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Abstract

Large language models (LLMs) have achieved
remarkable success in natural language process-
ing (NLP), but they often struggle to capture
explicit linguistic structures and world knowl-
edge. To address this limitation, we propose a
hybrid model that integrates LLMs with graph
neural networks (GNNs) to inject structured
knowledge into NLP tasks. Our approach lever-
ages the strengths of both components: LLMs
provide rich contextual representations, while
GNNs encode explicit structural priors from
sources such as dependency trees, Abstract
Meaning Representations (AMRs), and knowl-
edge graphs. We evaluate the hybrid model on
a diverse set of tasks, including semantic pars-
ing, multi-hop question answering, text sum-
marization, commonsense reasoning, and de-
pendency parsing. Experimental results demon-
strate consistent improvements over both stan-
dalone baselines and state-of-the-art methods,
with relative gains of up to 2.3% in Exact Match
scores for multi-hop QA and 1.7% in accuracy
for commonsense reasoning. Ablation studies
and sensitivity analyses further highlight the
importance of balancing contextual and struc-
tural information. By bridging the gap between
unstructured textual data and structured knowl-
edge, our work advances the state of the art in
NLP and paves the way for more interpretable
and robust language models.

1 Introduction

Models like GPT-3 (Brown et al., 2020), BERT
(Devlin et al., 2019), and T5 (Raffel et al., 2020)
have demonstrated remarkable capabilities in un-
derstanding and generating human-like text. How-
ever, despite their successes, LLMs often struggle
to capture explicit linguistic structures, such as
syntactic dependencies or semantic relationships,
which are critical for tasks requiring structured rea-
soning (Liu et al., 2021). This limitation raises
an important question: Can we enhance LLMs by

integrating structured knowledge into their archi-
tectures?

In this paper, we propose a hybrid model
that combines LLMs with graph neural networks
(GNNs) to inject structured knowledge into NLP
tasks. Our approach leverages the strengths of both
components: LLMs provide rich contextual rep-
resentations, while GNNs encode explicit struc-
tural priors from sources such as dependency trees,
Abstract Meaning Representations (AMRs), and
knowledge graphs. By fusing these representations,
our model achieves superior performance on tasks
requiring both linguistic structure and world knowl-
edge, such as semantic parsing, multi-hop question
answering, and commonsense reasoning.

The motivation for this work stems from the ob-
servation that structured data plays a crucial role
in many NLP applications. For example, AMRs
have been shown to improve semantic parsing (Cai
et al., 2020), while knowledge graphs like Con-
ceptNet enhance commonsense reasoning (Speer
et al., 2017). Despite the success of structured ap-
proaches in pre-LLM eras, their integration with
modern LLMs remains underexplored. Our work
bridges this gap by demonstrating how structured
knowledge can be effectively injected into LLMs
via GNNs, leading to improved interpretability, ro-
bustness, and task-specific performance.

This paper makes three key contributions: (1)
We propose a novel hybrid architecture that inte-
grates LLMs with GNNs for structured knowledge
injection; (2) We evaluate our model on a diverse
set of tasks, including semantic parsing, summa-
rization, and commonsense reasoning, achieving
state-of-the-art results; and (3) We conduct abla-
tion studies and sensitivity analyses to gain insights
into the model’s behavior and limitations. Through
these contributions, we aim to advance the under-
standing of how structured knowledge can comple-
ment the capabilities of LLMs in the modern NLP
landscape.
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2 Literature Review

The integration of structured knowledge into NLP
systems has long been a cornerstone of research in
computational linguistics. Early efforts focused on
rule-based methods and statistical models, which
relied heavily on handcrafted features and anno-
tated datasets (Manning and Schütze, 1999). With
the advent of deep learning, attention-based archi-
tectures like transformers (Vaswani et al., 2017)
enabled end-to-end learning of contextual represen-
tations, reducing the reliance on explicit structural
annotations. However, recent studies have high-
lighted the limitations of purely surface-level ap-
proaches, particularly in tasks requiring structured
reasoning (Liu et al., 2021).

One promising direction is the use of graph neu-
ral networks (GNNs) to encode structured data.
GNNs have achieved significant success in do-
mains such as social network analysis (Wu et al.,
2021), molecular property prediction (Gilmer et al.,
2017), and NLP tasks involving graphs, such as de-
pendency parsing (Dozat and Manning, 2017) and
AMR generation (Cai et al., 2020). For example,
Zhang et al. (2020) demonstrated that GNNs could
effectively capture hierarchical relationships in text,
improving performance on tasks like relation ex-
traction and event detection. Similarly, (Wang et al.,
2021) proposed a GNN-based framework for en-
coding discourse graphs, achieving state-of-the-art
results on narrative understanding tasks. We have
also studied similar approaches in (Wang et al.,
2024; Zhang and Sen, 2024; Peng et al., 2025; Yi
et al., 2025).

Another line of research explores the integra-
tion of external knowledge into LLMs. Knowl-
edge graphs like ConceptNet (Speer et al., 2017)
and Wikidata (Vrandečić and Krötzsch, 2020) have
been widely used to augment NLP models with
factual and commonsense information. Recent
work has focused on combining knowledge graphs
with LLMs through techniques such as retrieval-
augmented generation (Lewis et al., 2020b) and
knowledge-aware fine-tuning (Petroni et al., 2020).
For instance, He et al. (2021) introduced a method
for injecting knowledge graph embeddings into
transformer layers, achieving significant improve-
ments in question answering and fact verification
tasks. We have also studied similar work like
(Wang et al., 2025; Ding et al., 2025a).

Despite these advances, the combination of
LLMs and GNNs remains relatively unexplored.

A notable exception is the work of Huang et al.
(2021), who proposed a hybrid model for incor-
porating dependency parse trees into LLMs using
GNNs. Their results demonstrated that structured
priors could enhance the syntactic understanding of
LLMs, particularly in low-resource settings. Sim-
ilarly, Li et al. (2022) explored the use of GNNs
to encode AMRs for semantic parsing, achieving
state-of-the-art performance on the AMR Bank
dataset.

Our work builds on these foundations by propos-
ing a generalizable framework for integrating struc-
tured knowledge into LLMs via GNNs. Unlike
prior approaches, which focus on specific tasks or
types of structured data, our model is designed to
handle a wide range of tasks and datasets, making
it highly versatile. Furthermore, our experiments
include ablation studies and sensitivity analyses,
providing deeper insights into the contributions of
each component.

3 Methodology

Our proposed hybrid model combines the strengths
of LLMs and graph neural networks (GNNs) to
inject structured knowledge into NLP tasks. The ar-
chitecture consists of three main components: (1) a
pretrained LLM for contextual representation learn-
ing, (2) a GNN for encoding structured data, and
(3) a fusion mechanism that integrates the outputs
of the two components. Below, we describe each
component in detail, including its mathematical
formulation, key parameters, and how it relates to
prior work in the literature.

The encoded structure refers to a vector repre-
sentation derived from the Abstract Meaning Rep-
resentation (AMR) graph using a Graph Neural
Network (GNN). This vector captures the semantic
relationships and hierarchical dependencies within
the graph, enabling the model to leverage structural
information effectively.

3.1 Pretrained Large Language Model (LLM)
The backbone of our model is a pretrained LLM,
such as BERT (Devlin et al., 2019) or T5 (Raffel
et al., 2020), which provides rich contextual em-
beddings for input text. These embeddings capture
syntactic, semantic, and discourse-level informa-
tion from raw text, making them highly effective
for downstream NLP tasks. Mathematically, the
LLM can be represented as:

HLLM = fLLM(X; θLLM) (1)
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where X is the input text tokenized into sub-
word units, HLLM ∈ RT×dLLM is the contextual
embedding matrix for T tokens, with each token
represented by a dLLM-dimensional vector, fLLM
is the transformer-based architecture of the LLM,
and θLLM represents the pretrained parameters of
the LLM. This component aligns with prior work
on transformers (Vaswani et al., 2017), which intro-
duced the self-attention mechanism for capturing
long-range dependencies in text. However, while
transformers excel at learning contextual repre-
sentations, they often struggle to encode explicit
structural relationships (Liu et al., 2021). To adapt
the LLM to specific tasks, we fine-tune it on task-
specific objectives. For example, in summarization,
the LLM is trained to generate concise summaries,
while in dependency parsing, it predicts syntactic
relations.

3.2 Graph Neural Network (GNN) for
Structured Data Encoding

To incorporate explicit structural priors, we use a
GNN to encode structured data such as Abstract
Meaning Representations (AMRs), dependency
parse trees, or knowledge graphs. The GNN oper-
ates on graph-structured inputs, where nodes rep-
resent entities or concepts, and edges represent re-
lationships between them. Following Gilmer et al.
(2017), we adopt a message-passing framework to
propagate information across the graph. The math-
ematical formulation of the GNN is as follows:

h
(l+1)
i = σ


 ∑

j∈N (i)

W(l) · h(l)
j + b(l)


 (2)

where h
(l)
i ∈ RdGNN is the hidden representation

of node i at layer l, N (i) is the set of neighbors of
node i, W(l) ∈ RdGNN×dGNN and b(l) ∈ RdGNN are
learnable parameters, σ is a nonlinear activation
function (e.g., ReLU), and dGNN is the dimension-
ality of the GNN embeddings. After L layers of
message passing, the node representations are ag-
gregated to produce a fixed-size graph embedding
HGNN ∈ RdGNN using a readout function:

HGNN = greadout({h(L)
i |i ∈ V}) (3)

where V is the set of all nodes in the graph, and
greadout could be a mean pooling, max pooling, or
attention-based aggregation function. For exam-
ple, in AMR generation, the GNN encodes the

AMR graph into a vector representation; in com-
monsense reasoning, the GNN encodes paths from
ConceptNet to enrich the model’s understanding
of relationships between concepts; and in depen-
dency parsing, the GNN encodes dependency trees
to guide the model in predicting syntactic struc-
tures. This component builds on prior work in
graph neural networks (Wu et al., 2021), which
have demonstrated their effectiveness in encoding
structured data.

3.3 Fusion Mechanism
The outputs of the LLM (HLLM) and GNN (HGNN)
are combined using a fusion mechanism that bal-
ances their contributions. Specifically, we explore
three fusion strategies:

• Feature Concatenation: The embeddings
from the LLM and GNN are concatenated
and passed through a feedforward network:

Hfused = FFN([HLLM;HGNN]) (4)

• Attention-Based Fusion: A multi-head atten-
tion mechanism (Vaswani et al., 2017) dynam-
ically weights the contributions of the LLM
and GNN based on the task requirements:

Hfused = Attention(HLLM,HGNN) (5)

• Residual Connections: To retain the
strengths of both components, we add residual
connections:

Hfused = HLLM +Wres ·HGNN (6)

The fused representation Hfused is then passed
to a task-specific output layer (e.g., a classifier for
QA, a decoder for summarization). This fusion
strategy is inspired by prior work on combining het-
erogeneous representations (He et al., 2021), which
demonstrated the benefits of integrating structured
and unstructured knowledge.

3.4 Key Parameters and Tuning Strategies
Several parameters affect the performance of our
hybrid model. Below, we discuss these parameters
and the strategies used to tune them:

- Number of GNN Layers (L): Increasing L
allows the GNN to capture higher-order relation-
ships in the graph but may lead to overfitting. We
perform grid search over L ∈ {2, 3, 4} and select
the value that maximizes validation performance.
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- Dimensionality of Embeddings (dLLM,
dGNN): Larger dimensions improve representa-
tional capacity but increase computational cost. For
LLMs, we use pretrained dimensions (e.g., 768
for BERT-base). For GNNs, we experiment with
dGNN ∈ {128, 256, 512}.

- Fusion Mechanism: The choice of fusion strat-
egy determines how effectively the model leverages
both components. We compare feature concatena-
tion, attention-based fusion, and residual connec-
tions on the validation set.

- Learning Rate and Batch Size: These hyper-
parameters control the optimization process. We
use a learning rate scheduler and tune batch sizes
in {16, 32, 64}.

- Regularization Techniques: Dropout (Srivas-
tava et al., 2014) and weight decay prevent overfit-
ting. We apply dropout rates in {0.1, 0.2, 0.3} and
weight decay coefficients in {1e−4, 1e−5}.

For each task, we initialize the parameters based
on the characteristics of the dataset. For exam-
ple, in semantic parsing, we prioritize higher-
dimensional GNN embeddings to capture complex
AMR structures, while in summarization, we em-
phasize attention-based fusion to ensure fluency
and coherence.

3.5 Training Strategy

We adopt a multitask learning approach to train
the hybrid model. During training, the LLM is
fine-tuned on task-specific objectives (e.g., cross-
entropy loss for classification tasks), the GNN is
trained to encode structured data using supervised
learning (e.g., predicting missing edges in knowl-
edge graphs), and the fusion mechanism is opti-
mized to align the outputs of the LLM and GNN
with the ground truth labels. Additionally, we em-
ploy regularization techniques such as dropout (Sri-
vastava et al., 2014) and weight decay to prevent
overfitting. For tasks requiring structured outputs
(e.g., AMR generation), we use structured loss
functions like Smatch (Cai and Knight, 2013) to
measure performance during training. This training
strategy builds on prior work in multitask learning
(Liu et al., 2021) and knowledge injection (He et al.,
2021), which demonstrated the benefits of jointly
optimizing multiple components. Similar training
strategy can be found in (Zhong and Wang, 2025;
Ding et al., 2025b) as well.

3.6 Relation to Literature Reviewed

Our methodology integrates ideas from several
strands of research: the use of transformers for
contextual representation learning (Vaswani et al.,
2017), the application of GNNs for encoding struc-
tured data (Gilmer et al., 2017; Wu et al., 2021), the
combination of structured and unstructured knowl-
edge (He et al., 2021; Zhang et al., 2020), and
multitask learning and regularization techniques
(Liu et al., 2021; Srivastava et al., 2014). By syn-
thesizing these approaches, our model bridges the
gap between unstructured textual data and struc-
tured knowledge, advancing the state of the art in
NLP.

Each dataset serves as a testbed for evaluating
specific aspects of our hybrid model. For example,
in AMR Bank, the GNN encodes gold-standard
AMR graphs, while the LLM generates sentence
representations. The fusion mechanism combines
these representations to predict AMRs for unseen
sentences, evaluated using Smatch (Cai and Knight,
2013). In HotpotQA, the GNN encodes discourse
graphs derived from input documents, capturing
relationships between sentences and entities. The
LLM provides contextual embeddings for the ques-
tion and document, and the fusion mechanism in-
tegrates these representations to predict answers,
evaluated using Exact Match (EM) and F1 scores
(Yang et al., 2018). Similarly, in CNN/DailyMail,
the GNN encodes discourse graphs representing
the structure of the input article, while the LLM
generates abstractive summaries. The fusion mech-
anism ensures that the generated summaries are
both fluent and structurally coherent, evaluated us-
ing ROUGE scores (Lin, 2004). By leveraging
these datasets, we aim to demonstrate the versatil-
ity and effectiveness of our hybrid model across a
wide range of NLP tasks.

4 Experiments

4.1 Datasets

We evaluate our hybrid model on several datasets
that require both linguistic structure and world
knowledge. Below are the datasets used in our
experiments:

- AMR Bank
Source: https://amr.isi.edu/
Description: A dataset of sentences annotated with
Abstract Meaning Representations (AMRs), which
capture semantic structures as directed acyclic
graphs (Banarescu et al., 2013).
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Tasks: Semantic parsing, commonsense reasoning.
- HotpotQA

Source: https://hotpotqa.github.io/
Description: A question-answering dataset requir-
ing multi-hop reasoning over multiple documents
(Yang et al., 2018).
Tasks: Multi-hop question answering, fact retrieval.

- CNN/DailyMail
Source: https://github.com/abisee/
cnn-dailymail
Description: A large-scale summarization dataset
consisting of news articles paired with human-
written summaries (Nallapati et al., 2016).
Tasks: Abstractive and extractive summarization.

- ConceptNet
Source: https://conceptnet.io/
Description: A multilingual knowledge graph en-
coding commonsense relationships between con-
cepts (Speer et al., 2017).
Tasks: Commonsense reasoning, knowledge-
augmented NLP.

- Universal Dependencies (UD)
Source: https://universaldependencies.
org/
Description: A collection of treebanks annotated
with dependency parse trees, covering multiple
languages (Nivre et al., 2016).
Tasks: Dependency parsing, syntactic structure
modeling.

4.2 Role of Datasets in Evaluating the Hybrid
Model

Each dataset serves as a testbed for evaluating spe-
cific aspects of our hybrid model:

• AMR Bank: The GNN encodes gold-
standard AMR graphs, while the LLM gen-
erates sentence representations. The fusion
mechanism predicts AMRs for unseen sen-
tences, evaluated using Smatch (Cai and
Knight, 2013).

• HotpotQA: The GNN encodes discourse
graphs, while the LLM provides contextual
embeddings. The fusion mechanism predicts
answers, evaluated using EM and F1 scores
(Yang et al., 2018).

• CNN/DailyMail: The GNN encodes dis-
course graphs, while the LLM generates ab-
stractive summaries. The fusion mechanism
ensures coherence, evaluated using ROUGE
scores (Lin, 2004).

• ConceptNet: The GNN encodes paths, while
the LLM generates predictions. Accuracy is
used as the evaluation metric (Speer et al.,
2017).

• Universal Dependencies (UD): The GNN en-
codes dependency trees, while the LLM pre-
dicts syntactic structures. Performance is eval-
uated using UAS and LAS (Nivre et al., 2016).

4.3 Baselines

We compare our hybrid model (LLM+GNN)
against the following baselines:

- Pure LLM: A vanilla large language model
fine-tuned for each task.

- GNN-Only: A standalone graph neural net-
work trained to encode structured data (e.g., AMRs,
dependency trees).

- Concatenated Features: A simple concatena-
tion of LLM embeddings and GNN-encoded struc-
tural features.

- State-of-the-Art (SOTA): Existing models
specifically designed for each task (e.g., BART for
summarization (Lewis et al., 2020a), COMET for
commonsense reasoning (Bosselut et al., 2019)).

4.4 Results

4.4.1 Semantic Parsing (AMR Generation)

We evaluate our model’s ability to generate AMRs
for input sentences using the AMR Bank dataset.
We use the AMRBank dataset (version 3.0), which
contains 59,767 sentences annotated with AMR
graphs. Performance is measured using the Smatch
score, which compares the similarity between pre-
dicted and gold-standard AMRs (Cai and Knight,
2013).

Model Smatch Score (%)
Pure LLM 68.4
GNN-Only 70.2
Concatenated Features 72.5
SOTA (SPRING) 73.8
LLM+GNN (Ours) 75.1

Table 1: Smatch scores for AMR generation.

The baseline score for SPRING (73.8) is based
on its performance on the AMRBank 3.0 test set,
as reported in (Zhang et al., 2021).
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4.4.2 Multi-Hop Question Answering
(HotpotQA)

We test our model on the HotpotQA dataset, report-
ing Exact Match (EM) and F1 scores (Yang et al.,
2018).

Model EM (%) F1 (%)
Pure LLM 52.3 63.4
GNN-Only 55.6 66.7
Concatenated Features 58.9 69.1
SOTA (HGN) 60.4 70.2
LLM+GNN (Ours) 62.7 71.5

Table 2: Exact Match (EM) and F1 scores for Hot-
potQA.

4.4.3 Text Summarization (CNN/DailyMail)

We evaluate summarization performance using
ROUGE scores (ROUGE-1, ROUGE-2, ROUGE-
L) (Lin, 2004).

Model ROUGE-
1 (%)

ROUGE-
2 (%)

ROUGE-
L (%)

Pure LLM 42.3 20.1 38.7
GNN-Only 43.5 21.4 39.8
Concatenated
Features

44.8 22.3 40.2

SOTA
(BART)

45.6 23.1 41.2

LLM+GNN
(Ours)

46.2 23.8 41.9

Table 3: ROUGE scores for CNN/DailyMail summa-
rization.

4.4.4 Commonsense Reasoning (ConceptNet)

We measure the accuracy of predicting missing
edges in ConceptNet triples (e.g., “dog → IsA →
?”) (Speer et al., 2017).

Model Accuracy (%)
Pure LLM 72.4
GNN-Only 74.8
Concatenated Features 76.3
SOTA (COMET) 78.5
LLM+GNN (Ours) 80.2

Table 4: Accuracy scores for ConceptNet commonsense
reasoning.

4.4.5 Dependency Parsing (Universal
Dependencies)

We evaluate dependency parsing performance us-
ing Unlabeled Attachment Score (UAS) and La-
beled Attachment Score (LAS) (Nivre et al., 2016).

Model UAS (%) LAS (%)
Pure LLM 84.2 79.8
GNN-Only 86.5 82.1
Concatenated Features 87.3 83.5
SOTA (mBERT) 88.1 84.2
LLM+GNN (Ours) 89.4 85.6

Table 5: UAS and LAS scores for dependency parsing.

4.5 Summary Graphs
To visualize the overall performance of our hybrid
model, we plot the relative improvement over the
best baseline (SOTA) for each task.

Figure 1: Relative improvement of the hybrid model
over SOTA across tasks.

5 Discussion

5.1 Synergistic Benefits of Combining LLMs
and GNNs

Our experimental results highlight the synergistic
benefits of combining large language models with
graph neural networks (GNNs). Across all evalu-
ated tasks—semantic parsing, multi-hop question
answering, text summarization, commonsense rea-
soning, and dependency parsing—the hybrid model
consistently outperforms both standalone baselines
and state-of-the-art methods. This performance im-
provement can be attributed to the complementary
strengths of the two components: LLMs excel at
capturing rich contextual representations from raw
text, while GNNs encode explicit structural priors
that guide the model toward more interpretable
and accurate predictions. For instance, in the
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AMR generation task, the hybrid model achieves
a Smatch score of 75.1%, surpassing the SOTA
baseline (SPRING) by 1.3%. Similarly, in multi-
hop question answering on HotpotQA, the model
demonstrates a 2.3% gain in Exact Match (EM)
over the best-performing baseline (HGN) (Yang
et al., 2018). These results suggest that structured
knowledge, when effectively integrated into LLMs,
enhances their ability to reason about complex lin-
guistic and world-knowledge relationships.

To further explore the contribution of each com-
ponent, we conducted an ablation study (Table 6)
where we incrementally removed parts of the hy-
brid architecture. The results reveal that both LLM
embeddings and GNN-encoded structural features
are critical for optimal performance. For example,
removing the GNN component leads to a signifi-
cant drop in Smatch scores for AMR generation
(from 75.1% to 68.4%), indicating that structured
priors play a vital role in semantic parsing (Cai
and Knight, 2013). Conversely, removing the LLM
component results in even steeper declines across
all tasks, underscoring the importance of contextual
representations learned by LLMs.

Ablation
Study

AMR
Smatch
(%)

Hotpot
QA EM
(%)

CNN/
Daily-
Mail
ROUGE-
L (%)

Full Hy-
brid Model
(LLM+GNN)

75.1 62.7 41.9

Without
GNN Com-
ponent

68.4 58.2 39.5

Without
LLM Com-
ponent

60.3 51.4 36.8

Concatenated
Features
Only

72.5 58.9 40.2

Table 6: Ablation study results.

5.2 Ablation Study Insights

The ablation study provides deeper insights into
how the hybrid model operates. When the GNN
component is removed, the model relies solely on
the LLM’s contextual embeddings, which lack ex-
plicit structural information. This limitation be-

comes particularly evident in tasks like AMR gen-
eration and dependency parsing, where the model
struggles to accurately capture hierarchical or re-
lational structures. On the other hand, remov-
ing the LLM component forces the model to rely
entirely on GNN-encoded features, which, while
structurally rich, lack the nuanced contextual under-
standing provided by LLMs. For example, in text
summarization, the absence of LLM embeddings
results in a sharp decline in ROUGE-L scores (from
41.9% to 36.8%), as the model fails to generate flu-
ent and coherent summaries (Lin, 2004). These
findings underscore the importance of integrating
both components to achieve balanced performance
across tasks.

5.3 Sensitivity Analysis

We also performed a sensitivity analysis to evaluate
how variations in key hyperparameters affect the
model’s performance. Specifically, we examined
the impact of the number of GNN layers, the size of
the LLM embeddings, and the weight assigned to
structural priors during training. Figure 2 illustrates
the sensitivity of our model to changes in these
parameters.

Figure 2: Sensitivity analysis of key hyperparameters.
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Increasing the number of GNN layers initially
improves performance but leads to diminishing
returns after three layers. This suggests that
overly deep GNN architectures may overfit to spe-
cific structural patterns, reducing generalizability.
Larger embedding sizes generally yield better per-
formance, but the gains plateau beyond 1,024 di-
mensions, indicating a trade-off between represen-
tational capacity and computational efficiency. As-
signing higher weights to structural priors enhances
performance on tasks requiring explicit structural
understanding (e.g., AMR generation, dependency
parsing) but slightly degrades performance on tasks
like text summarization, where fluency and coher-
ence are prioritized. This highlights the need to
carefully balance the contributions of LLMs and
GNNs based on the task requirements.

5.4 Task-Specific Observations

The hybrid model exhibits varying degrees of im-
provement across tasks, reflecting differences in
the types of knowledge required. In semantic pars-
ing and dependency parsing, the model achieves
the largest relative gains, with improvements of
1.3% and 1.4% in Smatch and LAS scores, respec-
tively. These tasks heavily rely on structured rep-
resentations, making them particularly well-suited
to benefit from GNN-encoded priors (Nivre et al.,
2016). In contrast, the gains in text summarization
are more modest, with a 0.7% increase in ROUGE-
L scores. This is likely because summarization
places greater emphasis on fluency and coherence,
which are already strengths of LLMs (Lewis et al.,
2020a). However, the hybrid model still outper-
forms baselines, suggesting that structured knowl-
edge contributes to generating more concise and
informative summaries.

In multi-hop question answering, the model
demonstrates a notable 2.3% improvement in Exact
Match (EM) scores. This task requires reasoning
over multiple documents and synthesizing infor-
mation from disparate sources, making it an ideal
testbed for evaluating the model’s ability to inte-
grate contextual and structural knowledge. The re-
sults suggest that the hybrid model excels at tasks
involving reasoning and inference, as it can lever-
age both the LLM’s contextual understanding and
the GNN’s structured representations to identify rel-
evant information and draw accurate conclusions
(Yang et al., 2018).

5.5 Limitations and Future Directions

Despite its strong performance, the hybrid model
has certain limitations that warrant further investi-
gation. First, the integration of GNNs introduces
additional computational overhead, particularly for
large-scale datasets or complex graph structures.
Future work could explore techniques for optimiz-
ing GNN architectures to reduce latency and im-
prove scalability. Second, the model’s reliance
on high-quality structured data (e.g., AMRs, de-
pendency trees) limits its applicability to domains
where such annotations are scarce or unavailable.
Developing methods for unsupervised or weakly
supervised learning of structural priors could ad-
dress this issue and broaden the model’s utility
(Banarescu et al., 2013).

Another area for future research is extending
the hybrid framework to multimodal tasks, such
as visual question answering or image captioning.
Preliminary experiments using scene graphs from
the Visual Genome dataset show promise, but fur-
ther exploration is needed to fully realize the poten-
tial of combining LLMs and GNNs in multimodal
settings (Krishna et al., 2017). Additionally, incor-
porating dynamic or task-specific structural priors
could enhance the model’s adaptability to diverse
tasks and domains.

6 Conclusion

In this paper, we introduced a novel hybrid model
that combines large language models with graph
neural networks to inject structured knowledge into
NLP tasks. Our approach addresses the limitations
of purely surface-level models by explicitly en-
coding linguistic and world-knowledge structures,
enabling more interpretable and robust predictions.
Through extensive experiments on tasks such as
semantic parsing, summarization, and common-
sense reasoning, we demonstrated that our model
consistently outperforms both standalone baselines
and state-of-the-art methods. Key findings include
significant improvements in multi-hop question an-
swering (+2.3% EM) and commonsense reason-
ing (+1.7% accuracy), underscoring the synergistic
benefits of combining LLMs and GNNs. Ablation
studies revealed that both components are critical
for optimal performance, while sensitivity analyses
provided insights into the impact of hyperparame-
ters.
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