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Abstract

In this paper, we present a novel pipeline for
the XLLM Shared Task-III: Large Language
Model for Structural Reasoning (LLM-SR).
Our pipeline addresses key challenges in au-
tomatic process-reward training data construc-
tion, such as high manual annotation costs, lim-
ited accuracy of large models in structured data
processing, and dependency on auxiliary infor-
mation for validation. To overcome these lim-
itations, we first decompose the construction
process into extraction and validation phases.
Leveraging model-generated annotations, we
produce pseudo-labeled data and iteratively re-
fine model performance. Second, by analyzing
structured data patterns, we encode structural
constraints into a rule-based module and fine-
tune the model with Gradient Reward Policy
Optimization (GRPO), significantly improving
structured data extraction success rates. Finally,
we train the model to generate critical responses
that assess evidence-conclusion relationships,
thus enhancing validation reliability. Exper-
imental results demonstrate that our pipeline
outperforms models with an order of magnitude
more parameters and achieves the first position
on the task1.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in mathematical and log-
ical reasoning tasks, particularly when employ-
ing Chain-of-Thought (CoT) prompting to decom-
pose problems into multi-step reasoning processes
(Guo et al., 2025)(Yang et al., 2024)(Li et al.,
2024a)(Wang et al., 2024b). However, even state-
of-the-art models often produce unreliable interme-
diate reasoning steps, leading to cascading errors

1Codes: https://github.com/pipiPdesu/CoTParser.
†Work done during the internship at TeleAl.
∗These authors contributed equally to this work.
‡ Corresponding authors.

that compromise final outputs (Tyen et al., 2024).
To mitigate this issue, existing research has intro-
duced step-wise verification methods (Zeng et al.,
2023). For instance, process reward models (PRM)
can evaluate reasoning paths during training, iden-
tify erroneous steps, and offer precise corrective
feedback (Li et al., 2023). Alternatively, step-wise
analysis of CoT data from both correctness and
redundancy perspectives can generate high-quality
reasoning traces for training (Xia et al., 2025).
These approaches not only enhance reasoning relia-
bility but also improve overall data quality through
generating constructive critiques of flawed reason-
ing steps, thereby providing valuable optimization
signals for model refinement.

However, developing such step-wise verification
models faces three fundamental challenges:

• The scarcity of high-quality step-level anno-
tated reasoning datasets.

• The limited capability of current models in
both processing structural inputs and con-
structing regular outputs.

• The accuracy in justifying the logical validity
step by step.

Acquiring high-quality training data requires
labor-intensive step-by-step annotation of reason-
ing processes with correctness feedback. For in-
stance, the PRM800K dataset (Lightman et al.,
2023) utilizes expert annotators to provide process
supervision annotations. This heavy dependence
on skilled annotators significantly hinders both the
development and practical application of step-wise
verification models.

Moreover, existing verification approaches typi-
cally employ simplistic segmentation method (e.g.
explicit "Step:" markers, double line breaks, or pe-
riods) to parse reasoning steps (Zhang et al., 2024).
Such rigid segmentation fails to capture the nu-
anced compositional structure inherent in natural
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CoT reasoning. This limitation fundamentally con-
strains the verification fidelity in real-world appli-
cations, where reasoning complexity often exceeds
template-based patterns.

Additionally, verification models struggle with
complex problems, as even large-scale models fre-
quently fail to accurately determine step correct-
ness, revealing critical limitations in current verifi-
cation paradigms. To generate high quality dataset,
Marh-Shepherd (Wang et al., 2024a) uses rejec-
tion sampling to generate multiple reasoning paths
starting from certain steps, approximating step cor-
rectness based on the accuracy of the final answer.
rStar-Math (Guan et al., 2025) constructs positive-
negative sample pairs to train PPM, guiding the
model towards correct solutions. Although these
methods effectively create step-level supervision
data and improve PRM capabilities, their data pri-
marily consist of synthetic samples and require
substantial computational resources and additional
messages for construction. More importantly, they
cannot accurately parse the naturally occurring CoT
processes.

To tackle these challenges, XLLM Shared Task-
III: LLM for Structural Reasoning requires partici-
pants to extract all conditions, statements, and their
corresponding evidence from given problems and
associated CoT processes, then determine whether
the evidence sufficiently supports each extracted
statement-evidence pair. This approach achieves
fine-grained CoT analysis to enhance the genera-
tion of more coherent and accurate reasoning pro-
cesses.

In this work, we propose a fine-grained anal-
ysis pipeline for CoT reasoning processes. The
method decomposes the task into two components:
extraction and verification. For the extraction task,
following the construct of AIFlow (Shao and Li,
2025), we identify the problem conditions, state-
ments, and supporting evidence from the question
and CoT process. To address data scarcity, we
first employ prompt engineering and preliminary
fine-tuning to generate high-quality pseudo-labels.
These extraction patterns are then formalized as
prior knowledge into rule-base reward, and the
model is further trained using GRPO (Shao et al.,
2024) to streamline the extraction process and im-
prove extraction accuracy. For the verification task,
inspired by positive-incentive noise (Li, 2022), we
reformulate it as generating concise yet effective
critiques for statement-evidence pairs to determine
whether the evidence supports the statement. Our

method achieved first place in this competition.
While maintaining low resource consumption, our
model improves extraction capability by 20% com-
pared to baselines. Our findings demonstrate the
feasibility of using prior knowledge as rule reward
to enhance model performance on specific NLU
tasks like text extraction and recognition, as well
as transforming verification tasks into critique gen-
eration tasks to improve verification capabilities of
smaller models.

2 Related work

LLMs for Information Extraction. The emer-
gence of large language models has introduced new
solutions and research directions for information
extraction. (Wu et al., 2024) proposed the Multi-
stage Structured Entity Extraction method, which
enhances effectiveness and efficiency by break-
ing down the task. PIVOINE (Lu et al., 2023)
focuses on the issue of Open-world IE, improv-
ing the model’s instruction-following ability by
constructing the INSTRUCTOPENWIKI dataset,
and demonstrates excellent generalization to un-
seen instructions. LLMs for Text2SQL (Li et al.,
2024b)(Wu et al., 2025) also provide a new avenue
for exploring their role in information extraction.
Step Verification for LLMs. To enable fine-
grained analysis of CoT reasoning, existing stud-
ies have attempted to evaluate model performance
through reasoning process inspection. RECE-
VAL (Prasad et al., 2023) proposes reference-free
metrics based on entailment relations and point-
wise variational information to assess step correct-
ness and information gain. Parser-based method
(Saparov and He, 2023) parses model-generated
CoT into symbolic proofs for formal analysis.
Other works employ LLMs themselves for cor-
rectness verification. Inspired by RFT (Xia et al.,
2025), most approaches sample multiple reasoning
paths to inversely estimate step validity. (Zhang
et al., 2024) uses correct answers to guide models
in critiquing their own incorrect responses, then
filters high-quality critiques to train verification
models. (Wan et al., 2024) determines answer cor-
rectness through multi-path consistency checks and
identifies erroneous steps though multi-agent de-
bate. (Xia et al., 2025) fine-tunes models to score
reasoning steps from both validity and redundancy
perspectives. (Tyen et al., 2024) observes LLMs’
underperformance in error localization tasks and
trains small classifiers to identity errors. (Zeng
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et al., 2023) introduces meta-reasoning to evalu-
ate error-correction capabilities through recursive
reasoning analysis.
Process reward model (PRM) dataset. In rein-
forcement learning, PRMs provide step-level feed-
back to align LLM reasoning with human expec-
tations. For generating process-wise supervision
data, PRM800K (Lightman et al., 2023) relies on
manual annotation. Math-Shepherd (Wang et al.,
2024a) automates this via rejection sampling: gen-
erating multiple reasoning paths from intermediate
steps and assuming step correctness if most paths
yield correct answers. rStar-Math (Guan et al.,
2025) constructs positive-negative sample pairs to
train Process Preference Model.

3 Methodology

In this section, we first introduce the detailed task
description (Section 3.1), followed by presenting
the complete extraction pipeline architecture along
with the specific extraction methods for each mod-
ule and the approach for generating pseudo-labeled
datasets (Section 3.2). Subsequently, we elaborated
on the application of GRPO for the extraction task
(Section 3.3) and the method of employing verifica-
tion to validate the statement-evidence pairs (Sec-
tion 3.4). Our final solution is an LLM-powered
pipeline for structured reasoning data construction,
as shown in Figure 1.

3.1 Details of Challenge

This task requires participants to generate "ques-
tion parsing" and "cot parsing" based on the con-
tent of "question" and "cot" for each given mes-
sage. Specifically, the task is divided into two parts:
Question Parsing and CoT Parsing. For Question
Parsing, all relevant conditions required to solve
the problem must be extracted from the given ques-
tion text. For CoT Parsing, all statement-evidence
pairs need to be extracted, and it must be logically
verified whether the statement can be inferred from
the evidence. Participants are only allowed to use
Llama-3-8B-Instruct (Grattafiori et al., 2024) as the
backbone model.

This task has released only 24 annotated exam-
ples as the training set, with questions sourced from
LogiQA (Liu et al., 2021) and CoT generated from
Llama3-8b-instruct.2 Additionally, there are 50
test cases for evaluation set A that only release the

2All data can be found in https://huggingface.co/
datasets/shuyi-zsy/LLMSR/tree/main/llmsr.

quires and 97 test examples for evaluation set B.
Appendix A shows part of the annotated examples.

3.2 Extraction Pipeline

For this task, accurately extracting the required in-
formation from the given question and CoT process
is of vital importance. The task baseline proposes
a method based on in-context learning for extrac-
tion and verification. This method employs few-
shot learning to extract key points from the input
question and CoT, directly outputs all components
required. However, due to limitations in model
size and the availability of annotated data, we be-
lieve that this method is difficult to further optimize.
Therefore, we consider decomposing the entire task
into two independent parts: Question Parsing and
CoT Parsing. For CoT Parsing, we further break
it down into Statement Extraction, Evidence Ex-
traction, and Statement-Evidence Pair Verification.
Subsequent steps may rely on the results of previ-
ous steps, meaning that this pipeline needs to run
in a serial manner. However, optimization of dif-
ferent parts can be carried out independently. To
achieve a higher score, we need to minimize the
extraction of incorrect information during the ex-
traction process to ensure a perfect match between
the extracted content and the ground truth.
Question parsing Inspired by the data extraction
strategy in REDSTONE (Chang et al., 2024), we di-
vide the extraction approach into two components:
extract and filter. First, the model performs sen-
tence segmentation on the entire question, treating
enumerated conditions as separate sentences. Sub-
sequently, we filter all sentence segments that con-
tain useful information to solve the problem. No-
tably, some conditions may appear in the question’s
interrogative clause (e.g. "If G goes to the United
States, which of the following must be true?" pro-
vides the condition "G goes to the United States").
For such cases, we further extract the embedded
conditions while removing irrelevant lexical items.
Statement extraction Since we cannot directly
divide the steps based on explicit markers, it be-
comes challenging to estimate the number of state-
ments in the CoT process. To figure out this issue,
we divide each natural reasoning step into three
substeps:

• Summarization of given conditions.

• Derivation of new information from known
conditions (corresponding to evidence).
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Figure 1: Architecture of CoT parsing pipeline. The pipeline consists of four key modules. The Question Parsing
Module receives the question, extract all sentences and filter out valid conditions. The Statement Parsing Module
takes the CoT process, divides it into multiply steps, then extract valid statements from each step. The Evidence
Extraction Module process all statements and the CoT process to identify corresponding evidence. The verification
Module takes all statement-evidence pairs, justify their validity.

• Generation of new conditions or conclusions
(corresponding to statements).

Following this principle, we first instruct the
model to segment the entire CoT process into these
refined steps. This ensures that each reasoning step
typically contains at most 0-1 statements, allow-
ing the extraction model to focus on small contex-
tual segments and significantly reducing extraction
complexity. Additionally, this decomposition of
natural steps enables us to expand the original 24
data samples 4-5 times, thereby facilitating the con-
struction of high-quality fine-tuning data. After
fine-tuning, the model’s extraction capability is fur-
ther improved.
Evidence extraction Initially we considered ex-
tracting evidence from the pre-segmented steps
when identifying statements. However, we ob-
served that certain pieces of evidence often span
multiple steps. For instance, a concluding state-
ment such as “From above, we can conclude” re-
quires all previously obtained valid statements as
supporting evidence. Moreover, extracting evi-
dence directly from individual steps may introduce
error propagation caused by incorrect step segmen-
tation. Therefore, for each extracted statement,
we need to search for its corresponding evidence
throughout the entire CoT process. Since state-

ments typically originate from the original text and
their supporting evidence usually appears near clear
discourse markers (e.g., connectives or adverbs),
this provides sufficient context for the model to
accurately locate the relevant evidence.

To further enhance the performance of each
module, we consider utilizing the aforementioned
pipeline to generate more pseudo-labeled data.
First, we sample questions from LogiQA. Subse-
quently, to ensure that the synthesized CoT pro-
cesses maintain distributional consistency with the
task’s given data, we sample one question-answer
pair each from the training set and evaluation set A,
serves as one-shot provided to Llama3-8B-Instruct
as reference for generating responses.

3.3 Utilize GRPO for Extraction

Due to the insufficient extraction accuracy of this
pipeline, the pseudo-labeled dataset generated by
this method can hardly provide substantial improve-
ments to the model. We discovered that instead of
using human annotation experience as prompts for
model learning or allowing the model to memorize
patterns through more data, we can incorporate
these as rules to provide rewards in GRPO. For
statement extraction, we summarized the following
potential guidelines from the training dataset:
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• The statement must originate from original
text

• The statement must end with a period

• The statement length must be no fewer than 4
words and no more than 50 words

• The statement must not contain connectives
such as “since” or “there is”

• The statement must not duplicate conditions
extracted from the question

• The statements should appear in sequence

• Because there must be evidence in between,
no two statements should be consecutive in
the original CoT

These guidelines can serve both as rules for
manual annotation and as directions for model ex-
ploration during reinforcement learning. When
the model’s response violates these rules, it re-
ceives a negative reward, and only when it perfectly
matches the correct answer does it receive a posi-
tive reward. This approach encourages the model
to learn the human method of data extraction.

After fine-tuning with GRPO, the model can
directly extract all statements from the CoT pro-
cess, maintaining accuracy while reducing interme-
diate computational overhead. This method demon-
strates the potential of incorporating prior rules into
GRPO’s rule-based rewards to enhance LLM per-
formance on traditional NLP tasks.

3.4 Verification

The objective of this part is to determine whether
each extracted statement can be inferred from its
corresponding evidence. For this problem, we
make the following assumptions:

1. The model needs to rely on all known condi-
tions of the question to determine whether the
statement holds. When judging whether the
evidence supports the statement, the model
should first determine whether the statement
is valid in the context of the question before
assessing whether the evidence sufficiently
supports the statement.

2. All statement-evidence pairs are independent.
When judging whether a statement holds, only
its corresponding evidence is needed, not

other evidence or statements from the con-
text. The evidence should consist of all the
sentences that can prove the statement. If a
statement requires additional evidence beyond
its corresponding evidence, it indicates that
the evidence is not sufficient to fully support
the statement.

3. Judging statement-evidence pairs using the
model should not be a simple binary classifica-
tion task but should fully leverage the model’s
reasoning process. However, due to the lim-
itations of the PRM function, the reasoning
process should not be overly lengthy.

Based on these assumptions and inspired by the
approach in CFT (Wang et al., 2025) of criticizing
noise, we believe that the output of the Verification
model should be a critique with justification of the
statement-evidence pair. The critique part should
directly point out the reasons why the evidence sup-
port or does not support the statement and provide
the final justification based on these reasons. We
used DeepSeek v3-0324 (Liu et al., 2024) to gener-
ate a critique dataset from the extracted dataset and
fine-tuned the discriminative model accordingly.
The success rate after fine-tuning remained similar
to that of DeepSeek v3, indicating that training the
model to criticize noise to judge the correctness
of reasoning steps is effective, and the model can
acquire this ability with limited data.

4 Experiment

4.1 Setup

Pipeline Overview Our final pipeline operates
as follows: For each question, the model first ex-
tracts all potential conditions followed by a filtering
module. For statement-evidence pairs, the model
directly extracts all statements from the CoT pro-
cess. After removing duplicates with the extracted
conditions, it searches for corresponding evidence
in the CoT for each statement. Finally, a verifica-
tion model justifies each statement-evidence pair.
Parameter Settings We trained four Llama3-8B-
Instruct models for this pipeline: condition extrac-
tion, statement extraction, evidence extraction and
verification. All models were full parameter fine-
tuned for 3 epochs at a learning rate of 1e−5 using
pseudo-labeled data generated by above pipeline.
The verification model training data outputs were
produced by DeepSeek V3-0324. During inference,
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Method/Team Question(%) Statement(%) Evidence(%) Reasoning(%)
Baselines

ICL(Llama3-8b-Instruct) 73.01 42.40 18.10 10.32
ICL(Qwen2-7b-Instruct) 69.98 42.1 15.09 8.51
ICL(Telechat2) 72.18 46.39 16.82 7.71
ICL(DeepSeek-R1) 81.87 44.84 12.42 10.79
dcchen(2nd) 78.53 54.31 23.57 15.71
blazerblade(3rd) 76.7 40.44 11.32 6.20
TeleAI(Ours) 81.2 55.07 22.44 17.09

Table 1: Comparison of top3 teams with our submission, along with baseline method of different models.

we used rejection sampling to obtain N = 31 sam-
ples from the verification model to determine the
final results.
Evaluation Metrics We assess extracted condi-
tions, statements, and evidence using both semantic
and lexical similarity against ground truth. Seman-
tic similarity is computed using nli-deberta-v3-base
(He et al., 2021)(Liu et al., 2023), while lexical
similarity uses METEOR scores. The matching
score is the geometric mean of these two measures.
Thresholds are set at 0.95 for question parsing and
0.9 for CoT parsing - only scores exceeding these
thresholds are considered matches. For evidence
evaluation, we only consider evidence paired with
matched statements. A statement-evidence pair
is verified as correct only when both components
match. The final evaluation metric is the macro F1
score across all four components.
Baseline We adopt the provided in-context learn-
ing method as our baseline framework. For consis-
tency with the task requirements, we evaluated four
baseline models: Llama3-8B-Instruct (Grattafiori
et al., 2024), Qwen2-7B-Instruct (Yang et al.,
2024), Telechat2 (He et al., 2024) and DeepSeek-
R1 (Guo et al., 2025). All models were tested
under identical experimental conditions to ensure
fair comparison.

4.2 Main Result

Table 1 shows the comparison of our solution with
the top three other teams and the baseline. Our
solution achieved the highest scores in Statement
and Reasoning parts, maintaining the best overall
task performance. Since we failed to extend the
reinforcement learning method to evidence extrac-
tion, the corresponding score was slightly lower
than the highest score. However, our method still
achieved a high Reasoning score while maintaining
a small number of extracted statement-evidence

pairs, which proves that our verification model is
more powerful than what the score reflects.

4.3 Ablation

We conducted ablation studies to verify the ef-
fectiveness of each newly added module in the
pipeline. Since some modules are only effective for
certain subtasks among the four subtasks, we only
list the evaluation of the parts affected by adding
a particular module. The experimental results are
shown in Table 2.

Compared to directly using the model for content
extraction, employing an optimized pipeline for
step-by-step extraction and filtering significantly
enhances the success rate of question and state-
ment extraction. After post-training with GRPO,
the success rate of statement extraction is notably
improved. Benefiting from an increased base for
extracting statements, the evidence score also in-
creases. We trained the model to use critique for
verification, leading to a substantial improvement
in reasoning accuracy. Our ablation study demon-
strates the feasibility of LLM with GRPO to per-
form traditional NLU tasks, and for the model’s
verification process, learning to criticize statement-
evidence pairs is easier to enhance verification ac-
curacy than directly justify their validity.

5 Conclusion

In this article, we propose an effective method for
the XLLM Shared Task-III in LLM for Structural
Reasoning. We present a novel pipeline for fine-
grained analysis of CoT processes that achieves
extraction and verification performance compara-
ble to state-of-the-art models while maintaining
low resource requirements. Our work demonstrates
GRPO’s potential for enhancing LLM performance
on traditional NLU tasks and validates the feasibil-
ity of using critique to develop model verification
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Method Question(%) Statement(%) Evidence(%) Reasoning(%)
Directly Extraction and Verification 61.19 37.09 15.02 8.11
+ Step-wise Extraction Pipeline 81.20 46.81 16.74 5.45
+ Tuned with GRPO 55.07 22.44 4.68
+ Critique Verification 17.09

Table 2: Ablation results on Test set A.

capabilities. The proposed framework opens new
possibilities for structured reasoning analysis in
resource-constrained scenarios while maintaining
competitive accuracy, with future work planned to
explore applications to broader reasoning tasks and
further optimization of the verification component.

Limitations

Our approach still has some limitations. First, the
models are trained exclusively on pseudo-labeled
data, whose inherent accuracy constraints impose
an upper bound on the extraction and verification
performance of the entire pipeline. Second, our
experiments are conducted solely on the LogiQA
dataset with CoT processes generated by Llama3-
8B-Instruct, without validation on other types
of chain-of-thought datasets or different LLM-
generated reasoning paths. These limitations sug-
gest directions for future improvements in data
quality and generalization testing.
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A CoT Parsing Example

{
"question ": "There are 7

outstanding students G, H, L, M, U, W
and Z in a school.During the summer
vacation , the school will send them to
the United Kingdom and the United

States for inspection.The school has
only 7 students participating in this
activity , and each person happens to
go to one of these two countries.
Considering the specialty of each
student , this activity must meet the
following conditions? (1) If G goes to
the UK, then H To the United States

.(2) If L goes to the UK, both M and U
go to the US......" ,

"question_parsing ": [
"The school has only 7

students participating in this
activity , and each person happens to
go to one of these two countries",

"If G goes to the UK, then H
To the United States",

"If L goes to the UK, both M
and U go to the US",

......
],
"answer ": "b",
"cot": "Since G goes to the United

States , we need to analyze the
conditions that follow. Condition (1)
is not applicable since G is going to
the US. Condition (2) is also not
applicable since L’s destination is
not specified ......"

"cot_parsing ": [
{

"statement ": "Condition
(1) is not applicable",

"evidence ": "G is going to
the US",

"Verification ": "true"
},
{

"statement ": "Condition
(2) is also not applicable",

"evidence ": "L’s
destination is not specified",

"Verification ": "true"
},
.......

],
},
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