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Abstract

This paper compares two approaches for table
extraction from images: deep learning com-
puter vision and Multimodal Large Language
Models (MLLMs). Computer vision models
for table extraction, such as the Table Trans-
former model (TATR), have enhanced the ex-
traction of complex table structural layouts
by leveraging deep learning for precise struc-
tural recognition combined with traditional Op-
tical Character Recognition (OCR). Conversely,
MLLMs, which process both text and image
inputs, present a novel approach by potentially
bypassing the limitations of TATR plus OCR
methods altogether. Models such as GPT-4o,
Phi-3 Vision, and Granite Vision 3.2 demon-
strate the potential of MLLMs to analyze and
interpret table images directly, offering en-
hanced accuracy and robust extraction capabil-
ities. A state-of-the-art metric like Grid Table
Similarity (GriTS) evaluated these methodolo-
gies, providing nuanced insights into structural
and text content effectiveness. Utilizing the
PubTables-1M dataset, a comprehensive and
widely used benchmark in the field, this study
highlights the strengths and limitations of each
approach, setting the stage for future innova-
tions in table extraction technologies. Results
show that deep learning computer vision tech-
niques still have a slight edge when extracting
table structural layout, but in terms of text cell
content, MLLMs are far better.

1 Introduction

With the increasing volume of digital documents,
such as records, manuals, and scientific papers,
processing and transforming them into representa-
tions that allow proper extraction of information
has become highly challenging (Staar et al., 2018).
Many of these documents contain tables, as they
help represent data in an organized, readable, and
straightforward manner. However, automatically
identifying and extracting structural layout and con-
tent information becomes more complex, which

can be crucial in scientific and business applica-
tions (Chen et al., 2023; Burdick et al., 2020).

This work explores and compares two strate-
gies for extracting tables contained in images in a
structured manner: (a) a deep learning computer vi-
sion model, Table Transformer (TATR), combined
with Optical Character Recognition (OCR) and
(b) the novel Multimodal Large Language Mod-
els (MLLMs). These approaches were evaluated
using metrics that capture how well they extract the
tables’ structural and text content.

The remainder of this paper is structured as fol-
lows. Section 2 provides an overview of existing
and related work. Section 3 outlines the followed
methodology and experiment details and Section 4
discusses the obtained results. Finally, conclusions
and limitations are drawn in Sections 5 and 6.

2 Related Work

This section reviews key literature on Optical Char-
acter Recognition (OCR) and table extraction, and
LLMs.

2.1 Table Extraction & OCR

OCR is fundamental in extracting text from tables
within images (Li et al., 2024). Traditional OCR
methods, including Tesseract (Smith, 2007) and
Paddle-OCR (Du et al., 2020), follow a two-step
process of text detection and recognition but often
struggle with extracting complex table structural
layouts due to diverse fonts and layouts (Ranjan
et al., 2021; Zhong et al., 2020).

Recent developments in OCR technology have
introduced bounding box detection, significantly
improving word localization and integration with
table structure recognition (Smock et al., 2023).
Models such as TableNet (Paliwal et al., 2019),
which utilize features for segmenting table regions,
and Microsoft’s TATR Transformer-based models
(Smock et al., 2021), which perform end-to-end
table detection and structural layouts recognition,
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have shown promising results. Challenges like
OCR errors, computational costs, and handling in-
tricate structures like merged cells remain despite
advancements.

2.2 Multimodal LLMs for Table Extraction
Multimodal LLMs can accomplish a wide range
of tabular tasks (Zheng et al., 2024). These mod-
els can bypass OCR for table extraction, providing
more efficient and accurate table extraction (Sui
et al., 2024). Models such as LLaVA (Liu et al.,
2023) and GPT-4o (Yenduri et al., 2023) can in-
corporate image and text processing, leveraging
their capabilities for improved table recognition.
Current research investigates representations and
prompting strategies like chain-of-thought to evalu-
ate the table’s structural understanding capabilities
of LLMs (Deng et al., 2024; Sui et al., 2024).

GPT-4 Omni (GPT-4o) (Yenduri et al., 2023)
was launched in May of 2024 by OpenAI. It in-
troduced several significant innovations as a foun-
dation model, dwarfing the other models. It has
a massive number of parameters — estimated to
be well over 1 trillion - compared to GPT-3, at
175 billion parameters, and GPT-1, at an estimated
117 million parameters (Shahriar et al., 2024). It
can process text, audio, and images at considerable
speeds, which grants it remarkable multimodal ca-
pabilities. It was pre-trained using data up to Octo-
ber 2023, including data from public datasets and
private partnerships.

Table LLaVA (Zheng et al., 2024; Liu et al.,
2023) is a LLaVA model fine-tuned on the MMTab
(Zheng et al., 2024) dataset. This enables it to
do table-based question answering and data in-
terpretation tasks. Regarding its limitations, Ta-
ble LLaVA focuses mainly on single tables in En-
glish, and the resolution of input images is rel-
atively low. MiniCPM-V (Yao et al., 2024) has
strong image capabilities, supporting up to 1.8M
pixels (high-resolution image perception) and ro-
bust OCR. It has multilingual support, covering
over 30 languages. Phi-3-Vision (Microsoft, 2024)
was trained on a diverse multimodal instruction tun-
ing dataset encompassing 500 billion tokens. The
Phi was trained primarily on English text. Lan-
guages other than English will experience worse
performance. The resolution of input images is
relatively low, similar to Table LLaVa. In multi-
ple vision-language benchmarks, it surpasses pre-
vious models. In most benchmarks, Granite Vi-
sion 3.2 (GraniteVision, 2025) outperforms Phi-

3-Vision. This model was trained on a curated
dataset comprising approximately 13 million im-
ages and 80 million instructions from public and
synthetic datasets. Granite Vision 3.2 is a stream-
lined and effective vision-language model tailored
for comprehending visual documents. It facilitates
the automated extraction of information from ta-
bles, charts, infographics, plots, and diagrams. The
resolution of input images is medium, greater than
Table LLaVa and Phi-3Vision.

Challenges persist, including accurately inter-
preting visual data, understanding complex table
formats, and designing practical input and prompt-
ing strategies (Sui et al., 2024). Models must effi-
ciently handle table serialization and adapt to var-
ious representation formats, ensuring accurate ex-
traction and reasoning.

2.3 Datasets

Several datasets with images of tables exist, includ-
ing SciTSR (Chi et al., 2019), TableBank (Li et al.,
2019), and PubTabNet (Zhong et al., 2020). With
nearly one million tables, PubTables-1M (Smock
et al., 2021) stands out due to its extensive scale
and detailed annotations, making it the most re-
cent and complete dataset. PubTables-1M’s rich
annotations, including spatial coordinates and OCR
ground truth, enable models to learn how to recog-
nize tables’ structural and textual aspects. In the
present study, the data used in the experiments is a
subset of the PubTables-1M dataset (Smock et al.,
2021).

3 Methodology

This section first explains the methodology used to
retrieve table outputs from large language models.
Then, in the second subsection, the evaluation met-
rics used are briefly detailed. Finally, in the third
subsection, the specific details of the experiment’s
execution are provided.

3.1 Prompting LLMs for Tables

Evaluating the TATR model on the PubTables-1M
dataset is straightforward, as the ground truth and
the model’s output prediction are essentially in the
same format. In contrast, submitting tables to a
large language model expecting structured output
introduces additional challenges, such as ensuring
proper formatting and dealing with potential re-
sponse inconsistencies due to LLMs’ generative
nature.
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Figure 1: (a) Example of table extraction with LLM structured output. The LLM converts the input image into a
structured JSON response, extracting the table attributes - headers and rows - whilst ignoring content outside the
table. This JSON is then converted into a comma-separated values (CSV) file for evaluation. (b) Structured output
schema definition. (c) The chain-of-thought prompt is used with the structured output technique.

An initial approach to extracting table informa-
tion involved prompting the models to produce an
output in a comma-separated values (CSV) for-
mat. This method was primarily effective for GPT
models, with performance varying based on the
prompts used; incorporating chain-of-thought in-
structions generally enhanced the outcomes. Alter-
natively, the Markdown format was tested for table
extraction. However, the absence of a standardized
Markdown structure across different models made
it challenging to evaluate and compare outputs con-
sistently.

Ultimately, OpenAI’s Structured Output func-
tionality was implemented alongside the chain-of-
thought instructions prompt (see Figure 1(c)), en-
suring compliance with a predefined JSON schema
(Figure 1(b). This approach established a standard-
ized format across all model outputs, facilitating

a more straightforward structural layout and cell
content evaluation. Figure 1(a) illustrates the trans-
formations applied to the tabular data and the chain-
of-thought prompt.

3.2 Evaluation
Several evaluation metrics were implemented to
evaluate the detection of the table’s structural lay-
outs and the content present in its cells. The struc-
tural layout metrics aim to classify the model’s
ability to detect and preserve the table’s organi-
zation, including its headers, rows, and columns.
The content metrics are based on string similarity,
which evaluates the accuracy and relevance of the
extracted information within the table cells.

Table shape accuracy evaluates how closely pre-
dicted table dimensions align with the actual ones,
calculated as the harmonic mean of row and col-
umn accuracy (Eq. 1). Significant inaccuracies in
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Figure 2: Example of projected row header cell and spanning cell, inspired by (Smock et al., 2021)

either dimension can significantly impact overall
accuracy.

Shape Acc =
2

1
Row Acc +

1
Column Acc

(1)

A vital metric utilized in this evaluation is the
F1 Score, which balances Precision and Recall to
gauge the accuracy of the extracted tables. The
F1 Score represents a harmonic mean of Precision
and Recall, ensuring that a model’s effectiveness
in extracting table data considers both correctness
and completeness.

Precision measures how many of the extracted
cells are accurate, in comparison to the total num-
ber of cells that were extracted.

Recall assesses how many ground truth cells
were accurately matched, guaranteeing a high re-
trieval rate.

The F1 Score (Eq. 2) integrates both metrics to
provide a comprehensive evaluation of the model’s
capability to correctly extract tables:

F1 =
2 · P ·R
P +R

(2)

,where P is precision and R is recall.
Various thresholds were utilized to determine

the similarity between predicted and ground truth
cell content to evaluate text-based table extraction
precisely.

• Threshold = 0 → Assesses structural lay-
out accuracy only, disregarding text con-
tent(Structural Layout F1 Score).

• Thresholds = 75, 85, 95, 100 → Evaluate
content similarity by using fuzzy matching
on the strings (text), requiring progressively
higher levels of textual accuracy (Cell content
F1 Score).

For example, a threshold of 75 permits minor text
variations (e.g., typing errors), while a threshold of
100 demands an exact correspondence between the
predicted and the ground truth content.

On the other hand, Grid Table Similarity (GriTS)
(Smock et al., 2022) evaluates tables in their ma-
trix form, accommodating topology, content, and
positioning within a unified framework. GriTS
operates by first computing the longest common
subsequence (LCS) between the ground truth and
predicted sequences. This step identifies which
items are missing in the truth sequence and which
are extra in the prediction, allowing for calculat-
ing precision, recall, and, ultimately, the F1 score
based on these discrepancies.

All metrics offer valuable insights, with GriTS
potentially providing more comprehensive results
due to its holistic assessment capabilities.

3.3 Experiment Details

PubTables-1M (Smock et al., 2021) has 94,000
samples of table images, of which 44,000 are classi-
fied as non-complex - they do not present spanning
cells or projected rows. Spanning cells are merged
cells that span horizontally or vertically from multi-
ple cells. At the same time, projected rows usually
subdivide tables encompassing situations where a
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specific row is not aligned with the other rows in
the table, acting as a subtitle (Smock et al., 2021;
Xiao et al., 2025) as shown in Figure 2.

Non-complex tables were selected because they
can effectively be represented as CSV files for
structural layout comparison. A final selection
of 1,000 samples ensured statistical compatibility
with the partial non-complex dataset. This subset
size was chosen considering the execution time and
costs required for processing images with local and
cloud-hosted LLMs.

Five different models were used in the experi-
ments: Granite Vision 3.2 (GraniteVision, 2025),
Phi-3-Vision (Microsoft, 2024), GPT-4o (OpenAI,
2024), GPT-4o-mini (OpenAI, 2024), and TATR-
OCR (Smock et al., 2023; Du et al., 2020). Granite
& other (Microsoft, 2024) was executed on a sys-
tem equipped with an NVIDIA V100 GPU with
32 GB of memory. Table 1 presents the models’
parameters and availability.

Model Parameters Availability

Granite Vision 3.2 2.8 Billion Free (Open Source)
Phi-3-Vision 3.8 Billion (approx.) Free (Open Source)
GPT-4o 1.8 Trillion (estimated) Paid
GPT-4o-mini 8 Billion (approx.) Paid
TATR 28 Million (approx.) Free (Open Source)

Table 1: Models parameters and availability.

As shown in Figure 1, an advanced prompting
technique was implemented to ensure structured
and interpretable outputs from LLMs. This ap-
proach guided the models to generate structured
responses, facilitating consistent evaluation across
different architectures (LLMs vs. TATR-OCR).
The performance of the models was measured us-
ing well-defined evaluation metrics, ensuring an
objective comparison.

4 Results

The results of the evaluation comparison, depicted
in Figure 3, provide a comprehensive overview of
the performance of the five models. These models
are TATR-OCR, Granite, Phi-3-Vision, GPT-4o-
mini, and the standout performer GPT-4o. The anal-
ysis begins in Figure 3(a) with the GriTS F1 Score,
where GPT-4o stands out with an impressive 89.6%,
closely followed by TATR-OCR at 87.8%. GPT-
4o-mini and Granite yield more moderate scores at
74.6% and 76.3%, respectively, while Phi-3-Vision
records a relatively lower score of 65.2%.

The Structural Layout F1 Score in Figure 3(a)
further differentiates the models, with TATR-OCR

achieving a remarkable 98.2% and GPT-4o also
performing strongly at 94.9%. Granite and GPT-
4o-mini demonstrate similar mid-tier performance
levels at 81.5% and 81.9%, respectively, and Phi-
3-Vision lay behind at 70.8%. In terms of Table
Shape Accuracy, the pattern is similar: GPT-4o
and TATR-OCR excel with accuracies of 95.2%
and 98.4%, respectively, while Granite and GPT-
4o-mini maintain comparable scores of 82.3% and
82.6%. Phi-3-Vision again underperforms with
only 71.3% accuracy.

Beyond these overall metrics, the analysis delves
into structural layout errors in Figure 3(b). These
errors refer to discrepancies in the arrangement
of elements within the document, examining both
missing and extra rows and columns. GPT-4o
performs the best, with only 0.3% missing rows.
TATR-OCR, Phi-3-Vision, and GPT-4o-mini show
moderate performance, missing around 2.7-3.2%
of rows. Granite is the least reliable, missing 7.9%
of table rows, which could lead to major data loss.
For the extra rows, TATR-OCR and Granite are tied
as best performance with a percentage of 0.7%. Fol-
lowed by Phi-3-Vision with almost 2%, the worst
performers are GPT-4o with 5.2% and GPT-4o-
mini with 8.2%.

Looking at the missing columns GPT-4o and
TATR-OCR both have a 0.3%. Phi-3-Vision and
GPT-4o-mini are in mid-performance 1-1.5%, re-
spectively. The worst is Granite with 4.2% missing
columns. Regarding the extra columns percentage
Granite is again the worst with almost 15%, Phi-3-
Vision and GPT-4o-mini are in mid-performance
4.7 - 5.4%. TATR-OCR is close to GPT-4o with
0%.

Overall, the analysis of structural layout errors
highlights significant differences in performance
among the models. GPT-4o consistently demon-
strates the best overall accuracy, only worse by a
high percentage of extra rows. TATR-OCR also
performs well, particularly in handling columns.
Phi-3-Vision and GPT-4o-mini exhibit moderate
performance, showing errors in missing and ex-
tra elements. However, Granite proves to be the
least reliable, with the highest percentage of miss-
ing rows and columns and a substantial number of
extra columns. These discrepancies in structural
layout accuracy can significantly impact data in-
tegrity, reinforcing the importance of selecting the
most precise model for document processing tasks.

The analysis of string matching thresholds in
Figure 3(c) reveals distinct performance variations
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Figure 3: (a) General Table Evaluation Metrics: GriTS F1 Score - table similarity based on structural layout and cell
text content, Structural Layout F1 Score - evaluate structural cell positions, and Table Shape Accuracy - evaluate the
harmonic mean of the table’s rows and columns accuracy. (b) Structural Layout Errors: percentage of missing/extra
rows and columns. (c) String Matching Thresholds: Cell content F1 Score of the cell position and content with
different thresholds for cell string match.

among the five models. These thresholds are cru-
cial as they determine the level of similarity re-
quired for a match, with a higher threshold indicat-
ing a stricter matching condition. GPT-4o consis-
tently achieves the highest scores across all thresh-
olds, demonstrating superior accuracy in string
matching. TATR-OCR follows closely behind,
maintaining a competitive performance. Phi-3-
Vision and GPT-4o-mini exhibit moderate results,
while Granite consistently underperforms, scoring
the lowest in most cases. As the matching threshold
increases from 75 to 100, all models experience a
decline in performance, indicating that stricter crite-
ria lead to greater difficulty in identifying matches.
Despite this trend, GPT-4o remains the most reli-
able, maintaining high accuracy even at the strictest
threshold. These findings highlight the varying ro-

bustness of different models and emphasize the im-
portance of selecting the most suitable one based
on the required level of precision.

In conclusion, the analysis underscores the im-
portance of selecting the most suitable model for
the task at hand. GPT-4o consistently outperforms
the other models across all key metrics, exhibit-
ing superior structural accuracy and text recog-
nition capabilities. GPT-4o-mini, on the other
hand, emerges as a strong alternative, showcas-
ing its potential with slightly lower performance.
TATR-OCR and Phi-3-Vision deliver similar mid-
range results, while Granite shows the least favor-
able performance with significant structural errors
and lower text accuracy. These findings suggest
that GPT-4o and GPT-4o-mini are the most reli-
able choices for table extraction tasks, whereas
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the other models may benefit from additional post-
processing steps to improve their accuracy.

5 Conclusions

TATR outperforms the LLMs when only the table
structural layout is considered based on the metric
results. If the exact content of the cell is not a top
priority, using TATR with OCR is a viable choice,
keeping in mind that the OCR may not correctly
identify all the cells. However, when the text con-
tent of the cells is considered, the LLMs perform
better than TATR with OCR. GPT-4o is by far the
best among the LLMs tested, but is also the largest
and most expensive model. Smaller models can be
a good option depending on the specific use case
and the volume of data to be processed.

6 Limitations

The primary limitation of this study is that it does
not use complex tables from the original dataset in
the experiments, particularly those with spanning
cells and projected rows, because of the difficulty
in representing them as a matrix. This constraint
affects the generalization of the findings to more
intricate table layouts. Additionally, inconsisten-
cies were observed in the responses generated by
MLLMs, despite employing structured output for-
mats. This impacted metrics negatively, as con-
version to JSON/CSV was not achievable in such
cases.

To address these limitations, future work could
explore advanced prompting techniques to mitigate
inconsistencies in LLM outputs. One-shot and few-
shot learning, fine-tuning, and reflection-based ap-
proaches (e.g., Haystack framework (Pietsch et al.,
2019)) can improve output consistency and relia-
bility. Also, alternative structured output (to in-
clude more complex table structures, especially
with spanning cells) and prompting strategies (e.g.,
a two-step process with a preliminary table gener-
ation followed by parsing) could be investigated,
and performing a sensitivity analysis of the model’s
decoding parameters should be considered. Finally,
examining whether improvements in prompting
(like chain-of-thought or step-by-step reasoning)
might further enhance structured outputs could also
provide meaningful insights.

While TATR was chosen as the OCR option for
this study, exploring additional traditional meth-
ods or hybrid systems (combining OCR with LLM
strategies) could yield a more comprehensive com-

parison. A discussion on computational cost versus
performance can also be raised, especially noting
that while models like GPT-4o have trillions of pa-
rameters, simpler models like TATR operate at a
much lower price.

Furthermore, future work must consider com-
plex tables, but also incorporate more diverse
"other" tabular data sources, such as SciTSR (Chi
et al., 2019), TableBank (Li et al., 2019), and Pub-
TabNet (Zhong et al., 2020), which would provide a
more comprehensive evaluation of table extraction
performance across different domains and table
complexities.

Finally, experimenting with new LLMs specifi-
cally fine-tuned for table extraction - such as Gem-
ini 2.5 pro (Gemini-Team, 2025), Table LLaVA
(Zheng et al., 2024), Mistral OCR (et. al., 2023),
and MiniCPM-V (Yao et al., 2024) - could also im-
prove table structural layout recognition and con-
tent extraction accuracy. A more detailed qualita-
tive analysis of errors could pinpoint where each
model fails, thereby offering insights for further
improvements. These approaches would contribute
to a more robust and adaptable table extraction
framework.
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