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Abstract

Dialogue-level dependency parsing is crucial
for understanding complex linguistic structures
in conversational data, yet progress has been
hindered by limited annotated resources and
inadequate modeling of dialogue dynamics.
Existing methods often fail to capture both
intra- and inter-utterance dependencies effec-
tively, particularly in languages like Chinese
with rich contextual interactions. To address
these challenges, we propose InterParser, a
novel framework that integrates a pretrained
language model (PLM), bidirectional GRU (Bi-
GRU), and biaffine scoring for comprehen-
sive dependency parsing. Our model encodes
token sequences using a PLM, refines repre-
sentations via deep BiGRU layers, and em-
ploys separate projections for "head" and "de-
pendent" roles to optimize arc and relation
prediction. For cross-utterance dependencies,
speaker-specific feature projections are intro-
duced to enhance dialogue-aware scoring. Joint
training minimizes cross-entropy losses for
both intra- and inter-utterance dependencies,
ensuring unified optimization. Experiments
on a standard Chinese benchmark demonstrate
that InterParser significantly outperforms prior
methods, achieving state-of-the-art labeled at-
tachment scores (LAS) for both intra- and inter-
utterance parsing.

1 Introduction

Dialogue-level dependency parsing is crucial for
enhancing the capabilities of dialogue understand-
ing systems. This approach seeks to create a unified
tree structure that captures both intra-sentence syn-
tactic dependencies and inter-utterance discourse
relations. While sentence-level dependency parsing
has been extensively researched in languages such
as English and Chinese (Xue et al., 2005; Jiang
et al., 2018), applying this approach to multi-turn
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dialogues presents unique challenges. Dialogues in-
herently involve complex hierarchical interactions:
within utterances, there are syntactic dependencies
(e.g., subject-verb-object structures), and across
utterances, there are discourse dependencies (e.g.,
question-answer pairs or causal reasoning). In Chi-
nese, a language characterized by flexible word
order and context-dependent semantics, perform-
ing such hierarchical parsing is particularly chal-
lenging.The root nodes of each subtree are often
predicates that reflect single semantic events, illus-
trated in Figure 1.

Recent advancements have started to bridge this
gap. Jiang et al. (2023) initiated the development of
the Chinese Dialogue-level Dependency Treebank
(CDDT), which integrates syntactic dependencies
from existing treebanks (Jiang et al., 2018) and dis-
course relations based on Rhetorical Structure The-
ory (RST). They proposed rule-based signal detec-
tion and pseudo-labeling strategies to address data
scarcity in resource-limited scenarios. However,
this method’s reliance on heuristic transformations,
such as mapping syntactic ‘root’ nodes to discourse
dependencies, and its multi-step pipeline process,
can lead to error propagation and limited general-
ization. Subsequently, Zhang et al. (2024) intro-
duced a Large Language Model (LLM)-assisted
data augmentation technique, generating synthetic
dialogues through various perturbations at the word,
syntax, and discourse levels. Although effective,
this approach necessitates extensive prompt engi-
neering and can struggle to maintain structural con-
sistency between the generated text and the corre-
sponding dependency labels.

To address these limitations, we introduce an in-
novative end-to-end neural architecture tailored for
Chinese dialogue-level dependency parsing. This
approach circumvents the need for intermediate
rule-based procedures by integrating the model-
ing of both intra- and inter-utterance dependencies
through a cohesive feature learning mechanism.
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Figure 1: Example of Dialogue-Level Dependency Pars-
ing: Vertical dashed lines indicate EDU boundaries,
with arcs above words representing intra-EDU depen-
dencies and arcs below or crossing utterances indicating
inter-EDU dependencies.

Our framework specifically targets three pivotal
challenges:

Hierarchical Integration of Linguistic Fea-
tures: Effective dialogue parsing necessitates the
concurrent modeling of various linguistic dimen-
sions, including character-level, word-level, and
utterance-level representations. This is especially
crucial in languages like Chinese, characterized by
intricate morphological structures and word agglu-
tination. Our model strategically fuses these multi-
faceted features to optimize the representation of
both syntactic and discursive elements.

Speaker-Aware Interaction Modeling: In
multi-party dialogues, comprehending the roles and
interactions between participants is essential. Our
method incorporates explicit modeling of speaker
roles to capture dependencies that are unique to
different interlocutors, such as those between a
customer and a service agent. This aspect is of-
ten underrepresented in conventional dependency
parsing methodologies.

Enhancing Low-Resource Robustness: The
scarcity of annotated dialogue data presents a sig-
nificant challenge in training reliable models, par-
ticularly in low-resource settings. Our model ad-
dresses this issue by leveraging syntactic priors
from existing treebanks, while meticulously pre-
venting overfitting to sparse discourse patterns.

Our contributions include the following key in-
novations:

(1) Dynamic Subword Weighting: Our model in-
corporates a trainable attention mechanism

that adaptively aggregates subword embed-
dings to construct word-level representations.
This approach surpasses traditional static aver-
aging, effectively capturing nuanced semantic
variations.

(2) Gated Multi-Level Fusion: We employ a hi-
erarchical encoding structure that seamlessly
integrates character, word, and speaker fea-
tures through sigmoid-gated interactions. This
mechanism enhances the model’s contextual
awareness across various linguistic granulari-
ties.

(3) Unified Biaffine Decoding: Our model em-
ploys dual biaffine attention mechanisms to
concurrently capture syntactic and discourse
dependencies. This design enables the model
to effectively specialize in both local syntactic
and global discourse dependency patterns.

(4) Curriculum Joint Training: We implement
a phased optimization strategy that progres-
sively shifts the training focus from syntax,
utilizing treebanks, to discourse dependencies,
leveraging dialogue data. This approach en-
sures stable knowledge transfer and enhances
the model’s generalization capabilities.

Our model, evaluated on the CDDT benchmark,
achieves state-of-the-art performance in Chinese
dialogue-level dependency parsing. It effectively
captures both syntactic and discourse dependencies,
surpassing existing heuristic-based and multi-step
pipeline methods.

2 Method

To address the speed and performance inefficien-
cies of traditional sentence parsing models, espe-
cially when dealing with an increasing number of
words and dependency parsing tags, we employ
a hierarchical decoding strategy for inner-EDU
and inter-EDU dependencies. Additionally, we uti-
lize the Chinese-electra-180g-base-discriminator
for pre-training our large model and incorporate a
state-of-the-art biaffine parser (Dozat and Manning,
2017) to enhance parsing efficiency. Our modelling
framework is shown in Figure 2

First, we are provided with an input dialogue
text, represented as a sequence of n words x =
[w1, w2, . . . , wn], and its corresponding EDU-level
sequence E = [E1, E2, . . . , Em], where m denotes
the number of EDUs. Each EDU Ek (k ∈ [1,m])
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encompasses a subsequence of words, represented
as

[
wk,1, . . . , wk,sk

]
, where sk is the number of

words within the k-th EDU. We proceed to il-
lustrate the baseline parser using an encoding-
decoding framework.

2.1 Hierarchical Encoding

Our encoding pipeline consists of three sequential
transformations to derive parsing-oriented repre-
sentations:

(1) Contextual Embedding: The input sequence
x = [w1, w2, . . . , wn] is processed by a pre-
trained language model (e.g., BERT or ELEC-
TRA) to obtain contextualized token embed-
dings:

e1:n → e1, e2, . . . , en

= PLM(w1, w2, . . . , wn)
(1)

(2) Sequential Abstraction: A L-layer bidirec-
tional GRU is employed to capture position-
aware linguistic patterns from the contextual-
ized embeddings:

h1:n →h1, h2, . . . , hn

= BiGRU×L (e1, e2, . . . , en)
(2)

(3) Dependency-Specific Projection: Parallel
K-layer MLPs are used to transform the ab-
stracted features into dependency-parsing ori-
ented representations. These MLPs provide
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distinct perspectives for dependency analysis:





zd
1:n → zd

1 , z
d
2 , . . . ,z

d
n

= MLP×K (h1,h2, . . . ,hn)

zh
1:n → zh

1 , z
h
2 , . . . ,z

h
n

= MLP×K (h1,h2, . . . ,hn)

(3)

Here, zd = [zd
1 , . . . ,z

d
n] represents the

dependency-centric feature matrix, providing in-
sights into the relationships between words as de-
pendents. Conversely, zh = [zh

1 , . . . ,z
h
n] denotes

the head-centric feature matrix, focusing on the
roles of words as heads in dependency structures.
These matrices offer orthogonal perspectives for
subsequent dependency analysis, enhancing the
model’s parsing capabilities.

2.2 Decoding

The decoding of the dialogue-level dependency
tree is executed in two phases. Initially, we con-
duct inner-EDU dependency parsing. For each
Ek =

[
wk,1, . . . , wk,sk

]
, we derive their corre-

sponding dependency-aware and head-aware repre-
sentations zdk,1:sk = [zdk,1, . . . , z

d
k,sk

] and zhk,1:sk =

[zhk,1, . . . , z
h
k,sk

] through direct indexing. Subse-
quently, we compute the candidate head scores for
each word wk,j using the biaffine operation:

oIN
k,j = zh

k,1:k,sk
U INzd

k,j + zh
k,1:k,sk

uIN (4)

oIN,ARC
k,j =

∑

l

oIN
k,j [·][l] (5)

In these equations, U IN and uIN are trainable
parameters. The candidate heads for each word
wk,j are confined to within its EDU, and only syn-
tactic relation labels are considered at this stage.
The tensor oIN

k,j encompasses scores for both head
selection and label classification: its slice oIN

k,j [i]
represents a vector of relation scores for head can-
didate i. During inference, we first apply the min-
imum spanning tree algorithm to the arc scores
oIN,ARC
k,j to retrieve a well-formed dependency

tree, and then assign each predicted arc the re-
lation label with the highest score. For cross-
utterance relation modeling, we augment the bi-
affine mechanism with discourse-specific adapta-
tions. Two essential feature sequences are extracted
from EDU root nodes: zdr1:rm = zd1,r1 , . . . , z

d
m,rm

and zhr1:rm = zh1,r1 , . . . , z
h
m,rm , where r∗ denotes

the root word index of each EDU. The discourse
dependency scores are calculated as follows:

oIT
k = zh

r1:rmU
ITzd

rk
+ zh

r1:rmu
IT (6)

oIT,ARC
k =

∑

l

oITk [·][l] (7)

Here, U IT and uIT are learnable parameters. The
tensor oIT

k forms a 2D structure capturing head
candidates and relation labels, while oIT,ARC

k de-
termines the dependency tree structure.

2.3 Curriculum Optimization

The joint loss function is modified to incorporate
phased weighting, as expressed below:

L = αtLsyn+ (1− αt)Ldisc (8)

In this equation, αt = max(0.5, 1 − t
T ) serves

as a dynamic weight that evolves over T epochs,
implementing a curriculum learning strategy. This
approach ensures a balanced focus on syntactic
and discourse-level losses throughout the training
process.

2.4 Training

We optimize a standard cross-entropy objective,
which consists of separate terms for dependency
arc prediction and relation classification. Let o∗

∗
represent either the inner-EDU scores oIN

k,j or the
inter-EDU scores oIT

k . We apply softmax over the
arc logits o∗,ARC

∗ and over the label logits o∗
∗[ŷh]

with the ŷh representing the ground-truth head as-
signments to obtain probability distributions over
all candidate heads and syntactic/discourse labels,
respectively. The overall loss is the sum of the
negative log-likelihoods of the correct heads and
labels. This training procedure follows the biaffine
parser framework of Dozat and Manning (2017).

We train our baseline parser by dividing its su-
pervision into two complementary subtasks: inner-
EDU (syntax) parsing and inter-EDU (dialogue)
parsing.

• Inner-EDU parsing is fully supervised. We
utilize a large-scale syntactic treebank in con-
junction with the 50 gold-standard dialogue
instances provided by Jiang et al. (2023). This
combination offers dense, in-domain depen-
dency annotations, ensuring the reliable con-
vergence of this component.
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Statistic Train Test
# dialogue 50 800
avg.# turns 23 25
avg.# words 194 212
# inner 9129 159803
# inter 1671 29200

Table 1: The Statistics of CDDT. “#” and “avg.#” Indi-
cate “Count” and “Average Count”

• Inter-EDU parsing faces the challenge of an-
notation sparsity. To address this issue, we
adopt the approach of Jiang et al. (2023), lever-
aging their rule-based silver dialogue corpus
in addition to the same 50 gold-standard in-
stances. This strategy merges pseudo-labeled
and gold supervision, facilitating the training
of the cross-utterance dependency component.

3 Experiment

3.1 Dataset

We employ the publicly accessible Chinese
Dialogue-Level Dependency Treebank (CDDT), in-
troduced by Jiang et al. (2023). This dataset serves
as the sole benchmark for Chinese dialogue-level
dependency parsing. The statistics of this dataset
are detailed in Table 1.

3.2 Settings

Evaluation Methodology. We assess model per-
formance using the conventional dependency pars-
ing metrics, Unlabeled Attachment Score (UAS)
and Labeled Attachment Score (LAS), with punc-
tuation tokens explicitly excluded from the calcu-
lations. To facilitate detailed diagnostic analysis,
we separate the evaluation into two distinct com-
ponents: intra-EDU dependencies (relationships
within Elementary Discourse Units) and inter-EDU
dependencies (syntactic links across units). No-
tably, the inter-EDU evaluation focuses on the lex-
ical dependency level, rather than abstract EDU
representations. This necessitates the accurate iden-
tification of EDU head tokens as a fundamental step
for valid cross-unit dependency assessment.

In scenarios where resources are limited and
development sets are not accessible, we use the
checkpoint from the final training iteration for
model validation. To ensure reproducibility, all
implementations were carried out on a consistent
computational platform equipped with an NVIDIA
RTX3090 GPU, which has 24GB of VRAM.

Hyper-parameters. Our PLM is a Chinese variant
of ELECTRA, as implemented by Cui et al. (2020).
We utilize the base scale discriminator1 for fine-
tuning purposes. The hidden size of both our Parser
and MLM components is set to 200, with a dropout
rate of 0.1. For model training, we employ the
AdamW optimizer, initializing the learning rate of
the PLM at 2e-5 and that of the subsequent modules
at 1e-4. A linear warmup is applied for the first 10%
of the training steps. The weight decay is set to 0.1,
and to prevent gradient explosion, we implement
gradient clipping with a maximum value of 2.0.
The training batch size is configured to 64, and the
total number of epochs is 25.

3.3 Results

Training Data Few-shot
Inner-EDU Inter-EDU

UAS LAS UAS LAS

Jiang et al. (2023) 91.74 88.2 71.09 55.73

baseline(Zhang et al., 2024) 91.66 89.12 71.59 56.32

GPT-3.5-Turbo-0613

+wrd 92.37 90.01 73.06 58.50
+syn 92.13 89.94 73.22 59.33
+dis 92.35 90.11 73.57 59.68
+wrd & syn 92.38 90.16 73.52 59.47
+wrd & dis 92.19 90.04 73.84 59.81
+syn & dis 92.23 90.18 73.88 59.94
+wrd & syn & dis 92.46 90.35 73.81 60.17

Llama2-7B

+wrd 91.91 89.73 72.33 57.63
+syn 91.65 89.51 72.31 58.28
+dis 91.90 89.85 72.76 58.45
+wrd & syn 91.87 89.81 72.56 58.38
+wrd & dis 91.82 89.63 73.13 58.75
+syn & dis 91.76 89.91 72.92 58.79
+wrd & syn & dis 91.97 89.89 72.95 59.01

Qwen-7B

+wrd 92.03 89.88 72.68 57.94
+syn 91.94 89.69 72.80 58.46
+dis 92.01 89.97 73.19 58.85
+wrd & syn 91.84 89.97 73.05 58.74
+wrd & dis 91.87 89.76 73.47 59.05
+syn & dis 92.07 89.99 73.42 59.14
+wrd & syn & dis 91.96 89.85 73.52 59.31

Ours 92.56 90.66 72.81 59.92

Table 2: The test results under the few-shot settings.
“wrd”, “syn”, “dis” denote the “word-level”, “syntax-
level”, and “discourse-level”, respectively.

In the few-shot learning scenario, our model
is trained on a dataset comprising 50 human-
annotated instances supplemented with silver-
standard corpus data. We conduct a systematic eval-
uation that compares four configurations: (1) base-

1huggingface.co/hfl/chinese-electra-180g-base-
discriminator
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line methods, (2) individual augmentation strate-
gies, (3) pairwise combinations, and (4) the full in-
tegration of all three data augmentation techniques
alongside our proposed model. This comprehen-
sive evaluation framework allows for a rigorous as-
sessment of the potential capabilities of our model.
As depicted in Table 2, our approach achieves statis-
tically significant improvements over the baseline
methods across all evaluation metrics. The experi-
mental results yield two key insights:

• For Inner-EDU evaluation, our model sur-
passes all baseline approaches and exhibits
superior performance compared to three large-
scale reference models.

• In the Inter-EDU assessment, the proposed
method remains competitive with the current
state-of-the-art large models.

Specifically concerning attachment scores, our
model achieves the following improvements:

• UAS Improvement: An increase of 0.9% for
Inner-EDU and 1.22% for Inter-EDU com-
pared to the baselines.

• LAS Enhancement: Absolute gains of 1.54%
for Inner-EDU and 3.60% for Inter-EDU.

3.4 Ablation Study

Our ablation study systematically investigates the
consequences of removing the meticulously opti-
mized Bidirectional Gated Recurrent Unit (BiGRU)
from our model architecture. As illustrated in Ta-
ble 3, the removal of this architectural component
led to a notable decline in performance across all
evaluation metrics. This empirical evidence under-
scores the critical role of our carefully designed
BiGRU layer in the model’s operation, especially
in terms of capturing sequential dependencies and
contextual patterns.

Model Few-shot

Inner-EDU Inter-EDU
UAS LAS UAS LAS

Ours 92.56 90.66 72.81 59.92
w/o BiGRU 90.64 88.03 69.13 53.19

Table 3: The results of the ablation experiments.

4 Related Work

Dependency Parsing. Several Chinese depen-
dency parsing paradigms and corresponding tree-
banks have been developed (Xue et al., 2005;
Che et al., 2012; McDonald et al., 2013; Qiu
et al., 2014). These efforts primarily concen-
trate on sentence-level dependency parsing, with
document-level parsing being significantly less ex-
plored. Li et al. (2014) applied a dependency
parsing approach to discourse parsing, although
their EDU-wise method overlooks the parsing
within EDUs. Recent advancements by Jiang et al.
(2023) have initiated Chinese dialogue-level de-
pendency parsing, establishing a unified schema
that encompasses both inner-EDU syntactic de-
pendencies and inter-EDU discourse dependencies.
Building upon this, Zhang et al. (2024) have fur-
ther refined the framework by incorporating LLM-
assisted data augmentation, tackling the challenges
of low-resource settings through hierarchical trans-
formations at the word, syntax, and discourse lev-
els.

Meanwhile, cross-lingual transfer methods have
emerged as complementary approaches. Guo
et al. (2022) proposed a curriculum-style fine-
grained adaptation technique for unsupervised
cross-lingual dependency transfer, demonstrating
that syntactic knowledge can be effectively trans-
ferred across languages through progressive dif-
ficulty scheduling and parameter generation net-
works. This approach achieves state-of-the-art per-
formance on Universal Dependencies treebanks by
combining curriculum learning with self-training
strategies.
Dialogue Parsing. Discourse structures in dia-
logue can be represented by various theories, in-
cluding RST (Mann and Thompson, 1987, 1988),
SDRT (Asher and Lascarides, 2003), and PTDB
(Prasad et al., 2008). While datasets such as
STAC (Afantenos et al., 2015) and Molweni (Li
et al., 2020) concentrate on English multi-party di-
alogues, Jiang et al. (2023) introduced the first Chi-
nese dialogue-level dependency treebank (CDDT),
which merges RST-inspired discourse relations
with syntactic dependencies. This work bridges
the gap between EDU-based discourse parsing and
word-wise dependency structures. Expanding on
this, Zhang et al. (2024) developed a three-level
augmentation strategy using Large Language Mod-
els (LLMs) to create varied pseudo-instances while
maintaining discourse hierarchies, leading to sig-
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nificant improvements in handling inter-EDU de-
pendencies.
Weakly Supervised Learning. Predicting un-
seen dependency labels in low-resource settings
presents significant challenges (Norouzi et al.,
2013). Jiang et al. (2023) tackle this issue by em-
ploying signal-based dependency transformation
and pseudo-labeled data filtering, utilizing syntac-
tic treebanks and masked language modeling to
infer inter-EDU relations. Zhang et al. (2024) build
upon this approach by leveraging LLMs’ genera-
tive abilities for extensive data augmentation, de-
veloping prompt-based mechanisms to maintain
structural consistency throughout transformations.
Their method integrates characterization, chain-
of-thought prompting, and constrained generation,
illustrating that LLMs can effectively distill syn-
tactic and discourse knowledge without direct su-
pervision. This contrasts with conventional self-
training (Scudder, 1965) and co-training (Blum and
Mitchell, 1998) methodologies, providing a model-
centric solution for low-resource dependency pars-
ing.
Universal Structured NLP and Demonstration
Systems. Recent efforts have been made to unify
structured NLP (XNLP) tasks under a general
framework. Fei et al. (2023) proposed XNLP, an
interactive demonstration system built upon large
language models (LLMs), aiming to model a wide
variety of XNLP tasks, such as syntactic parsing,
information extraction, semantic role labeling, and
sentiment analysis, in a unified manner. By re-
ducing task outputs to span extraction and relation
prediction, the system achieves high generalizabil-
ity and supports zero-shot and weakly supervised
learning without task-specific fine-tuning. Further-
more, it offers multi-turn user interaction, struc-
tured visualization via brat, and interpretable pre-
diction rationales. These features highlight the
potential of LLM-based architectures in managing
structurally diverse tasks with minimal supervision,
aligning well with the goals of low-resource depen-
dency parsing and dialogue-level analysis. XNLP
thus provides both a practical tool and a method-
ological reference for universal structured predic-
tion under weak supervision.

5 Conclusion

In this study, we introduce InterParser, an innova-
tive end-to-end framework designed for Chinese
dialogue-level dependency parsing. Our model in-

tegrates a pretrained language model, hierarchical
BiGRU encoding, and speaker-aware biaffine scor-
ing mechanisms, effectively merging intra-EDU
syntactic dependencies with inter-EDU discourse
relations. Experimental outcomes showcase no-
table enhancements over existing techniques, reach-
ing state-of-the-art performance with 92.56% UAS
for inner-EDU parsing and 90.66% LAS for inner-
EDU parsing in few-shot scenarios. The ablation
study further confirms the essential contribution of
the BiGRU layer in capturing sequential linguistic
structures.

Limitations

Despite our advancements in low-resource dialogue
parsing, certain limitations persist. The dependence
on pseudo-labeled data for inter-EDU dependen-
cies may introduce annotation noise. Additionally,
our current speaker modeling, which focuses on
role disparities, overlooks dynamic interaction nu-
ances. Future research directions include extending
cross-lingual adaptation to other resource-scarce
languages, incorporating pragmatic elements for
comprehensive dialogue comprehension, and de-
veloping unified parsing-generation frameworks to
more effectively bridge the gap between syntac-
tic and discourse hierarchies. These developments
will be instrumental in constructing more robust
and interpretable dialogue systems.
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