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Abstract

In this paper, we explore the use of a text-only,
autoregressive language modeling approach for
the extraction of referring expressions from vi-
sually grounded dialogue. More specifically,
the aim is to investigate the extent to which the
linguistic context alone can inform the detec-
tion of mentions that have a (visually perceiv-
able) referent in the visual context of the conver-
sation. To this end, we adapt a pretrained large
language model (LLM) to perform a relatively
course-grained annotation of mention spans in
unfolding conversations by demarcating men-
tion span boundaries in text via next-token pre-
diction. Our findings indicate that even when
using a moderately sized LLM, relatively small
datasets, and parameter-efficient fine-tuning, a
text-only approach can be effective, highlight-
ing the relative importance of the linguistic con-
text for this task. Nevertheless, we argue that
the task represents an inherently multimodal
problem and discuss limitations fundamental
to unimodal approaches.

1 Introduction

In conversation, speakers often make reference to
objects, events, or concepts. Words and phrases
that are used with referential intent are known as
referring expressions (REs). Effective communi-
cation hinges on the ability of the participants in
the conversation to recognize these expressions and
to determine what it is that they refer to, i.e., their
referents. Within the context of a discourse, identi-
fication of an intended referent for a given RE may
necessitate coreference resolution, i.e., the process
of linking expressions that have the same referent.
To illustrate this need, consider the following hy-
pothetical exchange, with coreferring expressions
underlined:

(1) A: Have you seen Schrödinger’s cat?
(2) B: Yeah, here it is.
(3) A: It is looking a bit worse for wear.

Figure 1: Visualization of the proposed mention detec-
tion method. The Mention Detector takes as input the
most recent dialogue message, preceded by the avail-
able dialogue history, and autoregressively outputs an
annotated reproduction of the last message while insert-
ing mention span boundary tokens (the start and end
of mention spans are represented by >> and << , re-
spectively) where appropriate. Excerpt shown is from
a dialogue collected by Willemsen et al. (2022). High-
lighted mentions in original dialogue and visual context
with highlighted referent images are shown solely for
illustrative purposes: the former is not available to the
model at inference time, the latter neither at inference
nor at training time.

Without access to the discourse context, “it” and
“It” have indeterminate referents. By having knowl-
edge of the prior contributions to the conversation,
it is clear that both pronouns are anaphors with
“Schrödinger’s cat” as their antecedent.

The identification of REs, or mentions1, in var-
ious types of discourse is a long-standing natu-
ral language processing (NLP) task commonly re-
ferred to as mention detection (MD). Simply put,

1We use referring expression and mention interchangeably
throughout this paper.
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when a given discourse is represented as a text doc-
ument, the goal of MD is to identify any and all
spans of text that refer to some predetermined type
of referent, such as named entities or events.

In this paper, we explore the problem of MD for
conversation, specifically with a focus on the down-
stream purpose of reference resolution in visually
grounded dialogue. That is, our aim is to identify
the REs that have a (visually perceivable) referent
in the visual context of the conversation. Of par-
ticular interest is the extent to which the linguistic
context alone is able to inform predictions for what
is arguably, inherently, a multimodal problem. In
addition, we experiment with different context win-
dows to investigate how dialogue history affects
MD performance. The expectation is that provid-
ing access to additional linguistic context in the
form of preceding messages will generally lead to
increased performance. To illustrate by example,
whether the use of “that” in the exclaimed utterance
“Take that!” is referential or instead part of a non-
referential interjection cannot be known without
additional context.

In line with recent work on generative informa-
tion extraction (see e.g., Zhang et al., 2025), we
frame MD in visually grounded dialogue as an au-
toregressive language modeling problem. More
specifically, we propose to train a model to gen-
erate annotated reproductions of utterances: for
a given utterance, in the process of generating a
copy of the original message content, the model
is expected to insert span boundary tokens indicat-
ing the start and end of mention spans, when and
where appropriate. An illustration of the proposed
approach is shown in Figure 1. Our experiments in-
volve the parameter-efficient fine-tuning (Dettmers
et al., 2023) of a large language model (LLM) on
annotated conversations from two different visually
grounded dialogue datasets, namely A GAME OF

SORTS (AGOS, Willemsen et al., 2022) and PHO-
TOBOOK (PB, Haber et al., 2019). For AGOS, we
make use of the mention annotations from Willem-
sen et al. (2023). For PB, we adopt a similar an-
notation protocol to manually create the required
mention annotations for a subset of the dataset.2

Results of our experiments with the 8B-
parameter variant of LLAMA 3.1 (Grattafiori et al.,
2024) are promising, suggesting that the linguistic
context can be relatively revealing for our purpose.

2https://github.com/willemsenbram/
mention-detection-vgd, doi:10.5281/zenodo.15500581

Note that our findings are in spite of the fact that
our datasets are relatively small, our LLM is rel-
atively moderately sized, and our fine-tuning is
parameter-efficient. Nevertheless, we must con-
tend with some limitations that are fundamental
to unimodal approaches to multimodal problems,
as well as the nature of the referential language
in task-oriented dialogues. We provide additional
discussion on these matters.

2 Background

MD has long been an essential component, or the
central focus, of systems addressing various NLP
tasks, such as named entity recognition (e.g., Lam-
ple et al., 2016; Devlin et al., 2019; Straková et al.,
2019), event detection (e.g., Lai et al., 2020), and
coreference resolution (e.g., Lee et al., 2013; Poe-
sio et al., 2018). Earlier, rule-based approaches
to MD were frequently built atop a dependency
parse of a text, and would, over time, incorporate
increasingly more powerful statistical models into
the pipeline (e.g., Florian et al., 2010; Lee et al.,
2013). The required sophistication of the approach
generally depended on the downstream task. For
coreference resolution, for example, simple heuris-
tics leading to high recall would suffice if other
parts of the system could compensate with higher
precision (e.g., Lee et al., 2013). Interestingly, com-
parisons between different coreference resolution
systems have often been conducted on the basis of
gold, instead of predicted, mentions. This effec-
tively side-steps MD in an effort to focus on isolat-
ing the system’s downstream performance. How-
ever, there tend to be notable performance gaps
between these idealized and the realistic scenarios.
As Poesio et al. (2023) note, generally, the overall
performance of a coreference resolution system has
been contingent on the accuracy of the output from
its MD component.

Following advances in neural language model-
ing, approaches to MD based on neural models
(e.g., Lample et al., 2016; Poesio et al., 2018; De-
vlin et al., 2019; Straková et al., 2019; Lai et al.,
2020; Yu et al., 2020) have gradually superseded
the earlier methods. These increasingly more data-
driven methods promised to do away with the need
for extensive feature engineering. Particularly con-
sequential has been the adoption of general pur-
pose, pretrained language models based on the
Transformer architecture (Vaswani et al., 2017),
examples of which include the encoder-only BERT
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(Devlin et al., 2019) and the decoder-only GPT
(Radford et al., 2018). BERT-based representations
have been the backbone of numerous NLP systems,
including those that deal with MD (e.g., Devlin
et al., 2019; Straková et al., 2019; Yu et al., 2020).

Of particular interest here are the autoregres-
sive LLMs at the heart of most work on genera-
tive information extraction (see e.g., Zhang et al.,
2025). Various studies have shown that framing
tasks involving structured predictions as autoregres-
sive language modeling problems can be effective
(e.g., Cao et al., 2021; Liu et al., 2022; Deußer
et al., 2024). Given an unstructured text, the model
is trained to return, via next-token prediction, a
structured representation of the input. Although the
feasibility of this approach has been shown for com-
monly used benchmarks that involve some form of
MD (e.g., Kim et al., 2003; Tjong Kim Sang and
De Meulder, 2003), to the best of our knowledge,
it has yet to be applied to visually grounded dia-
logue. In this paper, we explore to what extent we
can adapt a pretrained LLM via parameter-efficient
fine-tuning (Hu et al., 2022; Dettmers et al., 2023)
to the task of MD in visually grounded dialogue
using this approach.

3 Method

3.1 Problem description

In general, the goal of MD is to identify all expres-
sions in a document D that satisfy some prescribed
definition of a mention. When D is a visually
grounded dialogue, we define it as D = (V,L),
where V is the visual context and L the linguistic
context of the conversation. A dialogue is consid-
ered visually grounded when L contains one or
more references to V . That is, within the linguistic
context, there exists one or more expressions that
have a (visually perceivable) referent that is present
in the visual context of the conversation.

3.2 Task definition

In this work, we consider MD in visually grounded
dialogue to be the task of identifying all expres-
sions in L for which there exists a referent in V .
Here, we focus on visually grounded dialogues of
which V is composed of a set of v independent im-
ages, V = {I1, I2, ..., Iv}. The linguistic context L
can be represented as a sequence of n utterances3,
L = (u1, u2, ..., un). In turn, each utterance ui

3We use utterance and message interchangeably through-
out this paper.

can be represented as a sequence of mi tokens,
ui = (ti1, ti2, ..., timi). We think of mentions in
terms of spans. We can define a mention span as
a contiguous subsequence of tokens from an ut-
terance ui, denoted as (tij , ..., tik) ⊆ ui, where
1 ≤ j ≤ k ≤ mi. Together, these tokens constitute
an expression that (indirectly) refers to one or more
of the images. Note that in contrast with other types
of documents, dialogue is interactive and contribu-
tions to L are cumulative, happening over time. It
is important to account for the incremental nature
of conversation when addressing this task.

3.3 Proposed approach

Core to our approach is the framing of MD in visu-
ally grounded dialogue as a next-token prediction
task. Given the incremental nature of conversation,
we process each dialogue at the utterance level,
prepending to each utterance a token indicating the
speaker. For a given utterance ui, we train an au-
toregressive language model f to reproduce exactly
the original content of ui, but with span boundary
tokens inserted if and where appropriate to indicate
the start and end of mention spans.

Crucially, however, we propose to condition the
generation of the target sequence ui

′ not only on
the current utterance ui, but also on additional pre-
ceding linguistic context, i.e., the available dia-
logue history, as prior messages may inform pre-
dictions. When considering prior messages in the
modeling process, we can define the generation
of ui

′ as ui
′ = f(ui, H), where H is the dia-

logue history available to the model.4 The avail-
able dialogue history H is defined as a contigu-
ous subsequence of utterances from L, denoted as
H = (ui−h, ui−h+1..., ui−1), where 0 ≤ h ≤ w,
where h is the number of prior messages available
to the model and w is an optionally predefined
maximum number of preceding messages to be
considered. For a visualization of the proposed
approach, see Figure 1.

4 Experiments

The language modeling experiments presented in
this paper involve the fine-tuning of pretrained
models on dialogues from two different, though

4We must note that for the experiments reported in this
paper, we found that repeating utterance ui in the input to
the model had a positive impact on downstream performance;
a slight deviation from the more general definition provided
here. For an example of the formatting of training samples,
see Appendix B.
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closely related, visually grounded dialogue tasks,
namely A GAME OF SORTS (AGOS, Willemsen
et al., 2022) and PHOTOBOOK (PB, Haber et al.,
2019). We first perform cross-validation to score
MD performance on each dataset separately. We
then assess cross-dataset transfer by training on
one dataset and testing on the other. In addition,
we investigate the effects of dialogue history on
MD performance, i.e., whether the model benefits
from having access to preceding messages when
making its predictions, by experimenting with dif-
ferent context window sizes, i.e., providing access
to different numbers of preceding messages. Fi-
nally, as points of comparison, we assess the MD
performance of a baseline based on noun phrase
(NP) extraction using constituency parsing, as well
as that of an encoder-only LLM fine-tuned for se-
quence labeling.

4.1 Data

Both AGOS and PB are tasks designed around
eliciting repeated references to various sets of
real-world images—such as those found in the
MS COCO (Lin et al., 2014) and Open Images
(Kuznetsova et al., 2020) datasets—in conversa-
tional settings. Moreover, both tasks have a delib-
erate asymmetry in their visual contexts that partic-
ipants have to overcome to successfully complete
the task. This ensured that speakers would produce
non-trivial REs that made reference to the images’
visual content.

4.1.1 A Game Of Sorts (AGOS)
AGOS is a collaborative image ranking task. Two
participants are shown a set of nine images which
they are asked to rank, in descending order and one
at a time, based on a given sorting criterion. The
goal of the task is for the participants to, through
conversation, arrive at a ranking which both deem
satisfactory. Although both participants see the
same set of images, they cannot see each other’s
perspective. The position of the images on their re-
spective screens has been randomized, forcing the
participants to refer to the images by referencing
their visual content. To ensure repeated mentions
of the same referents, the task is performed over
multiple (four) rounds, and the same set of images
is used each round.

The AGOS dataset consists of 15 dialogues.
Each AGOS image set consists of nine images
from the same of one of five image categories,
namely cars, dogs, paintings, pastries, or phones.

AGOS PB-GOLD

# Dialogues 15 50
# Messages (×) 1, 800 3, 335
# Mentions (Ë) 1, 486 2, 111
# Characters (k) 86, 516 96, 774
# Words (kV) 19, 843 22, 889

%× with Ë 60.33% 61.02%
%× with > 1Ë 17.94% 1.95%

#k in Ë 27, 574 61, 771
%k in Ë:k in × 31.87% 63.83%

#kV in Ë 5, 708 12, 880
%kV in Ë: kV in × 28.77% 56.27%

X̄ k in × 48.06 (43.57) 29.02 (24.83)

X̄ k in Ë 18.56 (15.76) 29.26 (23.35)

X̄ kV in × 11.02 (9.52) 6.86 (5.40)

X̄ kV in Ë 3.84 (3.20) 6.10 (4.86)

Table 1: Descriptive statistics for the AGOS and PB-
GOLD datasets. Note. Explanation of symbols and
abbreviations: × = Messages; Ë = Mentions; k =
Characters; kV = Words; X̄ = average (mean). Stan-
dard deviation between brackets. Scores and standard
deviations are rounded to the nearest hundredth.

Three dialogues were collected per image category.

4.1.2 PhotoBook (PB)
PB is a collaborative image identification task.
Two participants are shown partially dissimilar
sets of six visually similar images; some of the
images will be shown to both participants, while
others are shown to only one of the participants.
Each participant has three of their six images high-
lighted. The goal of the task is for the participants
to, through conversation and without seeing each
other’s perspective, identify for these highlighted
images whether or not they have them in common.
To ensure repeated mentions of the same referents,
the task is performed over multiple (five) rounds,
and while the set of images shown to participants
changes from round to round, the image sets are
constructed in such a way that each image is shown
multiple times to at least one of the participants.

The PB dataset consists of 2.5K dialogues. Each
PB image set, as shown to each participant, con-
sists of six images that prominently feature two
objects, each object belonging to a different image
category. These two image categories form the
“image domain” of the conversation; each image
shown throughout the interaction will feature at
least one object from each category. For our exper-
iments, we make use of the so-called PB-GOLD
subset, as referenced in Takmaz et al. (2022), which
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AGOS PB-GOLD

0 3 7 19 0 3 7 19
L

L
A

M
A P .896 (.03) .922 (.02) .919 (.02) .923 (.03) .933 (.02) .936 (.03) .940 (.02) .943 (.02)

R .835 (.04) .865 (.03) .883 (.03) .884 (.03) .927 (.01) .925 (.01) .934 (.01) .937 (.02)
F1 .863 (.02) .892 (.01) .900 (.01) .902 (.01) .930 (.01) .930 (.02) .937 (.02) .940 (.02)
J .811 (.03) .849 (.03) .856 (.02) .858 (.02) .921 (.01) .922 (.01) .933 (.01) .933 (.01)

M
-B

E
R

T P .827 (.04) .842 (.03) .843 (.03) .863 (.04) .916 (.02) .918 (.02) .924 (.01) .930 (.02)
R .812 (.05) .835 (.03) .837 (.04) .853 (.01) .909 (.01) .912 (.01) .908 (.01) .917 (.02)
F1 .819 (.04) .838 (.02) .839 (.02) .857 (.02) .912 (.02) .915 (.01) .916 (.01) .924 (.02)
J .786 (.04) .815 (.02) .814 (.02) .825 (.01) .909 (.01) .914 (.01) .913 (.01) .920 (.01)

Table 2: Cross-validated mention detection performance of fine-tuned LLAMA 3.1 8B (LLAMA, top) and MOD-
ERNBERT-large (M-BERT, bottom) on AGOS and PB-GOLD for four different context windows, i.e., 0, 3, 7,
and 19 preceding messages. Note. P = Precision; R = Recall; F1 = F1 score; J = Jaccard index. Scores are rounded
to the nearest thousand, standard deviations to the nearest hundredth.

consists of 50 dialogues for which the authors have
provided some annotations at the utterance level.

4.1.3 Mention annotations
In this work, we make use of the manually anno-
tated mention spans from Willemsen et al. (2023).
These spans indicate the linguistic expressions that
have a (visually perceivable) referent in the vi-
sual context of the conversation. More specifically,
these are either singletons or REs that are part of an
identity relation with other mentions in the linguis-
tic context that have one or more of the images as
their referents. For the annotation of the mention
spans, Willemsen et al. (2023) were aided by speak-
ers’ self-annotations, as participants were required
to indicate whether or not a message was meant
to include one or more references to one or more
of the images. In the messages which contained
such references, the longest, most specific spans
with images as their referents were marked. The
resulting annotations are relatively course-grained.
We adopt this protocol for our annotation of the
PB-GOLD dialogues. Although PB has no self-
annotations, referential ambiguities can be resolved
by scrutiny of the full dialogue context. We report
descriptive statistics of both datasets in Table 1.

4.2 Model specifications

For each experiment involving the proposed au-
toregressive language modeling approach, we fine-
tune LLAMA 3.1 8B (Grattafiori et al., 2024) using
QLoRA (Dettmers et al., 2023) on a single 24GB
NVIDIA GeForce RTX 3090. We calculate the loss
only over tokens of the target message, masking the
loss over tokens that are part of the preceding dia-
logue context. We make use of the model’s existing
vocabulary for any special tokens, such as those

indicating span boundaries. Fine-tuned model out-
put is generated using constrained decoding. That
is, at every time step we dynamically restrict the
vocabulary, where the allowed tokens include the
next token from the input utterance and any valid
special tokens. Hyperparameters are listed in Table
6 in Appendix A. For an example of the formatting
of training samples for fine-tuning, see Appendix
B. For additional implementation details, we refer
the reader to our repository.2

4.2.1 Baselines
NP extraction using constituency parsing As
mentions are predominantly NPs, we opt for a sim-
ple baseline model that automatically extracts NPs
from the dialogues using the constituency parser
from the Stanza toolkit (Qi et al., 2020). The back-
bone of this parser is ELECTRA-large (Clark et al.,
2020) trained on a revised version of the third re-
lease of the Penn Treebank (Marcus et al., 1993).
We extract the most expansive spans, but discard
certain candidate phrases. For instance, as the dia-
logues involve text-based conversations in which
the participants are not able to see each other, we
can disregard various personal pronouns (e.g., “I”,
“you”, “me”) as these were not considered to be
mentions here.
Sequence labeling with MODERNBERT It has
been common practice to treat problems that center
on the detection of spans in text, such as MD, as
sequence labeling tasks (e.g., Lample et al., 2016).
When given a sequence (of tokens), the objective is
to assign each element a label such that span bound-
aries can be inferred. Tag sets are frequently based
on the IOB format (Ramshaw and Marcus, 1995):
the B tag indicates that an element begins a span,
the I tag indicates that an element is inside of a span,
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and the O tag indicates that an element is outside of
a span. For our purpose, we adopt the IOB tag set
and fine-tune MODERNBERT-large (Warner et al.,
2024) to predict for each token of a given utterance
the correct label. As the name suggests, MOD-
ERNBERT is a more recent encoder-only LLM
that improves upon the original BERT architec-
ture. Similar to the LLAMA-based experiments, for
the experiments that are meant to demonstrate the
effects of dialogue history on downstream perfor-
mance, we provide preceding messages as context,
masking the loss over all labels except those of
the target message. Each model is fine-tuned on
a single 24GB NVIDIA GeForce RTX 3090. Hy-
perparameters are listed in Table 7 in Appendix A.
For additional implementation details, we refer the
reader to our repository.2

Note that in this formulation of the problem us-
ing the basic IOB format, it is not possible to ac-
curately label nested mentions. However, there
are very few cases of nesting in the datasets used
for the experiments reported in this paper. There-
fore, this shortcoming has negligible impact on the
current evaluation of the approach.

4.3 Evaluation

Our first experiments involve cross-validation on
both datasets. We evaluate using the same five-fold
cross-validation protocol adopted by prior work on
the AGOS dataset (Willemsen et al., 2023; Willem-
sen and Skantze, 2024), which partitions the dataset
along its five image sets. We similarly perform five-
fold cross-validation on the PB-GOLD dataset.
However, as there is no predefined, deterministic
split for PB-GOLD, we split the data randomly.
Our second set of experiments concerns an investi-
gation into cross-dataset transfer. This means that
we fine-tune models on the entirety of AGOS and
test on the entirety of PB-GOLD, and vice versa.

In addition, we test the effects of dialogue his-
tory on MD performance. For each of the afore-
mentioned experiments, we fine-tune models for
four different context windows, 0, 3, 7, and 19,
meaning the models have access to no, three, seven,
or 19 preceding messages, respectively.

4.3.1 Metrics

We measure mention detection performance in
terms of precision, recall, F1 score, and intersec-
tion over union of ground truth (gold spans) and
predicted mention spans at the character level (i.e.,

.80

.90

1

0 3 7 19
Size
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F 1
 S
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Figure 2: Mention detection performance of fine-tuned
LLAMA 3.1 8B in terms of F1 scores [0, 1] as a func-
tion of the size of the context window, i.e., the maxi-
mum number of preceding messages considered from
the available dialogue history. Shown are results of each
fold (dots) and their average (bar) for four different con-
text windows, i.e., 0, 3, 7, and 19.

Jaccard index).5

We calculate precision, recall, and F1 scores
based on exact mention span matches. This means
that a predicted mention is considered a true pos-
itive only if it matches a gold span exactly and is
treated as a false positive otherwise. Conversely, a
ground truth mention for which there is no exact
matching prediction is considered a false negative.

We use a measure based on the Jaccard index
to score the extent to which ground truth and pre-
dicted mention spans overlap, which permits the
scoring of partial matches. For each message,
we find the optimal assignment of predicted and
ground truth spans based on the number of corre-
sponding character indices. We calculate the Jac-
card index for each pair of matched spans. In the
event that no match exists—that is, there is no over-
lap between a ground truth mention and any of the
predicted spans (false negative), or there exists no
ground truth mention for a predicted span (false
positive)—, the score for this particular span is 0.

All the aforementioned mention detection met-
rics are bound [0, 1], with higher scores indicating
better performance.

5 Results

Before reporting the results of our fine-tuning ex-
periments, we first highlight some of the descrip-
tive statistics reported in Table 1 to aid in under-
standing the composition of the data. As shown
in Table 1, PB-GOLD contains over three times

5Character-level evaluation avoids tokenization issues
when span boundary tokens are placed within words.
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� 
 f Q I X̄

P .881 .954 .934 .912 .933 .923 (.03)
R .897 .842 .902 .924 .855 .884 (.03)
F1 .889 .894 .918 .918 .892 .902 (.01)
J .853 .823 .881 .874 .857 .858 (.02)

Table 3: Cross-validated mention detection perfor-
mance of fine-tuned LLAMA 3.1 8B on AGOS based
on a context window of 19, i.e., a dialogue history con-
sisting of 19 preceding messages. Results are shown
for each fold as well as their average (X̄). Note. P =
Precision; R = Recall; F1 = F1 score; J = Jaccard index;
Symbols represent folds: � = Cars; 
 = Dogs; f =
Paintings; Q = Pastries; I = Phones. Standard deviation
between brackets. Scores are rounded to the nearest
thousand, standard deviations to the nearest hundredth.

more dialogues than AGOS. However, on average,
the AGOS dialogues are considerably longer and
have almost twice as many messages per dialogue.
While the percentage of messages with mentions is
comparable, AGOS has a much higher rate of mes-
sages that contain more than one mention than PB-
GOLD. Nevertheless, mentions make up notably
less of the overall content of the AGOS dialogues
than of the PB-GOLD dialogues; the number of
characters and words dedicated to mentions relative
to the total number of characters and words in the
messages is substantially lower for AGOS than for
PB-GOLD. Finally, the average AGOS mention
is shorter than the average PB-GOLD mention.

5.1 Cross-validation

Shown in Table 2 are the cross-validated results
from fine-tuning and evaluating models on the
AGOS and PB-GOLD datasets. For each context
window, scores are reported as averages over all
folds for each MD performance metric. In addition,
the results reported in Table 3 are from fine-tuning
and evaluating LLAMA on the AGOS dataset using
the maximum context window size we considered
for this work, i.e., a context window of size 19.
In Table 3, scores are shown per fold in addition
to their averages over all folds, for each MD per-
formance metric. We found that, despite some
variance between folds, scores resulting from fine-
tuning LLAMA were relatively high overall. In
comparison, the performance of MODERNBERT
is relatively competitive, but it does lag behind
that of LLAMA. The observed results suggest that
the models were, on average, somewhat more per-
formant on the PB-GOLD than they were on the
AGOS data. Moreover, we observed that the mod-

els generally benefited from an increase in context
window size; on average, we found that providing
the models with a greater number of preceding mes-
sages increased MD performance, but noted that
there were diminishing returns. The observed trend
was somewhat more apparent for AGOS than for
PB-GOLD. Figure 2 provides a visualization of
this trend based on the F1 scores for AGOS.

5.2 Cross-dataset transfer

Table 4 shows results from fine-tuning models on
AGOS and testing on PB-GOLD (AGOS → PB-
GOLD), and vice versa (PB-GOLD → AGOS).
Although scores were shown to trail those of the
cross-validation experiments, the observed MD
performance was still indicative of a relatively
high degree of successful transfer overall. Again,
LLAMA’s performance was shown to exceed that
of MODERNBERT. A noteworthy observation was
that AGOS → PB-GOLD consistently resulted
in higher scores than PB-GOLD → AGOS on all
MD performance metrics. Similarly to results from
our cross-validation experiments, we observed that,
on average, an increase in the size of the context
window tended to result in improved performance.
These findings suggest that providing the models
with at least some preceding messages can already
be beneficial.

5.3 Comparison with NP extraction

The results reported in Table 5 show the MD perfor-
mance of a method based on constituency parsing
for the automatic extraction of NPs. Although re-
call may seem relatively high considering that the
focus of this baseline model was solely on NP ex-
traction, it bears repeating that most mentions tend
to be NPs, though they are not always presented
in a straightforward, parsable manner or context.
Perhaps unsurprisingly, especially when comparing
against our proposed approach, this naive method
for MD is relatively imprecise, as the false positive
rate ends up being relatively high when predicting
virtually all NPs to be referential in nature.

5.4 Error analysis

When examining the output generated by LLAMA,
we found various errors to be consistent between
the different context windows. Although the mod-
els appeared to be relatively robust against the
noise in the input, certain mentions were partially,
or entirely, missed, as a result of ungrammatical
phrasing. For partial matches, we observed some
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AGOS → PB-GOLD PB-GOLD → AGOS

0 3 7 19 0 3 7 19

L
L

A
M

A P .798 .859 .864 .886 .775 .803 .810 .820
R .806 .838 .858 .845 .687 .676 .713 .744
F1 .802 .848 .861 .865 .728 .734 .758 .780
J .777 .816 .834 .839 .668 .666 .694 .722

M
-B

E
R

T P .725 .768 .778 .795 .707 .735 .774 .777
R .650 .694 .687 .735 .610 .641 .704 .723
F1 .685 .729 .730 .764 .655 .685 .737 .749
J .662 .704 .698 .737 .595 .616 .665 .688

Table 4: Mention detection performance of fine-tuned LLAMA 3.1 8B (LLAMA, top) and MODERNBERT-large
(M-BERT, bottom) in cross-data transfer experiments for four different context windows, i.e., 0, 3, 7, and 19
preceding messages. AGOS → PB-GOLD indicates training on AGOS and testing on PB-GOLD; PB-GOLD
→ AGOS indicates training on PB-GOLD and testing on AGOS. Note. P = Precision; R = Recall; F1 = F1 score;
J = Jaccard index. Scores are rounded to the nearest thousand, standard deviations to the nearest hundredth.

AGOS PB-GOLD

P .411 .377
R .764 .607
F1 .535 .465
J .453 .530

Table 5: Mention detection performance of the Stanza
NP extraction baseline. Note. P = Precision; R = Recall;
F1 = F1 score; J = Jaccard index. Standard deviation
between brackets. Scores are rounded to the nearest
thousand, standard deviations to the nearest hundredth.

recurring errors in relation to structural ambigui-
ties, leading to the exclusion of relative clauses or
prepositional phrases, and the splitting of single
into multiple mentions or the merging of multi-
ple mentions into a single span. Furthermore, we
found instances of ambiguous pronoun usage to
be relatively frequent among errors, such as in the
phrases “let’s go for it” and “let’s do it”, in which
the use of “it” is referential, but it is not recognized
as such without additional context. Interestingly,
providing access to preceding messages ends up
resolving the inaccuracy for the former and not for
the latter, even though these seem to be very similar
cases on the surface. Conversely, we also observed
cases where usage of (pro)nouns was incorrectly
predicted to be referential. Again, some of these
errors were resolved by providing the model access
to the dialogue history.

6 Discussion

In this paper, we explored the potential of an
approach to mention detection (MD) in visually
grounded dialogue based on autoregressive lan-
guage modeling. Results from our experiments

on conversations from the visually grounded dia-
logue tasks A GAME OF SORTS (AGOS, Willem-
sen et al., 2022) and PHOTOBOOK (PB, Haber
et al., 2019) were promising, showing that a text-
only approach that involves the parameter-efficient
fine-tuning of LLMs to generate annotated repro-
ductions of utterances can be effective. Moreover,
we showed that providing the models with addi-
tional context from the dialogue history—that is,
any messages that preceded the utterance under
consideration—generally benefits performance. Al-
though these findings were largely consistent be-
tween the competing methods presented in this
work, within our experimental setup the genera-
tive approach to information extraction using the
fine-tuned, decoder-only LLAMA model was shown
to consistently outperform the sequence labeling
approach based on the fine-tuned, encoder-only
MODERNBERT.

Results from our cross-validation experiments
showed that the models, on average, achieved better
performance on the PB-GOLD than on the AGOS
dataset. The cross-dataset transfer experiments re-
vealed a notable performance gap between the two
datasets; fine-tuning on the AGOS data seemed to
result in the models being better able to generalize
beyond their specific conversational domain than
when fine-tuning on the PB-GOLD data. These
findings suggest that AGOS offers a more chal-
lenging testbed when it comes to MD, as it was
explored in this work, than PB-GOLD. Given that
the primary focus of the PB task is the correct iden-
tification of images, participants’ language use is
disproportionally reserved for referential purposes.
This was made apparent through a quantified char-
acterization of the PB-GOLD mentions, indicating
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that mentions made up nearly two-thirds of the lin-
guistic content of the dialogues. In contrast, with
image identification being a secondary objective,
mentions make up just shy of one-third of the lin-
guistic content of the AGOS dialogues. In addition,
mentions in the PB-GOLD dialogues are consider-
ably longer, on average, than those in the AGOS
dialogues. When qualitatively examining the men-
tions from both datasets, it becomes clear that the
incidence rate of mentions that resemble image
caption-like descriptions is notably higher for PB-
GOLD than for AGOS. By and large, our findings
suggest that AGOS offers its referring language
use in a richer linguistic context than PB-GOLD,
which aids the models’ ability to generalize.

That being said, it would be reasonable to as-
sume that the incidence rate of mentions in these
task-oriented dialogues from both datasets is high
compared to that of organic, non-task-oriented con-
versations. Conversations can go long stretches of
time without the mention of a visually perceivable
referent. Our approach relies heavily on there be-
ing exploitable regularities in the linguistic context.
The extent to which conversations with compara-
tively sparse mention occurrences, and that take
place outside of task-oriented settings, still exhibit
such actionable patterns is, as of yet, unclear. For
both AGOS and PB-GOLD, the probability that
a given linguistic expression (indirectly) points to
a referent that is visually perceivable by at least
one of the participants in the conversation is high,
simply as a consequence of the situational context,
as the images are the focal point of the conver-
sations. Discerning, from the linguistic context
alone, whether an RE has such a referent becomes
far more challenging, if not impossible, when the
configuration of the visual context of the conver-
sation is less constrained, more dynamic, and can-
not be anticipated ahead of time. In other words,
we may still be able to extract mention candidates
with a high degree of accuracy, but the number of
false positives—by which we here mean any can-
didates that currently have no visually perceivable
referents—is likely to be significantly higher; this
outcome reminds of the high recall settings favored
by aforementioned prior work on coreference reso-
lution.

Inevitably, a general solution to the problem
will require a cross-modal approach. Although
we make no assumptions regarding the manner of
encoding, the visual information must somehow
be incorporated to validate whether candidate men-

tions indeed have a referent in the visual context;
even when the linguistic context strongly implies
the existence of such a referent, we simply cannot
be certain without a review of the visual context.
Moreover, we are likely to see that end-to-end ap-
proaches will increasingly be favored over modular
systems when it comes to addressing downstream
tasks that have historically relied on some form of
MD, but for which MD is simply a means to an
end. Nevertheless, we expect that MD as a task in
and of itself will remain relevant for niche appli-
cations for the foreseeable future. For one, it may
continue to serve as a benchmark for the informa-
tion extraction capabilities of models under varying
conditions. Perhaps more interestingly, however,
are real-world applications, such as its use as an
information extraction tool for corpus linguistics.

Limitations

In this work, the focus has been on detecting REs
that have a (visually perceivable) referent in the vi-
sual context of a conversation. Only singletons and
mentions in an identity relation were considered,
contingent on their referent being one or more of
the images in the visual context. It is worth noting
that there are some consequential differences be-
tween the images used by AGOS and PB. Where
the focus of each AGOS image was on (an iconic
view of) one entity from some image category, PB
images depicted more complex scenes, purposely
featuring multiple entities from different image cat-
egories. Perhaps unsurprisingly, when the task in-
volves identification within a visually grounded
conversational context, we find that the more com-
plex the scene, the more frequently we have to
consider a bridging relationship between mentions
as a surrogate for identity. This highlights a compli-
cation with respect to the annotation of this domain
that becomes increasingly problematic: the noisier
(or more complex) the language use, the more am-
biguous the boundaries. We expect this to be even
more evident in unrestricted, spoken dialogue.

Regarding our cross-validation experiments, re-
sults were based on a five-fold split of the datasets.
The AGOS dataset has a preferred partitioning that
ensures minimal data leakage between the train-
ing and test data. For PB-GOLD, however, we
did not find a sensible, deterministic split, as even
when image domains were seemingly mutually ex-
clusive, in reality there were frequent intrusions
from other image categories. For instance, people—

57



which happens to be one of the author-defined im-
age categories—are present in the vast majority
of the photographs, often as salient entities, and
frequently referenced as a result. Although we do
not believe this has affected our overall conclu-
sions, the random splitting may have resulted in
inflated scores in the PB-GOLD cross-validation
experiments. In addition, the language used in the
dialogues from both datasets is exclusively English,
meaning the experiments reported in this paper do
not provide explicit insight into the extent to which
the approach generalizes to other languages.

Finally, we have evaluated the proposed ap-
proach with one LLM undergoing a parameter-
efficient fine-tuning regimen. We have not in-
vestigated performance differences between full-
parameter and parameter-efficient fine-tuning, nor
have we tested the extent to which other genera-
tive LLMs are able to perform the task. In addi-
tion, more exhaustive hyperparameter tuning has
the potential to improve results further. It is con-
ceivable that more optimal hyperparameters exist
that could narrow the observed performance gap
between LLAMA and MODERNBERT on this task.
However, it would mainly serve to underscore the
general importance of the linguistic context and
demonstrate the viability of either approach.
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A Hyperparameters

As a starting point for hyperparameter optimization,
we took note of hyperparameters reported in prior
work (e.g., Hu et al., 2022; Dettmers et al., 2023;
Warner et al., 2024), performing minimal tuning
mostly within suggested ranges.

Epochs 2
Batch size 8
Learning rate (LR) 1e-4
LR scheduler type cosine
Warmup ratio 0.1

LoRA r 16
LoRA α 16
LoRA dropout 0
LoRA target modules *_proj, lm_head

Table 6: Hyperparameters for QLoRA fine-tuning of
LLAMA 3.1 8B. We use default values if not otherwise
specified.

Epochs 4
Batch size 8
Learning rate 8e-5
Gradient accumulation steps 8
Warmup ratio 0.1
Weight decay 8e-6

Table 7: Hyperparameters for fine-tuning of MODERN-
BERT-large. We use default values if not otherwise
specified.

B Training example

The following is an example of a training sample
from the AGOS dataset—for a context window of
size 3—that was used to fine-tune LLAMA 3.1:

B: Clear, I think my second choice would
be the light grey one, which looks like in
old style.\nA: I agree, its bottom seems
to be pretty high as well.\nB: yeap!\nB:
then, for the third one, is the dark grey
one okay?\n\nB: then, for the third one,

is the dark grey one okay? -> B: then,
for the third one, is >> the dark grey <<
one okay?

Messages in the linguistic context are separated
by single newline characters (\n). Each message
is prepended with a token indicating the speaker
(either A or B). The message we want annotated is
separated from the linguistic context by two new-
line characters (\n\n). This message is followed
by an inference token (->). The inference token is
then followed by the annotated message, with span
boundary tokens indicating the start (>>) and end
(<<) of the mention span.
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