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Abstract

This paper addresses the constraints of down-
stream applications of pre-trained language
models (PLMs) for low-resource languages.
These constraints are pre-train data deficiency
preventing a low-resource language from being
well represented in a PLM and inaccessibility
of high-quality task-specific data annotation
that limits task learning. We propose to use au-
tomatically labeled texts combined with man-
ually annotated data in a two-stage task fine-
tuning approach. The experiments revealed that
utilizing such methodology combined with vo-
cabulary adaptation may compensate for the
absence of a targeted PLM or the deficiency
of manually annotated data. The methodology
is validated on the morphological tagging task
for the Udmurt language. We publish our best
model that achieved 93.25% token accuracy
on HuggingFace Hub1 along with the training
code2.

1 Introduction

The evolution of transformer-based pre-trained lan-
guage models (PLMs) has enabled leveraging them
as a basis to fine-tune for numerous downstream
tasks, including morphological analysis (Baxi and
Bhatt, 2024). The pipeline is complicated for low-
resource languages (LRLs), which are rarely in-
cluded in the pre-training data of PLMs, primar-
ily due to the scarcity of data available (Imani-
Googhari et al., 2023). When tackling a down-
stream task for a LRL without a PLM, one ap-
proach to address the data deficiency is to scale
up the volume of high-quality task-specific data
annotation.

Annotated texts in LRLs are contributed mainly
by field linguists, who indicate the primary de-
mand for such tools. However, these specialists

1https://huggingface.co/ulyanaisaeva/
bert-morph-tagger-udmurt

2https://github.com/ulyanaisaeva/
bert-morph-tagger-udmurt

do not necessarily own the technical skills required
to utilize state-of-the-art deep learning-based ap-
proaches. Thus, rule-based algorithms have be-
come the typical approach to developing morpho-
logical tools for LRLs. They face limitations
for languages with morphological form ambigu-
ity, where they predict multiple morphological de-
scriptions for a single word. Proper disambiguation
requires costly manual annotation by rare special-
ists. Given these constraints, ambiguous annotation
is more accessible and scalable than manually dis-
ambiguated labels.

Addressing these considerations, we propose a
two-stage fine-tuning methodology using automati-
cally ambiguously annotated data combined with
manually labeled data to achieve optimal perfor-
mance in the morphological analysis task. Our
experiments focus on the Udmurt language, which,
while not entirely low-resource in terms of avail-
able data, was not included in the pre-training data
of open-source multilingual PLMs until recently.
The resulting morphological tagging tool perfor-
mance is comparable to that of an alternative ap-
proach on the basis of a massively multilingual
PLM. Thus, the proposed method is supposed to
compensate for the absence of a PLM for a LRL.
We also show that this approach can reach base-
line performance with up to 3 times less manually
annotated data.

To put our findings into practice, we open-source
a morphological analyzer for Udmurt with an ac-
curacy of 93.25% on all test tokens and 85.7% on
tokens with ambiguous labels. Of all our experi-
ments, the maximum performance was achieved us-
ing a recently introduced Glot500-m model (Imani-
Googhari et al., 2023), which, among other 500+
languages, was pre-trained on texts in Udmurt.
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2 Methodology

We model the morphological analysis task as a
token classification problem, where each label is
a concatenation of a part-of-speech (POS) tag and
morphological features of the word.

The architecture consists of a transformer en-
coder and a dense projection layer, predicting label
probabilities for input words. It outputs a tensor of
shape L×K where L is sequence length (i.e., the
number of words) and K is the number of unique
labels. If a word is tokenized into multiple subto-
kens, we assign the label to the first one and mask
out all the subsequent word subtokens during loss
calculation.

Applying transformer-based pre-trained encoder
models to downstream classification tasks has
proven effective in numerous studies. For LRLs
that commonly lack a specialized PLM, the PLMs
of first choice are multilingual ones, like mBERT,
which inherits the original BERT architecture (De-
vlin et al., 2019) and has been pre-trained on the
top 100 languages with the largest Wikipedias.
Ács et al. (2021) investigates the transferability
of BERT-like models to unseen languages (i.e.,
languages the model has not been pre-trained on)
via fine-tuning on limited training data. The au-
thors observe that high-resource monolingual mod-
els, though effective in their specific language,
show worse cross-language transferability than
multilingual models in token classification tasks
such as POS tagging and named entity recogni-
tion. Importantly, Ács et al. (2021) showed that
monolingual models for genetically unrelated lan-
guages can transfer more efficiently than multilin-
gual ones in cases where the languages share the
same script, e.g., ruBERT for Russian performed
better than multilingual BERT applied to Uralic lan-
guages with Cyrillic script (Erzya, Moksha, Komi
Permyak).

2.1 Tokenizer adaptation

The observations related to script similarity are
attributed to the impact of tokenization on model
performance. The more a tokenizer is relevant to a
given language, the less a word is split into pieces
during tokenization. Since multilingual models’
tokenizers are trained on languages with various
scripts, their vocabularies tend to contain shorter
subwords and thus have higher fertility, defined as
the average number of word pieces per word.

Presumably, for token classification tasks like

morphological tagging or named entity recognition,
a more targeted tokenizer (i.e., with lower fertility)
would be more optimal. This suggestion is tested
by Wang et al. (2020), showing that adapting a
model’s tokenizer to an unseen language improves
downstream zero-shot performance in NER tasks
in that language. The methodology implies adding
30K new targeted items to the vocabulary while
randomly initializing the corresponding model’s
embedding weights.

In this study, we utilize tokenizer vocabulary
adaptation (VA) to improve morphological tagging
accuracy. As an adaptation technique, we leverage
the Vocabulary Initialization with Partial Inheri-
tance approach (Samenko et al., 2021). It aims at
preserving the model’s knowledge from the pre-
training stage instead of learning all embedding
weights from scratch. Original model embedding
weights are inherited for tokens in the new vocab-
ulary, which are also found in the initial one; the
other weights are randomly initialized.

To find the optimal vocabulary size, we fitted
several WordPiece (following mBERT) tokeniz-
ers on Train-AML with sizes ranging from 1K to
128K (log step with base 2) and measured fertility
on the Valid-AML. At the size of 32K, the fertil-
ity plateaus around 1.18, and so does the ratio of
tokens not split into subwords (85.93%); this vo-
cabulary size is selected for future experiments.

2.2 Combining automated and manual
annotation

Morphological form ambiguity (homonymy) is a
phenomenon where the same word form may be
attributed with different morphological description
depending on the context, e.g., English ’records’ is
a plural noun in ’This song sets records for popu-
larity’ and a 3rd person singular present tense verb
in ’He records and plays ten instruments’. The
disambiguation of such labels requires word con-
text understanding. Yet, classifying a token accu-
rately only to a group of ambiguous labels is a task
achievable even by simple context-unaware algo-
rithms. In the example above, it would mean re-
ducing the space of possible labels to ’NOUN,pl’,
’VERB,3sg,prs’ without selecting the single cor-
rect label. The two-step fine-tuning approach pro-
posed in this work leverages this mechanism to
improve morphological tagging accuracy, includ-
ing for words with ambiguity.

The first step is to pre-fine-tune (PFT) the
classifier using ambiguously annotated data (e.g.,
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with a context-unaware analyzer) with multiple
pseudo-correct labels for words with morpholog-
ical homonymy. This stage’s learning objective
is to narrow the set of most probably predicted
labels to a group of labels that correspond to am-
biguous word forms. We hypothesize that such
pre-fine-tuning would provide the model with an
initial intuition about the homonymous nature of
morphological labels.

Seemingly, this PFT could be modeled as a multi-
label classification problem. In fact, by the nature
of the task, only one of a word’s homonymous
forms is actually correct. This is why we model
this pre-training stage as single-label multi-class
classification with a softmax for class probabili-
ties, though it requires additional changes to how
we treat multiple pseudo-correct labels during loss
calculation.

The basic loss function for multiclass classifica-
tion is cross-entropy, defined as a sum of negative
predicted log probabilities of positive labels.

CE =
∑

{i|Ki∈correct}
− log p̂i

The minimum of this loss function is achieved
when these probabilities are equal and sum into
1, while the others are all equal to 0. Given the na-
ture of morphological homonymy, it is suboptimal
to teach the classifier to equalize probabilities in
the set of pseudo-correct labels with only one being
actually true. Taking this into account, we propose
to calculate the PFT loss function as a negative
logarithm of the sum of predicted probabilities for
positive classes.

MLCE = − log
∑

{i|Ki∈correct}
p̂i

This function would still penalize models for pre-
dicting high probabilities for wrong labels, and
vice versa, yet remain indifferent to how the proba-
bilities for pseudo-correct labels are mutually dis-
tributed.

The second training step is task fine-tuning (FT),
which requires reliable manually disambiguated
annotation to finally learn to precisely select from
a homonymic group of tags. The model is still
offered to choose from the full set of all possible
labels, yet it is supposed to rely on positive bias
to ambiguous labels acquired during the PFT step.
Similarly to the PFT, the FT is done using the soft-
max activation function at the last projection layer,
which outputs label probabilities that sum into 1.

2.3 Data

The proposed approach is relevant in the case of
presence of 2 types of task-specific data:

• AML: automatically labeled texts where a
word may contain more than one label in
case further label selection is constrained by
morphological ambiguity and requires context
analysis or manual disambiguation.

• MDL: manually labeled (or disambiguated
after automatic annotation) texts with a single
label per word.

See Appendix A for the data origin details.

2.4 Metrics

To evaluate the proposed morphological tagging
pipelines, we use the following metrics:

• Token accuracy (TAcc) is the ratio of tokens
with correctly predicted tags.

• Token accuracy (homonymous) (TAccH) is the
same metric, but calculated only on tokens
with morphological form ambiguity.

3 Experiments

Model selection. We focus on the morphological
analysis for the Udmurt language. Until recently,
and by the time this research was planned, there
had not been a multilingual model pre-trained in the
Udmurt language until Glot500-m (ImaniGooghari
et al., 2023) was published. Since the absence of a
targeted PLM is still the case for numerous LRLs,
we chose the multilingual BERT (mBERT3) as the
baseline model. Referring to previous findings on
the transferability of monolingual models sharing
the same script as the target language, we also
experimented with the BERT model for the Rus-
sian language (ruBERT4, (Zmitrovich et al., 2024)),
since Udmurt uses Cyrillic script too.

To keep up with the updates in the area of
multilingual models, we provide a comparison
with Glot500-m5 which is pre-trained in 500+ lan-
guages, including Udmurt.

Experimental setup. The three above-
mentioned models are tested in 4 main setups:

1. FT: only fine-tuning on Train-MDL
2. VA+FT: vocabulary adaptation on Train-

MDL and FT
3https://huggingface.co/google-bert/

bert-base-multilingual-cased
4https://huggingface.co/ai-forever/

ruBert-large
5https://huggingface.co/cis-lmu/glot500-base
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3. PFT+FT: pre-fine-tuning on Train-AML
and FT

4. VA-PFT-FT: VA and PFT and FT
The Udmurt language, which is our focus in

this work, is not an extremely low-resource lan-
guage since there are available text corpora and
NLP tools. Emulating the MDL-data scarcity setup
common for low-resource languages, we fine-tune
the best-performing setup for ruBERT and mBERT
on a reduced subset from Train-MDL (100, 200,
500, 1000, 5000 sentences of the original 10000
sentences).

4 Results & Discussion

The results of the described experiments are pro-
vided in Table 1. Every row section compares base-
line (i.e., with fine-tuning only) performance to
that of models with vocabulary adaptation and/or
pre-training on ambiguously annotated data.

Model TAcc TAccH

mBERT-FT (Devlin et al., 2019) 86.28 77.04
VA-FT 87.55 77.49
PFT-FT 87.02 78.66
VA-PFT-FT 91.38 81.54

ruBERT-FT (Zmitrovich et al., 2024) 86.35 77.02
VA-FT 87.89 77.65
PFT-FT 87.32 77.87
VA-PFT-FT 91.24 81.00

Glot500-FT (ImaniGooghari et al., 2023) 92.44 85.34
VA-FT 85.63 85.63
PFT-FT 93.25 85.70
VA-PFT-FT 91.17 81.52

Table 1: Models’ performance on Test-MDL. See sub-
section 2.4 for the evaluation details.

The baseline models achieved 86.3 and 86.4 to-
ken accuracy with mBERT and ruBERT, respec-
tively. Applying the VA procedure before the FT
brings an improvement of 1.3 and 1.5 pp while
PFT on the model with the original tokenizer be-
fore the FT increases the performance at 0.7 and
1.0 pp, respectively, for mBERT and ruBERT. How-
ever, the improvement brought by the cumulative
usage of both VA and PFT over the FT-only base-
line performance is approximately 5 pp for both
backbone models. Thus, these two procedures ap-
pear far more effective when applied jointly rather
than separately.

Glot500-m baseline showed the best baseline
performance across our experiments and was fur-
ther improved when pre-fine-tuned on ambiguous
annotated data. Yet adapting the vocabulary of

Glot500-m both with and without PFT decreased
the overall performance.

The pipelines with VA and PFT based on
mBERT and ruBERT perform worse yet compara-
bly to FT-only Glot500-m baseline. This is impor-
tant evidence suggesting that the utilization of the
proposed two-stage training pipeline may be seen
as an effective compensatory approach in cases
when there is no available model pre-trained on the
target LRL.

To address the cases of extremely LRLs where
manual annotation is scarse, we trained the baseline
and the enhanced pipelines on reduced train data
subsets, the results are provided in Figure 1.

Figure 1: Model performance (token accuracy) on Test-
MDL with reduced train data.

It can be observed that the proposed pipeline
with VA and PFT may compensate for up to 3x
less manually annotated data, i.e., utilizing the VA-
PFT-FT pipeline with a 3 times reduced manually
labeled train data can achieve performance compa-
rable to that of the FT-only baseline on full-volume
train data.

Despite the previous findings, the results of our
experiments do not provide any evidence to choose
ruBERT over mBERT since they share similar
scores across all setups.

5 Conclusion

In this work, we present a two-stage fine-tuning pro-
cedure that leverages both automatically and man-
ually annotated task-specific train data. The pro-
posed approach combined with vocabulary adap-
tation increased morphological tagging accuracy
by 5 pp in our experiments with the Udmurt lan-
guage. We show that this improvement may com-
pensate for train data deficiency and the absence of
a specialized PLM, which are two major stumbling
blocks in low-resource classification problems. As
a practical outcome of the study, we open-source
the best-performing morphological tagging model
based on Glot500-m. We also publish the training
code to facilitate the application of the methodol-
ogy to other LRLs.
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6 Limitations

While this study provides insights into choosing
the backbone model and fine-tuning procedure for
morphological analysis for low-resource languages,
there are several limitations that should be consid-
ered when interpreting the results.

First, this methodology has so far been validated
on only one language. We encourage future re-
search on its applicability to different low-resource
setups.

Second, in our experiments, AML and x-MDL
datasets shared the same annotation scheme. Pre-
sumably, this will often be the case in the setups
when the manual annotation is done over the au-
tomatic pre-labeling. Yet our experiments do not
provide evidence to the contrary cases of mismatch-
ing annotation schemes.
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A Data origin

As a source of ambiguously annotated data, we uti-
lize Tsakorpus (Arkhangelskiy, 2019) of standard
written literary Udmurt language. This corpus is
not public but is provided by the maintainer for
research purposes. We annotate the texts using an
open-source rule-based morphological analyzer6

which does not conduct contextual disambiguation,
i.e., it outputs all possible labels for words.

Filtering out the sentences with at least one word
without a morphological label resulted in a dataset
of approximately 558K words (64K sentences).
Further in this paper, we refer to the corpus as
the Train-AML.

Manually annotated data was derived from
LingvoDoc, a system for collaborative language
documentation (Normanskaja et al., 2022), the data
volume is 100K words (12K sentences). This data
was processed with the same analyzer, and as a
result, every word was attributed with both auto-
matic labels (without disambiguation) and a man-
ual one (which is always one of the ambiguous
labels). We randomly partition this dataset into
Train-MDL, Valid-MDL and Test-MDL splits in
a ratio 80-10-10, with the corresponding volumes
of approx. 10K, 1.2K, and 1.2K sentences, respec-
tively.

6https://github.com/timarkh/
uniparser-grammar-udm/
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