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Abstract

Annotator disagreement poses a significant
challenge in subjective tasks like hate speech
detection. In this paper, we introduce a novel
variant of the HateWiC task that explicitly mod-
els annotator agreement by estimating the pro-
portion of annotators who classify the mean-
ing of a term as hateful. To tackle this chal-
lenge, we explore the use of Llama 3 models
fine-tuned through Direct Preference Optimiza-
tion (DPO). Our experiments show that while
LLMs perform well for majority-based hate
classification, they struggle with the more com-
plex agreement-aware task. DPO fine-tuning
offers improvements, particularly when applied
to instruction-tuned models. Our results empha-
size the need for improved modeling of subjec-
tivity in hate classification and this study can
serve as foundation for future advancements.

1 Introduction

Classification tasks involving subjective human
judgment often exhibit annotator disagreement.
This issue is particularly evident in hate speech de-
tection, where the perception of hatefulness varies
depending on context and individual interpretation
(Yu et al., 2022). Ignoring disagreement in annota-
tions can lead to biased systems that fail to account
for minority perspectives (Davidson et al., 2019;
Sap et al., 2022). Addressing this variability re-
quires models to go beyond binary classification
and account for the degree of disagreement among
annotators (Fleisig et al., 2023).

One task that exemplifies this challenge is Hate-
ful Word in Context (HateWiC) Classification,
which determines whether the meaning of a given
term is hateful within a specific context (Hoeken
etal., 2024). The initial work introducing HateWiC
explored several BERT-based embedding learning
strategies, demonstrating that incorporating addi-
tional input information, such as word definitions
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Figure 1: Illustration of our proposed approach to the
HateWiC task, leveraging preference optimization via
DPO training to predict annotator agreement.

and annotator-specific data, can enhance perfor-
mance. In particular, the inclusion of annotator
information appears promising given the subjective
nature of the task.

In this paper, we propose a novel approach to the
HateWiC task, leveraging Large Language Mod-
els (LLMs) fine-tuned via preference optimization.
Recent advancements in preference-based learn-
ing, particularly Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022) and
its more computationally efficient alternatives like
Direct Preference Optimization (DPO) (Rafailov
et al., 2024), have driven significant improvements
in LLM alignment for tasks such as question-
answering and summarization (Nakano et al., 2021;
Stiennon et al., 2020). However, their potential
in subjective hate classification, where human dis-
agreement plays a crucial role, remains unexplored.

We focus on two HateWiC task variants: 1) hate
classification, where the goal is to predict the major-
ity annotator judgment on whether a term is hateful
and 2) agreement-aware hate classification, a
novel task variant that we introduce to explicitly
model annotator disagreement by estimating the
proportion of annotators who classify a term as
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hateful. This task merges classification and anno-
tator disagreement, capturing the subjective nature
of hatefulness.

Contributions We introduce a preference-based
fine-tuning approach for HateWiC, leveraging Di-
rect Preference Optimization (DPO) to align LLMs
with human judgments of hatefulness. We propose
a novel variant of hate classification that integrates
annotator disagreement directly into the learning
objective, as illustrated in Figure 1. Evaluating
both task variants, we compare the effect of DPO-
tuning on models that are instruction tuned or not.
Our results show that models without preference
tuning perform effectively for general (majority-
based) hate classification, and additional preference
optimization does not yield further improvements.
However, for agreement-aware hate classification,
DPO fine-tuning enhances performance when ap-
plied to instruction-tuned models. Despite these
improvements, the second task remains challeng-
ing for LLMs. These findings highlight both the
potential and limitations of our approach, empha-
sizing the need for further research to better model
annotator disagreement.!

2 Related Work

2.1 Preference optimization

Preference optimization trains models based on the
principle that, given an input text, one response is
preferred over another. This approach has proven
effective in better aligning LLMs with human pref-
erences (OpenAl et al., 2024; Tunstall et al., 2023).
Most research in this area has focused on enhancing
fluency and safety in general generation tasks like
summarization and dialogue (Ziegler et al., 2020;
Stiennon et al., 2020). However, less attention has
been given to more specialized classification tasks,
particularly in the context of diverse human prefer-
ences (Cheng et al., 2023).

The initial method for optimizing responses,
RLHF with Proximal Policy Optimization (PPO)
(Schulman et al., 2017) is computationally expen-
sive, especially with massive models like Llama 3
(Grattafiori et al., 2024). Recently, new algorithms
have emerged to streamline RLHF, reduce training
costs, and improve efficiency. Direct Preference
Optimization (DPO) (Rafailov et al., 2024) merges
the reward model training and RLHF training into

'The code used for this study can be found at: https:
//github.com/sebloft/DP04AgreeAwareHateWiC

a single step by combining supervised fine-tuning
(SFT) on positive samples with reverse SFT on
negative samples.

2.2 Hate speech detection

Hate speech detection (HSD) has been extensively
studied using various approaches, particularly with
transformer-based language models. Early meth-
ods fine-tuned encoder-based transformers such
as BERT for classification (Sarkar et al., 2021;
Caselli et al., 2021). More recently, prompt-based
approaches leveraging LLMs have gained attention,
demonstrating strong zero- and few-shot capabil-
ities for HSD, especially with instruction-tuned
models (Chiu and Alexander, 2021; Plaza-del arco
et al., 2023; Ronghao Pan, 2024).

Some preference optimization methods have
been applied to related tasks such as sexism de-
tection (Riahi Samani et al., 2025) and counter
speech generation (Wadhwa et al., 2025). How-
ever, many common HSD approaches, including
the aforementioned, often overlook the inherent
subjectivity of hate speech annotation, which has
been increasingly recognized as an important chal-
lenge. Prior work has explored modeling annotator
disagreement rather than relying solely on major-
ity voting (Mostafazadeh Davani et al., 2022; Wan
et al., 2023). Yet, existing approaches do not lever-
age preference optimization to align models with
human judgments on subjective hatefulness.

3 Tasks & Data

In this section, we briefly describe the HateWiC
dataset and the tasks addressed in this study, out-
lining how we create preference pairs for DPO
training.

3.1 HateWiC dataset

The HateWiC dataset (Hoeken et al., 2024) is
a dataset comprising approximately 4,000 in-
stances of (non-)hateful terms in example sen-
tences, scraped from Wiktionary. Each instance in
the dataset is annotated by three individuals, who
provide labels indicating the perceived hatefulness
of the term within its specific context. The dataset
includes both the majority label and individual an-
notator labels; we use the former for Task 1 and the
latter for Task 2, as described below.

3.2 Task 1 - Hate Classification

For the task of hate classification, we construct pref-
erence pairs for DPO training using the HateWiC
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dataset. The goal is to train a model to classify
whether the meaning of a given term within a spe-
cific sentence is hateful. The input prompt, as
provided below, instructs the model to determine
whether a term in a given sentence is hateful or not
hateful.

### Instruction:

Given the following sentence that men-
tions a particular term, classify whether
the meaning of that term expresses hate
towards a person or group within that
specific sentence by giving one of the
following corresponding labels:
“hateful”

“not hateful”

### Input:
Sentence: [SENTENCE]
Term: [TERM]

### Response:

To facilitate preference-based learning, we con-
struct pairwise preference outputs by generating a
positive and a negative response, where the positive
response aligns with the majority binary hateful-
ness label, while the negative response provides the
incorrect classification. The specific responses are
formulated as follows:

* Positive: “The meaning of [TERM] in the text
[SENTENCE] is [CORRECT HATE LABEL]”

* Negative: “The meaning of [TERM] in the text
[SENTENCE] is [INCORRECT HATE LABEL]”

3.3 Task 2 - Agreement-Aware Hate
Classification

Agreement-aware hate classification estimates the
distribution of human annotator judgments by pre-
dicting the proportion of annotators who classify a
(contextualized) term as hateful using predefined
categories: all, most, half, few, or none. With the
input prompt being formulated as:

### Instruction:

Given the following sentence that
mentions a particular term, estimate how
many of the human annotators would
classify the meaning of that term as
hateful by giving one of the following
quantifiers:

“all”
“most”
“half”
“few”
“none”

### Input:
Sentence: [SENTENCE]
Term: [TERM]

### Response:

To assess the robustness of our approach, we
additionally test alternative prompt formulations,
which are reported in Appendix C.

For DPO training, we construct pairwise prefer-
ence outputs where the positive response selects
the correct quantifier aligned with the human an-
notation distribution while the negative response
selects an incorrect quantifier (see also Figure 1):

 Positive: “[ CORRECT QUANTIFIER] of the an-
notators think that the meaning of [TERM] in
the text [SENTENCE] is hateful”

* Negative: “[INCORRECT QUANTIFIER] of the
annotators think that the meaning of [TERM]
in the text [SENTENCE] is hateful”

To select the correct quantifier, we consider the
number of annotators who classify the instance
as hateful out of the total number of annotations,
typically three. For example, if two out of three
annotators classify a term as hateful, the quantifier
most is chosen, while if only one annotator marks
it as hateful, the quantifier few is selected. To en-
sure a clear contrast with the negative response,
we use fixed mappings from correct to incorrect
quantifiers, avoiding hierarchical overlap (e.g., pre-
venting all from being replaced with most, as all
inherently includes most).

4 Methods

This section details the experimental set-up for our
experiments, including the DPO training paradigm,
the chosen models and the evaluation pipeline.

4.1 Models and Training

We use two distinct 8B-sized Llama 3 model
checkpoints, each developed using a different post-
training paradigm after pre-training. The first,
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which we refer to as Sft, is a Supervised Fine-
Tuned (SFT) model®>. The second, referred to
as Instruct, was trained with SFT followed by
preference tuning via RLHF?. Unlike Sft, the
Instruct model was further optimized to align
more closely with human values using human-
annotated preference data®. For each of these
models, we fine-tune them on HateWiC data using
DPO on two tasks, resulting in two further variants
per task: Sft-tuned and Instruct-tuned models.
Due to compute limitations, 4-bit quantization was
applied before training and evaluation using the
bitsandbytes library® and peft (Mangrulkar et al.,
2022) was used for more efficient fine-tuning. For
training, the trl package® was used, which provides
an extensive preference optimization framework
(von Werra et al., 2020). Details on the hardware
and the training setup can be found in Appendix B.

4.2 Evaluation setup

We employed a ten-fold cross validation setup, us-
ing for each run eight folds for training (approx.
3100 instances), one for development, and one for
testing (approx. 390 instances).

For the evaluation of hate classification (Task 1),
we extracted the binary labels, hateful and not hate-
ful, from the model outputs using pattern matching.
Instances without a valid generated label were ex-
cluded from the evaluation. In the agreement-aware
hate classification (Task 2), we compared the pre-
dicted distribution of hateful annotations with the
real human label distribution, both expressed using
natural language quantifiers (as explained in 3.3).
Again, labels were extracted through pattern match-
ing, and instances without valid generated labels
were omitted.

For both tasks, we report average F1 and Accu-
racy scores across all three folds for each fine-tuned
model. This provides a comparative analysis of the
performance between Sft and Instruct models, both
with and without additional preference optimiza-
tion. Additionally, we compare the models against
a majority-vote baseline.

5 Results & Discussion

This section presents the results of our methods on
two variants of the HateWiC task.

huggingface.co/OpenRLHF/Llama-3-8b-sft-mixture
*huggingface.co/OpenRLHF/Llama-3-8b-rlhf-100k
“For details on the models, see Dong et al. (2024)

3 pypi.org/project/bitsandbytes
®https://pypi.org/project/tr]
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Task 1 Hate No Hate | Acc. Macro
Sft 0.755 0.765 | 0.761 0.760
Sft-tuned 0.751 0.774 | 0.763  0.762
Instruct 0517 0.763 | 0.675 0.640
Instruct-tuned | 0.602 0.777 0.708 0.689
N | 1815 2030 | 3845 3845

Table 1: Fl1-scores of our four models on Task 1 of hate
classification for both Hate and No Hate classes, as well
as Accuracy and Macro F1 for overall performance.

Sft-only suffices for majority-based hate classifi-
cation. Table 1 presents the performance results
of four models on Task 1. Overall, the Sft mod-
els achieve the best performance with a macro F1
score of 0.77. The effect of DPO fine-tuning on
the HateWiC data appears negligible. Notably, the
Instruct models underperform compared to the Sft
models, particularly on the hate class (0.53 F1).
These results suggest that (1) instruction tuning
may make the model more conservative in pre-
dicting hate speech and (2) general pre-training
of Llama 3 (with SFT) already provides sufficient
knowledge for detecting hate speech at a broad
level, aligning with majority judgments.

Moreover, our Sft-models are competitive with
the best BERT-based approach as reported in the
original HateWiC paper (Hoeken et al., 2024) (0.78
accuracy). The authors also reported that zero-shot
Llama 2 performed worse (0.68 accuracy). Our
results align with their conclusion that, despite their
strong performance elsewhere, Llama models do
not demonstrate superior performance over BERT-
based methods on this task.

Task 2 ‘ All. Most Few None ‘ Acc. Macro
BL - Majority | 0.000 0.000 0.000 0.496 | 0330 0.124
Sft 0.031 0275 0.150 0.627 | 0.390 0.271
Sft-tuned 0066 0211 0093 0591 [ 0376 0.240
Instruct 0040 0302 0.242 0.647 | 0382 0.308
Instruct-tuned | 0.071 0.324 0.205 0.641 | 0.387 0.311
N | 971 844 761 1269 | 3845 3845

Table 2: Fl-scores of our four models on Task 2 of
agreement-aware hate classification for each of the four
classes, as well as Macro F1 and Accuracy for overall
performance.

DPO enhances agree-aware hate classification,
but the task remains challenging. As can be
seen in Table 2, the performance results shift when
evaluating Task 2, which explicitly incorporates
subjectivity and annotator (dis)agreement. This ad-
ditional complexity makes the task notably more
difficult for LLMs, as reflected in significantly



lower performance compared to Task 1. While
the models improve upon the majority-voting base-
line, the improvement is modest. Considering the
macro F1 scores, which address class imbalance,
the best performance is achieved by applying DPO
fine-tuning to the Instruct model.

When examining class-wise performance, all
models struggle most with the all category, fol-
lowed by few and most, while the none category
yields the best results. This pattern suggests that
LLMs find it easier to align with clear-cut non-hate
cases but struggle when the input is hateful or am-
biguous, thus prioritizing caution over recall, poten-
tially due to the challenges of handling subjectivity
and disagreement between annotators. Appendix
D provides a more detailed error analysis.

Instruct-models can benefit from task-specific
preference tuning, Sft-models not. In Task 1 we
observe that task-specific DPO fine-tuning has min-
imal impact on the Sft model, but it substantially
improves the performance of the Instruct model.
Similarly, in Task 2, the effect of DPO fine-tuning
varies between the two base models: it improves
performance for the Instruct model, while it de-
grades the performance of the Sft model. These
results suggest that for these tasks, Sft models ap-
pear less flexible to incorporating task-specific pref-
erence signals whereas instruction-tuned models
benefit from such additional preference fine-tuning.

6 Conclusion

This paper addresses the challenges of incorporat-
ing subjective human judgment, particularly an-
notator disagreement, in tasks like HateWiC clas-
sification. We introduce a novel variant of the
task, agreement-aware hate classification, which
explicitly models the variability in human judg-
ments. To tackle this task, we explore approaches
using LLMs with DPO. Our findings show that
pre-trained LLMs perform effectively for majority-
based hate classification. However, these models
struggle with the added complexity of agreement-
aware hate classification. While DPO fine-tuning
shows promise in enhancing performance, partic-
ularly when applied to instruction-tuned models,
our study also emphasizes that further research is
needed to better capture the subjective nature of
hate speech detection. The novel task we present
could serve as valuable foundation for future ef-
forts.

Limitations

While our findings provide valuable insights, they
are subject to several limitations. Due to hardware
constraints, we relied on smaller 4-bit quantized
models. Running our experiments on larger mod-
els could provide a more comprehensive evalua-
tion of the effectiveness of our proposed method.
Additionally, the computational demands of train-
ing LLMs necessitated certain trade-offs, particu-
larly in optimizing all components of the training
pipeline, such as hyperparameter tuning. Given
these constraints, we prioritized methodological
robustness by conducting evaluations across ten
independent runs. Future research could enhance
the reliability and generalizability of our findings
by systematically exploring a broader range of hy-
perparameter settings, and assessing performance
on larger-scale models.

Ethics Statement

Hate speech is a sensitive domain, and the repro-
duction of certain terms may be distressing to some
readers. To promote fairness, we report our find-
ings without explicitly using hateful terms. More-
over, we model annotator disagreement to account
for minority perspectives rather than relying solely
on majority votes. By incorporating agreement-
aware classification, we aim to foster a more inclu-
sive understanding of harmful language.

Our study makes use of an existing dataset that
comprises annotations on hate speech, which in-
cludes annotator information. However, we do not
utilize any personally identifiable information, en-
suring the privacy of all annotators. We also ensure
that our dataset usage aligns with its intended use.

Lastly, training LLMs is computationally expen-
sive, contributing to a significant carbon footprint.
To address this, we employ quantization techniques
for more efficient model training.
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A Data

We retrieved the HateWiC dataset upon request
which is available for research purposes, licensed
under CC BY-NC 4.0.

B Training specifications

Training was performed on a NVIDIA RTX A6000
(48 GB) a learning rate of 5e-7 and batch size of
4. All other hyperparameters (optimizer, reference
model update strategy) are set to the default values
of the trl package (version 0.14.0). For quantiza-
tion, PEFT (Mangrulkar et al., 2022) was used with
a rank of 32 and an alpha value of 16. For each
of the ten folds Sft was tuned for 5.5 hours for 15
epochs and Instruct for 3 hours for 10 epochs,
resulting in a total training time of 85 hours. Eval-
uation for Task 1 took 4.43 hours and 8 hours for
Task 2 resulting in a total evaluation time of 12.43
hours.

C Prompt Variations

Sclar et al. (2024) showed that the performance of
LLMs of a given task is highly sensitive towards
spurious details in the prompt design. To assess the
robustness of our findings to changes in prompt for-
mulation, we conducted a set of additional experi-
ments on three prompt variants. These experiments
were performed on a single fold (fold 1) of our ten-
fold cross-validation setup, with results reported on
the corresponding test set. Our goal was to explore
whether the observed effects of DPO tuning persist
across surface-level and semantic variations of the
task prompt.

C.1 Variation 2A - Simpler language

This variation employed a version of the original
prompt rewritten in simpler language, intended to
test model robustness to stylistic changes without
altering the task’s core semantics.
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Input prompt:

### Instruction:

How many of the human annotators
think that the term in the following
sentence is hateful? Answer with one of
the following quantifiers:

“all”

“most”

“half”

“few”

“none”

### Input:
Sentence: [SENTENCE]
Term: [TERM]

### Response:
Pairwise preference output:

¢ Positive: “[CORRECT QUANTIFIER] of the
annotators think that [TERM] in the text
[SENTENCE] is hateful”

* Negative: “[INCORRECT QUANTIFIER] of
the annotators think that [TERM] in the text
[SENTENCE] is hateful”

C.2 Variation 2B - Alternative quantifiers

To reduce potential confounding effects of vari-
ability in handling different types of quantifiers
in agreement prediction, this variation replaced
quantity-based terms with frequency-based quan-
tifiers. The mapping of the original quantifiers of
quantity to the alternative quantifiers of frequency
is given in Table 3. Additionally, the preference
output was reformulated to fit the alternative quan-
tifiers.

Quantity | Frequency

all always
most often
half sometimes
few rarely

none never

Table 3: Mapping of original quantifiers of quantity to
quantifiers of frequency.

### Instruction:

How many of the human annotators
think that the term in the following
sentence is hateful? Answer with one of
the following quantifiers:

“always”
“often”
“sometimes”
“rarely”
“never”

### Input:
Sentence: [SENTENCE]
Term: [TERM]

### Response:

Pairwise preference output:

e Positive: “Annotators [CORRECT QUANTI-
FIER] think that the meaning of [TERM] in
the text [SENTENCE] is hateful”

* Negative: “Annotators [INCORRECT QUANTI-
FIER] think that the meaning of [TERM] in the
text [SENTENCE] is hateful”

for which the [QUANTIFIER] options are: “always”,
7 rarely” or “never”.

LR N3

“often”, “sometimes”,

C.3 Variation 2C - Simpler language &
alternative quantifiers

This prompt combines the simplified linguistic
style of Variation 2A with the frequency-based
quantifiers introduced in 2B.

### Instruction:

How often do human annotators think
that the term in the following sentence
is hateful? Answer with one of the
following quantifiers:

“always”

“often”

“sometimes”’

“rarely”

“never”’

### Input:
Sentence: [SENTENCE]
Term: [TERM]

### Response:

Pairwise preference output:

e Positive: “Annotators [CORRECT QUAN-
TIFIER] think that [TERM] in the text
[SENTENCE] is hateful”
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* Negative: “Annotators [INCORRECT QUAN-
TIFIER] think that [TERM] in the text
[SENTENCE] is hateful”

for which the [QUANTIFIER] options are: “al-

ways”, rarely” or “never”.

¢

often”,

LR INNT3

sometimes”,

C.4 Results

Table 4 summarizes the results of our single-
fold experiments across three prompt variants.
Across all three prompt variations, performance
was slightly lower than with the original prompt,
supporting our interpretation that the task’s diffi-
culty stems more from its subjective nature rather
than prompt formulation. However, the effects of
DPO tuning varied.

In Variation 2A, neither DPO-tuned model out-
performs the untuned Instruct model, whereas Vari-
ations 2B and 2C show clearer gains from DPO tun-
ing, particularly for the SFT model in 2C and the
Instruct model in 2B. This indicates that both SFT
and Instruct models can benefit from preference op-
timization, though gains are contingent on prompt
structure. These results also suggest that model
robustness may be more sensitive to surface-level
linguistic variation than to the semantic structure
of prompts (e.g., the way quantification is framed).

Task 2 (orig.) | Variation 2A | Variation 2B | Variation 2C

Acc F1 Acc F1 Acc F1 Acc F1
SFT 0.405 0.269 | 0.392 0.217 | 0.238 0.179 | 0292 0.252
SFT-tuned 0.390 0.240 | 0.387 0.208 | 0.277 0.234 | 0.323 0.276
Instruct 0377 0.293 | 0.395 0.255 | 0.300 0.282 | 0.236 0.238

Instruct-tuned | 0.408 0.321 | 0.382 0.248 | 0.300 0.283 | 0.256 0.248

Table 4: Accuracy and Macro-F1 on Task 2 with alter-
native prompt variations for Fold 1, with best Accuracy
and Macro-F1 score highlighted per variation.

D Error Analysis

Content warning! This section contains exam-
ples of offensive language used solely for illus-
trative purposes. We are mindful of the impact
such content may have.

Figure 2 presents the confusion matrices for
our four models evaluated on Task 2 (Agreement-
Aware Hate Classification). The SFT model demon-
strates strong performance on the none class but
performs poorly on all and few, frequently misclas-
sifying all as most or few. The SFT-tuned variant
shows modest improvements across all, most, and
few, while maintaining high accuracy on none. The
Instruct model offers a more balanced performance
across classes than the SFT variants, with higher
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Figure 2: Confusion matrices for the four models evalu-
ated on Task 2.

accuracy on most and few, though at the cost of re-
duced accuracy on none. The Instruct-tuned model
achieves the best overall performance, with the
highest accuracy on all, most, and none. While
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Example Term Gold SFT SFT-tuned Instruct Instruct-tuned
She’s a pure Oreo. You know, like the cookie, Oreo all none none most all

black outside and white inside.

The village fool threw his own shoes down the well.  fool most none none none most
Well, what do you think of the Canuck elections? Canuck few none none few few

How are you, you old bugger? bugger none few few most none

Table 5: Comparison of (erroneous) labels across models for various examples.

performance on few slightly declines compared
to its untuned counterpart, it remains relatively
strong. Across all models, there is a consistent
tendency to overpredict the none class. However,
the instruct-based models exhibit a more balanced
distribution of predictions, suggesting greater sen-
sitivity to class distinctions.

Table 5 presents some representative examples
of model errors on Task 2. Each row compares
human-based (Gold) labels with outputs from vari-
ous model variants on selected HateWiC instances.
As discussed, the models generally underperform
relative to human annotations, but the Instruct-
tuned model demonstrates relatively greater sen-
sitivity in certain cases. For instance, in the “Oreo”
example, where only the Instruct-tuned model
aligned with the gold label, while other models
failed to recognize the racially loaded meaning in
context. Similarly, with the term “bugger”, only
Instruct-tuned captured its tone-dependent mean-
ing, indicating a stronger grasp of pragmatic nu-
ance.
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