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Abstract

In-context learning (ICL) has shown signifi-
cant benefits, particularly in scenarios where
large amounts of labeled data are unavailable.
However, its effectiveness for highly subjec-
tive tasks, such as toxic language detection,
remains an open question. A key challenge in
this setting is to select shots to maximize perfor-
mance. Although previous work has focused
on enhancing variety and representativeness,
the role of annotator disagreement in shot se-
lection has received less attention. In this paper,
we conduct an in-depth analysis of ICL using
two families of open-source LLMs (Llama-3*
and Qwen2.5) of varying sizes, evaluating their
performance in five prominent English datasets
covering multiple toxic language phenomena.
We use disaggregated annotations and catego-
rize different types of training examples to as-
sess their impact on model predictions. We
specifically investigate whether selecting shots
based on annotators’ entropy – focusing on am-
biguous or difficult examples – can improve
generalization in LLMs. Additionally, we ex-
amine the extent to which the order of examples
in prompts influences model behavior. Our re-
sults show that selecting shots based on entropy
from annotator disagreement can enhance ICL
performance. Specifically, ambiguous shots
with a median entropy value generally lead to
the best results for our selected LLMs in the
few-shot setting. However, ICL often underper-
forms when compared to fine-tuned encoders.

1 Introduction

In-context learning (ICL) is becoming a dominant
paradigm in NLP, mainly due to its numerous ad-
vantages over fine-tuning methods. First, it facili-
tates task-specific learning in a dynamic way from
a limited set of examples directly provided in a
prompt, without the need to update the model’s
weights. This allows rapid adaptation to new tasks
while significantly reducing storage and computa-
tional costs. Additionally, ICL requires fewer la-

beled examples compared to full fine-tuning, reduc-
ing the need for extensive training sets and making
it an efficient and scalable alternative, especially for
low-resource languages and cognitively demand-
ing tasks such as hate speech annotation (Plaza-
del-Arco et al., 2024a; Poletto et al., 2021; Vid-
gen and Derczynski, 2020; Davidson et al., 2017).
However, as Dong et al. (2024) highlight, multi-
ple factors affect ICL performance, such as the
prompt template and wording, the selected exam-
ples (henceforth, shots), the order in which the
shots are presented to the models, and the model
size, among others (Wang et al., 2023; Shi et al.,
2024). Finding optimal shots, that is, instances of a
linguistic phenomenon that are representative and
that could be used to learn to generalize its identifi-
cation, is a challenging task whose solution could
help boost the LLM results in ICL (Zhang et al.,
2022; Yang et al., 2023).

This paper presents an in-depth study on ICL
functionalities of two families of open-source
LLMs (LlamA-3* and Qwen2.5) with different
sizes on five prominent datasets in English covering
multiple toxic language phenomena. In particular,
we have used the disaggregated annotations of the
datasets to identify different types of training ex-
amples to test their impact on LLMs. We have also
analyzed to what extent the order of presentations
of the examples in the prompts impacts the models.
Our contributions can be summarized as follows:

1. For the first time, we provide insights into the
distribution of annotators’ judgments through
entropy, by examining how examples are dis-
tributed along a complexity axis across five
major English-language datasets;

2. We select shots based on annotators’ entropy
to identify difficult and ambiguous examples
to test whether they could represent an advan-
tage in boosting generalization functionalities
of LLMs;
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3. We benchmark six open-source instruction-
tuned LLMs with sizes ranging between 3B up
to 72B parameters, showing that a principled
selection of shot types (and in some cases of
the order of the labels) can help in boosting
ICL performance;

4. ICL often underperforms when compared to
fine-tuned encoders, suggesting that ICL is
suboptimal in scenarios where training data is
available.

Our code is publicly available at the fol-
lowing link https://github.com/tommasoc80/
woah_2025_shot_selection.

2 Datasets

A recent trend in the creation of language resources
for highly subjective tasks, such as toxic language,
is to collect multiple judgments for every message
and subsequently release the annotations both in
an aggregated and a disaggregated format. Releas-
ing data in a disaggregated form allows to analyze
disagreements, different perspectives, and develop
systems that account for different social and cul-
tural viewpoints (Cabitza et al., 2023). For this
paper, we select five datasets that either have been
conceived to be released in a disaggregated format
or that have preserved the disaggregated annota-
tions while offering aggregated labels. The datasets
contain English texts, and they are all based on so-
cial media messages from different platforms. The
spectrum of toxic language phenomena includes
sexism, hate speech, and offensive language. Ta-
ble 1 presents the message distribution across posi-
tive and negative classes.

Dataset Train Dev Test

POS NEG POS NEG POS NEG

EDOS 3,398 10,602 486 1,514 970 3,030
Brexit 72 712 19 149 18 150
GAB 1,941 20,095 – – 509 5,001
MD 1,962 4,630 388 716 1,018 2,039
SBIC 18,726 16,698 2,612 2,054 2,710 1,981

Table 1: Class distribution of the selected datasets. POS
refers to the positive class (sexism for EDOS; hate
speech for Brexit and GAB; offensive language for MD
and SBIC), while NEG represents the negative class.

EDOS The Explainable Detection of Online Sex-
ism (EDOS) (Kirk et al., 2023), released in the con-
text of SemEval 2023, consists of 20k messages

and it is structured along a three-layered, hierar-
chical annotations for detecting sexism. The first
layer determines whether a message is sexist or
not; the second layer identifies four distinct cate-
gories of sexism, and, the last layer distinguishes
between 11 fine-grained sexism types. We select
only the first annotation layer. Messages for EDOS
were retrieved from Reddit and GAB. The dataset
creators implemented a collection method based
on a mix of community-based sampling (for Red-
dit) and an ensemble of sampling methods, rather
than using a set of keywords, to guarantee a better
diversity of the data. Sexism is defined as “any
implicit or explicit abuse directed at women based
on gender or intersecting identities” (Kirk et al.,
2023, pg 2194). Nineteen trained women annota-
tors followed strict guidelines, each labeling three
messages. Data were manually curated, with ex-
pert adjudication resolving disagreements. Table 1
shows a 3:1 skew toward the negative class (non-
sexism). The authors do not report an IAA study.

Brexit The Hate Speech on Brexit
dataset (Akhtar et al., 2021) was also pub-
lished in the context of SemEval 2023 (Leonardelli
et al., 2023). The dataset is composed by 1,120
tweets collected with keywords related to immi-
gration and Brexit. It was annotated with four
categories, namely hate speech (in particular
xenophobia and islamophobia), aggressiveness,
offensiveness, and stereotype, following the
annotation scheme and definitions in Sanguinetti
et al. (2018). Six annotators, divided into tar-
get (Muslim immigrants/students) and control
(Western researchers) groups, provided binary
annotations, negatively skewed (Table 1). Class
ratios vary across splits: train (70:30), dev (80:20),
test (90:10). The SemEval task covers only hate
speech, with dataset creators reporting Fleiss’
kappa of 0.35. Agreement was higher within
groups (0.58 target, 0.43 control), with all full
disagreements marked hateful by the target group
but never by the control. We use the aggregated
SemEval labels.

GAB The GAB Hate Speech Corpus (Kennedy
et al., 2022) is composed by 27,665 posts from
the social network platform GAB. The coding ty-
pology of GAB is mostly grounded in sociology
research. Hate speech is defined as “[l]anguage
that intends to [...] attack the dignity of a group of
people, either through an incitement to violence,
encouragement of the incitement to violence, or
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the incitement to hatred”(Kennedy et al., 2022, pg
92). This translates in two different annotation cat-
egories: assault on human dignity (HD) and calls
for violence (CV). Posts where randomly sampled
from GAB considering that users on the platform
tend to produce a high amount of hateful and dan-
gerous speech thanks to the platform’s relaxed poli-
cies on free speech (Matsakis, 2018). The dataset
creators recruited and trained with prescriptive an-
notation guidelines 18 annotators. Only posts with
at least three annotations were kept. Annotators
labeled between 288 to 13,543 each. Like the other
datasets, GAB is also unbalanced with the HD and
CV categories corresponding to only 9% of the en-
tire corpus. For our experiments, we merge HD and
CV into a single hate speech label (see Table 1).

MD The Multi-Domain Agreement
dataset (Leonardelli et al., 2021) was origi-
nally designed as a “disagreement” dataset,
allowing for the creation of different train and
test data based on annotators’ agreement. The
dataset is composed by 10,753 tweets covering
three topics (Black Lives Matter, the 2020 US Pres-
idential Elections, and the COVID-19 pandemic).
Messages were annotated on Amazon Mechanical
Turk (AMT), with annotators judging if the
message was offensive based solely on its content.
Each message received five judgments, with an
unbalanced class distribution similar to the other
datasets (31% offensive vs. 69% non-offensive
tweets (Table 1). Each tweet was annotated by
five AMT workers, totaling 670 unique workers.
The dataset creators discarded annotators with less
than 70% accuracy on a gold standard. Overall,
43% of messages had full agreement, 29.35% mild
agreement (4/5 annotators), and 28.28% weak
agreement (3/5 annotators). We used the SemEval
2023 dataset version (Leonardelli et al., 2023).

SBIC Social Bias Inference Corpus (Sap et al.,
2020) is composed by 44,000 posts from differ-
ent social media platforms, including Reddit, Twit-
ter, and hate speech forums (e.g., GAB, Storm-
front, and other banned subreddits). The annota-
tion framework combines categorical labels (offen-
siveness, intent, lewdness, group targeting) with
free-text explanations of implied stereotypes. Posts
were annotated via the AMT platform, with each
post receiving three annotations from 264 unique
workers. We select only the annotation for the of-
fensive category. Similarly to MD, annotators were
asked to judge whether a post can be offensive. The

main difference is that the offensive status of the
message has to be determined based on the text,
and by considering whether it can be perceived
as such by someone or everyone, that is eliciting
their subjective interpretations rather than having
strict annotation guidelines. As reported by the
dataset’s creators, the IAA for SBIC is of relatively
good quality, with an overall pairwise agreement of
84% and an average Krippendorf’s α, which equals
0.45. Concerning the offensive category, the Krip-
pendorf’s α is higher, reaching 0.51, although the
pairwise agreement is a bit lower (76%). This is
the only dataset with a slightly skewed distribution
in favor of the positive class, with 54.7% of the
messages marked as offensive (see Table 1).

2.1 Entropy as a Measure of Data Complexity
All the datasets we review have implemented var-
ious data quality checks, such as directly recruit-
ing and training annotators (Brexit, EDOS, GAB),
removing crowd workers who failed to meet min-
imum annotation accuracy standards (MD), or re-
porting the IAA scores (SBIC). However, none of
these measures provide any insights on two criti-
cal issues of dataset creation for NLP models: (i)
the representativeness of the target phenomenon
and (ii) the complexity of the examples. Although
not trivial, a relatively good proxy for the repre-
sentativeness of target phenomena can be obtained
through system portability to out-of-domain distri-
butions (Ettinger et al., 2017). On the other hand,
assessing the complexity of the examples is a more
difficult task. IAA captures this dimension only
partially. Low IAA scores may result from factors
such as poor annotation guidelines, task complexity
(rather than the difficulty of specific examples), or
low annotator quality, nor are IAA scores reliable
indicators of a system’s future performance (Art-
stein and Poesio, 2008).

To explore whether selecting shots based
on complexity improves models, we use the
Multi-Annotator Competence Estimation (MACE)
tool (Hovy et al., 2013). MACE is an unsupervised
tool based on Variational Bayes inference, designed
to identify trustworthy annotators in crowdsourc-
ing tasks. It can also estimate the difficulty of each
dataset item and the overall task. In both cases,
MACE learns competence estimates of the annota-
tors. Item difficulty is expressed through entropy,
with the most challenging instances receiving the
highest scores. For each dataset, we identify the
unique annotators. Brexit is the only dataset where
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the same set of annotators evaluated every data
point. In all other datasets, annotators were ran-
domly assigned to different portions of the data.
To prevent confusion between annotations from
different individuals being grouped under a single
annotator label (e.g., A1), we left the values empty
for data points that were not annotated by each spe-
cific annotator subset. After this fix, we run MACE
to compute the entropy scores. To avoid data risk
of data leakage or contamination, entropy scores
have been run only on the training distributions of
each dataset. The results are reported on Table 2.

Dataset Mean Median Max. Min.

EDOS 4.33e-1 6.51e-1 6.93e-1 4.84e-5
Brexit 7.42e-2 7.94e-4 6.92e-1 5.80e-5
GAB 9.57e-2 2.56e-2 6.93e-1 1.90e-5
MD 1.24e-1 1.60e-2 6.93e-1 9.02e-8
SBIC 1.78e-1 7.38e-2 6.93e-1 5.11e-6

Table 2: Summary of average, median, max. and min.
values of the entropy scores of each dataset obtained
with MACE.

If we focus on the average entropy score, we
observe that the majority of these datasets (4 out
5) present low values. This suggests that the data
are likely to contain easy instances. In our case,
an “easy instance” refers to a data item that clearly
expresses the target phenomenon of the dataset.
EDOS is the only dataset with relatively high en-
tropy scores, indicating that its data items are more
challenging. This is further supported by the me-
dian value, which is higher than the average entropy
and closer to the maximum entropy score. Notably,
all datasets show similar maximum entropy scores,
but differ in their minimum values. The distribu-
tion of entropy scores is usually negatively skewed
and is comparable between positive and negative
classes. There is a general tendency of the positive
class instances to have higher values than their neg-
ative counterparts. The only dataset that presents a
homogeneous behavior between the two classes is
SBIC. EDOS, on the other hand, is the only dataset
that shows a bimodal distribution. See distribution
plots in Appendix A.

3 Experiments

For each dataset, we design seven experiment set-
tings. First, models are tested in zero-shot settings
as a baseline. The other six settings are based on
few-shot ICL and can be grouped into three blocks
according to the types of shots. The first block

uses examples deemed as “difficult” (diff), the
second block employs shots considered as “am-
biguous” (amg), and the third randomly selects the
shots (random). In each block, the shots are pre-
sented either in a fixed order per class label or in a
randomized one. In particular, for the fixed order
(ordered), all shots belonging to the negative class
are presented first, followed by those for the posi-
tive class. For the randomized version (shuffled),
we shuffle the order of the examples per dataset.
This means that there are no two datasets whose
order of the shot labels is the same. For all ICL set-
tings, we select 20 shots, 10 for the positive class
and 10 for the negative class. Table 3 summarizes
the combinations of the data points per entropy bin
and presentation of the shots.

Entropy Bin
Shot Order Ambiguous Difficult Random

By label amb-ordered diff-ordered random-ordered
Randomized amb-shuffled diff-shuffled random-shuffled

Table 3: Combinations of shot order and entropy bin
used in the ICL experiments.

The idea of selecting different types of shots
to identify representative samples of a target phe-
nomenon is inspired by the Dataset Cartography
(DC) method (Swayamdipta et al., 2020). The
method relies on a model’s confidence in the true
class and its fluctuations across training epochs
to pinpoint reliable and informative data points.
This makes it possible to train with less data while
maintaining or even improving performance. Map-
ping these training dynamics reveals a spectrum of
data points: easy (high confidence, low variability),
hard (low confidence, low variability), and am-
biguous (mid-range confidence, high variability).
Since we have access to disaggregated annotations
for all our datasets, we opt to use the annotators’
entropy scores to select the shots. The “difficult”
instances are selected by ranking the data points
of each dataset and each class in decreasing order
of entropy score. The top ten data points per class
correspond to our “difficult” shots. For the “am-
biguous” cases we use the median score and the
median absolute deviation. Ambiguity has been
set as the range between the median plus the me-
dian absolute deviation and the median minus the
median absolute deviation. The median and the
median absolute deviation have been determined
per class in each dataset.
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3.1 LLMs and Prompt Settings

We identify three groups of models belonging to
two different collections, LlaMa-3* and Qwen-2.5,
comparable for their sizes. This allows for a fair
comparison between models that have been ob-
tained using different pre-training data and opti-
mization techniques. While both collections rely
on the basic decoder-only Transformer architec-
ture and support a context window of up to 128K
tokens, they present some differences. LlaMa-3*
has been trained on a 15T token corpus collected
from publicly available sources. The models use
grouped query attention (GQA) to improve infer-
ence efficiency and, at post-training, they combine
supervised fine-tuning (SFT), rejection sampling,
proximal policy optimization (PPO), and direct
preference optimization (DPO).1 As for Qwen-2.5,
the models have been trained on a collection of
18T tokens, including synthetic data, and support
29 languages (Yang et al., 2024). Standard feed-
forward network (FFN) layers have been replaced
with Mixture of Experts (MoE) layers. For the
post-training steps, Qwen-2.5 uses 1 million ex-
amples across SFT, DPO and group relative pol-
icy optimization (GRPO). All selected models
for both collections are text-only and instruction-
tuned. The selected models are the follow-
ing: LlaMa-3.2-3B, LlaMa-3-8B; LlaMa-3-70B;
Qwen-2.5-3B, Qwen-2.5-7B; and Qwen-2.5-72B.

To minimize safe guard mechanisms which may
results in the models refusing to answer the prompt,
we have specified in the prompt preamble that the
system’s role is that of AI expert in text classifi-
cation and content moderation. The same prompt
has been used across all datasets. The only varia-
tion concerned the task at hand by making explicit
which toxic language phenomenon is targeted (i.e.,
sexism, hate speech, or offensive language). In-
stances of the prompts for each experiment settings
are reported in Figures F, G and H in Appendix B.
Actual prompts and shots are publicly available.2

4 Results and Discussion

We present out findings in three blocks: first, we
discuss the results per dataset (§ 4.1); then we
discuss the results per model (§ 4.2), and finally
we compare the results of the LLMs against fine-
tuned versions of an encoder-based model, Hate-
BERT (Caselli et al., 2021) (§ 4.3).

1https://ai.meta.com/blog/meta-llama-3/
2Link to repository publicly available upon acceptance

4.1 Results by Dataset
Table 4 presents the results of our experiments by
ICL setting and datasets across the different models.
In the following, we discuss the results by dataset.

EDOS EDOS focuses on sexism detection. We
observe that zero-shot achieves a low performance
across models with an average of 0.505 as macro-
F1. However, few-shot settings improve over zero-
shot across models. The best result (0.752) is
achieved by Llama3-70B in the amb-shuffled set-
ting – with a ∆ = -0.122 against the best model
in the SemEval evaluation (Kirk et al., 2023),
which employs an ensemble of encoders.. Shuf-
fling the shots yields better performance than pre-
senting them in fixed order, i.e., amb-ordered set-
ting (0.719). With the exception of two models,
Llama3.2-3B and Qwen2.5-72B where choosing
shots randomly improves the results over zero-
shot. we find across the several models we test
that whether ordered or shuffled, instances reflect-
ing a wider spectrum of complexity (amb setting)
improve sexism detection.

Brexit This dataset, which involves political dis-
course, also benefits from the few-shot setup, es-
pecially when samples are chosen based on the
highest entropy, i.e., those that are more challeng-
ing (diff_setting). The best result is achieved by
Qwen2.5-7B in the diff-ordered setting, with an
F1 score of 0.812, a notable improvement over
the zero-shot baseline score of 0.596 for this model.
The corresponding SemEval task (Leonardelli et al.,
2023) adopts micro-F1 scores for evaluating the
aggregated labels. Our best ICL model achieves
competitive results against the best model based
on a multi-task learning and encoder fine-tuning
(0.915 forQwen2.5-7B vs). 0.932).

GAB This dataset follows a similar pattern to
EDOS, with zero-shot showing relatively low per-
formance across models with Llama3-70B achiev-
ing the best result, a macro-F1 score of 0.666.
However, in contrast to previous datasets, the few-
shot setting that works the best is based on ran-
dom selection with mixed results across whether
they are ordered (random-ordered, 0.713) or shuf-
fled (random-shuffled, 0.711). The best result is
achieved by Qwen2.5-7B and the random-ordered
setting with a macro-F1 score of 0.713, a 4.7% of
improvement over the best zero-shot result, and a
positive ∆ = 0.08 for the F1-score on the positive
class against Kennedy et al. (2022).
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Model
Dataset ICL Setting Llama3.2-3B Qwen2.5-3B Llama3-8B Qwen2.5-7B Llama3-70B Qwen2.5-72B

EDOS

0-shot 0.457 (0.461) 0.423 (0.450) 0.477 (0.460) 0.503 (0.484) 0.672 (0.596) 0.495 (0.136)
amb-ordered 0.591 (0.504) 0.619 (0.518) 0.675 (0.572) 0.716 (0.589) 0.719 (0.636) 0.666 (0.590)
amb-shuffled 0.606 (0.504) 0.654 (0.539) 0.641 (0.561) 0.719 (0.596) 0.752 (0.664) 0.652 (0.581)
diff-ordered 0.596 (0.501) 0.566 (0.498) 0.671 (0.553) 0.702 (0.589) 0.714 (0.632) 0.590 (0.531)
diff-shuffled 0.615 (0.494) 0.578 (0.498) 0.649 (0.544) 0.688 (0.593) 0.708 (0.626) 0.610 (0.552)
random-ordered 0.572 (0.493) 0.563 (0.495) 0.674 (0.574) 0.563 (0.495) 0.703 (0.627) 0.673 (0.594)
random-shuffled 0.628 (0.496) 0.575 (0.502) 0.598 (0.534) 0.694 (0.598) 0.729 (0.646) 0.650 (0.578)

Brexit

0-shot 0.486 (0.318) 0.433 (0.278) 0.508 (0.323) 0.596 (0.390) 0.599 (0.409) 0.512 (0.121)
amb-ordered 0.590 (0.400) 0.675 (0.466) 0.722 (0.542) 0.736 (0.566) 0.653 (0.459) 0.664 (0.472)
amb-shuffled 0.595 (0.404) 0.662 (0.463) 0.716 (0.539) 0.723 (0.548) 0.698 (0.515) 0.648 (0.453)
diff-ordered 0.639 (0.450) 0.613 (0.400) 0.780 (0.627) 0.812 (0.680) 0.673 (0.477) 0.488 (0.453)
diff-shuffled 0.699 (0.521) 0.757 (0.596) 0.749 (0.586) 0.757 (0.596) 0.691 (0.500) 0.692 (0.507)
random-ordered 0.590 (0.400) 0.592 (0.385) 0.722 (0.542) 0.771 (0.618) 0.642 (0.433) 0.669 (0.478)
random-shuffled 0.595 (0.404) 0.596 (0.373) 0.705 (0.529) 0.675 (0.485) 0.659 (0.473) 0.649 (0.461)

GAB

0-shot 0.538 (0.322) 0.558 (0.332) 0.612 (0.380) 0.646 (0.416) 0.666 (0.444) 0.570 (0.201)
amb-ordered 0.582 (0.354) 0.618 (0.381) 0.665 (0.439) 0.686 (0.457) 0.648 (0.420) 0.640 (0.411)
amb-shuffled 0.587 (0.357) 0.618 (0.383) 0.646 (0.419) 0.668 (0.435) 0.647 (0.420) 0.634 (0.407)
diff-ordered 0.514 (0.297) 0.601 (0.366) 0.681 (0.458) 0.681 (0.450) 0.637 (0.405) 0.620 (0.357)
diff-shuffled 0.592 (0.358) 0.635 (0.403) 0.622 (0.394) 0.679 (0.449) 0.607 (0.380) 0.659 (0.432)
random-ordered 0.575 (0.338) 0.662 (0.431) 0.697 (0.477) 0.713 (0.486) 0.670 (0.440) 0.680 (0.455)
random-shuffled 0.670 (0.430) 0.680 (0.451) 0.670 (0.445) 0.711 (0.486) 0.670 (0.441) 0.674 (0.448)

MD

0-shot 0.587 (0.602) 0.410 (0.539) 0.552 (0.586) 0.635 (0.620) 0.747 (0.697) 0.478 (0.170)
amb-ordered 0.650 (0.616) 0.555 (0.475) 0.690 (0.647) 0.678 (0.576) 0.761 (0.718) 0.732 (0.700)
amb-shuffled 0.666 (0.594) 0.562 (0.415) 0.546 (0.589) 0.671 (0.595) 0.717 (0.683) 0.664 (0.658)
diff-ordered 0.645 (0.571) 0.569 (0.417) 0.669 (0.567) 0.657 (0.536) 0.716 (0.646) 0.699 (0.658)
diff-shuffled 0.663 (0.550) 0.595 (0.477) 0.676 (0.586) 0.661 (0.558) 0.719 (0.645) 0.709 (0.665)
random-ordered 0.673 (0.616) 0.554 (0.397) 0.696 (0.656) 0.687 (0.622) 0.700 (0.675) 0.674 (0.663)
random-shuffled 0.689 (0.599) 0.555 (0.429) 0.587 (0.607) 0.670 (0.620) 0.692 (0.666) 0.691 (0.672)

SBIC

0-shot 0.734 (0.793) 0.696 (0.795) 0.696 (0.746) 0.757 (0.814) 0.781 (0.814) 0.350 (0.108)
amb-ordered 0.733 (0.784) 0.718 (0.765) 0.762 (0.792) 0.758 (0.775) 0.803 (0.837) 0.794 (0.836)
amb-shuffled 0.724 (0.762) 0.739 (0.792) 0.756 (0.792) 0.763 (0.783) 0.791 (0.827) 0.801 (0.843)
diff-ordered 0.735 (0.766) 0.720 (0.770) 0.744 (0.762) 0.726 (0.727) 0.771 (0.809) 0.771 (0.813)
diff-shuffled 0.718 (0.741) 0.708 (0.740) 0.734 (0.790) 0.699 (0.700) 0.779 (0.813) 0.779 (0.824)
random-ordered 0.702 (0.794) 0.704 (0.796) 0.754 (0.805) 0.758 (0.794) 0.787 (0.831) 0.778 (0.837)
random-shuffled 0.751 (0.781) 0.725 (0.782) 0.740 (0.805) 0.752 (0.778) 0.785 (0.825) 0.774 (0.835)

Mean 0.628 (0.525) 0.614 (0.508) 0.671 (0.578) 0.695 (0.586) 0.706 (0.604) 0.652 (0.529)

Table 4: Experiments results: we report macro-F1 and, in brackets, the F1 score for the positive class. The best ICL
setting per model and dataset is highlighted in bold.

MD MD, which contains instances annotated
with offensive language shows more complex pat-
terns. The best zero-shot performance is achieved
by Llama3-70B with a macro-F1 score of 0.747,
indicating that the model already performs fairly
well without additional examples. Performance im-
proves across the ICL settings, particularly in the
amb-ordered and diff-shuffled settings. For
example, in the amb-ordered setting, Llama3-70B
achieves an F1 score of 0.761. Like for EDOS and
Brexit, access to shots with varied levels of com-
plexity has a positive effect. When compared to
the best model in the SemEval task (Leonardelli
et al., 2023), performance remains lower, with a
micro-F1 score of 0.775 versus 0.846.

SBIC This dataset, which also targets offensive
language, shows an interesting trend where the
zero-shot performance is relatively high, especially
for models like Llama3-70B (0.781). However,
in this setup, other models like Qwen2.5-72 show
very low performance with an F1-score of 0.350.
For the few-shot settings, the amb-ordered, which
includes examples of mixed complexity, outper-
forms other configurations, further supporting a
principled selection of the shots to boost models’
performance. Llama3-70B achieves the highest
macro-F1 score of 0.803, representing the best few-
shot result. SBIC is the dataset that obtains the
best results across models and settings. In this case,
ICL achieves better performance compared to the
original paper (Sap et al., 2020), with a positive ∆
F1-score of 0.049 on the offensive class.
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4.2 Results by LLM

Building on the results presented in Table 4, we
now discuss the key findings for the LLMs.

Larger models perform better Generally,
70/72B models are those that almost always
achieve the best results, with the exception for
Brexit and GAB. For GAB, the scores are all in
the same range across all models while for Brexit
we observe that 3B models have comparable results
to the 70/72B ones, with Qwen2.5-3B achieving
better results.

Few-shot is better than zero-shot In every
dataset and regardless of the shot type and their
order of presentation, few-shot consistently obtains
better results than the zero-shot, reinforcing find-
ings from previous work (Shi et al., 2024; Dong
et al., 2024). The additional insight we offer is that
all models struggle to detect the positive class in
zero-shot. Qwen2.5-72B is the most underperform-
ing LLM - especially against its smaller versions.

Performant shot ordering depends on model’s
size An emerging pattern suggests a relationship
between model size and shot order. In particular, it
appears that 3B models prefer labels in random or-
der while 7/8B ones perform best with the ordered
format. The 70/72B variants are less consistent,
with the order of labels dependent on the specific
model. For instance, Llama3-70B tends to perform
better when labels are presented in a randomized
order, while the opposite holds for Qwen2.5-72B.
These findings go in a different direction when
compared to Lu et al. (2022) where the authors
claim that performant label ordering is not consis-
tent across models.

Varying the complexity of the shots helps We
have already seen that, with the exception of Brexit,
using shots with varied complexities (i.e., ambigu-
ous) improves models’ performance. When look-
ing at the average macro-F1 across all models by
ICL setting, we observe that using ambiguous shots
in an ordered format (amb-ordered) achieves the
best score (0.683), immediately followed by diffi-
cult shots in a randomized order (0.681). Although
the results show some variations across datasets
and models, they also indicate that entropy can
serve as a good proxy to identify shots that are rep-
resentative of a targeted phenomenon. Table A in
Appendix C presents a summary.

Dataset’s entropy can help to select LLM size
Entropy can also be used as a proxy to select the
model’s size. We ran a correlation analysis us-
ing Spearman correlation between the best models
(per size) and the entropy scores of each dataset.
Although all correlations are not statistically sig-
nificant, we observe different behaviors according
to the models’ size. Similarly to the label order,
smaller models (3B and 7/8B models) obtain bet-
ter scores on datasets with lower entropy scores (ρ
= -0.372 for 3B, and ρ = -0.421 for 7/8B), while
the opposite holds for larger models (ρ = 0.378 for
70/72B). Although these findings have limitations
in generalizability, the trend indicates that larger
models should be used with challenging datasets
(according to the annotators’ entropy), whereas
smaller models can achieve strong, if not optimal,
results on simpler datasets.

Models fail to follow instructions rather than re-
fusing to answer Following Wang et al. (2024),
acknowledging the refusal rate of LLMs is an in-
tegral part of the evaluation of these technologies.
In our evaluations, we took into account both the
refusal rate (i.e., a model refusing to complete the
task because of safeguard railways) and their fail-
ure to adhere to the answer format. The overall
picture that emerges is that the refusal rate is al-
most zero in the large majority of cases.3 However,
failure to follow the instructions is much higher,
with peaks of 84% for Qwen2.5-72B in zero-shot.
Small models, i.e., 3Bs, are more likely to fail to
follow the instructions. We also observe that some
datasets (namely MD and SBIC) trigger more fail-
ures than others. The full overview is available in
Table B, Appendix D.

4.3 ICL vs. Fine-tuning

Table 5 summarizes the final set of experiments,
comparing LLM performance against HateBERT
with both frozen layers and full fine-tuning on each
dataset.
The advantage of using LLMs is clear in zero-shot
when compared to HateBERT with frozen layers.
Although HateBERT has been further-pretrained
with data where toxic language is highly present
and covers different language phenomena, it con-
sistently underperforms. On the other hand, fine-
tuned versions of HateBERT proves to be highly

3Refusals have been identified using regular expressions.
For metrics calculations, for all cases of failure we have always
assigned the negative class.
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Dataset Setting Macro-F1 ∆ LLM

EDOS frozen 0.431 (0.000) [-0.241;-0.064]
fine-tuned 0.831 (0.744) [+0.079;+0.158]

Brexit frozen 0.417 (0.000) [-0.182;-0.179]
fine-tuned 0.659 (0.363) [-0.121;-0.153]

GAB frozen 0.475 (0.000) [-0.191;-0.171]
fine-tuned 0.631 (0.305) [-0.050;-0.050]

MD frozen 0.400 (0.000) [-0.347;-0.235]
fine-tuned 0.766 (0.678) [+0.005;+0.034]

SBIC frozen 0.564 (0.704) [-0.217;-0.193]
fine-tuned 0.846 (0.866) [+0.043;+0.045]

Table 5: Results for HateBERT (frozen layers and fine-
tuned). Deltas with LLMs are reported as intervals,
with the first score referring to the best Llama3* model
and the second to the best Qwen2.5. HabetBERT with
frozen layer is compared to zero-shot LLMs.

competitive against LLMs, if not better as shown
by the positive deltas (in favor of HateBERT) for
EDOS, MD, and SBIC. Notably, even the results
for Brexit and GAB, although lower, are very close.

These findings challenge the prevailing trend in
NLP to use generative models for all tasks, regard-
less of the available data. It seems quite clear that
LLMs have a distinct advantage over encoder mod-
els in zero-shot scenarios (where no training data is
available). Conversely, if training data is accessible,
fine-tuning encoder models offer a more affordable,
faster, and environmentally friendly choice rela-
tive to ICL with LLMs. Rather than fully rejecting
LLMs„ these findings point to possible ways to
investigate techniques using the best features of
both encoder models and LLMs to maximize per-
formance.

5 Related Work

Since the advent of LLMs, two main paradigms of
ICL (zero-shot and few-shot) have enabled model
prompting without the need for large amounts of
labeled data (Liu et al., 2023). These methods use
less training data, making LLMs efficient and scal-
able, especially in subjective tasks where the pres-
ence of labeled data can be very limited, such as for
hate speech detection. Several papers have mainly
explored zero-shot ICL for this task (Chiu et al.,
2021; Liu et al., 2023; Goldzycher and Schneider,
2022). However, few studies have focused on mea-
suring the impact of evaluation choices, like the
prompt phrasing or the impact of the selection of
the shots in the few-shot setup. For instance, Plaza-
del-Arco et al. (2023) provides a benchmark for
zero-shot hate speech detection and show that both
the prompt and the model have a significant im-

pact on achieving more accurate predictions in this
task. García-Díaz et al. (2023) evaluate zero-shot
and few-shot approaches on English and Spanish
datasets. For the few-shot approach, they randomly
selected five shots of each label. They find that
few-shot does not outperform zero-shot in most
cases, but they do not provide an exploration of the
selection of the shots. Hee et al. (2024) explore
the transferability of hate speech detection between
modalities (language and vision) using few-shot.
They show that vision-language hate speech detec-
tion benefits from few-shot learning with text-based
hate speech examples. (Maronikolakis et al., 2024)
introduce HATELEXICON, a lexicon of slurs and
targets of hate speech for Brazil, Germany, India
and Kenya. They show that selecting shots based
on their lexicon leads to models performing better
than models trained on shots sampled randomly.

Other works have investigated the impact of the
order of shot selection (Lu et al., 2022) and the
quality of the shots devising different solutions to
identify the optimal shots and mitigate the sensitiv-
ity of models to prompts (Zhang et al., 2022; Go-
nen et al., 2023; Yang et al., 2023). For few-shot
ICL, the impact of shot selection across various
toxic language phenomena – such as hate speech,
sexism, and offensive language – remains an open
question, which we have addressed by building
on the entropy-based sampling approach proposed
by Plaza-del-Arco et al. (2024b).

6 Conclusions

This paper presents a comprehensive investigation
of the functionalities of two collections of LLMs,
Llama-3* and Qwen2.5, with different ICL set-
tings. In particular, we have tested on six LLMs
- ranging from 3B up to 70/72B - the impact of
shot selection and label ordering by benchmarking
them on five English datasets targeting different
toxic language phenomena such as sexism (EDOS),
hate speech (Brexit and GAB), and offensive lan-
guage (MD and SBIC). Unlike previous studies
investigating the solutions for identifying optimal
shots, we have adopted simple solutions leveraging
annotators’ disagreement. We have used MACE
to calculate the entropy scores of each data item
and then use it to identify shots with varying levels
of complexity, inspired by the Data Cartography
method (Swayamdipta et al., 2020). Although en-
tropy is not a good proxy to predict models’ perfor-
mance, it could offer strategic insights into model
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selection based on dataset complexity.
Our results indicate that shot selection plays a

prominent role in boosting LLM performance - as
indicated by previous work - also for toxic language
phenomena. We have identified that ambiguous
shots, i.e., those with a median value of entropy,
are those that, in general, allows our selected LLMs
to obtain the best results in the few-shot setting.
Contrary to previous findings (Lu et al., 2022), we
have identified that performant shot ordering seems
dependent on the LLM’s size. Furthermore, the
results highlight that when ample training data is
available, fine-tuned models offer a more efficient
resource-effective alternative to ICL.

Future work could explore the portability of few-
shot ICL to out-of-domain distributions, both for
the same toxic language phenomenon and for dif-
ferent types of toxicity. This would help assess
the reliability of few-shot ICL in scenarios where
labeled data is scarce or unavailable.

Limitations

Our work presents some limitations suggesting di-
rections for future work. One key limitation is that
entropy scores are computed using disaggregated
annotations, which are not always available across
NLP tasks.

We have used two collections of models. Al-
though we vary models’ sizes and the models are
representative of current trends, the absence of
evaluations on other architectures (e.g., encoder-
decoder models) restricts the applicability of the
conclusions regarding ICL and shot selection.

Finally, the sensitivity of ICL performance to
prompt formulation is an aspect that must be taken
into account, as it could limit the complete repro-
ducibility or the application of our findings to other
settings.
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A Entropy Distribution Datasets

Figure A: EDOS (Kirk et al.,
2023).

Figure B: Brexit (Akhtar et al.,
2021).

Figure C: GAB (Kennedy et al.,
2022).

Figure D: MD (Leonardelli et al.,
2021).

Figure E: SBIC (Sap et al., 2020).
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B Prompt Templates

SYSTEM: You are an AI expert in text classification and
content moderation.

You will read a text related to [DATASET]. Does the text
contain [TOXIC PHENOMENON]?

Answer only with 0 for NOT and 1 for YES.

Do not write an introduction or summary. Classify always
the text.

Now classify the following text: {text}

Respond only with the valid JSON format below:
{’text’: ’{text}’, ’label’: }

Figure F: Zero-shot prompt.

SYSTEM: You are an AI expert in text classification and
content moderation.

You will read a text related to [DATASET]. Does the text
contain [TOXIC PHENOMENON]?

Answer only with 0 for NOT and 1 for YES.

Do not write an introduction or summary. Classify always
the text.
Here are twenty examples:
{’text’: text_example_1, ’label’: 0},
...
{’text’: text_example_10, ’label’: 0},
...
{’text’: text_example_11, ’label’: 1},
...
{’text’: text_example_20, ’label’: 1},

Now classify the following text: {text}

Respond only with the valid JSON format below:
{’text’: ’{text}’, ’label’: }

Figure G: Few-shot prompt ordered.

SYSTEM: You are an AI expert in text classification and
content moderation.

You will read a text related to [DATASET]. Does the text
contain [TOXIC PHENOMENON]?

Answer only with 0 for NOT and 1 for YES.

Do not write an introduction or summary. Classify always
the text.
Here are twenty examples:
{’text’: text_example_1, ’label’: 1},
...
{’text’: text_example_10, ’label’: 0},
...
{’text’: text_example_11, ’label’: 1},
...
{’text’: text_example_20, ’label’: 1},

Now classify the following text: {text}

Respond only with the valid JSON format below:
{’text’: ’{text}’, ’label’: }

Figure H: Few-shot prompt shuffled.
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C Average Results Across Models and
ICL Settings

Model 0-shot amb-ord. amb-shuff. diff-ord. diff-shuff. random-ord. random-shuff.

Llama3.2-3B 0.560 0.629 0.636 0.626 0.657 0.622 0.667
Qwen2.5-3B 0.504 0.637 0.647 0.614 0.655 0.615 0.626
Llama3-8B 0.569 0.703 0.661 0.709 0.686 0.709 0.660
Qwen2.5-7B 0.627 0.715 0.709 0.716 0.697 0.698 0.700
Llama3-70B 0.693 0.717 0.721 0.702 0.701 0.700 0.707
Qwen2.5-72B 0.481 0.699 0.680 0.634 0.690 0.695 0.688

Mean 0.572 0.683 0.676 0.667 0.681 0.673 0.675

Table A: Average of macro-F1 scores across all ICL
settings and datasets. Best ICL setting per model is
highlighted in bold.

D Missing Answers and Refusal Rates

Model
Dataset ICL Setting Llama3.2-3B Qwen2.5-3B Llama3-8B Qwen2.5-7B Llama3-70B Qwen2.5-72B

EDOS

0-shot 3 (0) 0 (0) 152 (151) 0 (0) 1 (0) 3,375 (0)
amb-ordered 10 (0) 42 (0) 1 (0) 0 (0) 1 (0) 38 (0)
amb-shuffled 11 (0) 4 (0) 2 (0) 0 (0) 1 (0) 32 (0)
diff-ordered 18 (0) 35 (0) 1 (0) 0 (0) 1 (0) 20 (0)
diff-shuffled 9 (0) 105 (0) 1 (0) 0 (0) 1 (0) 20 (0)
random-ordered 37 (0) 0 (0) 1 (0) 0 (0) 1 (0) 25 (0)
random-shuffled 9 (0) 8 (0) 1 (0) 0 (0) 1 (0) 33 (0)

Brexit

0-shot 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 98 (0)
amb-ordered 0 (0) 50 (0) 0 (0) 0 (0) 0 (0) 1 (0)
amb-shuffled 0 (0) 17 (0) 0 (0) 0 (0) 0 (0) 1 (0)
diff-ordered 1 (0) 11 (0) 0 (0) 0 (0) 0 (0) 1 (0)
diff-shuffled 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0)
random-ordered 1 (0) 37 (0) 0 (0) 0 (0) 0 (0) 1 (0)
random-shuffled 0 (0) 18 (0) 0 (0) 0 (0) 0 (0) 0 (0)

GAB

0-shot 11 (2) 1 (0) 38 (36) 1 (0) 1 (0) 3,806 (0)
amb-ordered 5 (0) 3 (0) 1 (0) 1 (0) 1 (0) 20 (0)
amb-shuffled 3 (0) 2 (0) 1 (0) 1 (0) 1 (0) 33 (0)
diff-ordered 8 (0) 3 (0) 1 (0) 1 (0) 1 (0) 1,638 (0)
diff-shuffled 5 (0) 2 (0) 1 (0) 1 (0) 1 (0) 1 (0)
random-ordered 15 (0) 5 (1) 1 (0) 1 (0) 1 (0) 78 (0)
random-shuffled 7 (0) 3 (0) 1 (0) 1 (0) 1 (0) 16 (0)

MD

0-shot 68 (2) 0 (0) 26 (26) 0 (0) 0 (0) 2,594 (0)
amb-ordered 23 (0) 960 (0) 0 (0) 0 (0) 0 (0) 4 (0)
amb-shuffled 15 (0) 1,400 (0) 0 (0) 0 (0) 0 (0) 6 (0)
diff-ordered 26 (0) 1,532 (0) 0 (0) 0 (0) 0 (0) 3 (0)
diff-shuffled 22 (0) 1,163 (0) 0 (0) 1 (0) 0 (0) 6 (0)
random-ordered 24 (0) 1,550 (0) 0 (0) 1 (0) 0 (0) 3 (0)
random-shuffled 12 (0) 1,375 (0) 0 (0) 0 (0) 0 (0) 4 (0)

SBIC

0-shot 3 (0) 3 (0) 249 (247) 2 (0) 2 (0) 4,069 (0)
amb-ordered 7 (0) 177 (0) 2 (0) 2 (0) 2 (0) 19 (0)
amb-shuffled 5 (0) 30 (0) 2 (0) 3 (0) 2 (0) 12 (0)
diff-ordered 9 (0) 30 (0) 2 (0) 3 (0) 2 (0) 53 (0)
diff-shuffled 4 (0) 2 (0) 2 (0) 3 (0) 2 (0) 38 (0)
random-ordered 6 (0) 15 (0) 2 (0) 2 (0) 2 (0) 13 (0)
random-shuffled 7 (0) 6 (0) 2 (0) 3 (0) 2 (0) 21 (0)

Table B: Overview of models’ failure to provide an
answer (absolute numbers). In brackets we report the
number of refused answers.
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