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Abstract
We revisit the BARTABSA framework for
aspect-based sentiment analysis with modern
decoder LLMs to assess the importance of ex-
plicit structure modeling today. Our updated
implementation—BARTABSA++1—features ar-
chitectural enhancements that boost perfor-
mance and training stability. Systematic test-
ing with various encoder-decoder architectures
shows that BARTABSA++ with BART-LARGE
achieves state-of-the-art results, even surpass-
ing a finetuned GPT-4O model. Our analysis
indicates the encoder’s representational quality
is vital, while the decoder’s role is minimal, ex-
plaining the limited benefits of scaling decoder-
only LLMs for this task. These findings un-
derscore the complementary roles of explicit
structured modeling and large language models,
indicating structured approaches remain com-
petitive for tasks requiring precise relational
information extraction.

1 Introduction

In this work, we revisit BARTABSA (Yan et al.,
2021a), a pointer network-based method for
aspect-based sentiment analysis (ABSA) that
achieved state-of-the-art performance with the
BART encoder-decoder transformer - considered
small by today’s standards. BARTABSA models
Aspect Sentiment Triplet Extraction (ASTE) (Peng
et al., 2020) as a constrained generation task, using
a pointer network (Vinyals et al., 2015) to explicitly
copy input tokens into strictly structured outputs.

In the meantime, advances in Large Language
Models (LLMs) have transformed natural language
processing (NLP) by demonstrating that implicit
knowledge acquired during pretraining can often
address tasks that previously demanded explicit
structured representations (Brown et al., 2020;
Wei et al., 2022). This shift prompts the ques-
tion: Is explicit structured output modeling still

These authors contributed equally to this work.
1https://github.com/LSX-UniWue/bartabsa-plusplus

relevant in the LLM era, especially in structured
representation-critical tasks like ABSA?

To evaluate this, we employ the methodology
of Rothe et al. (2020), which constructs encoder-
decoder architectures by reusing pretrained en-
coder or decoder checkpoints. We reimplement
BARTABSA using modern libraries and incorpo-
rate architectural enhancements like: (1) fea-
ture normalization to balance embedding spaces
and stabilize training (Zhang and Sennrich, 2019;
Xiong et al., 2020); (2) cross-attention mech-
anisms reusing weights from BART’s decoder
layers (Vaswani et al., 2017; See et al., 2017);
(3) parametrized gating mechanisms replacing
static hyperparameters with learnable weights (See
et al., 2017; Chung et al., 2014; Dauphin et al.,
2017). These techniques allow stable training with
larger models and improve performance, outper-
forming both the original implementation and a
baseline using a finetuned GPT-4O.

With this enhanced framework, we systemati-
cally evaluate different architectural configurations
to examine potential scaling effects of modern-
sized LLMs within structured language modeling.
This research direction is particularly valuable as
it combines the implicit knowledge of modern de-
coder LLMs with the transparency offered by the
explicit copying mechanism of pointer networks—
a property important for interpretable NLP systems.

Experiments with BART (Lewis et al., 2020),
BERT (Devlin et al., 2019), and GPT-2 (Radford
et al., 2019) variants reveal performance hinges on
the encoder, with minimal decoder impact. Coun-
terintuitively, scaling GPT-2 does not yield per-
formance gains, emphasizing the encoder’s pre-
training importance for pointer networks (and other
encoder-decoder architectures).

Our study shows large autoregressive models do
not universally surpass structured approaches in
NLP and contributes to the dialogue on explicit
structure modeling, like pointer networks, in the
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Drivers updated okay but the BIOS update froze the system .
a1 a2 a3o1 o2

s1 Positive s2 Negative s3 Negative

0        1         2  3   4  5    6      7    8    9

Figure 1: An example sentence for ABSA with aspect,
opinion, sentiment and word indices annotated. Adapted
from Yan et al. (2021a).

LLM era. It explores scaling structured generation
with LLM-sized models to merge their implicit
knowledge with structured copying mechanisms.

2 Related Work

2.1 Aspect-Based Sentiment Analysis

Aspect-Based Sentiment Analysis (ABSA) is a
fine-grained approach to sentiment analysis focus-
ing on opinions about specific text elements rather
than general document or sentence sentiment (Liu,
2012). ABSA involves three main components: as-
pect terms, opinion terms, and sentiment polarities.
In Figure 1, the term “Drivers” is characterized
positively by “okay”, whereas “BIOS update” and

“system” are negatively characterized by “froze”.
Aspect Sentiment Triplet Extraction (ASTE), the

focus of this work, extracts (aspect, opinion, sen-
timent) triplets simultaneously. This task captures
complete opinion structures, making it valuable for
applications such as customer feedback analysis
(Peng et al., 2020).

The ABSA field has evolved from specialized
RNN-based architectures (Wang et al., 2016; Tang
et al., 2016) to approaches leveraging pretrained
language models (Li et al., 2019). For ASTE specif-
ically, approaches progressed from pipeline meth-
ods to joint tagging schemes (Xu et al., 2020; Wu
et al., 2020), with influential work reformulating
the task as a structured generation problem using
sequence-to-sequence models (Yan et al., 2021a;
Zhang et al., 2021). This sequence-to-sequence
paradigm established a strong foundation that sub-
sequent research has built upon, including recent
advances with larger language models and hybrid
approaches (Xianlong et al., 2023; Zhang et al.,
2024; Sun et al., 2024).

Our experiments use the refined versions of stan-
dard ABSA benchmark datasets from SemEval
2014-2016 challenges (Pontiki et al., 2014, 2015,
2016): 14lap, 14res, 15res, and 16res, as pro-
cessed by Xu et al. (2020) who filtered out low-
quality examples and duplicates.

2.2 BARTABSA

Following Yan et al. (2021a), each ABSA task
involves transforming an input sentence X =
[x1, . . . , xn] into a structured target sequence Y =
[y1, . . . , ym] using pointer networks (Vinyals et al.,
2015). These allow the model to refer directly to
tokens from the input sequence, facilitating extrac-
tion tasks requiring grounding in exact input spans.

For ABSA, BARTABSA uses these pointers to
copy start and end token indices from the input
sentence into a structured output sequence, paired
with sentiment classification tokens. For instance,
the input “Drivers updated okay but the BIOS up-
date froze the system.” (Figure 1) is converted into
structured outputs pointing to input tokens and sen-
timent classes.

Formally, the output follows a fixed grammar
where each triplet is represented as a 5-tuple:
(asi , a

e
i , o

s
i , o

e
i , s

p
i ) where asi , a

e
i are start and end

indices of the ith aspect term, osi , o
e
i are for the

opinion term, and spi is the sentiment polarity class.
For our example, the structured output sequence
thus becomes:

[(0, 0, 2, 2, POS), (5, 6, 7, 7, NEG), (9, 9, 7, 7, NEG)]

This syntax explicitly encodes the extracted (as-
pect, opinion, sentiment) triplets as structured pre-
dictions, with each span being clearly represented
by its start and end indices in the input sequence.
Given this structured output format, BARTABSA

models ABSA as a sequence generation task, com-
puting the probability of Y given X as:

P (Y |X) =
m∏

t=1

P (yt|X,Y<t) (1)

BART (Lewis et al., 2020) is used as a backbone
to compute P (yt|X,Y<t), with the encoder pro-
cessing the input sequence X into contextualized
embeddings He:

He = BARTEncoder([x1, . . . , xn]) (2)

Decoding involves predicting indices yt and
dereferencing them to tokens ŷt:

ŷt =

{
Xyt if yt is a pointer index
Cyt−n if yt is a class index

(3)

where C = [c1, . . . , cl] is a list of class tokens for
sentiment classification.
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The decoder uses prior dereferenced tokens Ŷt =
[ŷ1, . . . , ŷt−1] to produce the next state:

hdt = BARTDecoder(He, Ŷt) (4)

On top of the BART model, BARTABSA then
uses a pointer network mechanism to generate a
distribution over input tokens X and class tokens
C: This mechanism combines both the initial token
embeddings and the contextualized representations
from the transformer layers:

Ee = BARTTokenEmbed(X) (5)

Ĥe = MLP (He) (6)

H
e
= αĤe + (1− α)Ee (7)

Cd = BARTTokenEmbed(C) (8)

Pt = Softmax([He
;Cd]hdt ) (9)

where Pt represents the common pointer and class
token distribution.

Training uses teacher forcing and negative log-
likelihood; inference can use strategies like greedy
sampling and beam search (Yan et al., 2021a).

3 Methodology

We will combine Yan et al.’s (2021a) BARTABSA

framework, with Rothe et al.’s (2020) encoder-
decoder model construction methodology in Sec-
tion 3.3. This requires us to first reimplement
BARTABSA in Section 3.1, before stabilizing train-
ing with additional features and optimizations in
Section 3.2.

3.1 BARTABSA-R: Our Reimplementation
Yan et al.’s (2021a) original BARTABSA imple-
mentation has limitations for our use case, espe-
cially hindering model extensions: 1) The fastnlp
package2 used is unmaintained, only supporting
older🤗 Transformers versions (Wolf et al., 2020).
2) Data processing and modeling are tightly cou-
pled, with e.g. hard-coded token IDs for mask cre-
ation, complicating further experiments and archi-
tecture adaptations. To resolve these issues, we
reimplement BARTABSA using maintained libraries
like PyTorch (Ansel et al., 2024), Lightning (Falcon
and The PyTorch Lightning team, 2019), and an up-
dated Transformers version (Wolf et al., 2020). We
avoid hard-coded values with tokenizer outputs and
shift attention mask creation to the data pipeline.
We name our reimplementation BARTABSA-R.

2https://github.com/fastnlp/fastNLP

3.2 Extending to BARTABSA++

During the reimplementation of BARTABSA and
preliminary experiments, we identified several is-
sues and potential improvements, detailed also in
Algorithm 1.

3.2.1 Feature Normalization
Our use of some backbone models, like BART-
LARGE, resulted in unstable training, seen through
diverging losses. We traced this instability to dif-
fering scales of output logits (Figure 2), stemming
from concatenating distinct embedding spaces in
the pointer network: classification token embed-
dings (Cd) and the mixed encoder representations
(He). The scale imbalance between the two spaces
destabilized attention calculations.

To address this, we applied an L2 normalization
to both special token embeddings and processed
encoder outputs (lines 6 & 7), equalizing their con-
tributions, thus stabilizing training3.

An RMSNorm (Zhang and Sennrich, 2019) was
also applied to the final decoder output (line 13),
further stabilizing gradient flow.

3.2.2 Additional Attention Mechanism
We introduce an additional attention mecha-
nism motivated by an architectural analysis of
BARTABSA. While exploring component contri-
butions, we discovered that removing the encoder’s
MLP (line 3; Equation (6))—a seemingly auxiliary
component—significantly degrades performance
(a drop of ≈ 4.3 p.P. across datasets). This insight
led us to incorporate an additional processing step
for the decoder’s last hidden states—analogous to
the encoder’s MLP.

Based on previous work on pointer networks by
See et al. (2017), we opted to add a cross-attention
(Vaswani et al., 2017; Bahdanau et al., 2016) on
top that resembles See et al.’s (2017) idea around
context vectors by computing attention scores be-
tween the decoder output Hd ∈ Rm×d (as the
query) and our concatenated encoder representa-
tion Xe ∈ Rn×d (as key and value). Internally, this
cross-attention follows Vaswani et al.’s (2017) for-
mulation for multi-head-attention, instead of Bah-
danau et al.’s (2016) to follow modern transformers
such as BART (Lewis et al., 2020) more closely.

For efficiency and to maintain consistent atten-
tion mechanisms across model variants, we imple-

3Preliminary experiments show, this also solves the insta-
bilities identified by Pfister et al. (2022) when training an mT5
model (Xue et al., 2021) using the BARTABSA framework.
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Algorithm 1 Our BARTABSA++ with improvements (Section 3.2) over the original BARTABSA

algorithm in Yan et al. (2021a). The improvements, marked in red, consist of a parametrized
gating mechanism (Section 3.2.3), additional normalization (Section 3.2.1), and an attention
mechanism on top of the decoder (Section 3.2.2).
Input: X - Input, C - Special Tokens, Ŷt - Remapped Token Indices To Tokens

1: Ee ← BARTTokenEmbed(X)
2: He ← BARTEncoder(X)

3: Ĥe ← MLP(He)

4: γ ← Gating(Ĥe,Ee)

5: H
e ← γĤe + (1− γ)Ee

▷ Parametrized gating mechanism avoiding the need for a hyperparameter α (Section 3.2.3).

6: Cd ← Norm(BARTTokenEmbed(C))

7: H
e ← Norm(H

e
)

8: Xe ← [Cd; H
e
]

▷ L2 normalization to ensure stable training (Section 3.2.1).

9: Hd← BARTDecoder(He, Ŷt)

10: Ĥd← BARTDecoderlast_layer(H
d,Xe)

▷ Reusing BART’s built-in cross-attention mechanism (Section 3.2.2).

11: ω ← Gating(Ĥd,Hd)

12: H
d ← ωĤd + (1− ω)Hd

▷ Parametrized gating mechanism similar to the encoder counterpart (Section 3.2.3).

13: H
d← LayerNorm(H

d
)

▷ RMSNorm to ensure stable training (Section 3.2.1).

14: Pt ← Softmax(Xe ·Hd
)

15: return Pt

ment this attention by reusing the weights from
the pre-trained cross-attention module in the final
decoder layer of the BART model (line 10). This
parameter sharing approach eliminates the need for
additional parameters (Lan et al., 2020) while en-
suring architectural compatibility when extending
our approach to different encoder-decoder frame-
works in Section 3.3.

3.2.3 Parametrized Gating Mechanism

To enhance model flexibility and bypass manual
hyperparameter tuning, we add two learnable gat-
ing mechanisms (e.g. thus α in Equation (7) gets
“learnable”, after the impact of α remained unex-
amined by Yan et al. (2021a)). This modification
eliminates the need to manually tune weighting pa-
rameters during experimentation, while enabling
the model to adaptively determine optimal infor-
mation flow based on the specific input context.
Drawing inspiration from gating mechanisms in re-
current architectures (Chung et al., 2014), their suc-
cessful application in language modeling (Dauphin
et al., 2017) and specifically the Pointer Generator
Mechanism (See et al., 2017), we implement two

distinct gating modules.
The first gate substitutes α in the encoder path

(lines 4 & 5):

γ = σ([Ĥe;Ee]W T
enc + benc) (10)

H
e
= γ ⊙ Ĥe + (1− γ)⊙ Ee (11)

where Ĥe, Ee ∈ Rn×d are MLP-processed en-
coder outputs and token embeddings, with Wenc
and benc being learnable. A decoder-side gate com-
bines cross-attention output Ĥd with original hid-
den states Hd (lines 11 & 12), having its own pa-
rameters.

These mechanisms enable interpolation between
inputs, dynamically adjusting representation con-
tributions.

3.3 Scaling and Extending BARTABSA++
While BARTABSA was originally based on the pre-
trained encoder-decoder transformer BART (Lewis
et al., 2020), recent advances in large language
models (LLMs) prompt the question of its applica-
bility to other models and especially architectures.

To address this question, we follow the method-
ology proposed by Rothe et al. (2020): we adapt
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Figure 2: Heatmap of the un-
trained model’s pointer logit
distribution (Pt). The visual-
ization reveals a strong initial-
ization bias towards the lower
pointer values corresponding
to the special tokens.
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Figure 3: Evolution of gate value distributions over 100 epochs of training. Left:
Encoder gate values remain tightly clustered around the initialization value of 0.5
with minimal deviation (σ 0.03), suggesting rather limited utilization of the gating
mechanism in the encoder. Right: Decoder gate values show significantly higher
variance (σ 0.15) and clear divergence from initialization, indicating that the model
actively leverages the gating mechanism in the decoder to modulate information
flow between attention heads and feedforward components.

Table 1: Performance comparison between literature baselines, our GPT-4O finetune, as well as BARTABSA-R and
BARTABSA++ (using BART-BASE and BART-LARGE). Tuple level (P)recision, (R)ecall, and F1 are reported per
dataset and averaged across them, with standard deviations in parentheses. The best results per column are bolded.

Model 14res 14lap 15res 16res Avg
P R F1 P R F1 P R F1 P R F1 P R F1

Fine-Tuned GPT-4O 74.65 79.38 76.94 61.67 68.39 64.86 61.91 73.40 67.17 71.38 78.60 74.81 67.40 74.94 70.95

Xianlong et al. (2023) 77.38 72.86 75.05 65.11 62.20 64.53 70.23 65.73 67.90 76.37 76.85 76.61 72.27 69.41 71.02

BARTABSA
(Yan et al., 2021a) 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.60 68.68 67.62 63.17 62.31 62.70

Our BARTABSA-R 76.43 73.56 74.94 66.24 59.32 62.53 64.46 60.33 62.30 68.52 68.05 68.26 68.91 65.31 67.01
(BART-BASE) (σ 1.70) (σ 3.41) (σ 2.50) (σ 2.62) (σ 4.18) (σ 3.13) (σ 1.56) (σ 3.26) (σ 2.30) (σ 2.64) (σ 1.83) (σ 1.84) (σ 2.13) (σ 3.17) (σ 2.44)

Our BARTABSA++ 77.76 75.81 76.74 68.27 61.98 64.96 65.33 63.27 64.27 69.82 69.24 69.51 70.29 67.58 68.87
(BART-BASE) (σ 1.04) (σ 1.75) (σ 1.09) (σ 1.29) (σ 1.45) (σ 1.08) (σ 2.08) (σ 1.21) (σ 1.62) (σ 1.27) (σ 1.60) (σ 1.26) (σ 1.42) (σ 1.50) (σ 1.26)

Our BARTABSA-R 79.13 75.79 77.32 56.33 52.09 54.11 64.63 64.18 64.35 74.99 75.13 75.05 68.77 66.80 67.71
(BART-LARGE) (σ 1.92) (σ 4.42) (σ 2.24) (σ 31.54) (σ 29.18) (σ 30.30) (σ 7.51) (σ 8.56) (σ 7.79) (σ 3.34) (σ 4.46) (σ 3.78) (σ 11.08) (σ 11.65) (σ 11.03)

Our BARTABSA++ 80.26 81.43 80.82 70.85 64.94 67.75 67.44 67.63 67.52 76.08 77.10 76.58 73.66 72.77 73.16
(BART-LARGE) (σ 1.21) (σ 1.48) (σ 1.02) (σ 0.73) (σ 1.42) (σ 0.64) (σ 1.39) (σ 1.76) (σ 1.14) (σ 2.32) (σ 1.70) (σ 1.94) (σ 1.41) (σ 1.59) (σ 1.18)

pretrained encoder-only and decoder-only mod-
els into encoder-decoder formats, modifying atten-
tion masks and incorporating new cross-attention
blocks akin to Vaswani et al.’s (2017). The Trans-
formers library (Wolf et al., 2020) offers model
combinations like BERT (Devlin et al., 2019),
ROBERTA (Liu et al., 2019), and GPT-2 (Radford
et al., 2019), sufficing for our experiments.

Our reimplementation and improvements upon
BARTABSA (Sections 3.1 and 3.2) provide the nec-
essary flexibility to reuse pretrained checkpoints as
encoder-decoder models.

4 Experiments

We evaluate our approaches on four popular Se-
mEval ABSA benchmark datasets: 14lap, 14res,
15res, and 16res (Pontiki et al., 2014, 2015,
2016), using the refined version from Xu et al.
(2020) and commonly used tuple-level metrics
(Yan et al., 2021a). Our backbone models are

BART-BASE and BART-LARGE, with full imple-
mentation details in Appendix A.

We compare our results against the original
BARTABSA (Yan et al., 2021a) and the state-of-
the-art by Xianlong et al. (2023), who achieve their
results using a mixture of sequence tagging and
sequence generation.

To assess how the advancing capabilities of
LLMs might impact the ASTE task, we addi-
tionally establish an LLM-based baseline by fine-
tuning OpenAI’s GPT-4O model4 on each ABSA
dataset. Using the prompt template shown in Ap-
pendix B, we train for 3 epochs with consistent
hyperparameters across all datasets. This (method-
ologically) very simple baseline achieves an av-
erage F1 score of 70.95, roughly on par with the
current SOTA results. In particular, the LLM-based
approach exhibits a distinctive pattern of trading

4https://platform.openai.com/docs/models/
gpt-4o, snapshot gpt-4o-2024-08-06
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precision for recall, with significantly higher recall
(74.94) compared to other methods.

4.1 Our Modern Reimplementation (3.1)

We find our reimplementation (BARTABSA-R) of
the BARTABSA framework to perform much bet-
ter than the original implementation by Yan et al.
(2021a) (Table 1). This comes rather unexpected,
as to the best of our knowledge, both codebases
implement the exact same algorithm. To rule out
evaluation issues, we employ the same tuple-level
evaluation script as published by Yan et al., where
a prediction is considered correct only when all
components match the ground truth exactly. Inter-
estingly, we find that the performance discrepancies
vary between the datasets (nearly 10 p.P. for 14res,
and only about 2 p.P. for 16res).

4.1.1 Potential Differences
Whilst we were unable to pinpoint the exact source
for this discrepancy, we validated these findings
through multiple steps: 1) We independently repro-
duced the original results by rerunning the authors’
published code. 2) We thoroughly debugged the
data loaders to confirm that both implementations
receive identical inputs, thereby eliminating data
processing discrepancies as a potential explanation.
3) We maintained consistent hyperparameter set-
tings across both implementations. 4) We used
their evaluation script to rule out issues during eval-
uation.

Given these controls, the performance differ-
ences most likely either stem from undetected is-
sues in their implementation of the algorithm or
simply our use of a modernized tech stack using
a different framework, newer transformers, torch
and CUDA versions as well as a different attention
implementation within the BART models (Ansel
et al., 2024; Dao et al., 2022).

4.1.2 Scaling to BART-LARGE

As a first step toward scaling this approach, we
swap the BART-BASE for a BART-LARGE back-
bone. This gives us mixed results (BART-BASE

vs. BART-LARGE in Table 1): while switching for
the larger backbone mostly improves the scores
(+0.70 F1 on average), it also instabilizes training,
which can be seen from the larger standard devia-
tions (σ 11.03) and even the complete performance
breakdown on “14lap”. As already mentioned in
Section 3.2.1, these instabilities can be mitigated
by using our improvements to the architecture.

Table 2: Model performance and ablation study using
BART-LARGE. (P)recision, (R)ecall, and F1 averaged
across the four datasets, with standard deviations in
parentheses. Red indicates performance decrease com-
pared to our full architecture (described in Section 3.2).

Model Avg
P R F1

Our BARTABSA-R 68.77 (σ 11.08) 66.80 (σ 11.65) 67.71 (σ 11.03)
(-4.89) (-5.97) (-5.45)

No Encoder 67.03 (σ 10.34) 65.39 (σ 10.68) 66.16 (σ 10.41)
Normalization (-6.63) (-7.38) (-7.00)

No Final 73.28 (σ 2.07) 72.64 (σ 2.27) 72.90 (σ 2.01)
RMS-Norm (-0.38) (-0.13) (-0.26)

No additional 71.36 (σ 4.61) 70.78 (σ 4.34) 71.02 (σ 4.36)
Attention (-2.30) (-1.99) (-2.14)

No Decoder 62.20 (σ 17.34) 60.60 (σ 15.98) 61.33 (σ 16.40)
Gating (-11.46) (-12.17) (-11.83)

No Encoder 72.08 (σ 2.75) 71.94 (σ 2.44) 71.98 (σ 2.30)
Gating (-1.58) (-0.83) (-1.18)

Our BARTABSA++ 73.66 (σ 1.41) 72.77 (σ 1.59) 73.16 (σ 1.18)

Surprising: Our reimplementation signifi-
cantly outperforms the literature, but it suffers
instabilities when scaling to larger models.

4.2 Our Improvements (3.2)

Scaling pointer networks to larger models presents
significant challenges, particularly regarding train-
ing stability. During our preliminary experiments
with BART-LARGE, we observed unstable optimiza-
tion dynamics stemming from substantial magni-
tude differences between input token pointer logits
and classification token logits (Figure 2). This is
naturally mitigated by our introduced normaliza-
tion (Section 3.2.1).

Our introduced architectural enhancements
coined BARTABSA++ address these challenges sys-
tematically, as demonstrated by the performance
improvements in Table 1 with an average 1.86
points F1 increase for BART-BASE and +5.45 F1
points for BART-LARGE, highlighting the greater
benefits of our improvements for larger models. In
fact, we find our BARTABSA++ not only outper-
forms our finetuned GPT-4O, but also represents
the new SOTA for the ABSA triplet extraction task
(averaged across the four datasets). To understand
the individual contribution of each component, we
conduct a comprehensive ablation study using the
BART-LARGE model (Table 2), revealing several
key insights. We show our improvements also gen-
eralize, when applying this methodology to other
structured extraction tasks in Appendix D.
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Surprising: Our structured language model-
ing BARTABSA++ significantly outperforms a
much more parameter heavy GPT-4O finetune
and even sets the new state of the art.

4.2.1 Component Analysis
Normalization (3.2.1) The feature normalization
proves crucial for model stability, as removing the
encoder normalization results in a notable perfor-
mance decline (-7.00 F1 points) coupled with sub-
stantially increased variance across runs (σ 10.41
compared to σ 1.18 for BARTABSA++). The ef-
fect of this normalization on the final model output
is also apparent in the comparisons of the value
heatmaps (Figures 2 and 4), which shows a clear
bias towards the prepended special tokens without
the normalization step. This confirms our hypothe-
sis that normalizing representation spaces is essen-
tial for stable optimization. While the final layer
normalization contributes more modestly (-0.26 F1
points when removed), it also helps in stabilizing
training results, almost halving the standard devia-
tion.

Attention Mechanism and Decoder Gating
(3.2.2, 3.2.3) The additional cross-attention
mechanism combined with its corresponding de-
coder gating mechanism also provides a significant
performance improvement. Removing the attention
mechanism alone reduces performance by 2.14 F1
points, while removing only the decoder gating
(but keeping the attention) causes a drastic drop of
11.83 F1 points with extreme instability (σ 16.40).

This indicates that while the additional process-
ing from the attention mechanism is beneficial, it
requires controlled integration through the gating
mechanism to be effective. An analysis of the de-
coder gate values in Figure 3 show considerable
variance during training, confirming that the model
actively uses this mechanism to regulate informa-
tion flow between the original decoder output and
the attention-processed representation.

Encoder Gating (3.2.3) The encoder gating
mechanism has a modest impact (-1.18 F1 points
when removed), which aligns with the observation
in Figure 3 that the encoder gates values remain
closer to their initial value of 0.5 throughout train-
ing.

4.3 Synthetic Encoder-Decoder Models (3.3)
As a first step towards transferring the pointer
methodology to LLMs, we sanity check the com-

Table 3: Performance comparison across different syn-
thetic encoder-decoder models. Models with ++ indicate
the BARTABSA++ architecture.

Model Avg
P R F1

Reimpl. BART++ 70.29 (σ 1.42) 67.58 (σ 1.50) 68.87 (σ 1.26)

Roberta2Roberta 57.70 (σ 23.84) 54.04 (σ 23.87) 55.66 (σ 24.00)
Roberta2Roberta++ 68.92 (σ 6.17) 64.53 (σ 7.75) 66.54 (σ 6.83)

Roberta2GPT2 67.64 (σ 1.96) 61.78 (σ 2.36) 64.50 (σ 2.05)
Roberta2GPT2++ 69.55 (σ 1.98) 65.54 (σ 1.95) 67.44 (σ 1.74)

Bert2Bert++ 66.19 (σ 1.62) 61.27 (σ 1.95) 63.58 (σ 1.63)

Bert2GPT2++ 65.58 (σ 1.82) 57.81 (σ 1.35) 61.38 (σ 1.35)

RobertaLarge2- 03.41 (σ 7.62) 00.95 (σ 2.13) 01.49 (σ 3.33)RobertaLarge++

RobertaLarge2- 69.62 (σ 1.18) 65.27 (σ 2.27) 67.33 (σ 1.57)GPT2Medium ++

binations of BARTABSA++ and the methodology
introduced in Rothe et al. (2020).

4.3.1 Overall
For this, we first take the base models explored in
the original paper (BERT, ROBERTA, and GPT-2)
by Rothe et al. (2020) and evaluate how well the
two methodologies interact (Table 3).

The approach works successfully, with some
combinations like ROBERTA2ROBERTA even
outperforming the original BARTABSA results.
However, none of these synthetic combinations
surpasses our enhanced BARTABSA++ even with
BART-BASE as the backbone.

Our architectural enhancements consistently
improve performance across all synthetic mod-
els, with particularly dramatic stabilization ef-
fects for ROBERTA2ROBERTA (reducing vari-
ance from σ 24.00 to σ 6.83 while improving
F1 by +10.88 points). Generally, ROBERTA

outperforms BERT as an encoder, and pairing a
ROBERTA encoder with a GPT-2 decoder yields
better results than using ROBERTA for both com-
ponents. The only exception is the highly unstable
ROBERTALarge2ROBERTALarge configuration,
which fails to train effectively despite our enhance-
ments.

4.3.2 Scaling to Modern Sizes
In order to expand our analysis to decoder LLMs,
and size ranges which cross the threshold into what
is commonly acknowledged as the LLM regime
(Zhao et al., 2025; Kaplan et al., 2020), we run a
scaling benchmark using only GPT-2 in Table 4.

For this, we use GPT-2 models ranging from
base (137M) to XL (1.6B) for both: the encoder
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Table 4: Performance of different GPT-2 model sizes,
with the pretrained weights being used in the encoder
and decoder part of the synthetic model.

Model Params Avg
P R F1

Our BARTABSA-R 139M 68.91 (σ 2.13) 65.31 (σ 3.17) 67.01 (σ 2.44)

GPT2GPT Base 277M 58.92 (σ 2.35) 52.11 (σ 1.81) 55.26 (σ 1.73)
GPT2GPT Medium 810M 60.06 (σ 2.01) 53.99 (σ 2.68) 56.80 (σ 2.19)
GPT2GPT Large 1.78B 59.78 (σ 2.28) 53.84 (σ 1.96) 56.60 (σ 1.76)
GPT2GPT XL 3.61B 59.72 (σ 0.97) 53.38 (σ 3.71) 56.34 (σ 2.45)

Table 5: Impact of random weight initialization on
model performance.

Model Avg
P R F1

Full Pretrained 68.91 (σ 2.13) 65.31 (σ 3.17) 67.01 (σ 2.44)

Random Encoder 18.35 (σ 12.57) 13.42 (σ 9.04) 15.45 (σ 10.44)
Random Decoder 65.57 (σ 1.51) 61.57 (σ 2.28) 63.46 (σ 1.88)
Random Both 36.53 (σ 2.57) 27.57 (σ 1.62) 31.38 (σ 1.83)

and the decoder. As the parameters get duplicated,
this creates models with up to 3.6B parameters
overall—including the added cross attention.

We find basically no “scaling effects” at all,
meaning the performance mostly does not increase
with model size increases. Furthermore, the model
itself performs substantially worse than our basic
reimplementation, or the original BARTABSA re-
sults. This draws the applicability of this combina-
tion of methodologies to combine pointer networks
with (large) decoder LLMs into question.

To ensure that the lack of pretraining for the
newly initialized weights isn’t responsible for this
unexpected non-scaling behavior, we conduct ad-
ditional experiments pretraining these models on
the CNN/DailyMail summarization dataset (See
et al., 2017; Hermann et al., 2015) before fine-
tuning on ABSA (Appendix E). These experiments
confirm our findings, showing similar patterns of
non-scaling and instability even after extensive pre-
training.

Negative Result: (Larger) decoder LMs
show no benefit in this structured prediction
framework, and even exhibit slightly negative
scaling effects.

4.3.3 Ablation using Random Initialized
Models

In order to better understand this unexpected find-
ing of non-scaling, we analyze which parts of the
newly crafted encoder-decoder influence the per-
formance the most. We hypothesize that there is

an inherent difference between the encoder and
decoder architecture, especially when either is con-
verted into the other one.

To be able to analyze the impact of the encoder
and decoder separately, we initialize the encoder,
the decoder or both with random weights (except
for the token embeddings) and then train as before
(Table 5). Interestingly, we find that entirely ran-
domizing the decoder and training it from scratch
has a surprisingly small impact on overall model
performance. In contrast, random initialization of
the encoder severely degrades performance. This
is in line with our previous findings: the encoder’s
“token-level representational quality” significantly
outweighs the decoder’s contribution to overall per-
formance (Kasai et al., 2021). Consequently, mod-
els pretrained explicitly as encoders consistently
outperform those in which a decoder is retrained
as an encoder (Pfister and Hotho, 2024; Reimers,
2022).

Confirmation: As identified by Kasai et al.
(2021), encoder-decoder model performance
strongly correlates with encoder representa-
tional strength.

5 Conclusion

In this work, we revisited the BARTABSA frame-
work in the context of modern decoder LLMs.
Our enhanced implementation—BARTABSA++—
demonstrates that explicit structured models remain
highly competitive for tasks requiring precise ex-
traction of relational information, even outperform-
ing a finetuned GPT-4O model.

Our systematic experiments reveal a fundamen-
tal insight: while our architectural enhancements
enable effective scaling with pretrained encoder-
decoder models like BART, this scaling behavior
does not transfer encoder-decoder models based
on decoder-only LLMs. The critical factor appears
to be the encoder’s representational quality at the
token level, which decoder LLMs struggle to match
when repurposed as encoders.

These findings highlight the complementary na-
ture of structured approaches and large language
models in NLP. While LLMs excel at tasks lever-
aging their implicit knowledge, structured pointer
networks seem to be able to provide superior per-
formance and interpretability for precise relational
extraction tasks.
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Limitations

Optimization and Architectural Constraints
Although we employed normalization and gat-
ing mechanisms to mitigate training insta-
bility, certain model configurations, notably
ROBERTA2ROBERTA, still exhibited high vari-
ance across runs.5 Moreover, our decoder LLM
experiments were restricted to GPT-2 variants due
to limitations in the existing implementation in the
🤗 Transformers library. While GPT-2 showed non-
scaling behavior, preliminary experiments by us
suggest that newer decoder-only architectures also
face similar issues, although differences in their
architectures might yield varying outcomes.

Representational Limitations of Decoder-only
Models Our methodology for adapting decoder-
only models into encoders, based on existing work
(Rothe et al., 2020), likely does not fully resolve
fundamental representational constraints for token-
level tasks. Recent adaptations like LLM2Vec
(BehnamGhader et al., 2024) suggest promising
techniques that might overcome these limitations,
though exploring such adaptations was beyond the
scope of our experiments.

Scope of Pointer Networks and Structured
Prediction Our analysis focuses specifically on
encoder-decoder architectures and their compo-
nents, reflecting the typical formulation used in
Pointer Networks. However, our findings indicate
that extending the pointer paradigm to decoder-
only architectures could potentially better leverage
pretrained LLMs for structured prediction tasks,
presenting a valuable direction for future research.

Baseline Limitations Our GPT-4O-based base-
line experiments employed a straightforward
prompt template primarily to provide a compara-
tive reference point close to the previous SOTA.
While adequate for this purpose, the adopted
approach does not explore advanced prompting
methods, chain-of-thought reasoning, or special-
ized instruction-tuning strategies that could further
boost the capabilities of modern LLMs.

Generalizability Although we demonstrate that
structured methods such as BARTABSA++ remain
competitive for ABSA tasks, our results may not
generalize across all structured prediction tasks in

5We observed similar instability when training this config-
uration on the summarization task (Appendix E), suggesting a
potential limitation of the approach by Rothe et al. (2020).

NLP, particularly those involving different struc-
tural characteristics or task-specific constraints.
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A Implementation Details

We train our models using NVIDIA L40 GPUs and
the following key hyperparameters:

Parameter Value

Learning rate 5e-5 with polynomial decay
Batch size 16
Optimizer AdamW (weight decay 0.01)
Gradient clipping 5.0 (norm)
Training epochs 50
Sampling strategy Greedy

For statistical robustness, we run each experi-
ment with five different random seeds (1, 42, 123,
420, 1337) and report means and standard devia-
tions. Model selection for testing is based on val-
idation set F1-Score. We use the same tuple-level
evaluation script as published by Yan et al. (2021a),
where a prediction is considered correct only when
all components match the ground truth exactly.
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B GPT-4o Fine-tuning Prompt Template

For fine-tuning GPT-4o on the ASTE task, we
employ a structured prompt template transform-
ing tuple-based annotations into natural language.
Given the sample:

“The drinks are always well made and
wine selection is fairly priced”

The tuple annotation

(2, 2, 5, 6, POS, 8, 9, 11, 12, POS)

is transformed into:

{
"messages ": [
{

"role": "system",
"content ": "You are an AI trained to

perform aspect -based sentiment
analysis. Identify aspects in
the given text and determine
their associated sentiments and
opinions ."

},
{

"role": "user",
"content ": "Analyze the following

text for aspect -based sentiment:
The drinks are always well made
and wine selection is fairly

priced Identify the aspects and
their associated sentiments ."

},
{

"role": "assistant",
"content ": "Here 's the aspect -based

sentiment analysis:
Aspect: drinks
Sentiment: POS
Opinion: well made

Aspect: wine selection
Sentiment: POS
Opinion: fairly priced"

}
]
}

This structure follows OpenAI’s fine-tuning
specifications, providing context through the sys-
tem message, input text through the user message,
and expected output through the assistant message.
All examples were automatically processed into
this format. During inference, responses are parsed
back into tuple format for consistent evaluation
with the other models.
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Figure 4: Heatmap of the untrained model’s pointer logit
distribution (Pt) with the encoder normalization enabled
(Lines 6 and 7 in Algorithm 1). The visualization shows
no noticeable inherent initialization bias towards the
lower pointer values corresponding to the special tokens,
as was the case in Figure 2

D Generalization to other Tasks

Table 6: Performance comparison between BART-
LARGE baseline and our enhanced BARTABSA++ on
three additional structured prediction tasks.

Task Our BARTABSA-R BARTABSA++
P R F1 P R F1

SSA 57.51 41.76 47.38 61.02 51.51 55.80
(σ 2.72) (σ 12.42) (σ 10.07) (σ 1.73) (σ 3.45) (σ 2.44)

SRE 20.25 29.03 23.85 25.75 35.99 30.01
(σ 11.41) (σ 16.39) (σ 13.45) (σ 1.46) (σ 1.55) (σ 1.52)

DEFT 51.26 37.86 43.36 54.20 41.30 46.73
(σ 0.28) (σ 5.12) (σ 3.46) (σ 3.94) (σ 2.27) (σ 1.96)

To demonstrate the generalization of our archi-
tectural improvements beyond ABSA tasks, we
evaluate our enhanced model on three additional
structured prediction tasks and report those results
in Table 6. To model these tasks appropriately for
pointer networks to solve, the output grammars for
these tasks are natural extensions or modifications
of the previously introduced ABSA output gram-
mar (Section 2.2), adapted to the specific require-
ments of each task. This approach has been proven
effective for related tasks across different languages
(Yan et al., 2021b; Wunderle et al., 2024), and even
in entirely different domains such as mathematical
transformation identification (Wankerl et al., 2025).
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Structured Sentiment Analysis (SSA) extends
ABSA by extracting more comprehensive opinion
structures, including opinion holders, targets, ex-
pressions, and sentiment polarities, with support for
discontinuous spans. We use the combined English
datasets from SemEval 2022 Task 10 (Barnes et al.,
2022): OpeNEREN (hotel reviews) and DSUnis (uni-
versity reviews).

Semantic Relation Extraction (SRE) identifies
relations between entities in scientific abstracts,
while also classifying them into six predefined re-
lation types. We use the manually annotated ACL
RD-TEC 2.0 dataset (QasemiZadeh and Schumann,
2016) from SemEval 2018 Task 7.

Definition Extraction from Free Text (DEFT)
extracts definition terms and their corresponding
definitions from naturally occurring text, requiring
classification of both terms and definitions, as well
as their relationship. We use the dataset from Se-
mEval 2020 Task 6 (Spala et al., 2020), containing
samples from open-source textbooks.

We find: As shown in Table 6, our enhanced
model consistently outperforms the baseline
across all tasks, with particularly notable im-
provements in F1 scores for SSA (+8.42) and
SRE (+6.16), demonstrating generalization of
our architectural changes to a diverse set of
structured prediction tasks.

E Pre-Training Synthetic
Encoder-Decoder Models

To verify that our findings about non-scaling de-
coder LLMs aren’t simply due to insufficient train-
ing of the newly initialized weights, we conduct
additional pretraining experiments using the CNN/-
DailyMail summarization dataset (See et al., 2017;
Hermann et al., 2015). This is the same dataset
used by Rothe et al. (2020) in their original work on
synthetic encoder-decoder models, making it par-
ticularly appropriate for our investigation. As the
dataset contains over 300,000 news articles paired
with human-written summaries, it provides sub-
stantial training data for adapting the models to the
encoder-decoder paradigm.

We pretrain each GPT-2 model for 3 epochs on
the summarization task, measuring Rouge2 scores
throughout training. As shown in Table 7, the re-
sults reveal both training instability and a com-
plete lack of scaling benefits. Most notably, GPT-

Table 7: Rouge2 scores for models pretrained on CNN-
DailyMail summarization dataset for 3 epochs. The
table shows both the best score achieved during training
and the final score after 3 epochs.

Model Best Rouge2 Final Rouge2

BART-BASE 19.65 19.65
ROBERTA2ROBERTA 19.35 19.35

GPT2GPT Base 14.60 2.32
GPT2GPT Medium 4.13 4.13
GPT2GPT Large 14.86 14.77
GPT2GPT XL 11.86 11.76

Table 8: Performance of different pretrained GPT-2
model sizes.

Model Params Avg
P R F1

Our BARTABSA-R 139M 68.91 (σ 2.13) 65.31 (σ 3.17) 67.01 (σ 2.44)

GPT2GPT Base 277M 60.64 (σ 2.38) 53.82 (σ 2.03) 56.98 (σ 1.95)
GPT2GPT Medium 810M 60.61 (σ 2.10) 54.39 (σ 1.94) 57.28 (σ 1.80)
GPT2GPT Large 1.78B 60.73 (σ 2.12) 54.04 (σ 1.85) 57.12 (σ 1.64)
GPT2GPT XL 3.61B 60.45 (σ 2.05) 53.90 (σ 2.10) 56.98 (σ 1.85)

2 Base exhibits dramatic performance degrada-
tion (from a best Rouge2 score of 14.60 to a fi-
nal score of 2.32), while GPT-2 Medium performs
consistently poorly. Even the best-performing
GPT-2 Large only achieves a Rouge2 of 14.86,
substantially below both BART-BASE (19.65) and
RoBERTa2RoBERTa (19.35).

When initializing our pointer networks with
these already pretrained checkpoints (Table 8), we
observe very similar patterns to our non-pretrained
experiments. The lack of scaling benefits persists,
with performance plateauing or even declining as
model size increased.

Confirmation: These results further support
our conclusion that encoder quality is the pri-
mary determinant of performance in encoder-
decoder models, and that decoder-only models
face fundamental limitations when adapted to
serve as encoders, regardless of this additional
pretraining.
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