expo-
nentially increases the processing time and stor-
age space requirements. However, in the forest ,000oo
representation, the increase is only polynomial
with the number of branches, and thus did not ~o
produce a spike.

IO0 , • , • , • , • , • ,

90 "latt;,'e"
" fo res t " - - -x- - -

SO

70

60

5O

40

3O

2O

10

. -x

00000 10+06 10+08 10+10 10+12 10+14 10+16 le+18 lo+20

Figure 5: Time required for the ranking pro-
cess using a lattice versus a forest representa-
tion. The X-axis is the number of paths (loglo
scale), and the Y-axis is the time in seconds.

4 F u t u r e W o r k

The forest representation and ranking algorithm
have been implemented as part of the Nitro-
gen generator system. The results shown in
the previous section illustrate the time and
space advantages of the forest representation
which make calculating the mathematically op-
timal sentence in the forest feasible (particularly
for longer sentences). However, obtaining the
mathematically optimal sentence is only valu-
able if the mathematical model itself provides
a good fit. Since a forest representation makes
it possible to add syntactic information to the
mathematical model, the next question to ask
is whether such a model can provide a better
fit for natural English than the ngram models
we have used previously. In future work, we
plan to modify the forests our system produces

~ores t " -*-x- --

10000 le+06 le+08 le+10 le+12 le+14 Ie+16 le+18 le+20

Figure 6: Size of the data structure for a lattice
versus a forest representation. The X-axis is the
number of paths (log~o scale), and the Y-axis is
the size in bytes.

so they conform to the Penn Treebank corpus
(Marcus et al., 1993) annotation style, and then
do experiments using models built with Tree-
bank data.

5 A c k n o w l e d g m e n t s

Special thanks go to Kevin Knight, Daniel
Marcu, and the anonymous reviewers for their
comments. This research was supported in part
by NSF Award 9820291.

R e f e r e n c e s

M. Kay. 1996. Chart generation. In Proc. ACL.
K. Knight and V. Hatzivassiloglou. 1995. Two-

level, many-paths generation. In Proc. A CL.
I. Langkilde and K. Knight. 1998. Generation

that exploits corpus-based statistical knowl-
edge. In Proc. COLING-ACL.

M. Marcus, B. Santorini, and M. Marcinkiewicz.
1993. Building a large annotated corpus of
english: the Penn treebank. Computational
Linguistics, 19(2).

H. Shemtov. 1996. Generation of paraphrases
from ambiguous logical forms. In Coling'96.

A. Stolcke. 1997. Linguistic knowledge and
empirical methods in speech recognition. AI
Magazine, 18(4):25-31.

177

