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Abstract

We study whether incorporating symbolic rules
can aid large language models in dependency
parsing. We consider a paradigm in which
LLMs first produce symbolic rules given fully
labeled examples, and the rules are then pro-
vided in a subsequent call that performs the
actual parsing. In addition, we experiment with
providing human-created annotation guidelines
in-context to the LLMs. We find that while
both methods for rule incorporation improve
zero-shot performance, the benefit disappears
with a few labeled in-context examples.

1 Introduction

Dependency parsing is a classic task in natural lan-
guage processing, requiring systems to parse com-
plex linguistic structures. Standard approaches to
dependency parsing train neural models on large
amounts of labeled data (human-created parses),
which either cast parsing as a word-by-word clas-
sification task (Covington, 2001), a sequence-to-
sequence generative task (Li et al., 2018; Lin et al.,
2022a), or a graph-based structure prediction task
(Dozat and Manning, 2017).

One limitation of neural parsing methods is the
requirement for large amounts of labeled data,
which is often unavailable for low-resource lan-
guages. While Universal Dependencies (de Marn-
effe et al., 2021) currently includes over 150 lan-
guages, many of these languages have less than
one thousand labeled tokens worth of data. Cross-
lingual transfer has been proposed as a method
to overcome these limitations (Guo et al., 2016;
Schuster et al., 2019), but faces challenges due to
differences in linguistic structure across languages
(Ahmad et al., 2019; Wu and Dredze, 2020).

Recent work has investigated the use of large
language models (LLMs) as an approach for pars-
ing tasks (Li et al., 2023; Bai et al., 2023; Lin

et al., 2023; Blevins et al., 2023; Tian et al., 2024).1
LLMs are pretrained on huge multilingual corpora,
and can potentially leverage cross-lingual informa-
tion for effective parsing, even on rarer languages.
Generally, this research has found that LLMs are
effective zero-shot parsers on common languages
such as English and Chinese and can also be effec-
tive on rare languages through in-context learning.
However, in-context learning quickly grows ineffi-
cient and expensive with many examples.

We explore an alternate paradigm for depen-
dency parsing on low-resource languages with
LLMs. In our system, the LLM first acts as a
descriptive linguist, observing labeled examples
and producing linguistic rules. Then, the rules are
provided in another LLM call where parsing is
performed. We consider several techniques for pro-
viding context to the LLM during rule generation.

We hypothesized that explicitly producing sym-
bolic rules could help improve the robustness of
LLM-based parsing. We find that incorporating the
LLM-generated rules offers clear improvements
over the zero-shot setting, but worse performance
than few-shot prediction. Furthermore, our best
LLM-based setting underperforms state-of-the-art
approaches across languages. We explore a num-
ber of failure cases and suggest future methods that
could be used to address them. Our code and full
results are available on GitHub.?

2 Related Work

Recent work has explored the potential of large
language models for syntactic parsing. Some work
has finetuned language models on dependency pars-
ing as a sequence-to-sequence task (Hromei et al.,
2024) or proposed statistical methods to automati-
cally extract dependencies from language models

'While this work largely focuses on constituency parsing,
we assume it shares similarities with dependency parsing.

2https: //github.com/michaelpginn/
ai-researcher-project
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(Chen et al., 2024). The most similar work explores
prompting-based methods for LLM parsing, that
do not require training. Lin et al. (2023) evalu-
ates LLMs on zero-shot parsing for English and
Chinese. Tian et al. (2024) proposes similar strate-
gies for constituency parsing in English. Ezquerro
et al. (2025) benchmarks dependency parsing per-
formance across four languages and many LLMs.
However, using LLMs to parse rare languages re-
mains unexplored.

3 Data

We use data from Universal Dependencies (UD)
(de Marnefte et al., 2021) for eight languages with
differing geographic regions, linguistic features,
and resource availability. We use the pre-defined
train/eval/test splits from UD when available, and
otherwise produce our own splits which are reused
across experiments. We also remove examples with
non-projective dependencies, which can pose is-
sues for transition-based parsers. We summarize
our languages and splits in Table 1.

Language (code) Train Dev Test
Bambara (bam) 697 149 150
Bhojpuri (bho) 220 47 48
Cantonese (yue) 620 133 133
Erzya (myv) 1429 306 307
Kiche (quc) 655 141 141
Komi Zyrian (pcm) 438 94 94
Nigerian Pidgin (pcm) | 6352 826 797
Yoruba (yor) 182 39 40

Table 1: Languages used in this study, and the number
of train, development, and test instances for each lan-
guage. All data comes from Universal Dependencies
(de Marneffe et al., 2021).

4 Experimental Conditions

4.1 Baseline

As a baseline, we simply prompt the LLM to gener-
ate dependency parses for a given example. Details
about prompts are given in Appendix A. We use
a truncated form of the CONLL-U format® where
each tab-separated line gives an ID, a word, the ID
of the word’s head, and the dependency relation
type. All of our main experiments use GPT-40%.
In addition, we use a baseline setting where
we specify the list of allowed dependency relation

3https ://universaldependencies.org/format.html
4Specifically the GPT-40-2024-08-06 checkpoint

types (obtained by collecting all relation types from
the training data). We refer to this setting as LA-
BELS.

4.2 Symbolic Rules

Dependency parsing is a symbolic task equivalent
to forming directed edges on a graph.’ In this
study, we seek to understand whether symbolic
knowledge can be extracted and leveraged for this
task. In particular, symbolic rules and heuristics
can be used by LLMs simply by providing the rules
in-context, unlike traditional neural parsers. We
consider three settings for incorporating rules.

Rule Writing In the RULE WRITING setting, we
first provide five labeled examples® to the LLM and
prompt it to generate rules. The rules are specified
by predicting part-of-speech categories of words,
and then by writing dependency rules. For a hypo-
thetical English example, the LLM might predict
the categories:

Det: the

Noun: dog, cat
Verb: chases
Punct:

Then, the LLM writes dependency rules by extract-
ing the dependency relations from provided exam-
ples. The predicted rules for the prior example
might look like the following:

Noun -> Det (det)
Verb -> Noun (nsubj)
Root -> Verb (root)
Verb -> Noun (obj)
Verb -> Punct (punct)

Finally, the generated rules are provided as-is in
a subsequent prompt to the LLM for performing
parsing.

Word Contexts We note that other than the pre-
diction of word categories, these rules are largely
just descriptive analysis of observed examples. In
the WORD CONTEXTS setting, we eliminate the
need for identifying part-of-speech categories, and
instead just record the contexts that a word can
occur in, consisting of the type and head of a de-
pendency relation pointing to the word. For exam-
ple, in the previous example, we might have the
following contexts, listed as "(head, relation type)":

SWith some restrictions, of course
®We select relevant examples using the method described
in subsection 4.3

187


https://universaldependencies.org/format.html

the:

(dog, det)
(cat, det)

dog:

(chases, nsubj)
chases:

(root, root)

We collect these contexts from the examples in the
training dataset. Since some words may occur in
a huge number of contexts, we sample up to two
contexts for a given word and relation type. These
contexts are less generalized than the rules of the
prior section, but more accurate, as they do not
require predicting part-of-speech categories.

Guidelines Dependency parsing is typically con-
ducted by human annotators, and as such there
already exist detailed parsing guidelines for many
languages. In theory, these guidelines should be
sufficient for someone with a baseline knowledge
of the language’s vocabulary and syntax to per-
form accurate parsing. In the GUIDELINES setting,
we provide these guidelines directly to the LLM,
avoiding the potential error of LLM-based rule ex-
traction. The human guidelines should be highly
accurate and relevant to the task at hand, thus we
expected this setting to have clear benefits.

We scrape guidelines from the appropriate Uni-
versal Dependencies webpage, convert to mark-
down, and remove links. An excerpt from the pro-
cessed Kiche guidelines is given in Appendix B.

4.3 In-context examples

Prior research has indicated that providing in-
context examples is vital to enabling LLMs to per-
form tasks in rare languages (Lin et al., 2022b;
Cahyawijaya et al., 2024; Ginn et al., 2024). Thus,
we compare the four settings described previously
(LABELS, RULE WRITING, WORD CONTEXTS,
GUIDELINES) across a zero-shot setting, a three-
shot setting, and a five-shot setting. This compari-
son allows us to measure the effects of these strate-
gies compared to the effect of increasing in-context
examples.

As in Ginn et al. (2024), we select relevant ex-
amples to the target sentence by choosing the sen-
tences in the training set with the highest chrF++
score, computed using the target sentence as the
reference. This ensures that the in-context exam-

ples have high substring overlap with the target
example, and are more likely to be relevant for
parsing.

S Experimental Results

We report our results on the development set, us-
ing GPT-4o, in Figure 1. We average UAS and
LAS scores over languages; full results are avail-
able in our GitHub repo. Generally, we observe
a clear trend where providing symbolic informa-
tion helps in the zero-shot setting, but the benefit
decreases with increased in-context examples. At
the five-shot setting, any benefits from symbolic
knowledge are effectively nullified. Next, we an-
alyze the effects of the various settings. We also
perform additional variational experiments on the
use of labels and chain-of-thought prompting in
Appendix D.

Effect of Rule Writing We observe a large bene-
fit to both UAS and LAS in the zero-shot setting,
and a smaller benefit in the three-shot setting. Re-
call that the rules were written using five relevant
examples. Thus, it is not terribly surprising that
performance is similar when using the rules ver-
sus using the examples directly. In fact, the simi-
lar performance indicates that the LLLM can effec-
tively compress the relevant information from the
in-context examples into symbolic rules, providing
the same benefit with far less text.

While this is less encouraging for improving
absolute performance, it could be useful for im-
proving efficiency. For example, an LLM could
be used to write rules about many similar groups
of sentences ahead of time, and the relevant rules
could be selected during inference, drastically re-
ducing the length (and thus, speed and cost) of the
parsing prompt.

We perform manual qualitative examination of
rules in Bambara. We observe two common failure
cases.

First, in some cases the LLM produced overly-
specific part-of-speech categories that prevented
the correct relation from being predicted. For ex-
ample, in one case the correct root verb was "ye".
However, in the provided examples, "ye" was only
ever used as an auxiliary verb, leading the LLM
to predict that "ye" was a member of a category
named AUX. Because the LLM failed to iden-
tify that auxiliary verbs were the same category
as verbs, it then failed to predict "ye" as the root of
the sentence, instead choosing a random noun as
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Figure 1: UAS (left) and LAS (right) scores for LLM-based dependency parsing, averaged across eight languages,
across different numbers of in-context examples and different strategies for incorporating symbolic knowledge. We
find that in the zero-shot setting, symbolic knowledge can provide clear improvements, but the margin disappears
with sufficient in-context examples. The BASELINE setting is a zero-shot setting with no information provided at all.

the root.

Second, the LLM sometimes produced correct
rules which could produce multiple possible parses
for the target sentence. For example, one instance
began with the sentence "n na kono to n bolo!".
The LLM correctly identified "n" and "kono" as a
pronoun and noun, respectively, and produced the
correct rules PRONOUN -> PARTICLE (CASE) and
NOUN -> PARTICLE (CASE). The LLM predicted
a case relation from "kono" to "na", rather than
the correct relation from "n" to "na", both of which
were allowed under the specified rules. This reveals
a limitation of this sort of dependency rule: by not
specifying word ordering, ambiguous situations
arise with multiple valid parses. We explore one
solution to this issue in Appendix C

Effect of Word Contexts The inclusion of word
contexts (scraped directly from training data) had
comparable performance to the LLM-written rules,
with the highest LAS scores of any setting. Be-
cause this setting does not require an initial LLM
call (unlike the rule writing setting), it drastically
reduces the total cost of inference, while meeting or
exceeding the performance of the RULE WRITING
strategy.

A possible interpretation is that the only relevant
information extracted by symbolic rules is the con-
texts in which particular words occur. Generalized
symbolic rules over word categories do not seem
to be particularly helpful by comparison.

We run paired bootstrap resampling (Koehn,
2004) to test the significance of the improvements

of WORD CONTEXTS over the LABELS setting.
We report the average significance score for the
zero, three, and five-shot settings in Table 2. The
results reinforce our qualitative observations.

Shots | Confidence
0 98.0%
3 61.3%
5 43.9%

Table 2: Paired bootstrap resampling score for the
WORD CONTEXTS setting versus the LABELS setting,
ran with 1000 iterations and test sets of 20 items.

Effect of Guidelines We expected GUIDELINES
to be the most effective setting, as they provide
the information that was used by human annotators
to produce the labeled examples. However, we
observe that while the GUIDELINES setting does
provide small benefits over LABELS in the zero-
and three-shot settings, it underperforms the RULE
WRITING and WORD CONTEXTS strategies by a
good margin.

There are two possible interpretations of this re-
sult. One possibility is that while the guidelines
provide sufficient information to perform parsing,
the LLM failed to understand and apply this infor-
mation. This would align closely with the results of
Aycock et al. (2025), which finds that LLMs strug-
gle to utilize language reference materials when
performing translation with rare languages.

The other possibility is that the guidelines do
not actually provide sufficient information to per-
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Method bam bho yue myv quc kpv pcm yor
mBERT 82.8/78.9 69.9/61.0 733/664 76.8/672 84.1/774 633/48.1 91.7/88.8 62.5/51.6
XLM 84.0/79.8 722/627 76.0/704 79.6/69.8 823/747 673/539 93.7/909 649/53.2
UDPipe2 | 924/90.2 769/68.0 758/70.2 77.6/69.1 88.6/84.1 749/656 93.0/89.7 76.0/69.5
LLMs w/ labels and contexts, 5-shot

GPT-4o 69.3/61.7 6747555 T71.8/65.1 547/445 81.0/72.7 49.5/377 73.0/682 542/455
Gemini 76.0/70.6 679/563 684/63.0 77.4/69.6 87.7/829 75.0/659 72.8/68.6 59.1/489
Cmd R+ 5437479 609/527 519/458 47.8/36.1 69.7/61.1 46.8/343 509/462 41.2/323
Llama3.1 | 41.5/34.1 58.9/504 37.8/31.6 35.8/255 54.6/44.6 38.6/264 389/32.0 39.5/322

Table 3: Test set results on various state-of-the-art methods and LLMs using our best method from the preceding

section. Scores are reported as UAS / LAS.

form parsing. Certainly, these guidelines do not
include complete bilingual dictionaries, so an LLM
which cannot translate words in the target language
would likely struggle to apply more sophisticated
grammar rules. This could be studied in future
work by also providing word-by-word translations
alongside guidelines. However, it may also be the
case that the UD guidelines do not specify all of
the information needed for parsing, assuming some
knowledge of the grammar of the language.

6 Baseline Comparison

6.1 Baselines

We consider the following baseline models, which
represent the common approaches used for depen-
dency parsing and often are around the state-of-the-
art, depending on the dataset.

Transition Parser We use a neural transition-
based parser following the approach of Covington
(2001); Nivre (2003); Jurafsky and Martin (2025).
The parser predicts actions to form arcs between
words, processing words in the sentence one-by-
one and using a stack to retain words until they
have been fully processed. In order to potentially
benefit from crosslingual transfer, we finetune our
classifier using two pretrained multilingual model,
mBERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020).

UDPipe We use UDPipe 1 (Straka and Strakova,
2017), a pipeline that performs tokenization,
lemmatization, tagging, and parsing, with train-
able components for each step.” We train models
using the default hyperparameters.

6.2 Results

We report results in Table 3. While the various
settings for LLM inference were similar in the five-

"We chose not to use UDPipe 2 as it proved impossible to
replicate the necessary development environment

shot setting, we select the WORD CONTEXTS set-
ting to compare, as it performed best in the zero-
and three-shot settings. We run this setting with the
following LLMs:

* GPT-4o0, as in the development experiments
(OpenAl, 2024)

* Gemini 2.0 Flash (Gemini Team, 2024)

» Command R+%, a 104B parameter model
specifically designed for low-resource mul-
tilingual tasks

* Llama 3.1 7b (Dubey et al., 2024), using the 8-
bit quantization and the MLX (Hannun et al.,
2023) checkpoint

We observe that for most languages, the LLM-
based method underperforms or matches tradi-
tional neural SOTA methods. Of the four models
tested, Gemini performs best on average. While
the paradigms studied here can certainly improve
performance over the zero-shot setting, they are not
sufficient to beat the best prior approaches.

7 Conclusion

We studied methods for performing dependency
parsing on low-resource languages with large lan-
guage models (LLMs) that incorporate (symbolic)
rules. We compared using LLM-written rules, ex-
tracting contexts that words appear in, and provid-
ing human-readable annotation guidelines. Overall,
we found that these methods provide benefits in
the zero-shot setting, but with sufficient in-context
examples, their benefit was minimal. We evalu-
ated several LLMs against state-of-the-art base-
lines, finding that the LLMs were unable to beat
the best prior models.

8https://docs.cohere.com/docs/command-r-plus
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A Prompts
A.1 Parsing

The base prompt used across experiments is given
below.

You are predicting the
dependency parse for a
sentence in $language.

You will be given a sentence
word-by-word, with each word
on a new line. Below is an
example in English:

The
dog
chases
the
cat

o U1~ w N =

You are to predict the
dependency parse for this
sentence. For each token,
you should predict the
following:
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1. The index of the token's
head according to its
dependency relation,
if it is the root

2. The type of dependency
relation

or no”

You should output the
dependency parse using the
original format, with two
additional columns (
separated by tabs) for the
head and relation type. For
the example above, you
should produce the following

1 The 2 det

2 dog 3 nsubj
3 chases @ root
4 the 5 det

5 cat 3 obj

6 3 punct
Do not output any additional

text. Only produce the
dependency parse following
the above format.

Please gloss the following
example in $language:

$target_example

For any settings with the label list included, we add
the following:

The allowed dependency
relations are the following:
$label_list

For settings with few-shot examples, we add the
following:

Below are some fully glossed
examples in $language.

$examples

A.2 Rule Writing

The base prompt for writing rules is:

You are writing dependency
grammar rules given a small
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number of examples. You will
be provided with parsed

sentences written word-by-
word with each word on a new
line. An example in English
is given below:
1 The 2 det
2 dog 3 nsubj
3 chases 0 root
4 the 5 det
5 cat 3 obj
6 3 punct

The first column is the ID of
the word. The third column
is the ID of the head for
the word. The fourth column
is the type of dependency
relation. From this sentence
, you should first infer
categories for each of the
words and output them.
Please output "Categories:"”
followed by your inferred
categories, as in the
following example:

Categories:
Det: the

Noun: dog, cat
Verb: chases
Punct:

You should omit duplicate words
, and words may belong to
multiple categories.

Then, write dependency grammar
rules using the convention
Head -> Dependent (relation
type)", based on the
observed rules in the data.
Print all of the rules,
seeking to find a minimal
set of rules that explains

n

the data, and starting with
"Rules:”. Do not repeat
rules. The rules from the

previous example are given
below.



Rules:

Noun -> Det (det)
Verb -> Noun (nsubj)
Root -> Verb (root)
Verb -> Noun (obj)
Verb -> Punct (punct)

You are writing rules for
$language. Please use the
following examples to
produce the analysis, making

sure to include both the
Categories and Rules
sections.

$examples

B Example Guidelines

An excerpt from the Kiche guidelines is given be-
low.

#### Nouns

- Most nouns are not inflected
for number, although animate
nouns can be, in this case
they are annotated with °
Number=Plur ~.
- There is a subset of nouns
used relationally, these are
called relational nouns and
are used where adpositions
would be used in other
languages.
- They are marked with the

feature “[NounTypel()=
Relat ™.

- The lemmas are: _ech_, _uk'
_, _umal_, _wach_, _ib'_,
_onojel_, _wi'_, _pam_,
_ij_, _xe'_, _xo'l_,
_tukel_, _tzalaj_, _naqaj_

- Relational nouns are also
used for:
- Reflexive, _ib'_
- Introducing the agent in
a passive, _umal_

#### Verbs

- Transitive verbs have
polypersonal agreement which
is indicated through
layered features “Person[obj
17, “Number[objl , ~Person[
subj]~, ~Number[subj]l".

- Finite verbs have ~Aspect®
but no “Tense ™.

- The imperfective or
incompletive is annotated
with ~Aspect=Imp"~.

- The perfective or
completive is annotated
with ~Aspect=Perf ™.

- Incorporated movement is
indicated through the
feature ~Movement " :

- Movement away from is
marked with ~Movement=Abl
*, this is the morph _\-e

- Movement towards is marked
with ~Movement=Lat~, this
is the morph _\-1-_

- There are two principle
valency changing processes:
Passive and antipassive.
Both produce verbs with only

set B agreement.

- In the passive, annotated
with “Voice=Pass™, the
object is promoted to
subject and the subject is

demoted to oblique.

- In the antipassive,
annotated with ~Voice=
Antip~, the subject
agreement is maintained
and the object is demoted
to oblique.

C Directional Rule Writing

In section 5, we identified an issue where multiple
rules could apply to an example, and there was no
way to disambiguate which rule to use. One trivial
solution is to also specify an ordering between the
head and dependent. We experiment with this idea,
prompting the LLM to produce rules of the form:

left)
left)

Noun
Verb

-> Det (det,
-> Noun (nsubj,
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Root
Verb

-> Verb (root,
-> Noun (obj,

none)
right)

In addition to the relation label, the LLM sim-
ply labels whether the dependent occurs to the left
or right of the head. We report results for this
variation of rule writing on the development set in
Table 4. We observe very small improvements in
most languages.

For the preceding example, the LLM now cor-
rectly identifies the rule PRONOUN -> PARTICLE
(CASE, RIGHT) which should resolve the ambigu-
ity. Unfortunately, the LLM now predicts the in-
correct relation "nsubj", with no clear reason why
(as this does not follow from the rules). Evidently,
the inclusion of directions in the rules is not a clear
benefit, but introduces other forms of error.

D Variational Experiments

Effect of Labels All of our main settings in-
clude a list of allowed relation labels in the prompt.
While it is intuitive why this would be beneficial,
we also provide empirical validation. In Figure 2,
we report the results of zero-shot prediction with
and without labels, across the baseline setting and
the setting with guidelines included. We see a small
improvement from including labels in not only the
Labeled Attachment Score (LAS), but also the Un-
labeled Attachment Score (UAS). As providing
labels is inexpensive, we use this setting for all
main experiments.

0.5

0.4 4

0.39

UAS

0.2

0.14 Labels

0.0~ -
Base Guidelines Base
Setting

Guidelines
Setting

Figure 2: UAS (left) and LAS (right) scores for the zero-
shot setting, comparing results when the list of allowed
relation labels is included in the prompt versus when it
is omitted. In both the base and GUIDELINES setting,
we see a small improvement from including labels.

Effect of Chain-of-Thought Another applica-
ble technique is chain-of-thought (CoT) prompting,
where the LLM is prompted to produce step-by-
step explanations of its thought process (Wei et al.,

2022). CoT has proven effective on multistep rea-
soning problems, and thus is a good fit for the
task of understanding and applying the informa-
tion from in-context examples and in-context rules.
We add CoT to the base five-shot setting as well
as the five-shot setting with guidelines. We report
these results in Figure 3. Unfortunately, adding
CoT seems to worsen performance in both settings.

0.6 051
0.54
0.4+
" 0.4+
1%
e 503
0.34
0.24
0.2
CoT? 011 CoT?
0.1 == No ' = No
m Yes - Yes
0.0~ 0.0~
Base Guidelines Base Guidelines

Setting Setting

Figure 3: UAS (left) and LAS (right) dev set scores for
the five-shot setting, evaluating the effect of adding
chain-of-thought prompting. In both the base and
GUIDELINES setting, we see a clear detriment from
CoT.
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Rules

bam bho yue myv quc kpv pcm @ yor

mean

Base
+ order

61.7 534 596 399 727 383 71.7 50.7
63.5 53.6 59.7 380 731 385 721 522

56.0
56.3

Table 4: LAS scores across languages for the RULE WRITING setting. In the base setting, rules were written as
"Head -> Dependent (relation type)" without any notion of word order. In the + ORDER setting, rules additionally
included whether the dependent was to the left or right of the head.
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