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Abstract

We investigate the capabilities of the openly
available Llama 3.2 1B language model for
Abstract Meaning Representation (AMR) pars-
ing through supervised fine-tuning, further en-
hanced by reinforcement learning via Group
Relative Policy Optimization (GRPO). Exist-
ing supervised methods for AMR parsing face
limitations due to static loss functions and chal-
lenges in capturing complex semantic phenom-
ena. To address this, our GRPO-based ap-
proach explicitly optimizes fine-grained seman-
tic rewards, including Smatch scores, frame-
argument correctness, and structural validity of
logical operations. Experimental results show
that supervised fine-tuning alone establishes
Llama as a capable English AMR parser, and
subsequent GRPO fine-tuning further improves
its performance. Our final model achieves
higher Smatch scores, consistently respects crit-
ical low-level semantic constraints, and outper-
forms existing parsers on high-level semantic
evaluation metrics across diverse linguistic phe-
nomena.

1 Introduction

Abstract Meaning Representation has become es-
sential in various natural language processing tasks,
such as machine translation (Song et al., 2019; Da-
monte et al., 2019; Uresova et al., 2014), ques-
tion answering (Kapanipathi et al., 2021), dialogue
understanding (Bai et al., 2022a), summarization
(Liao et al., 2018; Ribeiro et al., 2022; Dohare
et al., 2017), and fact-checking (Ribeiro et al.,
2022; Kachwala et al., 2024; Ousidhoum et al.,
2022). Despite its widespread adoption, AMR pars-
ing remains challenging. Groschwitz et al. (2023)
recently demonstrated that parsing accuracy has
stagnated, highlighting persistent difficulties in cap-
turing complex semantic phenomena, even with
advanced models.

While large language models (LLMs) such as the
Llama models (Touvron et al., 2023) have demon-
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Figure 1: Comparison of AMR parsing models
(SPRING, Llama-SFT, and our Llama-GRPO) across
various linguistic phenomena measured by the GrAPES
prerequisites metric. Higher scores indicate that the
parser more consistently generates the necessary se-
mantic structures to capture specific phenomena. Our
reinforcement learning-based approach shows consis-
tent improvement over the baselines.

strated impressive performance across various lan-
guage generation tasks, their capability for struc-
tured semantic parsing—particularly AMR pars-
ing—remains unverified. Moreover, it remains
unclear whether advanced reinforcement learning
(RL) techniques like Group Relative Policy Opti-
mization (GRPO), introduced by Shao et al. (2024),
can effectively enhance the performance of LLMs
on such structured prediction tasks by directly opti-
mizing for desired graph properties.

In this paper, we first examine the baseline capa-
bilities of the openly available Llama 3.2 1B model
by supervised fine-tuning (SFT) on the AMR 3.0
dataset (Banarescu et al., 2013). We refer to this
model as Llama-SFT. We then further fine-tune
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this model using GRPO, incorporating fine-grained
reward signals explicitly designed to encourage
adherence to critical low-level AMR properties,
such as frame-argument correctness and structural
validity of logical operations (AND-OR node cor-
rectness), alongside Smatch and graph parsabil-
ity. We call this enhanced model Llama-GRPO.
We systematically evaluate our models against
publicly available AMR parsing model, SPRING
(Bevilacqua et al., 2021), using standard metrics
(Smatch) and the detailed GrAPES evaluation suite
(Groschwitz et al., 2023).

Our results show that the Llama 3.2 1B model,
after supervised fine-tuning (Llama-SFT), achieves
AMR parsing performance close to open-source
AMR parser models. Critically, when further en-
hanced through GRPO-based reinforcement learn-
ing, our model:

* Achieves higher overall AMR parsing accu-
racy, as measured by Smatch scores,

* Effectively respects the low-level semantic
constraints incorporated into the GRPO re-
ward function,

* Outperforms existing AMR parsers on high-
level semantic evaluations, as demonstrated
by the comprehensive GrAPES metrics (Fig-
ure 1), suggesting improved generalization
across diverse linguistic phenomena.

2 Related Work

Early work in AMR parsing often relied on
transition-based systems (Wang et al., 2015, 2016)
or graph-based approaches (Flanigan et al., 2014),
frequently using specialized features and con-
strained decoding. The advent of neural sequence-
to-sequence models marked a significant shift.
Many modern parsers treat AMR parsing as a trans-
lation task from text to a linearized representation
of the AMR graph (Konstas et al., 2017).
Transformer-based architectures (Vaswani et al.,
2017) quickly became dominant. Models like
SPRING (Bevilacqua et al., 2021), based on BART
(Lewis et al., 2020), demonstrated strong perfor-
mance by leveraging pre-training and specialized
techniques like graph linearization. SPRING em-
ploys bidirectional pre-training and graph-based
regularization during fine-tuning on linearized
AMR graphs. Other parsers, such as those based
on T5 or BART (Raffel et al., 2020; Jascob, 2024,
Lee et al., 2023), have also achieved high results

through large-scale pre-training and task-specific
adaptations.

Despite these advances, as highlighted by
Groschwitz et al. (2023), performance has
plateaued, suggesting limitations in current super-
vised approaches. Challenges in AMR parsing re-
main, particularly in achieving semantic consis-
tency, cross-lingual adaptability, and structured rea-
soning.

3 Methods

Reinforcement learning has been increasingly used
to fine-tune LLMs for various objectives beyond
next-token prediction, such as improving helpful-
ness, harmlessness, or adherence to specific styles
(Ouyang et al., 2022; Bai et al., 2022b). Tech-
niques such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017) are commonly used but of-
ten require training a separate critic model, which
can be computationally expensive. GRPO (Shao
et al., 2024) offers a more efficient alternative by
using group-based relative ranking, making RL
fine-tuning more accessible, especially for com-
plex tasks with non-differentiable or noisy reward
signals, as demonstrated in fields like mathemati-
cal reasoning (Shao et al., 2024), computer vision
(Liang, 2025), and speech processing (Togootog-
tokh and Klasen, 2025).

3.1 Group Relative Policy Optimization

GRPO (Shao et al., 2024) is a reinforcement learn-
ing algorithm designed to fine-tune large language
models efficiently by replacing the critic model in
PPO with a baseline estimated from a group of sam-
pled outputs. This eliminates the need for a learned
value function, reducing computational overhead
and memory requirements.

For each query ¢, GRPO samples a group of
responses {01, ...,0g} from the old policy 7.
evaluates them using a reward model, and normal-
izes the rewards within the group. The policy is
updated using a clipped importance-weighted ob-
jective, similar to PPO, but the advantage estima-
tion relies on the relative performance within the
sampled group rather than absolute reward values
predicted by a critic. This encourages the policy
to shift probability mass towards outputs that per-
form relatively better within the sampled group
according to the reward function.
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3.2 Our approach

We started with a vanilla Llama 3.2 1B model,
which we fine-tuned using supervised fine-tuning
(SFT). To avoid overfitting we used early stopping
based on the validation loss. The training stopped
after two epochs which resulted in the Llama-SFT
model. After generating AMR graphs with Llama-
SFT, we manually evaluated them and observed
several recurring low-level structural and semantic
errors. These errors primarily fell into two cate-
gories:

* Frame-argument error: Generated frames
sometimes included arguments (e.g., ‘:arg4°,
‘:arg5°) that were not defined for that specific
predicate sense in the PropBank frame files
(Palmer et al., 2005). The arguments of each
frame must strictly conform to the roles de-
fined in its sense.

AND-OR node error: Logical connective
nodes like ‘and‘ and ‘or‘ require their operand
roles (e.g., “:opl*, “:op2°, “:0p3°) to be consec-
utive integers starting from 1. We observed
generated graphs violating this (e.g., having
only “:opl‘and ‘“:0p3°). A special case exists
where only “:op2°‘ appears, often used in AMR
3.0 for sentences starting with and’ or ’or’;
this specific structure was considered valid.

To address these issues and improve overall qual-
ity, we designed a composite reward function for
GRPO incorporating four signals for each gener-
ated AMR graph:

* Parsability: A binary reward. The gener-
ated AMR graph must be parsable by standard
AMR parsing tools without errors. Graphs
that failed parsing due to structural or syntac-
tic issues were penalized.

Frame-argument correctness: A score be-
tween 0 and 1 representing the proportion of
frames in the generated graph that adhere to
their PropBank argument definitions. Calcu-
lated as (Number of valid frames) / (Total
number of frames).

AND-OR node correctness: A score be-
tween 0 and 1 representing the proportion
of ‘and‘/‘or‘ nodes with correctly structured
operands (consecutive from ‘:opl°, or the spe-
cial “:op2‘-only case). Calculated as (Number
of valid AND/OR nodes) / (Total number of
AND/OR nodes).
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* SMATCH score: The Smatch F1 score (Cai
and Knight, 2013) comparing the generated
AMR graph against the gold reference AMR
graph. This provides a global measure of se-
mantic similarity.

These four criteria were combined into a single
reward function, where each criterion was given
equal weight. Additionally, we applied quadratic
scaling to the SMATCH score, ensuring that lower
scores received a higher penalty.

4 Dataset

For training, we used the AMR 3.0 dataset
(LDC2020T02) (Banarescu et al., 2013), which
provides a large collection of human-annotated Ab-
stract Meaning Representation (AMR) graphs. We
preprocessed the AMR graphs the following way.
First, we removed wiki tags from the AMR graphs.
Then, we serialized each graph into a single line
using a depth-first approach. During serialization,
new lines within the original graph notation were
replaced with spaces, and consecutive spaces were
compressed into a single space. Finally, we added
spaces around parentheses to ensure consistent tok-
enization.

For evaluation, we used the AMR 3.0 test set
and The Little Prince (TLP) corpus test set, which
provides a smaller, out-of-domain evaluation with
high-quality annotations. We measured the perfor-
mance of the models using Smatch scores (Cai and
Knight, 2013) computed with the smatchpp library
(Opitz, 2023).

4.1 Dataset Statistics

Table 1 provides an overview of the dataset sizes
used in our experiments.

Dataset Number of Sentences
AMR 3.0 (Train) 55,635
AMR 3.0 (Test) 1,898
The Little Prince (test) 143

Table 1: Dataset statistics.

The combination of AMR 3.0 and the TLP
dataset enables a comprehensive evaluation, bal-
ancing broad-domain performance with controlled,
high-quality annotations.
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Figure 2: Evolution of average reward and parsability during GRPO fine-tuning on batches from the training set.

5 Results

We compare our Llama-SFT and Llama-GRPO
models against SPRING. Table 2 shows the main
results on the AMR 3.0 and TLP test sets.

The results show that Llama-SFT achieves a
competitive Smatch score in two epochs, confirm-
ing the adaptability of LLMs to an unseen task.
We observe that one epoch of subsequent GRPO
fine-tuning yields further improvements. Llama-
GRPO achieves a Smatch score of 81.92 on AMR
3.0, a gain of over 2.3 points over Llama-SFT,
and it outperforms SPRING. In addition, GRPO
improves compliance with the targeted low-level
constraints. Frame-argument correctness improves
from 96.5% to over 99% on AMR 3.0 and reaches
99.75% on TLP. Similarly AND-OR node correct-
ness jumps from 96.5% to over 99.6% on AMR
3.0 and achieves perfect compliance on TLP. This
demonstrates the effectiveness of incorporating
these specific structural and semantic properties
directly into the reward function via GRPO.

Figure 2 illustrates the progression of the overall
reward during GRPO training. The reward score
exhibits a smooth and consistent upward trend
throughout the GRPO fine-tuning process. This
indicates that the model has effectively learned to
generate AMR structures that better satisfy these
constraints, validating the utility of GRPO with
these specific reward signals. The learning appears
stable, without drastic fluctuations, suggesting that
GRPO provides a reliable optimization process for
these objectives.

5.1 GrAPES evaluation

According to Groschwitz et al. (2023), Edge Recall
measures the parser’s accuracy in identifying cru-

cial semantic edges for specific phenomena. Pre-
requisites evaluate whether the parser generates
the required graph structure to attempt to recognize
these phenomena. Tables 3 and 4 summarize model
performance accordingly.

From Tables 3 and 4 we see that SPRING demon-
strates higher accuracy in Edge Recall, indicating
slightly better capability in accurately identifying
semantic edges once generated. This difference
in performance for SPRING can potentially be ex-
plained by the AMR-specific adaptation of its tok-
enizer and vocabulary'.

Llama-SFT on the other hand, consistently ex-
cels at Prerequisites, indicating that it more reliably
constructs graph structures necessary for capturing
complex phenomena, even if its edge-level preci-
sion is slightly lower.

Limitations

Our study has several limitations:

* Model Scale: We focused exclusively on the
Llama 3.2 1B model due to resource limita-
tions. Larger models or other LLM archi-
tectures might yield different baseline perfor-
mance and respond differently to GRPO tun-
ing.

* Language Coverage: Our experiments were
conducted solely on English AMR. The appli-
cability and effectiveness of this approach for
other languages remain unexplored.

* Reward Design: While our fine-grained re-
wards proved effective, the specific combina-
tion and weighting could be further optimized.

'The set of possible edge labels is added to the vocabulary.
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Model Smatch++ F1 FRAME-ARG correctness AND-OR correctness
AMR3.0 TLP AMR3.0 TLP AMR 3.0 TLP
Llama-SFT 79.58 78.06 0.96491 0.97550 0.96514 0.97887
Llama-GRPO 81.92 78.30 0.99178 0.99758 0.99624 1.00000
SPRING 80.15 81.12 0.99396 0.99703 0.95978 0.98501

Table 2: Comparison of different AMR parsers on AMR 3.0 and TLP datasets based on Smatch++ F1, ARG

correctness, and AND-OR correctness.

Category SPRING SFT GRPO
Pragmatic Coreference 42 61 61
Syntactic Reentrancies 61 56 61
Unambiguous Coreference 55 84 81
Rare Predicate Senses 79 82 91
Rare Edge Labels 55 65 65
Types of Seen NEs 83 83 89
Types of Unseen NEs 64 49 57
Frequent Predicate Senses 79 83 920
Passives 66 78 80
Unaccusatives 75 71 79
Ellipsis 79 82 85
Imperatives 72 67 83

Table 3: Prerequisites scores from GrAPES evaluation.
Best results highlighted in bold. Llama-SFT and Llama-
GRPO are abbreviated as SFT and GRPO respectively.

Category SPRING SFT GRPO
Pragmatic Coreference 31 25 25
Syntactic Reentrancies 46 27 32
Unambiguous Coreference 52 58 55
Rare Edge Labels 20 20 18
Rare Node Labels 61 58 65
Unseen Node Labels 54 35 44
Rare Predicate Senses 30 34 34
Seen Names 84 83 89
Unseen Names 70 56 64
Seen Dates 74 88 91
Unseen Dates 71 82 84
Other Seen Ents 88 79 87
Other Unseen Ents 59 61 64
Types of Seen NEs 82 81 87
Types of Unseen NEs 47 31 39
Frequent Predicate Senses 70 72 79
Passives 59 64 64
Unaccusatives 67 58 65
Ellipsis 42 39 48
Multinode Word Meanings 68 80 78
Imperatives 50 42 59

Table 4: Recall and Edge Recall scores from GrAPES
evaluation. Best results highlighted in bold. Llama-SFT
and Llama-GRPO are abbreviated as SFT and GRPO
respectively.

Exploring other potential reward signals re-
lated to AMR quality could yield further im-
provements.

* Comparison Models: We compared against
the publicly available SPRING model. Com-
parisons against state-of-the-art closed models
or models using proprietary data were not pos-
sible.

* Dataset Contamination: We did not inves-
tigate whether the dataset we used for eval-
uation was included in the pre-training data
of the Llama 3.2 1B model, which could lead
to information leakage that artificially inflates
performance.

6 Conclusion

In this work, we investigated the application of the
Llama 3.2 1B language model to AMR parsing,
enhanced by Group Relative Policy Optimization
(GRPO). We demonstrated that supervised fine-
tuning establishes Llama as a competent baseline
AMR parser. Subsequently, by incorporating fine-
grained reward signals targeting Smatch, graph
parsability, frame-argument correctness, and AND-
OR node validity into a GRPO fine-tuning stage,
we achieved significant improvements.

Our Llama-GRPO model not only outperformed
its supervised counterpart (Llama-SFT) in Smatch
scores, but also showed significantly better per-
formance for crucial low-level semantic and struc-
tural constraints. Furthermore, evaluation using the
GrAPES suite revealed that Llama-GRPO gener-
ated more complete graph structures (higher Pre-
requisites scores) necessary to capture diverse and
complex linguistic phenomena, outperforming both
Llama-SFT and SPRING while achieving competi-
tive recall performance.

These results highlight the potential of combin-
ing moderately sized, openly available LLMs with
efficient reinforcement learning techniques like
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GRPO, guided by carefully designed reward func-
tions, to tackle complex structured prediction tasks
like AMR parsing. This approach allows for direct
optimization of desired output properties beyond
what is easily achievable with standard supervised
learning alone.
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