
Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025), pages 252–265
August 1, 2025 ©2025 Association for Computational Linguistics

Language Models are Universal Embedders

Xin Zhang1,2, Zehan Li, Yanzhao Zhang, Dingkun Long
Pengjun Xie, Meishan Zhang1*, Min Zhang1

1Harbin Institute of Technology, Shenzhen, 2The Hong Kong Polytechnic University
zhangxin2023@stu.hit.edu.cn {zhangmeishan,zhangmin2021}@hit.edu.cn

Abstract
In the large language model (LLM) revolution,
embedding is a key component of various sys-
tems, such as retrieving knowledge or mem-
ories for LLMs or building content modera-
tion filters. As such cases span from English
to other natural or programming languages,
from retrieval to classification and beyond, it
is advantageous to build a unified embedding
model rather than dedicated ones for each sce-
nario. In this context, the pre-trained multi-
lingual decoder-only large language models,
e.g., BLOOM, emerge as a viable backbone
option. To assess their potential, we propose
straightforward strategies for constructing em-
bedders and introduce a universal evaluation
benchmark. Experimental results show that our
trained model is proficient at generating good
embeddings across languages and tasks, even
extending to languages and tasks for which no
finetuning/pretraining data is available. We also
present detailed analyses and additional evalua-
tions. We hope that this work could encourage
the development of more robust open-source
universal embedders.

1 Introduction

Embeddings, which transform discrete text or code
sequences into continuous vectors, are widely used
in many fields (Li et al., 2022; Neelakantan et al.,
2022). They have recently gained broader attention
by manipulating knowledge and memories for large
language models (LLMs) and LLM-based agents
(Peng et al., 2023; Song et al., 2022; Wang et al.,
2023). In such scenarios, their usages are inevitably
coupled with different languages and tasks. This
brings a demand for robust and universal embed-
ders, where one single model can be applied across
diverse tasks and languages, encompassing both
natural and programming languages.

The common approach to building effective em-
bedders is finetuning pretrained language models

*Correspondence. Code: github.com/izhx/uni-rep

en-asym

zh-asym

ar-asymid-asym

java-asym

en-sym

zh-sym

ar-sym id-sym

java-sym

0 20 40 60 80

bloom-1b1
+ en-asym

+ en-sym
+ en-all

en-asym

zh-asym

ar-asymid-asym

java-asym

en-sym

zh-sym

ar-sym id-sym

java-sym

0 20 40 60 80

bloom-1b1
+ en-all

+ zh-all
+ ar-all

+ id-all
+ java-all

Figure 1: The performance comparison of finetuned
BLOOM models on our compiled universal embedding
benchmark, details refer to Table 2.

through contrastive learning on pairs of sentences
(Neelakantan et al., 2022; Wang et al., 2022a). In
practice, BERT-style pretrained transformer en-
coders are de facto standard choices, deriving pow-
erful open-source models like E5 (Wang et al.,
2022a), BGE (Xiao et al., 2023) and GTE (Li et al.,
2023). However, these encoders have encountered
difficulties in constructing universal embeddings
because there are currently no available encoders
that simultaneously support multiple natural lan-
guages and programming languages.

A possible solution is to use multilingual large
language models (mLLM), such as BLOOM (Scao
et al., 2022) series. These models adopt a decoder-
only architecture and are pretrained on meticu-
lously curated, large-scale, multilingual corpora,
ROOTS (Laurençon et al., 2022), by the next token
prediction objective. They are not only skilled in
English but also excel in other languages, includ-
ing natural ones such as Chinese and programming
languages like Python, showing their wide-ranging
language abilities.

Therefore, one major question arises: is it fea-
sible to derive universal embedders from mLLMs?
To study this inquiry, we examine two scenarios:
(1) Task versatility: we explore strategies of data
compositions that enable the model to adapt effec-
tively to a variety of embedding tasks. (2) Multilin-
guality: we investigate the process of obtaining em-

252

github.com/izhx/uni-rep

beddings across multiple languages using limited
data, especially considering that some of them are
hard to acquire suitable training data. By synthesiz-
ing insights from above cases, we evaluate whether
mLLMs can be trained to generate high-quality
embeddings across both languages and tasks.

In practice, we construct embedders by conven-
tional methods (detailed in §2.1) based on BLOOM
(Scao et al., 2022) models.1 For task versatility, in
line with prior works (Wang et al., 2022a; Muen-
nighoff, 2022), we categorize all embedding tasks
into symmetric and asymmetric types and combine
datasets from both sides for training (§2.3). Regard-
ing multilinguality, we employ parameter-efficient
fine-tuning to maximally preserve the modeling
abilities of various languages (§2.2). For evalua-
tion, we select 5 languages (4 natural, 1 program-
ming) and compile a universal embedding bench-
mark (§3.1). All models are trained with mono-
lingual data and evaluated on the benchmark (as
shown in Figure 1), which helps us to analyze the
performance of different languages, e.g., densely,
lessly or not pretrained ones, more effectively.

Through extensive experiments, we find that:
• Combining datasets of both symmetric and

asymmetric types can achieve task versatility
across languages.

• For pretrained languages, mLLMs can pro-
vide high-quality embeddings, even when fine-
tuning occurs with data exclusively from other
languages.

• mLLMs show some extent generalizations to
languages that are not pretrained, and the per-
formance can be greatly improved by finetun-
ing on data of these unseen languages.

We believe that mLLMs are feasible and show great
potential in building universal embedders.

Additionally, we provide various detailed anal-
yses (§3.3, §3.4, §4), e.g., scaling the model size,
and the model performance in additional bench-
marks such as MTEB (Muennighoff et al., 2023)
and CodeSearchNet (Husain et al., 2019), to better
understand the model behaviors. We hope that our
findings could foster the development and research
of more powerful universal embedders.

2 Method

Figure 2 shows our method and evaluation. For
clarity, the details of embedding model are not

1Recently released Qwen1.5 is another viable option, we
list the experiments in Appendix A.1.

Monolingual Contrastive Tuning

English

Chinese

Java

English

Chinese

Java

BLOOM
LoRA

… …

A

…

S

A S

A S

SA

SA

SA
… …

A Asymmetric data S Symmetric data Frozen Trainable In-domain Out-of-domain

…

SA

…

S

A S

A

BLOOM
LoRA

BLOOM
LoRA

Universal Test

Figure 2: The outline of our main evaluation process.
We finetune BLOOM to generate embeddings by [EOS]
with contrastive loss on monolingual data, and analyze
performance by multilingual tests from various tasks.
The solid lines in the graph show English as an example.

presented. Next, we describe this model design.

2.1 Embedding Model
Our model design mainly follows the standard prac-
tice of previous work (Muennighoff, 2022; Nee-
lakantan et al., 2022). Given a text or code input x,
we append special tokens, [BOS]t and [EOS]t, to
the start and end of x respectively, where t repre-
sents the input type.2 We take the last token state
from the model output, i.e., the representation of
[EOS]t, as the embedding e of the input text x.

The contrastive learning objective involves pos-
itive and hard-negative examples (Reimers and
Gurevych, 2019). For each positive pair (x, x+) in
trainset, where x+ is the sequence similar or rel-
evant to x, we build the training instance {x, x+,
x−1 , . . . , x−N} with N negative examples x− from
the data (§2.3). We optimize the InfoNCE (Chen
et al., 2020) contrastive loss:

L = − log
exp(fθ(x, x+))

exp(fθ(x, x+)) +
∑N

j=1 exp(fθ(x, x−
i))

(1)

where fθ(x, y) = cos(ex, ey)/τ denotes the func-
tion that computes the cosine similarity between
two embeddings ex, ey of inputs x, y parameter-
ized by θ of the model. τ is the temperature hyper-
parameter which is set to 0.05 in our experiments.

2.2 Parameter Efficient Fine-Tuning for
Multilinguality

In finetuning, extensive parameter optimization can
lead to catastrophic forgetting, causing models to
lose their ability to model languages not included
in the fine-tuning data (Mao et al., 2022). This is a

2We set two input types, i.e., query and document. If not
specified, the input is encoded as query by default. We only
use the document type in retrieval tasks.

253

Language Asymmetric #train Symmetric #train

Natural mMarco-google 499,184 SNLI + MNLI 281,230
Java CodeSearchNet 454,451 BigCloneBench 450,862

Table 1: Statistics of training data used in each language.
The SNLI+MNLI is translated to other languages by
GPT-3.5-turbo API.

significant concern, especially for languages where
paired data for contrastive learning are scarce. In
such cases, we depend on the inherent capability
of model to acquire qualified embeddings, making
the prevention of catastrophic forgetting essential
to maintain multilingual performance.

Parameter Efficient Fine-Tuning presents a so-
lution to balance these two aspects (Badola et al.,
2023), which enhances performance on target tasks
while limit the updates to parameters. Therefore,
we employ it to maximize multilingual perfor-
mance, focusing on popular methods like Bitfit
(Ben Zaken et al., 2022) and LoRA (Hu et al.,
2021). In order to explore the model potential as
much as possible, we use data from a single lan-
guage in finetuning, which has demonstrated strong
competitiveness (Wang et al., 2022b).

2.3 Data Composition for Task Versatility

Downstream embedding tasks can be categorized
into two types: symmetric and asymmetric (Wang
et al., 2022a; Su et al., 2023). To ensure the versa-
tility, we use both types data (Table 1).

Asymmetric Data Query-to-passage/document
retrieval is a typical asymmetric embedding task,
focusing on capturing semantic relevance between
texts (Muennighoff, 2022). The model is trained
to maximize the similarity of vectors between a
query and its most relevant candidate. Consistent
with previous studies, we select the MSMARCO
passage ranking (Nguyen et al., 2016) and its trans-
lated version mMARCO (Bonifacio et al., 2021).

Symmetric Data Natural language inference is
an exemplary symmetric task that aligns well with
the requirements of contrastive learning, where the
semantic similarity between texts is gauged based
on the similarity of their embeddings. The training
instances comprise sentences with at least one en-
tailment (positive) and one contradiction (negative).
We utilize two classic English datasets, i.e., SNLI
(Bowman et al., 2015) and MNLI (Williams et al.,
2018), and translate them into other languages.

For programming languages, clone detection fo-
cuses on the similarity between codes, where Big-
CloneBench (Svajlenko et al., 2014) is used as the
symmetric. However, it is hard to find a suitable
dataset that measures code to code relevance3. As a
compromise, we use CodeSearchNet (Husain et al.,
2019) which match codes and their comments.

3 Main Experiments

To assess the viability of converting mLLMs into
universal embedding models, we conduct two parts
of experiment. The first part aims to evaluate the
potential of the LMs and validate employed strate-
gies on the compiled benchmark (§3.1). We expand
to broader open evaluations in the second part (§4).

3.1 Design of Controlled Experiments
The universal embedding encompasses two dimen-
sions: (1) multilingual, including both natural and
programming languages; (2) multitask, addressing
both symmetric and asymmetric embedding tasks.
Conducting comprehensive evaluations and analy-
ses can be quite complex and challenging, given the
significant variations in task scope and difficulty
across different languages. Therefore, to facilitate
research and comparison, we initially focus our ex-
periments on a limited set of languages and tasks.

Evaluation benchmarks. For both symmetric
and asymmetric task categories, we select two
benchmarks each. One is in-domain, which is the
corresponding evaluation of training data. For the
asymmetric (resp. symmetric) part of natural lan-
guages, it is devset of mMarco (resp. testset of
STS Benchmark 4 (Cer et al., 2017)). The other
is an out-of-domain evaluation, which is MIRACL
multilingual retrieval (Zhang et al., 2022) devset
(resp. MASSIVE (FitzGerald et al., 2022) testset)
for the asymmetric (resp. symmetric) of natural
languages. The out-of-domain asymmetric (resp.
symmetric) testset for code is xCodeEval/nl-code-
search (Khan et al., 2023) (resp. GoogleCodeJam
(Zhao and Huang, 2018)).

Evaluation languages. Java is only one choice
for code experiments as the training and evaluation
data are hard to find for other languages. For natu-
ral ones, we list all languages shared by mMarco,
MIRACL and BLOOM pretraining in Table 10. We

3Sedykh et al. (2023) introduced a code-to-code search
dataset based on StackOverflow but it is not public yet.

4The STS-B data are originated from SNLI. We use the
translated version from hf.co/datasets/stsb_multi_mt .

254

hf.co/datasets/stsb_multi_mt

Setting Eval → Asym Sym All

Train ↓ Lang en zh ar id java avg. en zh ar id java avg. en zh ar id java avg.

Asym

en 43.85 39.93 43.64 31.43 47.60 41.29 75.00 72.00 63.77 68.51 57.74 67.40 59.43 55.96 53.70 49.97 52.67 54.35
zh 39.91 42.04 41.94 28.93 49.24 40.41 75.05 72.68 65.32 68.57 58.54 68.03 57.48 57.36 53.63 48.75 53.89 54.22
ar 39.60 36.76 46.23 32.70 50.09 41.08 75.12 72.82 65.73 69.85 56.93 68.09 57.36 54.79 55.98 51.27 53.51 54.58
id 40.00 35.25 42.19 38.90 48.40 40.95 75.01 71.70 65.73 71.88 57.87 68.44 57.51 53.47 53.96 55.39 53.14 54.69

java 15.36 19.40 20.44 13.52 53.00 24.35 72.27 72.32 62.84 68.37 54.76 66.11 43.82 45.86 41.64 40.95 53.88 45.23

Sym

en 5.94 9.46 4.87 5.80 42.33 13.68 79.41 76.23 68.88 73.92 56.05 70.90 42.67 42.85 36.87 39.86 49.19 42.29
zh 5.15 7.25 6.76 6.88 43.13 13.83 78.84 76.64 68.76 73.60 56.94 70.96 42.00 41.95 37.76 40.24 50.03 42.40
ar 5.89 8.19 8.57 7.38 42.86 14.58 78.64 76.01 70.39 74.90 55.77 71.14 42.27 42.10 39.48 41.14 49.32 42.86
id 7.51 4.69 10.28 8.38 36.15 13.40 78.41 75.62 68.71 76.17 54.60 70.70 42.96 40.16 39.50 42.28 45.37 42.05

java 0.00 0.02 0.00 0.02 1.57 0.32 32.67 39.43 23.27 33.51 73.34 40.44 16.33 19.72 11.64 16.77 37.45 20.38

All

en 42.97 37.96 42.85 32.09 50.70 41.31 77.65 74.95 68.26 72.06 57.14 70.01 60.31 56.46 55.55 52.08 53.92 55.66
zh 38.92 40.48 41.08 28.46 49.79 39.75 77.68 75.00 68.39 71.58 58.27 70.18 58.30 57.74 54.73 50.02 54.03 54.96
ar 38.43 36.21 45.55 32.33 49.07 40.32 77.76 75.12 69.74 73.58 57.21 70.68 58.09 55.67 57.65 52.95 53.14 55.50
id 39.48 34.08 41.41 38.20 48.58 40.35 77.69 74.13 68.78 75.39 56.82 70.56 58.58 54.11 55.09 56.79 52.70 55.45

java 14.62 20.31 21.97 15.02 51.56 24.70 72.60 72.24 62.74 68.12 76.12 70.37 43.61 46.28 42.36 41.57 63.84 47.53

Multilingual 43.02 41.69 46.74 38.73 49.01 43.84 77.22 74.88 69.15 74.66 60.64 71.31 60.12 58.28 57.95 56.70 54.82 57.57

Table 2: Main Results on BLOOM-1b1. The socre of the asym (or sym) is the macro average of an in-domain test
and a out-of-domain test. All tests are listed in §3.1. The score of the all is the macro average of asym and sym.

select English, Chinese, Arabic and Indonesian for
main experiments as they are from different lan-
guage families and with different ratio in ROOTS.

Implementation details. We finetune BLOOM
models by LoRA (Hu et al., 2021) with r of 64. We
append special tokens to the vocabulary, initialize
their embeddings randomly, and update them as
well. We use AdamW optimizer with learning rate
(lr) 5e-5 and a cosine learning rate schedule, with
warmup of 10% steps, and decay final lr down to
10% of the peak lr. We use GradCache (Gao et al.,
2021a) to scale up the batch size to 1024 for the all
that combine both asymmetric and symmetric data.
And that of asym and sym is 512 to keep similar
optimization steps. For each instance, we sample
7 negative examples from the hard negatives.5 All
training are conducted on 8 A100-80GB GPUs in
BF16 with FlashAttention2 (Dao, 2024).

3.2 Results
Table 2 shows the results of controlled experiments.
It is intuitive that, for each setting in every lan-
guage, the in-domain trained models consistently
perform the best (except the symmetric Java evalu-
ation). Referencing these scores (on the diagonal),
we explore the potential of Multilingual LM on the
unified embeddings. For simplicity, we index the
table by a {train (row) → eval (column)} format,
e.g., asym-en→sym-zh is 72.00. We can also omit
part of it to refer to a set of results.

Task versatility For each setting, we can ob-
serve that: (1) sym models achieve poor results

5Since most examples from NLI datasets have only one
contradiction sentence as the hard negative, we randomly
sample 6 sentences to serve as the negative.

on asymmetric tasks (sym→asym are much lower
than asym→asym); (2) asym models show compa-
rable performance on symmetric tasks as the sym
ones (asym→sym are close to sym→sym); (3) the
all (i.e., models trained on both types data) exhibit
a slight decrease in asymmetric task (all→asym
are slightly lower than asym→asym), but symmet-
ric performance is improved (all→sym are better
than asym→sym), resulting in the best overall score
(all→all are higher than asym/sym→all). In all
(natural and programming) languages, combining
symmetric and asymmetric data improves task gen-
eralization, demonstrating that task versatility can
be achieved across languages.

Multilinguality Focusing on all→all, lower
right part of Table 2, we have: (1) on the column
view, for one language, the performance from other
languages (except Java) trained models are close
to each other and reasonably less than that of this
language; (2) on the row view, the averaged scores
for each language trained models (except Java) are
also similar. On all→sym, we can also consider
the above two statements to be valid with Java. The
models are not only performant in the source lan-
guage, but also effective in others. It indicates that
we can train mLLM to generate good embed-
dings for a language without paired data.

Exception on Java The exception results of Java
could be possibly attributed to the unsatisfactory
training data. First, the asymmetric data, i.e., Code-
SearchNet, is easier than mMARCO. On asym-
metric Java evaluation, natural language models
could achieve comparable results to the asym-java
model, but, on asymmetric natural language eval-

255

Model en de es fr ru ja zh ar id

en 43.85 19.40 39.99 39.40 17.53 27.06 39.93 43.64 31.43
de 39.53 35.08 36.70 36.50 21.31 29.10 36.93 41.87 31.66
es 41.75 20.88 41.82 40.23 18.50 26.92 39.94 45.06 34.64
fr 41.56 21.05 39.88 41.90 18.51 27.42 40.11 44.93 33.95
ru 36.33 22.13 32.56 33.35 31.61 29.69 27.07 40.47 28.38
ja 36.28 21.17 30.36 30.60 22.26 38.65 34.26 36.83 26.81
zh 39.91 18.48 35.53 35.68 16.44 26.36 42.04 41.94 28.93
ar 39.60 21.49 38.29 36.87 19.58 26.15 36.76 46.23 32.70
id 40.00 21.59 38.70 37.47 19.90 26.77 35.25 42.19 38.90

Table 3: Results of language generalization experiments
in asym→asym setting, with language codes in bold
included in the BLOOM pre-training, while the ones in
italic are not. Language information refer to Table 10.

0 10 20 30 40 50 60
(a) monolingual (x to x) score

en 30.0%
zh 16.2%
ar 4.6%
id 1.2%

0 10 20 30 40 50 60
(b) crosslingual averaged (avg. of y to x) score

en 30.0%
zh 16.2%
ar 4.6%
id 1.2%

0 1 2 3 4 5
(c) monolingual - crosslingual averaged

en 30.0%
zh 16.2%
ar 4.6%
id 1.2%

Figure 3: The plot of monolingual score (a), crosslingual
averaged score (b), and their difference (c) of natural
language evaluations on all→all setting. The lower
the ratio of a language in pre-training, the lower its
performance, and the more significant the improvement
brought by training data.

uations, the latter is substantially weaker than the
former. Thus, hard-pairs of asymmetric data would
be beneficial. Second, the symmetric data (Big-
CloneBench) seem to be insufficient as it is limited
to only a few hundred contest problems, which
is smaller than the tens of thousands of semantic
groups in NLI data. A wide-coverage large-scale
dataset might be helpful.

3.3 Analysis
In this subsection, we further analyze multilingual
performance and mechanism.

How language pretraining ratio affect perfor-
mance? To explore the relationship between the
performance of each language and its pretraining
ratio in mLLM, we focus on natural languages in
all→all setting and present the monolingual per-
formance, cross-lingual average performance, and
the differences between them in Figure 3. From En-
glish to Indonesian, we observe decreases in both

0 5 10 15 20
3

4

5

6

7

8

9

10
(a) BLOOM-560m w/o finetuning

English text
Chinese text
Python code

3 4 5 6 7 8

3

4

5

6

7

8

(b) BLOOM-560m w/ English finetuning

English text
Chinese text
Python code

Figure 4: Visualization of 100 examples from Code-
SearchNet Python, where Chinese texts are translated by
GPT-3.5-turbo. Gold and pink markers represent paral-
lel sequences in different languages. Before finetuning,
(a), embeddings are separated by language, especially
English and Chinese. After English finetuning, (b), the
parallel sequences are well aligned to each other.

monolingual and cross-lingual performance as well
as an increase in their difference, indicating that
models have poorer representation capabilities for
language with lower pretraining ratios and larger
gaps to rich-pretraining languages, regardless of
whether fine-tuning is applied or not.

Can model generalize to not pretrained lan-
guages? The BLOOM models are not pretrained
with some commonly used languages such as Ger-
man and Japanese. To investigate such scenario,
we extend to more languages and focus on the
asym→asym setting. Table 3 displays the results
of three languages that are not covered by ROOTS,
i.e., German (de), Russian (ru) and Japanese (ja).
First, the models trained on pretrained languages
(e.g., en) are capable on them (e.g.,, en→de has
a small gap with de→de). Second, for an unpre-
trained language, with its fine-tuning data, mLLM
not only exhibits excellent performance in this lan-
guage itself but also acquires a certain level of
multilingual embedding ability (it also achieves
considerable scores on other languages). Overall,
mLLM achieves promising generalization.

Does performance correlate to language fami-
lies? It is also interesting to investigate whether
there is a connection between language family
and performance. Focusing rows of three Indo-
European languages (en, fr, es) and one Sino-
Tibetan language (zh) in Table 3. The results
show that the models trained on Indo-European lan-
guages indeed exhibit similar performance trends,
while the model trained on zh shows significant
differences on es, fr and ar, which indicates that
the language family is one potential factor. We
also provide a better visualization of the results in
Appendix Figure 5 .

256

Model en zh ar id java

en-1b1 60.31 56.46 55.55 52.08 53.92

Scaling model size

en-3b 61.93+1.62 58.51+2.05 58.25+2.70 54.56+2.48 56.28+2.36

en-7b1 63.47+3.16 60.01+3.55 60.06+4.51 56.86+4.78 56.73+2.81

Full parameter tuning

en-1b1 61.55+1.24 58.98+2.42 56.53+0.98 51.68-0.4 53.53-0.39

Table 4: Results of English data trained models of scal-
ing and ablation experiments in all→all setting.

What contributes to the multilinguality? To ex-
plore why monolingual fine-tuning can also lead to
satisfactory performance in other languages, we vi-
sualize the embeddings before and after fine-tuning
using umap (McInnes et al., 2018). We select the
top 100 text-code pairs from the CodeSearchNet
test set, translate the text into Chinese, and ob-
tain embeddings using the model trained on En-
glish. As shown in Figure 4, before finetuning,
the embeddings of each language are distributed
separately. After finetuning, all embeddings are
distributed according to semantics (the text-code
pair and Chinese translation are clustered together).
This indicates that monolingual contrastive learn-
ing align embeddings in the shared semantic space
across languages, thereby improving performance
in other languages, consistent with the finding of
Wang et al. (2022b).

3.4 Scaling and Ablation on English

In this subsection, we take English data as an ex-
ample to explore scaling and ablation of LoRA.

Scaling model size All previous experiments are
conducted on BLOOM-1b1. Here, we extend the
experiments to the 3b and 7b1 models. As shown
in Table 4, the performance gradually increases as
model size increases. Additionally, for a language,
the smaller the pre-training ratio, the greater the
improvement brought about by scaling.

LoRA v.s. full parameter tuning The impact
of data combination has been reflected in Table 2.
Now we conduct the ablation of LoRA by compar-
ing with the full-parameter finetuned model. In Ta-
ble 4, although full parameter fine-tuning resulted
in performance improvement in English, Chinese,
and Arabic, it shows a decrease in Indonesian and
Java, two languages with smaller proportions of
pre-training. To ensure better performance across
multiple languages, we opt for LoRA.

4 Extended Evaluations

The second part experiment consists of evaluations
on more tasks and domains (§4.1), as well as di-
verse languages of multilingual (§4.2) and cross-
lingual (§4.3) tests. We evaluate BLOOM models
(1b1, 3b, 7b1) finetuned on English data.

4.1 Task and Domain Evaluation

Our method improves task generalization.
The MTEB benchmark (Muennighoff et al., 2023)
compiles a variety of embedding datasets for differ-
ent tasks and domains. We evaluate the generaliza-
tion on MTEB English subset, which is currently
one of the most comprehensive benchmark for En-
glish embeddings. Table 5 shows the results of the
English MTEB. Compared to decoder-only models
trained only on asymmetric data (SGPT series), our
model significantly improves the performance on
symmetric tasks (classification, clustering, STS).
We acknowledge that there is still room to go com-
pared to the best models, which are densely trained
on diverse datasets. As our goal is to build a unified
model for various languages, the score on English
is already competitive enough.

mLLM can generalize to unseen domains. To
assess the domain generalization, we focus on a
more challenging scenario, a Chinese multi-domain
retrieval benchmark (Long et al., 2022) which has
nearly no overlap with the training and finetuning
data. Table 6 presents the results. Our model is
on par with the in-domain continue pre-trained and
finetuned model (Karpukhin et al., 2020) (DPR-2),
which highlights the remarkable domain general-
ization ability of mLLM.

4.2 Multilingual Evaluation

mLLM outperforms supervised code models.
In main experiments (§3.2), Java is the only pro-
gramming language evaluated. Now we expand the
evaluations to all languages in CodeSearchNet (Hu-
sain et al., 2019), as shown in Table 7. Our models
(1b1, 3b, and 7b1) are better than supervised base-
lines of code (Feng et al., 2020; Guo et al., 2021),
demonstrating that our approach is a promising so-
lution in building text and code unified embeddings.
In addition to python, our models has large margins
to OpenAI APIs in others. This is reasonable given
their pre-training on large-scale code-text pairs.

Scaling can benefit unseen languages. We now
extend the symmetric evaluation with languages

257

Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets (→) 56 12 11 3 4 15 10 1

e5-mistral-7b-instruct (Wang et al., 2024) 66.63 78.47 50.26 88.34 60.21 56.89 84.63 31.4
bge-large-en-v1.5 (Xiao et al., 2023) 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
SGPT-5.8B-msmarco (Muennighoff, 2022) 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco (Scao et al., 2022) 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6

en-all-bloom-1b1 58.36 69.74 40.14 83.06 53.22 45.89 80.88 30.31
en-all-bloom-3b 59.70 71.87 41.25 83.88 52.69 47.64 81.80 32.07
en-all-bloom-7b1 60.62 71.72 42.31 85.00 54.81 49.06 82.66 32.24

Table 5: Results on MTEB English subset. We include the scores of top-performing encoder model, i.e., BGE, and
deocder-only models from the leaderboard (retrieved on Feb 3th, 2024).

Model Dataset Backbone E-commerce Entertainment video Medical
MRR@10 Recall@1k MRR@10 Recall@1k MRR@10 Recall@1k

DPR-1 In-Domain BERT 0.270 0.921 0.254 0.934 0.327 0.747
DPR-2 In-Domain BERT-CT 0.289 0.926 0.263 0.935 0.339 0.769

text-embedding-ada-002 General GPT 0.183 0.825 0.159 0.786 0.245 0.593
sgpt-bloom-7b1-msmarco General BLOOM 0.242 0.840 0.227 0.829 0.311 0.675

en-all-bloom-1b1 General BLOOM 0.244 0.863 0.208 0.815 0.241 0.557
en-all-bloom-3b General BLOOM 0.267 0.871 0.228 0.836 0.288 0.619
en-all-bloom-7b1 General BLOOM 0.296 0.889 0.267 0.907 0.343 0.705

Table 6: Results on Multi-CPR (Long et al., 2022). “In-Domain” indicates that the adopted training dataset is from
the corresponding domain. “BERT-CT” notes that the BERT model is continuing pre-trained with domain corpus.

Go Ruby Python Java JS PHP Avg.

CodeBERT 69.3 70.6 84.0 86.8 74.8 70.6 76.0
GraphCodeBERT 84.1 73.2 87.9 75.7 71.1 72.5 77.4
cpt-code S 97.7 86.3 99.8 94.0 86.0 96.7 93.4
cpt-code M 97.5 85.5 99.9 94.4 86.5 97.2 93.5
sgpt-bloom-7b1-msmarco 76.79 69.25 95.68 77.93 70.35 73.45 77.24

en-all-bloom-1b1 80.96 72.43 98.49 83.09 75.11 77.77 81.31
en-all-bloom-3b 81.04 76.30 98.45 84.34 77.22 79.58 82.82
en-all-bloom-7b1 81.66 79.02 98.14 84.88 78.55 79.92 83.70

Table 7: Results on CodeSearchNet (Husain et al., 2019).
Scores of CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2021), and OpenAI API cpt-code
are taken from Neelakantan et al. (2022).

that are not included in the BLOOM pre-training
(that of the asymmetric refer to Table 3). We con-
duct experiments on the multilingual testset of STS-
17 (Cer et al., 2017). Following the STS evaluation
protocol of MTEB, we use the Spearman correla-
tion between the cosine similarity of the sentence
embeddings and the human-annotated scores (from
1 to 5) as the metric. Table 8 compares the results
of our models with baselines. For languages in-
cluded in the BLOOM pre-training, our models
are the best. For the unseen language (marked
italic), our models do not give competitive perfor-
mance. Nonetheless, parameter scaling leads to
the increase of language capabilities, resulting in
improvement scores.

Model ar en es ko

LASER2 67.47 76.73 79.67 70.52
LaBSE 69.07 79.45 80.83 71.32
paraphrase-multilingual-MiniLM-L12-v2 79.16 86.87 85.56 77.03
paraphrase-multilingual-mpnet-base-v2 79.1 86.99 85.14 83.41
sgpt-bloom-7b1-msmarco 76.42 87.07 86 66.89
multilingual-e5-base 74.52 87.83 86.74 79.95

en-all-bloom-1b1 81.31 89.85 86.36 61.43
en-all-bloom-3b 81.67 90.77 86.60 66.12
en-all-bloom-7b1 83.41 91.60 87.72 66.53

Table 8: Spearman correlation between embedding co-
sine similarity and labels on STS17 multilingual testset.
Language codes in italic are not included in the BLOOM
pre-training. Reference results are from MTEB.

4.3 Cross-lingual Evaluation

Scaling aligns unseen languages with English.
In Table 8, it is evident that parameter scaling
can enhance monolingual performance for unseen
languages. We now investigate whether this find-
ing still holds for cross-lingual tasks and inquire
whether unseen languages are aligned with En-
glish. We evaluate on the BUCC bi-text mining
task (Zweigenbaum et al., 2016), which aims to
find parallel sentences, often translations, from two
monolingual corpora (French / Chinese / German
/ Russian and English). For fair comparisons, we
adopt the setting and baselines of MTEB (Muen-
nighoff et al., 2023). Table 9 shows the F1 scores

258

Model fr-en zh-en de-en ru-en

LASER2 98.39 97.7 99.21 97.62
LaBSE 98.72 99.16 99.35 97.78
multilingual-e5-base 97.59 98.3 99.13 97.20
paraphrase-multilingual-mpnet-base-v2 96.89 97.56 98.59 96.44
paraphrase-multilingual-MiniLM-L12-v2 94.99 95.63 97.11 95.06
sgpt-bloom-7b1-msmarco 97.06 97.96 54.00 45.30

en-all-bloom-1b1 97.76 97.70 38.61 23.67
en-all-bloom-3b 98.29 98.82 71.18 66.92
en-all-bloom-7b1 98.52 98.77 90.11 83.74

Table 9: BUCC F1 scores from MTEB. Languages in
italic are not included in the BLOOM pre-training. Base-
line results are retrieved from MTEB.

on the BUCC testset. Similar to the multilingual re-
sults, on the pre-trained language pairs (i.e., fr-en
and zh-en), our models are comparable with the
state-of-the-art approach, LABSE (Feng et al., 2022).
On the half-covered language pairs (de-en and
ru-en), there are consistent improvements with the
model size growth, demonstrating that the embed-
ding spaces of unseen languages are aligned to that
of English. Hence, we can affirmatively answer the
research question posed earlier.

5 Related Work

Text and sentence embeddings are useful for many
downstream tasks and applications (Karpukhin
et al., 2020; Gao and Callan, 2021). Early studies
start from similar ideas of word vectors (Hill et al.,
2016; Lin et al., 2017; Pagliardini et al., 2018), also
shift to neural networks (Conneau et al., 2017) then
pre-trained transformers (Cer et al., 2018; Reimers
and Gurevych, 2019; Ni et al., 2022). The sub-
sequent work mainly focus on using contrastive
loss to supervise or improve representation learn-
ing (Zhang et al., 2020; Giorgi et al., 2021; Kim
et al., 2021; Gao et al., 2021b; Yan et al., 2021;
Cheng et al., 2023), translation augmentation (Wi-
eting et al., 2020; Zhang et al., 2021), large-scale
pre-training (Yang et al., 2021; Neelakantan et al.,
2022; Wang et al., 2022a), and prompt (Su et al.,
2023). As most of them are under specific tasks,
Muennighoff et al. (2023) compile MTEB with
diverse tasks, domains, and languages for evalua-
tions. Recently, embeddings have gained attention
and a batch of large-scale pretrained models have
emerged, such as E5 (Wang et al., 2022a), BGE
(Xiao et al., 2023), GTE (Li et al., 2023), UAE
(Li and Li, 2023). Most of them are targeted to
and evaluated on English, while we explore the
languages beyond English.

Pre-trained transformer encoders, i.e., BERT

(Devlin et al., 2019), or that of T5 (Raffel et al.,
2020) are currently the mainstream for embed-
ding models, which are computation-effective than
encoder-decoders (Ni et al., 2022). GPT-style
decoder-only models (Radford et al., 2018) are
promising alternatives, since they have theoreti-
cally stronger representations (Dong et al., 2021;
Su, 2023). Pioneering GPT-based studies show
impressive performance on both text and code
(Neelakantan et al., 2022), especially for semantic
search (Muennighoff, 2022). We continue this line,
exploring the unified embeddings across multiple
natural and programming languages. A concur-
rent work (Wang et al., 2024) fine-tune Mistrial-7B
(Jiang et al., 2023) with data from diverse source
and carefully crafted instructions, showing state-of-
the-art performance on English MTEB. Taking into
account a more general scenario with various lan-
guages, we do not use complex prompts, but only
a set of special symbols for asymmetric inputs.

Multi- and cross-lingual text embeddings fol-
low the developments of English ones, from cross-
lingual word embeddings (Ruder et al., 2019) to
RNNs (Artetxe and Schwenk, 2019) and transform-
ers (Chidambaram et al., 2019; Yang et al., 2020;
Reimers and Gurevych, 2020; Feng et al., 2022).
To learn models without enough supervisions,
translation information (Artetxe and Schwenk,
2019; Chidambaram et al., 2019; Goswami et al.,
2021; Feng et al., 2022) and multilingual pre-
trained encoders (Reimers and Gurevych, 2020;
Liu et al., 2021) are explorated to improve embed-
dings (Chen et al., 2024). However, such BERT-
like multilingual encoders do not support code,
which is currently one of the crucial requirements.
Therefore, we shift our focus to pre-training de-
coder models that can simultaneously support natu-
ral languages and programming languages, aiming
to evaluate and analyze the potential of construct-
ing universal embeddings from them.

6 Conclusion

We propose the development of unified embed-
dings models (universal embedders) for various
tasks across multiple natural and programming lan-
guages based on multilingual decoder-only mod-
els. To evaluate the potential, we present straight-
forward strategies to construct embedding mod-
els from them, and design a universal embedding
benchmark for evaluation and analysis. Through
extensive experiments, we demonstrated the ver-

259

satility of embedders constructed from mLLMs,
showing their capabilities cross languages and
tasks. The models can generate reasonably good
embeddings for languages that have not been fine-
tuned or pre-trained, and the quality can be signifi-
cantly improved with the corresponding fine-tuning
data. These characteristics strongly indicate the
great potential of mLM for building universal em-
bedders. Additionally, we provide various analyses
and extended evaluations to reveal the interesting
properties of the model. We hope that our work
could inspire more open-source high-quality uni-
versal embedders.

Limitations

This work suffers from three primary limitations.
Firstly, we only evaluate the BLOOM and Qwen1.5
models as they are currently the only open-source
decoder-only models available for multiple natural
and programming languages. We hope that in the
future, there will be more model options to consider.
Secondly, we train the model using only monolin-
gual data. We have chosen to focus on monolingual
fine-tuning for a clearer analysis, which helps us
to fully analyze the intrinsic characteristics of dif-
ferent languages and the performance relationships
between them. We left mixed-language training as
future work. Thirdly, there were some anomalies
in the training and evaluation for the code. We
are committed to finding higher-quality data to en-
hance code evaluations.

Acknowledgments

This work receives partial support from the Nat-
ural Science Foundation of China (under Grant
624B2048), “the Fundamental Research Funds
for the Central Universities”, and the Shenzhen
Science and Technology Program (under Grant
ZDSYS20230626091203008).

References
Mikel Artetxe and Holger Schwenk. 2019. Mas-

sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transactions
of the Association for Computational Linguistics,
7:597–610.

Kartikeya Badola, Shachi Dave, and Partha Talukdar.
2023. Parameter-efficient finetuning for robust con-
tinual multilingual learning. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 9763–9780, Toronto, Canada. Association for
Computational Linguistics.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proc. of the ACL, pages 1–9, Dublin, Ireland.

Luiz Bonifacio, Vitor Jeronymo, Hugo Queiroz
Abonizio, Israel Campiotti, Marzieh Fadaee, Roberto
Lotufo, and Rodrigo Nogueira. 2021. mmarco: A
multilingual version of the ms marco passage ranking
dataset. arXiv preprint arXiv:2108.13897.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proc. of the EMNLP, pages 632–642, Lisbon, Por-
tugal.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the SemEval, pages 1–14, Vancouver, Canada.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
and 1 others. 2018. Universal sentence encoder for
English. In Proc. of the EMNLP: System Demonstra-
tions, pages 169–174, Brussels, Belgium.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for con-
trastive learning of visual representations. In Proc.
of the ICML, volume 119, pages 1597–1607.

Qinyuan Cheng, Xiaogui Yang, Tianxiang Sun, Linyang
Li, and Xipeng Qiu. 2023. Improving contrastive
learning of sentence embeddings from ai feedback.
In Findings of the ACL.

Muthu Chidambaram, Yinfei Yang, Daniel Cer, Steve
Yuan, Yunhsuan Sung, Brian Strope, and Ray
Kurzweil. 2019. Learning cross-lingual sentence rep-
resentations via a multi-task dual-encoder model. In
Proc. of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 250–259, Flo-
rence, Italy.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proc. of the
EMNLP, pages 670–680, Copenhagen, Denmark.

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In Interna-
tional Conference on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

260

https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.18653/v1/2023.findings-acl.619
https://doi.org/10.18653/v1/2023.findings-acl.619
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://arxiv.org/pdf/2402.03216.pdf
https://arxiv.org/pdf/2402.03216.pdf
https://arxiv.org/pdf/2402.03216.pdf
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://arxiv.org/abs/2305.01918
https://arxiv.org/abs/2305.01918
https://doi.org/10.18653/v1/W19-4330
https://doi.org/10.18653/v1/W19-4330
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/N19-1423

deep bidirectional transformers for language under-
standing. In Proc. of the NAACL-HLT, pages 4171–
4186, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas
Loukas. 2021. Attention is not all you need: pure
attention loses rank doubly exponentially with depth.
In Proc. of the ICML, volume 139, pages 2793–2803.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proc. of the ACL,
pages 878–891, Dublin, Ireland.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the EMNLP, pages
1536–1547, Online.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
and 1 others. 2022. Massive: A 1m-example multi-
lingual natural language understanding dataset with
51 typologically-diverse languages. arXiv preprint
arXiv:2204.08582.

Luyu Gao and Jamie Callan. 2021. Condenser: a pre-
training architecture for dense retrieval. In Proc. of
the EMNLP, pages 981–993, Online and Punta Cana,
Dominican Republic.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan.
2021a. Scaling deep contrastive learning batch
size under memory limited setup. In Proc. of the
6th Workshop on Representation Learning for NLP
(RepL4NLP-2021), pages 316–321, Online.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
SimCSE: Simple contrastive learning of sentence
embeddings. In Proc. of the EMNLP, pages 6894–
6910, Online and Punta Cana, Dominican Republic.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader.
2021. DeCLUTR: Deep contrastive learning for un-
supervised textual representations. In Proc. of the
ACL-IJCNLP, pages 879–895, Online.

Koustava Goswami, Sourav Dutta, Haytham Assem,
Theodorus Fransen, and John P. McCrae. 2021.
Cross-lingual sentence embedding using multi-task
learning. In Proc. of EMNLP, pages 9099–9113,
Online and Punta Cana, Dominican Republic.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, and 1 others. 2021.
Graphcodebert: Pre-training code representations
with data flow. In International Conference on Learn-
ing Representations.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In Proc. of the NAACL-HLT,
pages 1367–1377, San Diego, California.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
and 1 others. 2021. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proc. of the EMNLP,
pages 6769–6781, Online.

Mohammad Abdullah Matin Khan, M Saiful Bari,
Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. 2023. xcodeeval: A large scale multi-
lingual multitask benchmark for code understanding,
generation, translation and retrieval. arXiv preprint
arXiv:2303.03004.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for BERT sentence
representations. In Proc. of the ACL-IJCNLP, pages
2528–2540, Online.

Hugo Laurençon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral, Teven
Le Scao, Leandro Von Werra, Chenghao Mou, Ed-
uardo González Ponferrada, Huu Nguyen, and 1 oth-
ers. 2022. The bigscience roots corpus: A 1.6 tb
composite multilingual dataset. Advances in Neural
Information Processing Systems, 35:31809–31826.

Ruiqi Li, Xiang Zhao, and Marie-Francine Moens. 2022.
A brief overview of universal sentence representation
methods: A linguistic view. ACM Computing Sur-
veys (CSUR), 55(3):1–42.

Xianming Li and Jing Li. 2023. Angle-optimized text
embeddings. arXiv preprint arXiv:2309.12871.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

261

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.mlr.press/v139/dong21a.html
https://proceedings.mlr.press/v139/dong21a.html
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2204.08582
https://arxiv.org/abs/2204.08582
https://arxiv.org/abs/2204.08582
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2021.repl4nlp-1.31
https://doi.org/10.18653/v1/2021.repl4nlp-1.31
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.emnlp-main.716
https://doi.org/10.18653/v1/2021.emnlp-main.716
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.18653/v1/N16-1162
https://doi.org/10.18653/v1/N16-1162
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://dl.acm.org/doi/abs/10.1145/3482853
https://dl.acm.org/doi/abs/10.1145/3482853
https://arxiv.org/abs/1703.03130
https://arxiv.org/abs/1703.03130

Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel
Collier. 2021. Fast, effective, and self-supervised:
Transforming masked language models into univer-
sal lexical and sentence encoders. In Proc. of the
EMNLP, pages 1442–1459, Online and Punta Cana,
Dominican Republic.

Dingkun Long, Qiong Gao, Kuan Zou, Guangwei Xu,
Pengjun Xie, Ruijie Guo, Jian Xu, Guanjun Jiang,
Luxi Xing, and Ping Yang. 2022. Multi-cpr: A multi
domain chinese dataset for passage retrieval. In Proc.
of the SIGIR, pages 3046–3056. ACM.

Yuren Mao, Yaobo Liang, Nan Duan, Haobo Wang,
Kai Wang, Lu Chen, and Yunjun Gao. 2022. Less-
forgetting multi-lingual fine-tuning. In NeurIPS.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Großberger. 2018. Umap: Uniform manifold ap-
proximation and projection. Journal of Open Source
Software, 3(29):861.

Niklas Muennighoff. 2022. SGPT: GPT sentence
embeddings for semantic search. arXiv preprint
arXiv:2202.08904.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proc. of the EACL, pages 2014–2037,
Dubrovnik, Croatia.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas A. Tezak, Jong Wook Kim, Chris Hallacy,
and 1 others. 2022. Text and code embeddings by
contrastive pre-training. ArXiv, abs/2201.10005.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Proceedings of
the Workshop on Cognitive Computation: Integrating
neural and symbolic approaches, volume 1773.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant,
Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang. 2022.
Sentence-t5: Scalable sentence encoders from pre-
trained text-to-text models. In Findings of the ACL,
pages 1864–1874, Dublin, Ireland.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2018. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In Proc.
of the NAACL-HLT, pages 528–540, New Orleans,
Louisiana.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, and 1 others. 2023. Check your
facts and try again: Improving large language models
with external knowledge and automated feedback.
arXiv preprint arXiv:2302.12813.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, and 1 others. 2018. Improving language
understanding by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proc. of the EMNLP-IJCNLP, pages
3982–3992, Hong Kong, China.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proc. of the EMNLP,
pages 4512–4525, Online.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019.
A survey of cross-lingual word embedding models.
J. Artif. Int. Res., 65(1):569–630.

Teven Le Scao, Angela Fan, Christopher Akiki,
Elizabeth-Jane Pavlick, Suzana Ili’c, Daniel Hess-
low, Roman Castagn’e, Alexandra Sasha Luccioni,
Franccois Yvon, Matthias Gallé, and 1 others. 2022.
Bloom: A 176b-parameter open-access multilingual
language model. ArXiv, abs/2211.05100.

Ivan Sedykh, Dmitry Abulkhanov, Nikita Sorokin,
Sergey Nikolenko, and Valentin Malykh. 2023.
Searching by code: a new searchbysnippet dataset
and snipper retrieval model for searching by code
snippets. arXiv preprint arXiv:2305.11625.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2022.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. arXiv
preprint arXiv:2212.04088.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
embedder, any task: Instruction-finetuned text em-
beddings. In Proc. of the ACL.

Jianlin Su. 2023. Why are all llms now decoder-only
architectures?

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo,
Chanchal K. Roy, and Mohammad Mamun Mia.
2014. Towards a big data curated benchmark of inter-
project code clones. In 2014 IEEE International
Conference on Software Maintenance and Evolution,
pages 476–480.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022a. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

262

https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.1145/3477495.3531736
https://doi.org/10.1145/3477495.3531736
http://papers.nips.cc/paper_files/paper/2022/hash/5f9f9e4da57a94547491a39dc18f1696-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5f9f9e4da57a94547491a39dc18f1696-Abstract-Conference.html
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/N18-1049
https://doi.org/10.18653/v1/N18-1049
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.1613/jair.1.11640
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2212.04088
https://arxiv.org/abs/2212.04088
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://kexue.fm/archives/9529
https://kexue.fm/archives/9529
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Yaushian Wang, Ashley Wu, and Graham Neubig.
2022b. English contrastive learning can learn univer-
sal cross-lingual sentence embeddings. In Proc. of
the EMNLP, pages 9122–9133, Abu Dhabi, United
Arab Emirates.

John Wieting, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2020. A bilingual generative trans-
former for semantic sentence embedding. In Proc. of
the EMNLP, pages 1581–1594, Online.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proc. of
the NAACL-HLT, pages 1112–1122, New Orleans,
Louisiana.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighof. 2023. C-pack: Packaged resources to
advance general chinese embedding. arXiv preprint
arXiv:2309.07597.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. ConSERT: A con-
trastive framework for self-supervised sentence rep-
resentation transfer. In Proc. of the ACL-IJCNLP,
pages 5065–5075, Online.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo,
Jax Law, Noah Constant, Gustavo Hernandez Abrego,
Steve Yuan, Chris Tar, Yun-hsuan Sung, and 1 oth-
ers. 2020. Multilingual universal sentence encoder
for semantic retrieval. In Proc. of the ACL: System
Demonstrations, pages 87–94, Online.

Ziyi Yang, Yinfei Yang, Daniel Cer, Jax Law, and Eric
Darve. 2021. Universal sentence representation learn-
ing with conditional masked language model. In
Proc. of the EMNLP, pages 6216–6228, Online and
Punta Cana, Dominican Republic.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo,
Ehsan Kamalloo, David Alfonso-Hermelo, Xi-
aoguang Li, Qun Liu, Mehdi Rezagholizadeh, and
Jimmy Lin. 2022. Making a miracl: Multilingual in-
formation retrieval across a continuum of languages.
arXiv preprint arXiv:2210.09984.

Yan Zhang, Ruidan He, Zuozhu Liu, Lidong Bing, and
Haizhou Li. 2021. Bootstrapped unsupervised sen-
tence representation learning. In Proc. of the ACL-
IJCNLP, pages 5168–5180, Online.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim,
and Lidong Bing. 2020. An unsupervised sentence
embedding method by mutual information maximiza-
tion. In Proc. of the EMNLP, pages 1601–1610, On-
line.

Gang Zhao and Jeff Huang. 2018. Deepsim: deep
learning code functional similarity. In Proc. of the
ESEC/FSE, page 141–151, New York, NY, USA.

Code Language Family Subfamily in ROOTS (%)

ar Arabic Afroasiatic Semitic 4.6
zh Chinese Sino-Tibetan Sinitic 16.2
de German Indo-European Germanic -
en English Indo-European Germanic 30.04
es Spanish Indo-European Italic 10.8
fr French Indo-European Italic 12.9
hi Hindi Indo-European Indo-Iranian 0.7
id Indonesian Austronesian Malayo-Polynesian 1.2
ja Japanese Japonic - -
ru Russian Indo-European Balto-Slavic -

Table 10: Languages shared by mMarco and MIRACL.

en es fr zh ar id

30

40
en
fr
es
zh

Figure 5: The plot of English (en), French (fr), Spanish
(es), Chinese (zh) from Table 3, where en, fr and es
are all in the Indo-European family and with similar
performance trends. While the zh trained model shows
differences to Indo-European ones in es, fr, and ar.

Pierre Zweigenbaum, Serge Sharoff, and Reinhard Rapp.
2016. Towards preparation of the second bucc shared
task: Detecting parallel sentences in comparable cor-
pora. In Proceedings of the Ninth Workshop on Build-
ing and Using Comparable Corpora, pages 38–43,
Portoroz, Slovenia.

A Appendix

A.1 Experiments on Qwen1.5

Qwen1.5 models are recently released multilingual
LLMs, we conduct the main experiments on the
Qwen1.5-0.5B to examine the multilingual perfor-
mance (Table 11) and evaluate 0.5B, 1.8B and 4B
English finetuned models on MTEB English (Ta-
ble 12). In Table 11, Qwen1.5-0.5B is comparable
to BLOOM-1b1 or even better on English (en),
Chinese (zh), and Java. But it performs poorly in
Arabic (ar) and Indonesian (id). In MTEB English,
as shown in Table 12, the Qwen1.5 models are
significantly better than BLOOM models.

A.2 Additional Design Analysis

We now conduct the ablation analysis to identify
the contributions of different design aspects of our
approach. We hope that this analysis can help build-
ing more robust decoder-based embedding models.
Table 13 presents the MTEB-English performance
of BLOOM-560M models finetuned in different
experimental settings.

263

https://aclanthology.org/2022.emnlp-main.621
https://aclanthology.org/2022.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.122
https://doi.org/10.18653/v1/2020.emnlp-main.122
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2021.emnlp-main.502
https://doi.org/10.18653/v1/2021.emnlp-main.502
https://arxiv.org/abs/2210.09984
https://arxiv.org/abs/2210.09984
https://doi.org/10.18653/v1/2021.acl-long.402
https://doi.org/10.18653/v1/2021.acl-long.402
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.18653/v1/2020.emnlp-main.124
https://doi.org/10.1145/3236024.3236068
https://doi.org/10.1145/3236024.3236068

Setting Eval → Asym Sym All

Train ↓ Lang en zh ar id java avg. en zh ar id java avg. en zh ar id java avg.

BLOOM-1b1

All

en 42.97 37.96 42.85 32.09 50.70 41.31 77.65 74.95 68.26 72.06 57.14 70.01 60.31 56.46 55.55 52.08 53.92 55.66
zh 38.92 40.48 41.08 28.46 49.79 39.75 77.68 75.00 68.39 71.58 58.27 70.18 58.30 57.74 54.73 50.02 54.03 54.96
ar 38.43 36.21 45.55 32.33 49.07 40.32 77.76 75.12 69.74 73.58 57.21 70.68 58.09 55.67 57.65 52.95 53.14 55.50
id 39.48 34.08 41.41 38.20 48.58 40.35 77.69 74.13 68.78 75.39 56.82 70.56 58.58 54.11 55.09 56.79 52.70 55.45

java 14.62 20.31 21.97 15.02 51.56 24.70 72.60 72.24 62.74 68.12 76.12 70.37 43.61 46.28 42.36 41.57 63.84 47.53

Qwen1.5-0.5B

All

en 42.42 38.36 24.66 20.41 52.63 35.70 79.23 75.33 52.96 61.09 60.28 65.78 60.82 56.85 38.81 40.75 56.46 50.74
zh 40.03 41.02 24.71 17.68 53.25 35.34 78.82 75.79 52.89 60.48 61.23 65.84 59.42 58.41 38.80 39.08 57.24 50.59
ar 36.32 33.34 37.64 22.85 52.25 36.48 76.85 73.43 62.32 63.02 58.77 66.88 56.59 53.38 49.98 42.94 55.51 51.68
id 38.22 34.97 29.67 34.54 53.81 38.24 77.32 73.68 54.96 69.85 60.44 67.25 57.77 54.32 42.32 52.20 57.12 52.75

java 18.19 24.25 2.30 5.36 50.65 20.15 71.90 70.18 44.49 54.89 75.60 63.41 45.04 47.21 23.39 30.13 63.12 41.78

Table 11: Main Results of BLOOM-1b1 and Qwen1.5-0.5B. The socre of the asym (or sym) is the macro average of
an in-domain test and a out-of-domain test. All tests are listed in §3.1. The score of the all is the macro average of
asym and sym.

Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets (→) 56 12 11 3 4 15 10 1

e5-mistral-7b-instruct (Wang et al., 2024) 66.63 78.47 50.26 88.34 60.21 56.89 84.63 31.4
bge-large-en-v1.5 (Xiao et al., 2023) 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
SGPT-5.8B-msmarco (Muennighoff, 2022) 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco (Scao et al., 2022) 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6

en-all-bloom-1b1 58.36 69.74 40.14 83.06 53.22 45.89 80.88 30.31
en-all-bloom-3b 59.70 71.87 41.25 83.88 52.69 47.64 81.80 32.07
en-all-bloom-7b1 60.62 71.72 42.31 85.00 54.81 49.06 82.66 32.24

en-all-qwen1.5-0.5b 58.89 71.71 39.87 83.61 53.81 46.43 80.46 31.62
en-all-qwen1.5-1.8b 60.73 72.83 42.91 84.75 55.19 48.79 81.66 31.31
en-all-qwen1.5-4b 62.41 74.53 44.61 85.58 55.35 51.36 82.98 31.27

Table 12: Results on MTEB English subset. We include the scores of top-performing encoder model, i.e., BGE, and
deocder-only models from the leaderboard (retrieved on Feb 3th, 2024).

No. Model Setting Overall Class. Clust. PairClass. Rerank. Retr. STS Summ.

0 Our-bloom-560m 55.80 68.04 36.89 81.05 52.60 41.19 79.93 32.06
1 w/o allnli 54.01 62.52 37.12 78.90 52.95 42.19 75.57 29.16
2 w/o msmarco 49.14 67.74 32.84 78.81 50.02 20.78 79.98 29.84
3 w/o multiple negatives 55.70 68.19 37.30 80.60 52.87 40.63 79.63 31.49
4 w/ weightedmean 55.37 66.60 36.42 80.26 52.98 42.14 78.89 30.58

5 sgpt-bloom-560m 53.01 62.89 36.58 76.61 52.06 39.96 74.40 30.09
6 w/ learnable special token + lasttoken pooling 54.24 62.45 38.33 77.89 53.22 42.22 75.69 29.48

Table 13: Ablation study. MTEB English results of bloom-560m finetuned by different settings.

264

Train → raw english zh ar id java
Eval ↓ 1b1 1b1-asym 1b1-sym 1b1-all 1b1-all-full 3b-all 7b1-all 1b1-asym 1b1-sym 1b1-all 1b1-asym 1b1-sym 1b1-all 1b1-asym 1b1-sym 1b1-all 1b1-sym 1b1-asym 1b1-all

en

mMarco 0.01 39.79 8.8 38.49 42.72 40.49 41.98 36.21 7.94 34.99 35.86 7.45 34.24 36.34 8.7 35.83 0 13.58 12.95
Miracl 0 47.91 3.08 47.44 48.41 48.3 50.42 43.6 2.36 42.86 43.34 4.33 42.62 43.67 6.32 43.12 0 17.15 16.29

STSBenchmarkMultilingual 12.21 79.53 85.96 85.15 85.35 86.76 87.37 78.75 86.42 84.36 78.81 84.54 84.24 79.16 85.32 84.28 23.54 73.24 73.56
STS17Extend 35.44 86.47 89.84 89.85 90.01 90.77 91.6 84.98 88.82 88.88 85.03 88.01 88.42 85.49 88.9 88.88 37.63 80.83 82.51

MassiveIntentClassification 28.22 67 70.92 67.8 67.38 70.18 72.01 68.24 70.06 68.75 68.31 71.01 69.18 67.7 69.72 68.8 34.75 67.5 67.16

zh

mMarco 0.02 27.01 8.01 26.27 30.02 28.43 29.69 31.06 6.86 30.19 27.12 7.06 26.32 25.95 5.83 25.07 0.04 12.91 13.41
Miracl 0 52.84 10.92 49.66 54.14 52.75 55.69 53.03 7.65 50.77 46.41 9.31 46.1 44.55 3.56 43.09 0 25.89 27.22

STSBenchmarkMultilingual 25.41 74.62 79.59 78.89 80.68 80.82 81.49 75.83 81.65 80.72 75.47 79.66 79.13 74.4 79.26 78.05 33.03 71.09 71.52
STS17Extend 38.29 81.77 85.99 86.9 87.87 88.47 88.86 83.87 87.49 87.62 82.23 85.19 86.19 80.48 84.65 84.41 41.67 79.69 79.52

MassiveIntentClassification 31.75 65.8 69.67 67.01 67.49 68.22 69.5 65.51 68.72 65.82 66.78 69.59 67.59 65.95 69.29 67.03 41.5 69.25 68.95

ar

mMarco 0.05 22.04 4.04 21.33 24.35 23.79 25.97 22.85 5.75 22.24 27.36 5.95 26.48 23.59 7.04 22.99 0.01 8.28 9.75
Miracl 0.07 65.25 5.7 64.36 63.69 68.16 70.26 61.02 7.78 59.91 65.09 11.19 64.63 60.8 13.53 59.82 0 32.6 34.19

STSBenchmarkMultilingual 29.51 69.54 75.94 75.94 79.16 79.34 81.44 72.14 78.49 77.41 73.32 79.39 79.78 73.34 77.75 77.8 20.52 66.88 67.64
STS17Extend 31.43 72.61 80.68 81.31 82.26 81.67 83.41 74.55 80.53 80.9 76.7 83.38 84.17 76.74 80.27 81.76 16.35 67.29 66.26

MassiveIntentClassification 19.08 56.46 59.44 57.88 57.38 60.53 61.57 57.29 58.02 57.62 56.45 59.4 57.51 56.43 58.41 57.77 28.1 58.6 58.53

id

mMarco 0.01 20.04 4.89 21.41 21.92 26.16 29.26 19.32 4.97 18.97 24.86 5.06 24.16 33.03 6.29 32.03 0.01 6.92 6.67
Miracl 0 42.82 6.71 42.77 40.42 44.2 45.85 38.54 8.78 37.95 40.54 9.69 40.49 44.77 10.47 44.36 0.03 20.13 23.38

STSBenchmarkMultilingual 24.91 72.11 79.58 78.36 80.72 81.03 83.2 72.73 81.06 78.75 73.1 80.63 79.78 76.89 83.13 82.91 24.12 69.54 69.4
STS17Extend 47.12 80.32 86.55 86.25 88.51 87.87 89.63 79.19 86 84.31 81.1 86.77 87.28 83.53 87.98 88.98 44.45 77.11 76.83

MassiveIntentClassification 22.7 60.81 64.77 61.82 59.77 63.43 65.91 61.18 63.67 61.62 62.6 66.09 63.63 63.54 66.79 64.83 32.74 63.42 63.13

java

CodeSearchNet 1.00 82.45 73.27 83.09 82.84 84.33 84.87 82.77 75.17 82.64 82.4 73.81 81.66 81.1 62.46 81.41 3.14 88.53 88.47
xCodeEvalRetrievalNlCode 0 12.74 11.4 18.31 15.94 20.06 20.43 15.72 11.08 16.94 17.78 11.91 16.48 15.7 9.84 15.76 0 17.47 14.64

BigCloneBench 19.14 48.05 43.83 45.96 48.67 50.76 50.18 47.53 44.71 47.77 44.19 43.97 45.63 44.79 42.4 45.42 94.61 46.81 95.48
GoogleCodeJam 61.79 67.43 68.28 68.33 66.67 69.98 71.45 69.55 69.17 68.78 69.67 67.57 68.8 70.95 66.79 68.22 52.07 62.72 56.77

Table 14: Detailed results of Table 2 on our compiled universal embedding benchmark. raw-1b1 is un-finetuned
BLOOM 1b1 model tested with <EOS> embeddings.

NLI data improve symmetric tasks. We first
investigate the effect of symmetric NLI data on
different tasks. In the line No.1 of Table 13, we re-
move the NLI data and finetune the model solely us-
ing asymmetric retrieval data (MSMARCO). Com-
pared with our model in line No.0, the performance
of classification (Class.) and STS is significantly
decreased, which are typical symmetric tasks. How-
ever, these two tasks are not affected by the removal
of MSMARCO data (line No.2). This demonstrates
the crucial role of symmetric NLI data in achieving
optimal performance in these tasks.

Retrieval data are irreplaceable. As stated
above, finetuning using only NLI data (line No.2)
is competitive enough for classification and STS.
However, it can not provide a satisfactory score
for retrieval (Retr.), i.e., 20.78 v.s. 40+ of others,
and also leads a drop in clustering (Clust.). This
suggests that retrieval data are crucial for building
unified embedding models.

Multiple negatives only help retrieval. In line
No.3 of Table 13, we keep only one negative exam-
ple in contrastive learning. Compared to our model
in line No.0, only the performance of retrieval is
decreased, while other tasks have no significant
change. Considering that learning multiple nega-
tives greatly increase the computational cost and
training train, one can freely choose whether or not
to use it according to the specific requirements.

Last special token is better representation.
With regard to sequence encoding by decoder-
based models, both Neelakantan et al. (2022) and
Muennighoff (2022) append special tokens to the

en-all zh-all ar-all id-all java-all

en

mMarcoMultilingual 38.56 36.06 33.01 34.30 15.65
Miracl 46.28 44.00 39.63 42.14 20.73
STSBenchmarkMultilingual 84.64 84.30 79.28 81.22 71.93
STS17Extend 90.80 90.20 88.08 88.29 77.70
MassiveIntentClassification 70.73 70.39 70.02 69.89 68.97

zh

mMarcoMultilingual 26.14 29.51 23.19 23.79 13.69
Miracl 50.58 52.53 43.48 46.15 34.80
STSBenchmarkMultilingual 77.57 79.79 72.53 74.51 68.07
STS17Extend 88.42 89.15 84.89 85.27 76.85
MassiveIntentClassification 67.67 67.11 68.15 67.47 67.90

ar

mMarcoMultilingual 12.40 12.79 21.52 15.84 1.80
Miracl 36.92 36.63 53.76 43.51 2.79
STSBenchmarkMultilingual 62.27 62.47 73.10 64.17 54.03
STS17Extend 59.46 58.79 77.54 64.59 43.90
MassiveIntentClassification 45.06 45.14 49.32 45.54 40.02

id

mMarcoMultilingual 14.54 13.36 16.57 27.53 3.17
Miracl 26.28 22.01 29.13 41.55 7.55
STSBenchmarkMultilingual 65.61 63.97 66.63 77.18 54.28
STS17Extend 71.77 72.19 76.81 86.16 65.59
MassiveIntentClassification 53.48 52.87 54.32 58.03 49.85

java

CodeSearchNet 83.95 83.00 82.47 83.00 88.25
xCodeEvalRetrievalNlCode 21.31 23.51 22.03 24.62 13.04
BigCloneBench 48.56 50.68 45.95 48.18 96.85
GoogleCodeJam 72.00 71.78 71.59 72.69 54.35

Table 15: Detailed results of Qwen1.5-0.5B of Table 11.

start and end of the input sequence. On the se-
lection of the final embedding output, Neelakan-
tan et al. (2022) use the last special token, while
Muennighoff (2022) use a position weighted mean
pooling of the hidden states. In line No.4 of Table
13, we employ the weighted mean pooling on our
model and observe a slight performance decrease.
Additionally, we also try to use the last special
token on SGPT (Muennighoff, 2022), achieving
better average scores (line No.6) compared with
the sgpt-bloom-560m we implemented. Our ex-
periments demonstrate that the last special token is
more effective for unified embeddings models.

265

