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A b s t r a c t  
This paper presents a new approach to sta- 
tistical sentence generation in which Mterna- 
tive phrases are represented as packed sets of 
trees, or forests, and then ranked statistically to 
choose the best one. This representation offers 
advantages in compactness and in the ability 
to represent syntactic information. It also fa- 
cilitates more efficient statistical ranking than 
a previous approach to statistical generation. 
An efficient ranking algorithm is described, to- 
gether with experimental results showing signif- 
icant improvements over simple enumeration or 
a lattice-based approach. 

1 I n t r o d u c t i o n  
Large textual corpora offer the possibility of 
a statistical approach to the task of sentence 
generation. Like any large-scale NLP or AI 
task, the task of sentence generation requires 
immense amounts of knowledge. The knowledge 
needed includes lexicons, grammars,  ontologies, 
collocation lists, and morphological tables. Ac- 
quiring and applying accurate, detailed knowl- 
edge of this breadth poses difficult problems. 

Knight and Hatzivassiloglou (1995) suggested 
overcoming the knowledge acquisition bottle- 
neck in generation by tapping the information 
inherent in textual corpora. They performed ex- 
periments showing that  automatically-acquired, 
corpus-based knowledge greatly reduced the 
need for deep, hand-crafted knowledge. At 
the same time, this approach to generation im- 
proved scalability and robustness, offering the 
potential in the future for higher quality out- 
put. 

In their approach, K ~: H adapted techniques 
used in speech recognition. Corpus-based sta- 
tistical knowledge was applied to the generation 
process after encoding many alternative phras- 

ings into a structure called a lattice (see Fig- 
ure 1). A lattice was able to represent large 
numbers alternative phrases without requiring 
the large amount of space that  an explicitly enu- 
merated list of individual alternatives would re- 
quire. The Mternative sentences in the lattice 
were then ranked according to a statistical lan- 
guage model, and the most likely sentence was 
chosen as output .  Since the number of phrases 
that  needed be considered typically grew ex- 
ponentially with the length of the phrase, the 
lattice was usually too large for an exhaustive 
search, and instead an n-best algorithm was 
used to heuristically narrow the search. 

The lattice-based method,  though promising, 
had several drawbacks that  will be discussed 
shortly. This paper presents a different method 
of statistical generation based on a forest struc- 
ture (a packed set of trees). A forest is more 
compact than a lattice, and it offers a hierar- 
chical organization that  is conducive to repre- 
senting syntactic information. Furthermore, it 
facilitates dramatically more efficient statistical 
ranking, since constraints can be localized, and 
the combinatorial explosion of possibilities that  
need be considered can be reduced. In addition 
to describing the forest data structure we use, 
this paper presents a forest-based ranking algo- 
ri thm, and reports experimental results on its 
efficiency in both time and space. It also favor- 
ably compares these results to the performance 
of a lattice-based approach. 

2 R e p r e s e n t i n g  A l t e r n a t i v e  P h r a s e s  
2.1 E n u m e r a t e d  lists and latt ices 
The task of sentence generation involves map- 
ping from an abstract representation of mean- 
ing or syntax to a linear ordering of words. 
Subtasks of generation usually include choosing 
content words, determining word order, 
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Figure  1: A lattice representing 576 different sen- 
tences, including "You may have to eat chicken", 
"The chicken may have to be eaten by you", etc. 
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deciding when to insert function words, per- 
forming morphological inflections, and satis- 
fying agreement constraints, as well as other 
tasks. 

One way of leveraging corpus-based knowl- 
edge is to explicitly enumerate  many alternate 
possibilities and select the most likely according 
to a corpus-based statistical model. Since many 
subphrases and decisions will be common across 
propose d sentences, a lattice is a more efficient 
way than one-by-one enumerat ion to represent 
them. A lattice is a graph where each arc is la- 
beled with a word. A complete path from the 
left-most node to right-most node through the 
lattice represents a possible sentence. Multiple 
arcs leaving a particular node represent alter- 
nate paths. A lattice thus allows structure to 
be shared between sentences. An example of a 
lattice is shown in Figure 1. This lattice encodes 
576 unique sentences. In practice, a lattice may 
represent many trillions of sentences. Without  
a compact representation for so many sentences, 
statistical generation would be much less feasi- 
ble. 

The lattice in Figure 1 illustrates several 
types of decisions that  need to be made in gen- 
eration. For example, there is a choice be- 
tween the root words "chicken" and "poulet",  
the choice of whether  to use singular or plural 
forms of these words, the decision whether  to 
use an article or not, and if so, which one - -  
definite or indefinite. There are also other word 
choice decisions such as whether  to use the aux- 
iliary verb "could", "might",  or "may",  and 
whether  to express the mode of eating with the 
predicate "have to",  "be obliged to",  or "be re- 
quired to".  Finally, there is a choice between 
active voice (bot tom half of lattice), and pas- 
sive voice (top half). 

Inspection of the lattice reveals some un- 
avoidable duplication, however. For example, 
the word "chicken" occurs four times, while 
the sublattice for the noun phrase contain- 
ing "chicken" is repeated twice. So is the 
verb phrase headed by the auxiliaries "could", 
"might",  and "may".  Such repetition is com- 
mon in a lattice representation for text genera- 
tion, and has a negative impact on the efficiency 
of the ranking algorithm because the same set 
of score calculations end up being made several 
times. Another  drawback of the duplication is 

that  the representation consumes more storage 
space than necessary. 

Yet another drawback of the lattice represen- 
tation is that  the independence between many 
choices cannot be fully exploited. Stolcke et al. 
(1997) noted that  55% of all word dependencies 
occur between adjacent words. This means that  
most choices that  must be made in non-adjacent 
parts of a sentence are independent.  For ex- 
ample, in Figure 1, the choice between "may",  
"might",  or "could" is independent of the choice 
between "a", "an" or "the" to precede "chicken" 
or "poulet". Independence reduces the combi- 
nation of possibilities that  must be considered, 
and allows some decisions to be made with- 
out taking into account the rest of the context. 
Even adjacent words are sometimes indepen- 
dent of each other, such as the words "tail" and 
"ate" in the sentence "The dog with the short 
tail ate the bone". A lattice does not offer any 
way of representing which parts of a sentence 
are independent of each other,  and thus can- 
not take advantage of this independence. This 
negatively impacts both the amount  of process- 
ing needed and the quality of the results. In 
contrast,  a forest representation, which we will 
discuss shortly, does allow the independence to 
be explicitly annotated.  

A final difficulty with using lattices is that  
the search space grows exponentially with the 
length of the sentence(s), making an exhaustive 
search for the most likely sentence impractical 
for long sentences. Heuristic-based searches of- 
fer only a poor approximation. Any pruning 
that  is done renders the solution theoretically 
inadmissable, and in practice, frequently ends 
up pruning the mathematical ly  optimal solu- 
tion. 

2.2 F o r e s t s  

These weaknesses of the lattice representation 
can be overcome with a forest representation. If 
we assign a label to each unique arc and to each 
group of arcs that  occurs more than once in a 
lattice, a lattice becomes a forest, and the prob- 
lems with duplication in a lattice are eliminated. 
The resulting structure can be represented as a 
set of context-free rewrite rules. Such a forest 
need not necessarily comply with a particular 
theory of syntactic structure,  but it can if one 
wishes. It also need not be derived specifically 
from a lattice, but can be generated directly 
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from a semantic input. 

With a forest representation, it is quite nat- 
ural to incorporate syntactic information. Syn- 
tactic information offers some potentially signif- 
icant advantages for statistical language model- 
ing. However, this paper will not discuss statis- 
tical modeling of syntax beyond making men- 
tion of it, leaving it instead for future work. In- 
stead we focus on the nature of the forest repre- 
sentation itself and describe a general algorithm 
for ranking alternative trees that can be used 
with any language model. 

A forest representation corresponding to the 
lattice in Figure 1 is shown in Figure 3. This 
forest structure is an AND-OR graph, where the 
AND nodes represent sequences of phrases, and 
the OR nodes represent mutually exclusive al- 
ternate phrasings for a particular relative po- 
sition in the sentence. For example, at the top 
level of the forest, node S.469 encodes the choice 
between active and passive voice versions of the 
sentence. The active voice version is the left 
child node, labelled S.328, and the passive voice 
version is the right child node, S.358. There 
are eight OR-nodes in the forest, corresponding 
to the eight distinct decisions mentioned earlier 
that need to be made in deciding the best sen- 
tence to output. 

The nodes are uniquely numbered, so that re- 
peated references to the same node can be iden- 
tified as such. In the forest diagram, only the 
first (left-most) reference to a node is drawn 
completely. Subsequent references only show 
the node name written in italics. This eases 
readability and clarifies which portions of the 
forest actually need to have scores computed 
during the ranking process. Nodes N.275, 
NP.318, VP.225 and PRP.3 are repeated in the 
forest of Figure 3. 

S.469 ~ S.328 
S.469 ==~ S.358 
S.328 ~ PRP.3 VP.327 
PRP.3 ~ "you" 
VP.327 ==ez VP.248 NP.318 
S.358 ~ NP.318 VP.357 
NP.318 ~ NP.317 
NP.318 ~ N.275 

Figure 2: Internal representation of top nodes in 
forest 

Figure 2 illustrates how the forest is repre- 
sented internally, showing context-free rewrite 
rules for some of the top nodes in the forest. 
OR-nodes are indicated by the same label oc- 
curing more than once on the left-hand side of a 
rule. This sample of rules includes an example 
of multiple references to a node, namely node 
NP.318, which occurs on the right-hand side of 
two different rules. 

A generation forest differs from a parse forest 
in that a parse forest represents different pos- 
sible hierarchicM structures that cover a single 
phrase. Meanwhile a generation forest gener- 
ally represents one (or only a few) heirarchi- 
cal structures for a given phrase, but represents 
many different phrases that generally express 
the same meaning. 

2.3 P r e v i o u s  work  on packed  
g e n e r a t i o n  t r ees  

There has been previous work on developing 
a representation for a packed generation forest 
structure. Shemtov (1996) describes extensions 
to a chart structure for generation originally 
presented in (Kay, 1996) that is used to gen- 
erate multiple paraphrases from a semantic in- 
put. A prominent aspect of the representation 
is the use of boolean vector expressions to asso- 
ciate each sub-forest with the portions of the in- 
put that it covers and to control the unification- 
based generation process. A primary goM of the 
representation is to guarantee that each part of 
the semantic input is expressed once and only 
once in each possible output phrase. 

In contrast, the packed forest in this paper 
keeps the association between the semantic in- 
put and nodes in the forest separate from the 
forest representation itself. (In our system, 
these mappings are maintained via an external 
cache mechanism as described in (Langkilde and 
Knight, 1998)). Once-and-only-once coverage of 
the semantic input is implicit, and is achieved 
by the process that maps from the input to a 
forest. 

3 F o r e s t  r a n k i n g  a l g o r i t h m  

The algorithm proposed here for ranking sen- 
tences in a forest is a bottom-up dynamic pro- 
gramming algorithm. It is analogous to a 
chart parser, but performs an inverse compari- 
son. Rather than comparing alternate syntactic 
structures indexed to the same positions of an 
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Figure 3: A generation forest 
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input sentence, it compares alternate phrases 
corresponding to the same semantic input. 

As in a probabilistic chart parser, the key 
insight of this algorithm is that the score for 
each of the phrases represented by a particu- 
lar node in the forest can be decomposed into 
a context-independent (internal) score, and a 
context-dependent (external) score. The inter- 
nal score, once computed, is stored with the 
phrase, while the external score is computed in 
combination with other sibling nodes. 

In general, the internal score for a phrase as- 
sociated with a node p can be defined recur- 
sively as: 

I(p) = 1-Ij=lJ I(cj)  • E(cjJcontext(cl. .Cj_l) ) 

where I stands for the internal score, E the ex- 
ternal score, and cj for a child node of p. The 
specific formulation of I and E, and the pre- 
cise definition of the context depends on the lan- 
guage model being used. As an example, in a 
bigram model, I I=1 for leaf nodes, and E can 
be expressed as: 

E = P(E i r s tWord (e j ) lLas tWord (c j_ l )  ) 

Depending on the language model being used, 
a phrase will have a set of externally-relevant 
features. These features are the aspects of the 
phrase that contribute to the context-dependent 
scores of sibling phrases. In the case of the bi- 
gram model, the features are the first and last 
words of the phrase. In a trigram model it is the 
first and last two words. In more elaborate lan- 
guage models, features might include elements 
such as head word, part-of-speech tag, constitu- 
tent category, etc. 

A crucial advantage of the forest-based 
method is that at each node only the best in- 
ternally scoring phrase for each unique combi- 
nation of externally relevant features needs to 
be maintained. The rest can be pruned with- 
out sacrificing the guarantee of obtaining the 
overall optimal solution. This pruning reduces 
exponentially the total number of phrases that 
need to be considered. In effect, the ranking 

IA bigram model is based on conditional probabil- 
ities, where the likelihood of each word in a phrase is 
assumed to depend on only the immediately previous 
word. The likelihood of a whole phrase is the product of 
the conditional probabilities of each of the words in the 
phrase. 

VP.344 ~ VP.225 TO.341 VB.342 VBN.330 

225: 341: 342: 330: 
might have 
may have 
could have 
might be required 
may be required 
could be required 
might be having 
may be having 
could be having 
might be obliged 
may be obliged 
could be obliged 

to be eaten 

344: 
might ... eaten 
may ... eaten 
could ... eaten 

Figure 4: Pruning phrases from a forest node, 
assuming a bigram model 

algorithm exploits the independence that exists 
between most disjunctions in the forest. 

To illustrate this, Figure 4 shows an exam- 
ple of how phrases in a node are pruned, as- 
suming a bigram model. The rule for node 
VP.344 in the forest of Figure 3 is shown, to- 
gether with the phrases corresponding to each 
of the child nodes. If every possible com- 
bination of phrases is considered for the se- 
quence of nodes on the right-hand side, there 
are three unique first words, namely "might", 
"may" and "could", and only one unique final 
word, "eaten". Given that only the first and 
last words of a phrase are externally relevant 
features in a bigram model, only the three best 
scoring phrases (out of the 12 total) need to 
be maintained for node VP.344--one for each 
unique first-word and last-word pair. The other 
nine phrases can never be ranked higher, no 
matter what constituents VP.344 later combines 
with. 

Pseudocode for the ranking algorithm is 
shown below. "Node" is assumed to be 
a record composed at least of an array of 
child nodes, "Node->c[1..N]," and best-ranked 
phrases, "Node->p[1..M]." The function Con- 
catAndScore concatenates two strings together, 
and computes a new score for it based on the 
formula given above. The function Prune guar- 
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antees that  only the best phrase for each unique 
set of features values is maintained. The core 
loop in the algorithm considers the children of 
the node one-by-one, concatenating and scoring 
the phrases of the first two children and prun- 
ing the results, before considering the phrases 
of the third child, and concatenating them with 
the intermediate results, and so on. From the 
pseudocode, it can be seen that  the complex- 
ity of the algorithm is dominated by the num- 
ber of phrases associated with a node (not the 
number of rules used to represent the forest, 
nor the number of children in a an AND node). 
More specifically, because of the pruning, it de- 
pends on the number of features associated with 
the language model, and the average number of 
unique combinations of feature values that  are 
seen. If f is the number of features, v the av- 
erage number of unique values seen in a node 
for each feature, and N the number of N best 
being maintained for each unique set of fea- 
ture values (but not a cap on the number of 
phrases), then the algorithm has the complex- 
ity O((vN) 2/) (assuming that  children of AND 
nodes are concatenated in pairs). Note that  f=2 
for the bigram model, and f=4 for the trigram 
model. 

In comparison, the complexity of an exhaus- 

RankFores t (Node)  
{ 

if ( Leafp(Node))  LeafScore( Node); 
f o r j = l t o J  { 

if ( not(ranked?(Node->e[j])))  
RankForest(Node- > c[j]); 

} 
for m = l  to NumberOfPhrasesIn(Node->c[1]) 

Node->p[m] = (Node->c[1])->p[m]; 
k=ffpr j=2  to J { 

for m = l  to NumberOfPhrasesIn(Node)  
for n = l  to NumberOfPhrasesIn( 

Node->c[j]) 
temp[k++]  = ConcatAndScore( 

Node->p[m], 
(Node- >c[j])- >Pin]); 

Prune( temp); 
for m = l  to NumberOfPhrasesIn( temp)  

Node->p[m] = (temp[m]); 
} 

tive search algorithm on a lattice is O((vN)~), 
where l is approximately the length of the 
longest sentence in the lattice. The forest-based 
algorithm thus offers an exponential reduction 
in complexity while still guaranteeing an opti- 
mal solution. A capped N-best heuristic search 
algorithm on the other hand has complexity 
O(vN1). However, as mentioned earlier, it typ- 
ically fails to find the optimal solution with 
longer sentences. 

In conclusion, the tables in Figure 5 and Fig- 
ure 6 show experimental results comparing a 
forest representation to a lattice in terms of the 
time and space used to rank sentences. These 
results were generated from 15 test set inputs, 
whose average sentence length ranged from 14 
to 36 words. They were ranked using a bigram 
model. The experiments were run on a Sparc 
Ultra 2 machine. Note that  the time results for 
the lattice are not quite directly comparable to 
those for a forest because they include overhead 
costs for loading portions of a hash table. It was 
not possible to obtain timing measurements for 
the search algorithm alone. We estimate that  
roughly 80% of the time used in processing the 
lattice was used for search alone. Instead, the 
results in Figure 5 should be interpreted as a 
comparison between different kinds of systems. 

In that  respect, it can be observed from Ta- 
ble 5 that  the forest ranking program performs 
at least 3 or 4 seconds faster, and that  the time 
needed does not grow linearly with the num- 
ber of paths being considered as it does with 
the lattice program. Instead it remains fairly 
constant. This is consistent with the theoreti- 
cal result that  the forest-based algorithm does 
not depend on sentence length, but only on the 
number of different alternatives being consid- 
ered at each position in the sentence. 

From Table 6 it can be observed that  when 
there are a relatively moderate number of sen- 
tences being ranked, the forest and the lattice 
are fairly comparable in their space consump- 
tion. The forest has a little extra overhead in 
representing hierarchical structure. However, 
the space requirements of a forest do not grow 
linearly with the number of paths, as do those 
of the lattice. Thus, with very large numbers 
of paths, the forest offers significant savings in 
space. 

The spike in the graphs deserves particular 
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comment. Our current system for producing 2 s o ~  

forests from semantic inputs generally produces 
OR-nodes with about two branches. The par- 20o00o 
ticular input that  triggered the spike produced 
a forest where some high-level OR-nodes had a 
much larger number of branches. In a lattice, 150~o 
any increase in the number of branches expo- 
nentially increases the processing time and stor- 
age space requirements. However, in the forest ,000oo 
representation, the increase is only polynomial 
with the number of branches, and thus did not ~o  
produce a spike. 

IO0  , • , • , • , • , • , 

90 "latt;,'e" 
" fo res t "  - - -x- - -  

SO 

70 

60 

5O 

40 

3O 

2O 

10 

. . . . .  -x 

00000 . . . . . . . . . . .  10+06 10+08 10+10 10+12 10+14 10+16 le+18 lo+20  

Figure 5: Time required for the ranking pro- 
cess using a lattice versus a forest representa- 
tion. The X-axis is the number of paths (loglo 
scale), and the Y-axis is the time in seconds. 

4 F u t u r e  W o r k  

The forest representation and ranking algorithm 
have been implemented as part of the Nitro- 
gen generator system. The results shown in 
the previous section illustrate the time and 
space advantages of the forest representation 
which make calculating the mathematically op- 
timal sentence in the forest feasible (particularly 
for longer sentences). However, obtaining the 
mathematically optimal sentence is only valu- 
able if the mathematical  model itself provides 
a good fit. Since a forest representation makes 
it possible to add syntactic information to the 
mathematical  model, the next question to ask 
is whether such a model can provide a better 
fit for natural  English than the ngram models 
we have used previously. In future work, we 
plan to modify the forests our system produces 

~ores t "  -*-x- -- 

10000 le+06 le+08  le+10 le+12  le+14  Ie+16 le+18 le+20 

Figure 6: Size of the data structure for a lattice 
versus a forest representation. The X-axis is the 
number of paths (log~o scale), and the Y-axis is 
the size in bytes. 

so they conform to the Penn Treebank corpus 
(Marcus et al., 1993) annotation style, and then 
do experiments using models built with Tree- 
bank data. 
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