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Abstract

Text-to-SQL is a task with excellent prospects
and challenges, and it aims to convert natu-
ral language queries (NL) into corresponding
structured query language (SQL) statements.
The main challenge of this task is how to effi-
ciently transform unstructured data and struc-
tured data. In recent years, the emergence of
large language models (LLMs) has further pro-
moted the development of this field. However,
current LLM-based text-to-SQL methods rely
on specific few-shot example construction, re-
sulting in poor performance across domains.
To solve this problem, we propose a text-to-
SQL method of self-contrastive loop of thought
structure. This method designs the LLM in-
ference process as a loop structure based on
the comparison of positive and negative ex-
amples. The model optimizes the generated
results through continuous verification and er-
ror correction, greatly improving accuracy and
reducing dependence on few-shot example con-
struction. The experimental results on SPIDER
and BIRD datasets show that this method can
generate SQL with higher precision without
relying on few-shot example construction.

1 Introduction

The goal of text-to-SQL is to generate SQL based
on natural language. This technique can generate
the corresponding SQL statements by verbal de-
scription. Due to its broad application prospect
and challenge, this task has attracted wide atten-
tion(Bogin et al., 2019; Elgohary et al., 2020; Chen
et al., 2021; Lin et al., 2020).

In the early stages, such research typically
achieved text-to-SQL through rule-based designs
and pre-trained models. Design methods improved
the quality of SQL generation by reinforcing the
alignment between text and database schemas,
such as RAT-SQL (Wang et al., 2020), SDSQL(Hui
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et al., 2021), LGESQL(Cao et al., 2021), RESD-
SQL(Li et al., 2023a). Additionally, some stud-
ies employed various pre-training strategies, such
as TaBERT(Yin et al., 2020), GRAPPA(Yu et al.,
2021), GAP(Zhao et al., 2022), and MIGA(Fu
et al., 2023), these models enhanced ability to cap-
ture the complex relationship between natural lan-
guage and SQL structures. Together, these efforts
improve the performance of text-to-SQL.

With the development of LLM, recent studies
have demonstrated the superior ability of LLM in
complex tasks(Gao et al., 2023; Nan et al., 2023b;
Imani et al., 2023). In the text-to-SQL field, the
LLM-based approach exceeds previous work on
multiple datasets without any fine-tuning or train-
ing(Gu et al., 2023; Pourreza et al., 2024; Nan
et al., 2023a).

Based on the advanced performance of LLM,
prompt-based methods have further promoted the
progress of text-to-SQL. Typical work such as DIN-
SQL(Pourreza and Rafiei, 2023), DAIL-SQL(Gao
et al., 2024), TA-SQL(Qu et al., 2024)and MAC-
SQL(Wang et al., 2023). These methods are based
on the few-shot prompt method, combined with
chain-of-thought technology to decompose the task
to improve LLM performance.

Although the prompt-based method has made
significant progress, it still has some problems.
First, the performance depends on the quality of
the few-shot examples, which can lead to LLM
not achieving the potential performance. Second,
most of this work uses a linear thinking workflow
to guide LLM generation, which comprises the
search space. Third, this work improves the ability
to deal with complex problems through detailed
decomposition tasks. However, it may introduce
an additional risk of hallucination, which can ad-
versely affect the results.

To solve the above problems, we propose a text-
to-SQL method based on a self-contrastive loop
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of thought structure (SCL). The LLM generation
process is constructed as a discriminant loop struc-
ture based on the contrast of positive and negative
examples so that the model can improve the accu-
racy of the results in the continuous self-correction.
This reduces the dependence on the construction of
few-shot examples, and the generation relies only
on the self-contrast between positive and negative
examples. With this approach, the LLM can better
focus on outputs similar to positive examples and
exclude erroneous results similar to negative ex-
amples, reducing the inference burden of the LLM.
On this basis, we summarize the contributions of
this paper as follows.

* Designed a question-splitting strategy that en-
hances the utilization of question information
via skeleton-based positive example retrieval
and entity-schema linking. In addition, pos-
itive example retrieval replaces the few-shot
construction, simplifying prompt design.

Enhance the LLM’s verification and selection
abilities through result-guided execution and
logical verification, integrated with a selection
mechanism. This expands the search space
for generation.

* A loop-of-thought structure is designed to
guide the LLM through self-contrast between
positive and negative examples, enhancing its
ability to handle text-to-SQL tasks without
relying on few-shot example construction.

2 Methodology

2.1 Overview

SCL-SQL is a self-contrastive framework for text-
to-SQL. As shown in Figure 7. We first decouple
the query into entity and skeleton parts to improve
schema linking and example retrieval. Then, a
loop-structured reasoning process guides the LLM
to generate, execute, and verify SQL with both
positive and negative examples. Finally, a voting-
based mechanism selects the most reliable result.

2.2  Query Split

To fully utilize the information in the question, we
propose a novel entity-skeleton splitting strategy
that divides the question into entity and skeleton
parts, which respectively guide schema linking and
few-shot example construction.
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2.2.1 Entity-guided Schema Linking

Schema linking identifies relevant schema ele-
ments (e.g., table names and columns), effectively
reducing mismatches and minimizing hallucina-
tions, as validated in prior studies (Gan et al.,
2023; Yang et al., 2024). This work adopts an
entity-guided approach by extracting keywords us-
ing YAKE (Campos et al., 2020), which divides the
question into keyword (entity) and non-keyword
(skeleton) parts, as shown in Equation 1.

T = {x1, x2, x3, T4, T5, Te, T7, T, L9, T10 }
eeT
seT

)

€ = {%2, T4, T7,T8, 1’9},

s = {x1, 23,25, T6, T10},

Where T represents the original question, e rep-
resents the extracted entity, and s represents the
question skeleton, where e U s =T

The prompt for schema linking has three parts
(entity e, full schema, question). The LLM
matches all similar tables and corresponding
columns during the linking process.

2.2.2 Skeleton-Guided Example Retrieval

An efficient dynamic retrieval method is introduced
to replace manual few-shot example construction.
Questions with similar intents (e.g., searching,
counting, percentage calculation) exhibit similar
structural patterns. By matching skeleton struc-
tures, representative positive examples can be re-
trieved to support model reasoning. The Jaccard
coefficient is used to measure structural similarity
between the current question and existing samples,
as shown in Equation?2.

|sN D]

- [suD|

Sim(s, D) (2)

Where D represents existing data, s represents the
question skeleton, the score calculated by each row
of data is finally sorted from high to low, and the
corresponding number of pieces is returned as posi-
tive examples by setting the initial positive number
Fy. The advantage of this method is that it can
ensure the efficiency of retrieval while performing
accurate retrieval.

Retrieved positive examples are formatted as
Question-SQL (QS) pairs, with the prefix [valid]
added to each pair to indicate "positive’ identifica-
tion in the prompt.
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Figure 1: SCL-SQL structure illustration. The *Pos’ mark represents the positive sample, the "Neg’ mark represents
the negative sample, and SQL and Res represent the generated SQL and the execution result. The numbers behind
them indicate the number of loops in which they are generated.

2.3 Loop of Thought

We propose a loop-structured LLM reasoning pro-
cess to address complex text-to-SQL problems.
The loop consists of four stages: (1) Prompting, (2)
Generation, (3) Execution, (4) Verification. The
goal of these four stages is to enable the LLM to
engage in iterative reasoning by comparing posi-
tive and negative examples. The specific process is
illustrated as follows.

(1) Prompting: A prompt is constructed by in-
tegrating the original question, the linked
database schema, positive examples retrieved
via skeleton-guided example retrieval, and
negative examples from the verification stage,
aiming to guide the LLMAAZs SQL genera-
tion.

(2) Generation: The constructed prompt is fed
into the LLM to generate candidate SQL state-

ments.

(3) Execution: The generated SQL statements
are executed, and both the SQL and their ex-
ecution results are passed to the verification

stage.

(4) Verification: A self-contrastive mechanism is
applied, where the LLM evaluates whether
the SQL and its result are logically correct.
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The verification outcome is represented as a
binary pseudo-probability, with O indicating
failure and 1 indicating success.

The most critical step in the loop of thought is
result verification. However, (Huang et al., 2024)
showed that directly relying on LLM for result ver-
ification and correction may lead to performance
degradation. In the text-to-SQL task, the key evalu-
ation criterion is whether the SQL retrieves the ex-
pected results. To address this, we design a result-
guided verification mechanism, focusing on two
aspects:

(1) Execution verification: Whether the SQL ex-
ecutes successfully and whether the result is
empty.

(2) Logical verification: Whether the result logi-
cally matches the query intent. For instance,
when querying the most sold car, the expected
result should include the car’s name. If irrele-
vant or multiple results are returned, the SQL

is considered logically invalid.

If the verification passes, the SQL-Result (SR)
pair is added to a candidate pool. If the pool con-
tains only one entry, it is selected as the final output.
If the verification fails, the SR pair is treated as a
negative example and used in the next round of



prompt construction. It is structured as a triplet
SQL, result, cause, with a prefix label [invalid]. As
shown in Figure 2.

In the whole process of the loop of thought, neg-
ative examples are not only used to correct errors
but also an important tool to guide the LLM to
optimize the thought of generation in the loop. By
emphasizing negative examples, avoid repeating
errors. The process is repeated until the verifica-
tion passes or a maximum loop times L is reached.
In this process, to reduce the influence of positive
examples on modification, a positive decay mech-
anism is designed here. The number of positive
examples will decrease with the increase in the
number of negative examples, and their relation-
ship is shown in Equation 3.

P=F—-—a - NaeclZ 3)

Where Py represents the initial number of posi-
tive examples, P represents the current number
of positive examples, N represents the number of
negative examples, « is the correlation coefficient
of positive and negative examples, and must be an
integer. This mechanism aims to prevent the ad-
verse effects of positive examples on modifications
at a later stage.

Through this design, it is not necessary to make
specific few-shot examples. The generation pro-
cess can be manipulated by positive and negative
examples. In loop execution, the LLM can quickly
provide results for simple questions, while the
LLM can call the loop to think repeatedly and
provide more diverse responses for complex ques-
tions.

2.4 Candidates Selection

Despite loop-based refinement, LLM may still mis-
judge results. To mitigate this, each SR pair is
stored in a candidate pool. When multiple candi-
dates exist, a voting mechanism is employed to
determine the final selection. The LLM evaluates
each SR pair based on the user query and provides
votes accordingly. Compared to directly correcting
erroneous SQLs, selecting the best one through
voting among existing candidates is more efficient
and reliable. The effectiveness of this strategy is
further analyzed in Section 4.3.
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[valid]
Question: Please list the phone numbers of the schools with the
top 3 SAT excellence rate.

SQL: SELECT phone_number FROM schools ORDER BY
sat_excellence_rate DESC LIMIT 3;

[valid]

Question: List the names of the top 10 products with the highest
customer ratings, but only

if they have more than 100 reviews.

SQL: SELECT product_name FROM products WHERE
review_count > 100 ORDER BY

customer_rating DESC LIMIT 10;

i [invalid] ]
| SQL: !
1 SELECT employee_email FROM employees ORDER BY '
! annual_salary DESC LIMIT 5; :
1 Result: 1
| OperationalError: no such column: employee_email '
; Reason: !
1 employee_email does not exist in the table, which is obviously the
| incorrect column '
i [invalid] '
1 SQL: '
| SELECT email, annual_salary FROM employees ORDER BY !
1 annual_salary DESC LIMIT 5; 1
| Result: !
: [ (john.doe@example.com’, 150000), (‘jane.smith@example.com', 145000)..... 1
i Reason: '
1 The question only asks to return the mailbox, and the salary is '
! returned inside, which obviously does not meet the requirements :
1 of the question |
1 1

Figure 2: Positive and negative examples. Green [valid]
indicates a positive example label, and red [invalid]
indicates a negative example label.

3 Experiments

3.1 Setup

For the positive instance retrieval number Fy, we
set it to 3, the maximum loop number L of the
thinking loop to 3, and the correlation coefficient of
positive and negative cases to 1. The temperature
of LLM is set to 0.1.

3.2 Dataset

[1] SPIDER(Yu et al., 2018)!: A large-scale,
complex cross-domain text-to-SQL dataset
containing over 10,000 questions and nearly
6,000 unique SQL queries covering 200
databases and 138 different domains.

[2] BIRD(Li et al., 2023c)*: The most chal-
lenging large-scale cross-domain text-to-SQL
benchmark. Contains 12,751 pairs of data and
95 databases covering 37 fields.

1ht’cps: //yale-lily.github.io/spider
2https://bird-bench.github.io/
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3.3 Baseline

To ensure a fair comparison, few-shot learning
methods with validated results are selected as
baseline models, such as DIN-SQL(Pourreza and
Rafiei, 2023), DAIL-SQL(Gao et al., 2024), TA-
SQL(Qu et al., 2024), MAC-SQL(Wang et al.,
2023). The second category evaluates the improve-
ment of LLMs using the proposed SCL method,
with GPT-3.5, GPT-4, and GPT-40 as base models.

3.4 Evaluation Metrics

To facilitate comparison with other similar types
of work, the evaluation process mainly includes
the following two indicators: (1)EX: Represents
the execution accuracy of the generated SQL by
calculating how close the SQL is to the real SQL
execution result. (2)VES: Used to calculate the
efficiency of generating valid SQL. SQL efficiency
considerations are added to accuracy.

3.5 Result

As shown in Table 1, SCL-SQL outperforms exist-
ing methods on SPIDER and BIRD, especially on
the complex BIRD dataset. It achieves higher EX
and VES scores, improving robustness and seman-
tic accuracy. The gap between GPT-4 and GPT-40
further demonstrates the method’s scalability. Our
method generates executable and accurate SQL,
highlighting its effectiveness and generalizability.
As shown in Table 2, SCL-SQL consistently
enhances the performance of all evaluated LLMs.
Notably, the improvements extend beyond simple
queries, with significant gains on moderate and
challenging samples. This demonstrates that SCL-
SQL not only improves overall accuracy but also
strengthens complex reasoning and schema under-
standing. Moreover, while stronger models already
perform well, SCL-SQL further boosts their effec-
tiveness, showing strong compatibility and gener-
alizability across different model capacities.

3.6 Ablation Study

We conducted ablation experiments for the method
proposed in the paper to verify the effectiveness of
the proposed method. The ablation experimental
results and analysis of different methods are shown
in Table 3.

It can be seen that each module brings incre-
mental improvements, but together they produce
a synergistic effect. Positive examples enhance
guidance, negative examples improve discrimina-
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Figure 3: The effect of the number of positive examples,
where EX represents the execution accuracy, and Q-
Score represents the Jaccard score of the question versus
the question in the positive example. S-Score indicates
the Jaccard score of the ground truth SQL and the SQL
in the positive example.

tion, and the thought loop significantly boosts it-
erative correction. Each module contributes from
a different perspective, jointly achieving the best
performance.

4 Analysis

To show the details of SCL-SQL, we conducted
a detailed analysis of the parts of SCL-SQL, in-
cluding hyper-parameter experiments and result
analysis, where all analysis is based on the BIRD
development set, and defaults are used for parame-
ters not mentioned.

4.1 Effect of Number of Positive Examples

To verify the influence of positive examples on the
result, we set a different number of initial positive
examples (positive decay is off), and the result is
shown in Figure 3.

It can be seen that the best results can be
achieved when the initial positive example P is
set to 3. Beyond 3, there is a decrease in the gen-
eration accuracy due to the smaller Jaccard score
of the retrieved sample. The performance drop
beyond 3 positive examples is mainly due to the
reduced relevance of additional positive examples.
As more positive examples are added, their simi-
larity to the current query decreases, introducing
noise that misleads the model and lowers genera-
tion accuracy.



SPIDER BIRD
Method Dev  TEST Dev Test
EX(%) EX(%) | EX(%) VES(%) EX(%) VES(%)
DIN-SQL + GPT-4  82.80 8530 | 50.72 5879 5590  59.44
DAIL-SQL + GPT-4 8440 8660 | 5476 5608 5741  61.95
TA-SQL + GPT-4 85.00 _ 56.19 - 50.14 -
MAC-SQL + GPT4 8675 8280 | 5756 5876 5959  67.68
Ours(GPT-4) 87.04 8635 | 6225 6562 - -
Ours(GPT-40) 87.13 8737 | 6473 6648 6523 7075

Table 1: Result on SPIDER and BIRD, "-" indicates that the result is not provided

Method Sim(%) Mod(%) Chall(%) Total(%)
GPT-3.5 47.56 22.36 18.05 37.15
GPT-3.5+SCL 57.08 (+9.52) 31.82 (+9.46) 20.83 (+2.78)  46.02 (+8.87)
GPT-4 54.27 34.62 31.94 46.21

GPT-4 + SCL 64.00 (+9.73) 63.44 (+28.82) 47.22 (+15.28) 62.25 (+16.04)
GPT-40 58.59 43.53 40.68 52.99
GPT-40+ SCL  70.05 (+11.46) 59.05 (+15.52) 48.97 (+8.29) 64.73 (+11.74)

Table 2: Execution accuracy across different LLMs. ’Sim’, "Mod’, and *Chall’ denote simple, moderate, and
challenging subset samples. Numbers in parentheses indicate the relative improvement brought by SCL.

BIRD EX(%)
SCL-SQL 64.73
w/o schema linking 62.58
w/o question split 63.23
w/o thought loop 58.34
w/o positive 60.16
w/0 negative 59.32
w/o positive decay 62.23
w/o vote 61.47

Table 3: Result of ablation study. Where, w/o ques-
tion split means that the question is no longer split, and
the complete question is directly sent to the LLM. w/o
thought loop indicates that the loop is closed and the
method is executed linearly. w/o positive and w/o neg-
ative indicates that the positive example and negative
example are not set respectively. w/o positive decay
disables positive decay. w/o vote disables the voting
mechanism and takes the last loop result as output.

4.2 Effect of Times of Loop

We set different values of L to examine the impact
of loop execution times on overall performance
and subset results (Sim, Mod, Chall), as shown in
Figure 4.

Accuracy increases from L = 1 to L = 3, indi-
cating that moderate iterations enhance the model’s
self-correction ability and decision quality. How-
ever, performance declines when L > 3, likely due
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to increased candidate pool complexity and noise
interference.

Subset analysis reveals that performance on the
simple subset remains relatively stable, while the
moderate subset shows moderate improvements.
The most significant gain is observed in the chal-
lenging subset, where accuracy peaks at L = 3. Be-
yond this point, performance decreases, suggesting
that excessive iterations may introduce misleading
information and hinder final judgment.

4.3 Selection Accuracy

Since the selected result from the candidate pool is
not always correct, we further evaluated the accu-
racy of the selection mechanism. Specifically, we
analyzed the loop execution behavior at L = 3, as
shown in Figure 5, where "n-Loop" denotes sam-
ples that exit the loop at the n-th iteration. Figure 6
presents the statistics of selection errors (C-Error)
at different loop stages.

It can be seen that selection errors (C-Error)
account for only 3.1% of the total errors, indi-
cating that the selection mechanism introduces
relatively minor inaccuracies. Nevertheless, the
loop mechanism still leads to a net performance
gain, as the overall accuracy improves significantly
from 58.34% to 64.73%. This demonstrates that
although some selection errors occur, the overall
effect of loop-based refinement remains positive.
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Figure 5: Loop execution statistics.

5 Related Work

5.1 Text-to-SQL
5.1.1 Design Method

The method based on the design method focuses
on enhancing the relationship between text and
database schema to improve the quality of SQL
generation.

RAT-SQL(Wang et al., 2020) improved the
schema encoding and feature representation in
the encoder through the relational awareness self-
attention mechanism and improved the generation
accuracy. In addition, (Hui et al., 2021) proposes
a multi-task text-to-SQL model (SDSQL) guided
by schema dependency to capture the question in-
teraction with the database schema without having
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to perform booting, significantly reducing infer-
ence time. LGESQL(Cao et al., 2021) enhances
line graph coding and improves the parsing per-
formance of heterogeneous graphs. S?SQL(Hui
et al., 2022) uses syntax-dependent information
to strengthen the connection between the question
and the database. Proton(Wang et al., 2022) ex-
tracted the relational structure from PLMs through
the Poincare distance detection process to optimize
the schema linking. RESDSQL(Li et al., 2023a)
relieves the burden of schema linking in SQL pars-
ing by decoupling schema linking from skeleton
parsing.

5.1.2 Pre-training Method

Most existing Text-to-SQL pre-training methods
use a single Transformer or Transformer-based
encoder-decoder framework to capture task char-
acteristics through different pre-training targets.

For example, TaBERT(Yin et al., 2020) per-
forms well by combining natural language and tab-
ular data representation. Similarly, GRAPPA(Yu
et al., 2021) constructs and synthesizes data with
SCFG and combines mask language model (MLM)
pre-training to improve the table semantic parsing
ability. Further, GAP(Zhao et al., 2022) enhanced
the parsing ability through the joint learning of
natural language and schematic representation.
MIGA(Fu et al., 2023) designed four pre-training
tasks based on T5(Raffel et al., 2020) to implement
text-to-SQL. Similarly, GRAPHIX-T5(Li et al.,
2023b) is enhanced by a graphic awareness layer.
Codes(Li et al., 2024) employs incremental pre-
training and data enhancement techniques to deal
with schema linking and domain adaptation. Each
method improves the performance of text-to-SQL
parsing with different strategies.

5.1.3 Prompt-based Method

(Rajkumar et al., 2022; Liu et al., 2023) prove the
advanced performance of various LLM on text-
to-SQL. Then, around how to improve the perfor-
mance of LLM in text-to-SQL, DIN-SQL(Pourreza
and Rafiei, 2023) attempts to decompose com-
plex text-to-SQL tasks into smaller subtasks to
improve the performance of LLM in inference.
DAIL-SQL(Gao et al., 2024) is a text-to-SQL solu-
tion that optimizes large language model prompts
engineering, encodes SQL statements with struc-
tured knowledge, and reduces the impact of cross-
domain knowledge to improve token efficiency.
To eliminate the hallucination problem in LLM
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generation.

generation, TA-SQL(Qu et al., 2024) adjusted the
model’s processing methods for unfamiliar tasks
by comparing them with previously trained tasks,
reducing the model’s dependence on the general-
ization ability to generate responses from scratch,
thus significantly reducing the incidence of hal-
lucination. MAC-SQL(Wang et al., 2023) further
exploits the inference ability of LLM through serial
collaboration of multiple agents.

5.2 Prompt Engineering

Although LLM have a strong understanding and
inference ability, they still have difficulties in com-
plex logical tasks such as mathematical operations
and structured output. To this end, the research
focus has shifted to solving problems step by step
by prompt engineering guide LLM.

In this type of work, the chain of thought
(CoT)(Wei et al., 2022) enhances complex reason-
ing ability through intermediate reasoning steps.
The tree of thought (ToT)(Yao et al., 2023a) forms
a tree-like structure through multiple reasoning
paths to expand the search space. A mind map
(GoT)(Besta et al., 2024) forms a network of cross-
ing paths to generate more flexible solutions. Re-
Act(Yao et al., 2023b) proposes a general paradigm
that combines reasoning and action with LLM.
Prompt-based text-to-SQL methods often combine
such prompt engineering to harness the potential
of LLM.
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6 Conclusion

We proposed a text-to-SQL method based on a self-
contrastive loop of thought to solve the problem
of LLM’ dependence on few-shot example con-
struction in text-to-SQL tasks. By designing the
generation process as a discriminant loop structure
based on a comparison of positive and negative
examples, we significantly improved the accuracy
and generalization of LLM and reduced the de-
pendence on small samples. Experimental results
show that the proposed method performs well on
multiple data sets, and the generated SQL queries
have higher accuracy. The contribution of this
paper also includes the design of a question split
strategy, execution, logical verification mechanism,
and introduction of the "loop" structure to optimize
the self-verification and error-correcting ability of
LLM in text-to-SQL tasks.

7 Limitation

There are still limitations in the SCL-SQL method.
The first is that it solves the problem of construct-
ing few-shot examples in the generation process,
but prompts of some complexity are still necessary.
The second point is that the effect depends on the
number and quality of the dataset. If the data set
is too small or there are not enough similar exam-
ples, then the effect of this method will be greatly
limited.
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BIRD SPIDER

Errors
condition error
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misunderstanding question
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Figure 7: Error distribution statistic on BIRD and SPIDER dev set. Where "condition error" indicates wrong
condition construction, "schema linking" indicates incorrect linking with tables, "column error" means the wrong
column was selected, and "misunderstanding question" indicates the SQL was not compatible with question.

A Error Analysis

To fully explore our proposed approach, we also counted error types on the BIRD and SPIDER dev
datasets in Figure 7. Among them, we mainly examine schema linking and semantic error. As the figure
shows, the most common error types are conditional errors. Conditional errors account for more than 50%
of total errors in BIRD and SPIDER. Compared to past methods, we have reduced error rates in many
aspects, but we still lack advantages in constructing SQL for complex conditions. We give examples of
different error types in Tables 4, 5, 6, 7, and 8.



Schema Linking

Error

BIRD

Question: How many schools in Fresno (directly funded) have number of test takers not
more than 2507

PRED: SELECT COUNT(x) FROM [schools| AS s INNER JOIN |satscores AS ss
ON s.CDSCode = ss.cds WHERE s.City = ’Fresno’ AND s.FundingType
= ’Directly funded’ AND ss.NumTstTakr <= 250

GOLD: SELECT COUNT(T1.CDSCode) FROM frpm AS T1 INNER JOIN satscores
AS T2 ON T1.CDSCode = T2.cds WHERE T1.‘Charter Funding Type°‘
= ’Directly funded’” AND T1.‘County Name‘ = ’Fresno’ AND
T2.NumTstTakr <= 250

SPIDER

Question: What are the locations and names of all stations with capacity between 5000
and 10000?

PRED: SELECT location, station_name FROM |stations WHERE capacity
BETWEEN 5000 AND 10000

GOLD: SELECT LOCATION , name FROM stadium WHERE capacity BETWEEN 5000

AND 10000

Table 4: Examples of schema linking errors.

Condition Error

BIRD
Question:

PRED:

GOLD:

SPIDER
Question:
PRED:

GOLD:

Please list the phone numbers of the direct charter-funded schools that are
opened after 2000/1/1.

SELECT schools.Phone FROM frpm INNER JOIN schools ON frpm.CDSCode
= schools.CDSCode WHERE frpm. ‘Charter School (Y/N)¢ = 1
AND frpm. ‘Charter Funding Type‘ = ’Directly funded’ AND
schools.OpenDate > ’2000-01-01’ AND schools.Phone IS NOT NULL
AND schools.OpenDate IS NOT NULL AND schools.Charter
IS NOT NULL ;

SELECT T2.Phone FROM frpm AS T1 INNER JOIN schools AS T2
ON T1.CDSCode = T2.CDSCode WHERE T1.‘Charter Funding Type*
= ’Directly funded’ AND T1.‘Charter School (Y/N)¢ = 1 AND
T2.0penDate > ’'2000-01-01’

What is the maximum capacity and the average of all stadiums?

SELECT MAX(Capacity) AS Max_Capacity, AVG(Average) AS
Avg_Attendance FROM stadium

SELECT max(capacity), average FROM stadium

Table 5: Examples of condition errors.
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Column Error

BIRD
Question:

PRED:

GOLD:

SPIDER
Question:
PRED:

GOLD:

If there are any, what are the websites address of the schools with a free meal
count of 1,900-2,000 to students aged 5-177? Include the name of the school.
SELECT | frpm. ‘School Name‘, schools. ‘Web‘ FROM frpm INNER
JOIN schools ON frpm. ‘CDSCode‘ = schools.‘CDSCode‘ WHERE
frpm. ‘Free Meal Count (Ages 5-17)¢ BETWEEN 1900 AND 2000 AND
schools. ‘Website‘ IS NOT NULL;

SELECT T2.Websit, T1.‘School Name‘ FROM frpm AS T1 INNER JOIN
schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T1.‘Free Meal
Count (Ages 5-17)¢ BETWEEN 1900 AND 2000 AND T2.Website IS NOT
NULL

Find the average and maximum age for each type of pet.

SELECT Pets.PetType, AVG(Pets.pet_age) AS average_age,
MAX(Pets.pet_age) AS maximum_age FROM Pets JOIN Has_Pet
ON Pets.PetID = Has_Pet.PetID GROUP BY Pets.PetType;

SELECT avg(pet_age) , max(pet_age) , pettype FROM pets GROUP
BY pettype

Table 6: Examples of column errors.

Question misun-
derstanding

BIRD
Question:

PRED:

GOLD:

BIRD
Question:
PRED:

GOLD:

Of the schools that offers a magnet program serving a grade span of Kinder-
garten to 8th grade, how many offers Multiple Provision Types? List the number
of cities that offers a Kindergarten to 8th grade span and indicate how many
schools are there serving such grade span for each city.

SELECT COUNT(*) AS NumberOfSchoolsWithMultipleProvisionTypes
FROM schools JOIN frpm ON schools.CDSCode = frpm.CDSCode WHERE
schools.Magnet = 1 AND schools.GSserved = K-8’ AND frpm. ‘NSLP
Provision Status¢ = ’Multiple Provision Types’; - Second part:
List the number of cities and the number of schools serving a K-8
grade span SELECT schools.City, COUNT(*) AS NumberOfSchools FROM
schools WHERE schools.GSserved = K-8’ GROUP BY schools.City;
SELECT T2.City, COUNT(T2.CDSCode) FROM frpm AS T1 INNER JOIN
schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.Magnet = 1 AND
T2.GSoffered = K-8’ AND T1.‘NSLP Provision Status‘ = ’Multiple
Provision Types’ GROUP BY T2.City

Which model has the most version(make) of cars?

SELECT ml.Model, COUNT(DISTINCT cn.Make) AS make_count FROM
model_list ml JOIN car_names cn ON ml.Model = cn.Model GROUP
BY ml.Model ORDER BY make_count DESC LIMIT 1;

SELECT Model FROM CAR_NAMES GROUP BY Model ORDER BY count(*)
DESC LIMIT 1;

Table 7: Example of question misunderstanding errors.
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Other Error

BIRD
Question:

PRED:

GOLD:

BIRD
Question:
PRED:

GOLD:

Among the customers who paid in euro, how many of them have a monthly
consumption of over 1000?

SELECT COUNT(DISTINCT yearmonth.CustomerID) FROM customers INNER
JOIN yearmonth ON customers.CustomerID = yearmonth.CustomerID
WHERE customers.Currency = ’'EUR’ AND yearmonth.Consumption >
1000

SELECT COUNT(*) FROM yearmonth AS T1 INNER JOIN customers AS T2
ON T1.CustomerID = T2.CustomerID WHERE T2.Currency = ’EUR’ AND
T1.Consumption > 1000.00

List the first and last name of all players in the order of birth date.

SELECT first_name, last_name FROM players ORDER BY birth_date
ASC

SELECT first_name , last_name FROM players ORDER BY birth_date

Table 8: Examples of other errors.
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