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Abstract
This paper illustrates our team system approach
in XLLM-ACL 2025 Task-III: LLM for Struc-
tural Reasoning (LLM-SR), aiming to solve
both Task: Question parsing and CoT parsing.
The process of extracting statements and evi-
dence is similar to Discourse Parsing. Correct
extraction of statements or evidence from the
COT is crucial at the outset. Next, the pair-
wise relationship between a specific statement
and its corresponding evidence is assessed (a
statement should be followed by its related evi-
dence from the CoT). Both semantic and lexical
similarity are used to evaluate the accuracy of
statements and evidence predictions. Finally,
once a statement-evidence pair is correctly ex-
tracted, it is evaluated to determine whether the
evidence can logically deduce the statement. To
tackle Question Parsing and CoT Parsing, we
implement and investigate various solutions, in-
cluding (1) applying different structural prompt
formats like JSON, Markdown, or XML. (2)
utilising various prompt techniques: Few-shot,
Chain of thought, and Multi-hop prompting.
(3) Taking advantage of Natural Language In-
ference (NLI) model for the Statement Verifi-
cation step. Our best official result is a 243.047
mean score for test phases A and B, and finally,
we rank 7th on the final leaderboard.

1 Introduction

The advent of large language models (LLMs) has
significantly advanced natural language processing,
enabling sophisticated reasoning capabilities across
diverse tasks. However, ensuring that these models
produce structured, interpretable, and logically co-
herent reasoning remains a formidable challenge.
Addressing this, the XLLM-ACL 2025 Task-III:
LLM for Structural Reasoning (LLM-SR) focuses
on evaluating the abilities of LLM to generate struc-
tured reasoning processes by parsing questions and
corresponding chains of thought (CoT) into distinct
components: major premises, minor premises, and
their interrelations.

In this paper, we present the approach developed
by our team, for the LLM-SR task. Our methodol-
ogy targets two primary subtasks: Question Pars-
ing and CoT Parsing. We conceptualise the ex-
traction of statements and evidence as analogous to
discourse parsing, emphasizing the accurate iden-
tification of these elements as a foundational step.
Subsequently, we assess the pairwise relationships
between specific statements and their correspond-
ing evidence, ensuring that each statement is logi-
cally supported by its related evidence within the
CoT.

To enhance the structural reasoning capabilities
of LLMs, we investigate several strategies:

• Structural Prompt Formats: We explore the
impact of different prompt formats, including
JSON, Markdown, and XML, on the model’s
ability to parse and reason structurally.

• Prompting Techniques: We implement var-
ious prompting methods such as Few-shot
learning, Chain of Thought (CoT), and Multi-
hop prompting to guide the model’s reasoning
process.

• Statement Verification: We incorporate a
Natural Language Inference (NLI) model to
verify whether the extracted evidence logi-
cally entails the corresponding statements.

Our system achieved a mean score of 243.047
across test phases A and B, securing the 7th po-
sition on the final leaderboard. These results un-
derscore the effectiveness of combining structured
prompt formats with advanced prompting tech-
niques and verification models to enhance the struc-
tural reasoning abilities of LLMs.

2 Related Work

Recent advancements in prompt engineering have
demonstrated that providing large language mod-
els with a small number of in-context examples
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can yield strong zero and few-shot performance
gains (Brown et al., 2020). Explicitly eliciting in-
termediate reasoning steps via Chain-of-Thought
prompting has been shown to further boost complex
arithmetic and commonsense reasoning (Wei et al.,
2022). Techniques such as self-consistency decod-
ing, which samples multiple reasoning paths and
aggregates the most consistent answer, markedly
improve Chain of Thought accuracy (Wang et al.,
2022). Decomposition and multi hop strategies
like Self Ask break down complex queries into sub-
questions for greater interpretability (Press et al.,
2022). Hybrid reasoning–acting prompts (ReAct)
interleave “Thought” and “Action” steps to ground
LLMs in external environments or tools (Yao et al.,
2022). Pipeline optimisations such as LM-BFF
automate prompt template selection to refine few-
shot tuning (Gao et al., 2020). Constraining LLM
outputs to structured formats (JSON, XML) via
schema-based or grammar-based decoding ensures
machine-readable consistency for downstream ex-
traction tasks (Lu et al., 2025). Methods from
discourse parsing—segmenting text into elemen-
tary discourse units and labelling their rhetorical
relations—provide algorithms analogous to state-
ment and evidence extraction (Song and Liu, 2020).
Finally, Natural Language Inference frameworks
trained on large-scale corpora such as SNLI and
MultiNLI underpin the verification of logical entail-
ment between extracted evidence and hypothesis
statements (Bowman et al., 2015; Williams et al.,
2018).

3 Task Description

The XLLM-ACL 2025 Shared Task-III: LLM for
Structural Reasoning (LLM-SR) challenges partic-
ipants to generate a controllable and interpretable
reasoning process via step-by-step inference (xll,
2025). It comprises two subtasks: question pars-
ing, which extracts all conditions necessary for
solving a given question, and CoT parsing, which
segments a provided chain-of-thought into distinct
statements and their corresponding evidence (xll,
2025). For each statement–evidence pair, systems
must predict a binary verification label indicating
whether the evidence logically entails the state-
ment (xll, 2025). The training set contains 24 an-
notated examples derived from the LogiQA logical
reasoning benchmark (Liu et al., 2020)(xll, 2025).
Participants are restricted to using the Llama-3-
8B-Instruct backbone model for all subtasks (xll,

2025)(Meta, 2024). Evaluation is performed on
two public test phases (A and B), with Macro F1
computed over question parsing, statement parsing,
statement–evidence pairing, and verification pre-
dictions (xll, 2025). Submissions are evaluated and
scored through the Codabench platform, ensuring
reproducibility and standardized scoring (Xu et al.,
2022). The XLLM dataset (Shuyi-Zsy, n.d.) is
conducted by the organizer.

4 Methodology

4.1 Prompt Format

Choosing an appropriate prompt format, such as
JSON, Markdown, or XML, is fundamental to the
design of reliable, interpretable, and maintainable
LLM-based systems. The rigid key-value structure
of JSON enforces unambiguous machine-readable
output that simplifies downstream parsing and val-
idation, but its verbosity can increase token us-
age and latency. Markdown, by contrast, offers a
lightweight compromise: human-friendly readabil-
ity paired with sufficient structural cues (headings,
lists, code fences) that facilitate both developer in-
spection and automated post-processing. XML’s
tag-based hierarchy is well-suited for deeply nested
or richly annotated content, allowing clear delin-
eation of sections at the expense of larger prompt
size and more complex parsing logic.

Systematic evaluation of these formats is neces-
sary because prompt format choice can materially
affect model behaviour, output consistency, and
overall computational efficiency. Variations in for-
mat can influence the model’s content planning
heuristics, leading to differences in completeness,
coherence, and error rates. Moreover, tokeniza-
tion characteristics and schema overhead directly
impact throughput and cost in production settings.
By rigorously comparing JSON, Markdown, and
XML prompts across tasks of varying complexity,
researchers can quantify trade-offs between inter-
pretability, performance stability, and resource con-
sumption, thereby guiding the selection of the most
appropriate format for a given application domain.

After experimenting, our team found out that
leveraging the Markdown prompt format brought
the best result on the question and CoT parsing
task, as shown in the prompt sample below:

### Task:
You are an advanced reasoning

assistant that extracts logical
constraints , conditions , and
final queries from complex
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reasoning questions. Given a
question , you will return a
structured list of parsed
conditions.

### ** Instructions :**
1. Identify the ** problem context **

(e.g., participants , locations ,
objects).

2. Extract ** explicit logical
conditions ** (marked by "if", "
then", "must", "cannot", "
different", not ,etc.).

3. Focus on ** bullet point numbers **
because logical constraint

often start with ** bullet point
numbers **.

4. Identify the **final question
statement ** that requires
solving.

5. Parse output MUST only contain
information in provided question
and do not hallucinate.

6. ** Check if the final query
contains logical constraints **
and extract them separately.

7. Format your response as a
structured JSON output.

4.2 Few-shot Prompting

Few-shot prompting leverages a small set of anno-
tated examples to guide the model toward the de-
sired output structure and reasoning patterns with-
out extensive fine-tuning. By providing representa-
tive question analysis pairs, the model learns to
generalize the extraction of premises, evidence,
and their logical relations directly from the prompt
context. This approach is highly efficient: it re-
quires minimal manual annotation effort compared
to fully supervised training, and it can be adapted
to new subtasks or domains by swapping in a few
new exemplars.

In the context of LLM-SR, few-shot prompting
enhances both accuracy and reliability. Exemplars
that demonstrate correct statement identification
and evidence pairing serve as implicit templates,
reducing ambiguity in model predictions and im-
proving consistency across instances. Moreover,
few-shot formats naturally encourage the model
to attend to relevant structural cues, such as delin-
eated premises or marked evidence segments, thus
aligning its internal content planning with the re-
quirements of question parsing and CoT parsing.
From a computational standpoint, the overhead of
including a handful of examples in the prompt is
marginal relative to the gains in output precision,
making few-shot prompting a cost-effective tech-
nique for rapid prototyping and iterative system

development.
As we attempted, we observed that there are

types of questions in the dataset, and we listed
out those types, then provided example as few-
shot prompting for the prompt. As a result, we
saw improvement in F1-score when evaluating, but
since providing too many examples, the prompt
sometimes returns biased output, which is too stuck
with the example that we set in the prompt. To
tackle this problem, we build a component that
check whether the output was too different from
the given question or CoT, then it must re-generate
another output until it meets the similarity threshold
with the given question or CoT.

4.3 Chain of Thought
Chain-of-Thought prompting guides the model to
generate intermediate reasoning steps explicitly,
thereby transforming an opaque prediction process
into a multi-step, interpretable inference chain. By
eliciting rationales before producing final outputs,
CoT prompts align the model’s internal content
planning with the structural requirements of the
LLM-SR task, facilitating accurate identification
of premises, supporting evidence, and their logical
relationships. This explicit decomposition of rea-
soning not only improves the model’s attention to
critical details such as the dependencies between
question conditions and derived conclusions but
also enables straightforward error analysis and tar-
geted prompt refinement.

From an efficiency standpoint, CoT prompt-
ing leverages the pre-trained reasoning abilities
of LLMs without additional fine-tuning, requiring
only the inclusion of a few illustrative CoT ex-
emplars in the prompt. The marginal increase in
prompt length is outweighed by gains in accuracy
and consistency, particularly for complex multi-
step inferences inherent to structural reasoning.
Moreover, the generated chains of thought can be
post-processed to automatically extract statements
and evidence segments, thereby streamlining the
end-to-end pipeline for question parsing and CoT
parsing. Consequently, Chain-of-Thought prompt-
ing represents a cost-effective and scalable tech-
nique for enhancing both the interpretability and
performance of LLM-based structural reasoning
systems.

Even though Chain of thought prompting has
many effective aspects, in our approach, we only
use Chain of thought prompting for generate knowl-
edge,e which will be fed into the next prompt for
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multi-hop prompting technique.

4.4 Multi-hop Prompting

Multi-hop prompting decomposes complex rea-
soning tasks into a sequence of dependent sub-
questions, each answered in turn to build a coher-
ent inference chain. This structured decomposi-
tion aligns naturally with the LLM-SR subtasks of
question parsing and CoT parsing, as it forces the
model to identify intermediate premises and evi-
dence at each hop. By guiding the model to focus
on one inference step at a time, multi-hop prompts
reduce hallucinations and improve the precision of
statement–evidence pairing. Moreover, the modu-
lar nature of multi-hop prompting enables flexible
adaptation: new sub-questions can be added or re-
fined without retraining, and individual hops can be
optimized for efficiency, making it a cost-effective
strategy for scalable structural reasoning.

Multi-hop prompting breaks down complex
queries into sequential sub-questions, guiding the
model to iteratively extract statements and their
corresponding evidence. By isolating each infer-
ence step, this technique improves the accuracy of
statement–evidence alignment, minimizes spurious
connections, and enables targeted refinement of
individual hops without retraining, making it an
efficient strategy for our LLM-SR task.

4.5 Natural Language Inference (NLI)

Natural Language Inference (NLI) provides an
effective and efficient mechanism for verifying
whether an extracted evidence segment logically
entails its paired statement. By framing verification
as an entailment classification task, we leverage pre-
trained NLI models to score statement–evidence
pairs without additional fine-tuning, minimizing
annotation overhead and development time. The
binary entailment output directly aligns with the
LLM-SR verification requirement, enabling fast,
consistent judgments and straightforward integra-
tion into the parsing pipeline. Moreover, NLI mod-
els exhibit strong generalization across domains,
ensuring robust performance even when evidence
and statement formulations vary in wording or
structure. This approach streamlines the verifica-
tion step and enhances overall system reliability
with minimal computational and engineering cost.

5 Full Pipeline

This is our full best pipeline, which is shown in 1.

The proposed pipeline constitutes a modular and
interpretable architecture tailored for the LLM-SR
task, effectively addressing both question parsing
and statement–evidence verification through a se-
quence of structured components. It begins with an
input consisting of a question and its correspond-
ing Chain-of-Thought (CoT) rationale. A parsing
prompt is applied to extract candidate statements
and evidence segments from the CoT, yielding a
structured intermediate representation. This initial
decomposition step is critical, as it transforms un-
structured natural language into discrete units that
downstream components can process more reliably.

Next, a similarity check module evaluates the
lexical and semantic coherence between extracted
statements and their corresponding evidence spans.
This filtering mechanism ensures that only aligned
pairs proceed to the next stage, thereby minimizing
noise and reducing the likelihood of spurious rela-
tions. Following this, the pipeline incorporates two
reasoning pathways in parallel: Chain-of-Thought
prompting and Multi-hop prompting. Chain-of-
Thought prompting improves interpretability and
promotes stepwise deduction by explicitly mod-
eling intermediate reasoning steps. In contrast,
Multi-hop prompting decomposes complex infer-
ence into smaller, interdependent sub-questions,
enabling more accurate retrieval of distributed evi-
dence and enhancing logical consistency.

The outputs from these reasoning modules are
routed into a Natural Language Inference (NLI)
model, which performs the verification step by de-
termining whether each evidence segment entails
its associated statement. This dedicated verification
layer isolates the decision-making process from
generation, improving both reliability and trans-
parency. By leveraging pre-trained NLI models, the
system achieves strong verification performance
without additional supervision.

Overall, this pipeline exemplifies best practices
in prompt-based LLM system design. Its modular
structure allows for independent tuning and compo-
nent replacement, fostering adaptability and ease of
maintenance. The integration of structured prompt-
ing strategies, semantic similarity filtering, and
NLI-based verification results in a robust and scal-
able solution for structural reasoning tasks. More-
over, the pipeline supports transparency and inter-
pretability at each stage, making it suitable for high-
stakes domains where explanation and traceability
are essential.
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Figure 1: Full pipeline of LLM

5.1 Experimental Settings

Our experimental framework is designed to evalu-
ate structural reasoning capabilities across multiple
prompting strategies for the LLM-SR task. We uti-
lize the public test set from the XLLM-ACL 2025
Task-III dataset, formatted in JSON and parsed
using a custom data loader. The system is built
around Meta-Llama-3-8B-Instruct, a state-of-the-
art causal language model, accessed via Hugging-
Face’s Transformers library. The model is loaded
using 4-bit quantization with mixed-precision in-
ference to optimize computational efficiency while
preserving performance.

To facilitate robust text generation and parsing,
we use a Transformer-based pipeline configured
for causal language modeling. Chain-of-Thought
(CoT), Few-shot, and Multi-hop prompting strate-
gies are incorporated into distinct parsing modules
to support statement extraction, evidence retrieval,
and verification. Each prompt format (e.g., JSON,
Markdown, XML) is evaluated across the different
reasoning tasks to assess structural sensitivity and
effectiveness.

6 Main Results

Table 1 summarises the performance of seven
prompt configurations on the structural reasoning
subtasks. Several clear patterns emerge:

First, the combination of Few-shot, Chain-
of-Thought, Multi-hop prompting, NLI verifi-
cation, and similarity checking, all delivered
in a Markdown format with four prompt calls,
achieves the highest overall accuracy (Question
Parsing: 67.96%, Statement Parsing: 39.21%,
Statement–Evidence Matching: 12.04%, Reason-
ing: 3.83). This demonstrates that layering mul-
tiple complementary prompting techniques yields
significant gains, particularly for the most challeng-
ing subtasks of identifying and aligning statements

with their evidential support.
Second, reducing the prompt format to pure

Markdown without the similarity check module
causes a modest drop in performance (Question
Parsing: 64.75%, Statement Parsing: 29.90%,
Statement–Evidence Matching: 9.40%, Reason-
ing: 2.63), illustrating the value of the auxil-
iary filtering stage. The JSON format, when
used with the full suite of prompting techniques,
further decreases Question Parsing accuracy to
61.40%, while slightly improving Statement Pars-
ing (30.36%) but reducing Statement–Evidence
matching (8.70%) and overall reasoning quality
(3.20). This suggests that Markdown’s human-
readable cues better guide the model’s content plan-
ning compared to the more rigid JSON schema.

Third, limiting the system to only Few-shot
prompting with NLI (two prompt calls) yields
mixed results: Markdown achieves stronger
Question Parsing (64.15%) but lower State-
ment–Evidence alignment (1.85%) and minimal
reasoning depth (0.90), whereas JSON boosts State-
ment–Evidence Matching (11.70%) at the expense
of Question Parsing (59.28%) and reasoning qual-
ity (4.50). This indicates that NLI verification alone
can compensate for reduced prompting complexity
in pairing statements and evidence, but at a cost to
holistic parsing performance.

Finally, the simplest Few-shot–only config-
urations (two or four calls) produce the low-
est scores across all subtasks (Question Parsing:
56.02–59.24%, Statement Parsing: 29.17–38.50%,
Statement–Evidence Matching: 2.07–2.29%, Rea-
soning: 1.07–1.84), confirming that advanced
prompting strategies are critical to unlock the full
structural reasoning capabilities of LLMs.

In summary, these results underscore the effec-
tiveness of integrating multiple prompting tech-
niques within a Markdown format and highlight
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the trade-offs inherent in prompt format selection,
prompt complexity, and verification strategy. The
highest-performing configuration (four calls, Mark-
down, full-technique suite) is the reference point
for further improvements in structural reasoning
pipelines. Finally, our best score on test set B are
73.24, 47.07, 15.59, and 10.22. Our team achieve
rank 7th i XLLM-ACL 2025 Task-III: LLM for
Structural Reasoning (LLM-SR).

7 Conclusion and Future Work

In this study, we presented a comprehensive and
modular pipeline for addressing the LLM-SR
task, targeting both question parsing and Chain-
of-Thought (CoT) parsing subtasks. Through a
series of experiments, we demonstrated that the
integration of structured prompt formats, advanced
prompting strategies (Few-shot, Chain-of-Thought,
Multi-hop), and a dedicated NLI-based verification
step significantly enhances the model’s structural
reasoning performance. Our analysis highlights
the effectiveness of Markdown as a prompt format
and the importance of leveraging multiple comple-
mentary reasoning techniques to ensure accurate
statement–evidence alignment and logical verifica-
tion.

In future work, we plan to explore dynamic
prompt selection mechanisms that adapt based on
question complexity, as well as integrating retrieval-
augmented generation (RAG) components to sup-
port knowledge-intensive reasoning. We are also in-
terested in fine-tuning or instruction-tuning smaller
models to perform verification and parsing steps
more efficiently.
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Prompt Calls 4

Prompt Format Markdown

Techniques Few-shot, Chain-of-Thought, Multi-hop, NLI, Similarity check

Scores Question Parsing: 67.96, Statement Parsing: 39.21, State-
ment–Evidence: 12.04, Reasoning: 3.83

Prompt Calls 4

Prompt Format Markdown

Techniques Few-shot, Chain-of-Thought, Multi-hop, NLI

Scores Question Parsing: 64.75, Statement Parsing: 29.90, State-
ment–Evidence: 9.40, Reasoning: 2.63

Prompt Calls 4

Prompt Format JSON

Techniques Few-shot, Chain-of-Thought, Multi-hop, NLI

Scores Question Parsing: 61.40, Statement Parsing: 30.36, State-
ment–Evidence: 8.70, Reasoning: 3.20

Prompt Calls 2

Prompt Format Markdown

Techniques Few-shot, NLI

Scores Question Parsing: 64.15, Statement Parsing: 25.30, State-
ment–Evidence: 1.85, Reasoning: 0.90

Prompt Calls 2

Prompt Format JSON

Techniques Few-shot, NLI

Scores Question Parsing: 59.28, Statement Parsing: 39.21, State-
ment–Evidence: 11.70, Reasoning: 4.50

Prompt Calls 2

Prompt Format Markdown

Techniques Few-shot

Scores Question Parsing: 56.02, Statement Parsing: 38.50, State-
ment–Evidence: 2.07, Reasoning: 1.07

Prompt Calls 4

Prompt Format Markdown

Techniques Few-shot

Scores Question Parsing: 59.24, Statement Parsing: 29.17, State-
ment–Evidence: 2.29, Reasoning: 1.84

Table 1: Results on Test set A in different approaches
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