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Abstract

Violent ideologies flourish in online commu-
nities that sanction extremist content. Com-
munication in such communities includes a
variety of modalities, such as text, memes,
videos, and podcasts, which collectively rad-
icalise their consumers. In this position paper,
we argue that radicalisation is a nascent area
for which machine learning and NLP are par-
ticularly apt. On the one hand, these technolo-
gies could mitigate the harms of human review
of extremist content and stand to validate theo-
ries of radicalisation. On the other, such com-
munities present an avenue for addressing key
challenges in machine learning and NLP tech-
nologies, such as temporal distribution shifts
and multi-modal alignment.

1 Introduction

Internet-facilitated radicalisation is an urgent
modern challenge, with links to both acts of physi-
cal violence and intangible social harms. The pro-
liferation of online content that espouses extrem-
ist views presents a challenge for scalable content
moderation and prevention of radicalization. For
NLP methods to be applied for such purposes, they
must take into account the nature of radicalisation
and communication in fora where radicalisation
occurs. First, language use in radicalised com-
munities is highly dissimilar from standard lan-
guage use in more sanitised areas of the internet
due to an over-emphasis on negative rhetoric and
discussions around target groups.Second, commu-
nication in radicalised communities is character-
ized by large temporal shifts. Fast-moving norms
present a challenge to traditional NLP methods
which remain static once they have been trained,
yet hold potential for modern NLP methods under
few-shot settings. Moreover, these communities
employ direct democracies in the governance of

their policies, i.e., their members can vote for pol-
icy changes. One such example is Incel.is, which
frequently updates their terms and conditions to
address the changing norms of their community1.
While the terms and conditions often take into ac-
count community wishes, they are also account-
able to laws in effect where they are legally reg-
istered. This has led to subtle distinctions be-
tween, e.g., celebrating news of someone hav-
ing “gone ER”—referring to having committed a
mass shooting against perceived or actual group
targets—and stating that you will “go ER” or en-
couraging others to do so, where only the latter is
sanctioned. Third, research points to that radical-
isation is a longitudinal process where data across
different modalities—such as memes, podcasts,
videos, and written documents—collectively act to
shift opinions, beliefs, and actions towards exclu-
sionary and violent ideologies.

In this position paper, we discuss theories of
radicalisation and the potential and limitations of
NLP for radicalisation research. We argue that
taking the different factors of radicalisation to-
gether holds several implications for NLP, urging
the need to develop (1) datasets and processes that
better represent conversations in such communi-
ties; (2) methods that better address the rapidly
changing norms and vocabularies of radicalised
communities; (3) models that take into account
the multi-modal nature of radicalisation; and (4)
methods for mapping and tracking shifts of opin-
ion in a large body of multi-modal data.

To our knowledge, this is the first paper to pro-
vide (i) a holistic discussion of the challenges
of radicalisation research within NLP and (ii)
a roadmap for how future NLP researchers can
frame their research questions.

1Incel.is has updated their terms and conditions 18 times
in March 2022.
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2 Related Work

Defining Radicalisation A challenge for study-
ing radicalisation and extremism lies in the lack of
agreed-upon definitions (Wolfowicz et al., 2023).
Different disciplines have conceptualised it ac-
cording to the particular interests of the field, lead-
ing to difficulties in cross-disciplinary research.
For instance, in the social sciences radicalisa-
tion research often focuses on identity forma-
tion, group dynamics, grievances, or ideological
pull factors (e.g., Freilich et al., 2024). In con-
trast, political science often views radicalisation
through the lens of political violence, state re-
sponses, or the dynamics of extremist movements
(e.g., Della Porta, 2018). Psychological research,
in turn, has focused on individual pathways, cog-
nitive vulnerabilities, and the role of social influ-
ence (e.g., Trip et al., 2019).

The computational study of radicalisation has
traditionally been situated within the information
retrieval and web science communities. In these
communities, the operational definition of radical-
isation is often implicit as it seeks to identify pat-
terns of behaviour. For example, Rowe and Saif
(2021) use sharing of incitement material and us-
ing language from an extremism lexicon to sig-
nal radicalisation, and find that users are more
likely to adopt new terminology and to interact
with new users in the period before they exhibit
these signals. Ferrara et al. (2016) construct a
dataset of content from users who have been sanc-
tioned on Twitter for involvement with extremist
movements. They use social and timing features
(e.g., follower count and time between tweets)
to develop methods for predicting whether non-
sanctioned users will retweet extremist content or
respond to engagement from extremist users. In
NLP, research has similarly sought to distinguish
posts from extremist web-fora and mainstream
fora (Oussalah et al., 2018). While this body of
work relies on language as a signal, it tends to treat
language as static and do not consider context, and
therefore do not provide evidence for how or why
individuals adopt extremist views.

NLP for Radicalisation More recent work in
NLP has sought to examine extremism and radi-
calisation in more detail. For example, Yoder et al.
(2023a) and Hartung et al. (2017) seek to the rela-
tion between extremist content and users and reg-
ular content and users. Riabi et al. (2025) annotate

radicalisation using an ordinal approach to capture
different levels of extremism, whereas De Kock
and Hovy (2024) seek to predict a user’s eventual
network centrality, their usage of lexicon terms,
and the duration of their interaction with extrem-
ist communities using early engagement features.
Kock (2025) further develops a method for identi-
fying extremist in-group language using social and
temporal cues. Importantly for NLP, recent stud-
ies have identified high propensities for linguistic
innovation in extremist communities: Yoder et al.
(2023b) identify more than 1500 variants of the
word ‘-cel’ from the incel.is platform and Mendel-
sohn et al. (2023) introduce the problem of detect-
ing coded hate-words.

A striking aspect of these approaches is the vari-
ety of task definitions used, with most approaches
being developed for a specific community or ide-
ology at a particular point in time. As in the psy-
chology and political science domains, there is no
broadly accepted framing of the problem, which
hinders progress towards solutions.

3 Towards Machine Learning and NLP
for Radicalisation Studies

Given the abundance of data that can constitute as
relevant to processes of radicalisation, advanced
pattern recognition methods hold potential for eas-
ing research into radicalisation, particularly in aca-
demic settings where large resource constraints
exist. However, contemporary pattern recognition
systems may need further development to realise
their potential. In this section, we discuss why ma-
chine learning and NLP systems may be of service
to research, and outline the challenges that have
yet to be resolved by the research community.

3.1 Potentials for Machine Learning and
NLP for Radicalisation

Examining and investigating radicalisation is a
needle-in-the-haystack problem, which requires
taking a multi-pronged approach, which has tradi-
tionally included data analysis in addition to real-
world interviews and analyses (Rodermond and
Weerman, 2024). While well-funded agencies,
such as counter-terrorism organisations within
policing and intelligence agencies may have re-
sources to conduct fine-grained analyses by hu-
man analysts, academic research is typically more
resource constrained, yet deliver important in-
sights into the human processes of radicalisa-
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tion (LaFree and Gill, 2024). However, identify-
ing whether a community or person is on the path
towards radicalisation, or indeed is radicalised is
a difficult process that requires human analysts,
who can suffer a heavy psychological cost (Steiger
et al., 2021). As discussed in Section 2, ma-
chine learning and NLP systems can ameliorate
such issues by being used for scaling up analy-
ses of distinct data forms through social network
analyses (Gialampoukidis et al., 2017), analyses
of language use (Yoder et al., 2023b), and anal-
yses of images and content shared (Rowe and
Saif, 2021; Kiela et al., 2020). In this way, ma-
chine learning disciplines can aid in minimising
the amount of data for human review and thus
holds potential for mitigating the psychological
harms of human review of data around radicali-
sation. Moreover, through longitudinal analyses,
machine learning also holds potential for identi-
fying individuals who are proceeding towards be-
ing radicalised, before they exhibit signs of having
been radicalised towards violent ideologies (e.g.,
De Kock and Hovy, 2024). Finally, through com-
putational pattern analyses, machine learning can
also serve as a mechanism to augment theoreti-
cal insights by surfacing emerging patterns that
have not yet been documented by theoretical ex-
plorations or that contradict existing insights.

3.2 Open Challenges to Machine Learning
and NLP for Radicalisation

Despite the recent advances of NLP technologies,
they are significantly limited in their application to
radicalisation research, in part due to a lack of ap-
preciation of the complexity of radicalisation, and
in part due to technical challenges.

Challenge: Temporal and Spacial Dynamics
Radicalisation is an ongoing process in which a
person’s beliefs and values shift over time. Yet
much of computational work employ static analy-
ses that examine data from a single point in time,
or do not adequately model the temporal dimen-
sion of research. Consequently, data and mod-
els quickly suffer from temporal drift, particu-
larly given the rapid linguistic changes in extrem-
ist communities (Bogetić, 2023; Kock, 2025).

Beyond temporal dynamics, one’s community
impacts languages and beliefs (Labov, 1964) and
positioning within extremist communities. Ex-
tremist communities often shift across platforms,
and pathways to radicalisation charts similar pat-

terns in identifying and following extremist com-
munities (Weimann and Pack, 2023). Examining
content from a single platform in isolation thus
misses such individual and community dynamics.

Challenge: Aspects beyond Atomic Posts Op-
erating at the level of individual posts, e.g., classi-
fying whether a single post contains extremist con-
tent, misses crucial higher-order dynamics, such
as value shifts and group dynamics. While mod-
ern NLP excels at local textual context, radical-
isation requires a far broader context, e.g., tem-
poral and spacial dynamics as well as user social
networks, physical events, platform norms, and
multimodal communication (Weimann and Pack,
2023). Machine learning models for radicalisation
and extremism therefore need to take into account
a wide variety of contexts, yet current approaches
often lack such contextual grounding. Moreover,
as some extremist communities rely heavily on au-
dio and visual information (Weimann and Pack,
2023), text only models are likely to miss signifi-
cant signals within the communities.

Challenge: Research Silos The lack of cross
pollination between research fields related to on-
line radicalisation presents missed opportunities
for all communities involved, and for potential
real-world impact of research. Here, we highlight
some ways in which greater integration between
extremism and radicalisation research can engage
with other areas of research.

Factuality and Radicalisation Misinformative
content presents a potent source for radicalisation
(Roberts-Ingleson and McCann, 2023). When be-
lieved, misinformation arouses strong emotions,
e.g., anxiety and anger. This can create a psy-
chological drive for more information about the
perceived threat, which can lead a person to seek
out further radicalising content. While detection
and fact-checking misinformation is well-studied
in NLP (Guo et al., 2022), existing work at-
tends primarily to finding evidence and verify-
ing claims within existing fact-checking infras-
tructures (Schlichtkrull et al., 2023). Thus, exist-
ing research on identifying misinformative content
can serve as a starting point, but further attention
to responses to such content and ongoing engage-
ment is required to firmly situated misinformation
within radicalisation research.

Abusive Language Although the abusive lan-
guage field, i.e., hate speech and toxicity detec-
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tion, has been extensively studied in the NLP
community (Talat and Hovy, 2016; Muhammad
et al., 2025, interalia), the connection between
hate speech, toxic language and radicalisation is
are deeply intertwined—e.g., on forums such as
incels.is, where toxic language aimed at women
is frequently posted (Yoder et al., 2023b). How-
ever, research in hate speech and toxic language
detection have largely disregarded radicalisation
as an area of work. Yet there are clear benefits of
their integration: Radicalisation research can ben-
efit from advanced hate speech and toxicity detec-
tion models, while the abusive language field ben-
efit from data from extremist platforms for data
sources with nuanced forms of hate.

Computational Social Science Although com-
putational research on radicalisation constitutes
one area of computational social science, fu-
ture work would benefit from greater integration
with computational social scientific methods such
as network analyses and opinion dynamics (e.g.,
Petruzzellis et al., 2023). Drawing from compu-
tational social science could result in new methods
and hypothesis to be drawn and answered around
how online extremist communities function.

4 Recommendations

We now turn to presenting recommendations for
the challenges for using NLP for radicalisation.

Treat Radicalisation as a Process Radicalisa-
tion is a process unfolding over time. Yet, prior
research—which focuses on classifying posts
as “radicalising” or “extremism-promoting”—
obscures this. We argue that research should seek
to identify and analyse how the radicalism of users
shifts over time, instead of identifying individual
“radicalising posts”. This could include identi-
fying radicalising events for a particular user’s
journey, and identifying indicators that a particular
user has “drifted” into radicalism. NLP techniques
from parallel tasks, such as mental health moni-
toring, can be repurposed—e.g., temporal change
point detection (Tsakalidis et al., 2022), timeline
extraction (Cornegruta and Vlachos, 2016), or lon-
gitudinal personalised language modelling for so-
cial media users (Tseriotou et al., 2023).

Account for Temporal Drift If the aim is to
study change over time, models must be able to
incorporate information from different points in
time. As we discussed in Section 3.2, the language

used in radical communities varies greatly over
time. This includes the introduction of new lingo,
changes in behavioural norms, and events and top-
ics the community discuss. However, traditional
NLP models are trained on static snapshots of dis-
cussion in communities, and may not adapt well
to rapid linguistic shifts (Zhu et al., 2025). We ar-
gue that new models should be built which are able
to quickly adapt to new language and norms, us-
ing e.g. specialised architectures (Su et al., 2022)
or metalearning (Hu et al., 2023).

Model network structure Like posts, users
cannot be modelled properly in isolation. Users
interact with other members of the community,
and modify their behaviour based on these interac-
tions. Radicalisation journeys intersect, and users
mutually drive radicalisation. Further, content
across sites is reposted, repurposed, referenced,
and used as the basis for new content. We argue
therefore that models should account for network
structure when attempting to predict user journeys,
for example through the use of graph-based mod-
els (Jiang et al., 2023; Zhang et al., 2024).

Account for Non-Textual Content External
events—and the discussion and reference to them
in videos, podcasts, and memes—are watched and
shared in extremist communities and often act as
key points in radicalisation journeys (Kaakinen
et al., 2018; Goede et al., 2022; Chen et al., 2023;
Weimann and Pack, 2023). For this reason, it
will be vital that the research community develops
robust automatic speech recognition, vision, and
vision-language models to account for the non-
textual content that is shared on extremist plat-
forms (Zhang et al., 2023).

Study how NLP Influences Radicalisation As
the use of LLMs and other generative NLP tools
becomes widespread, responsible development
will require developing awareness of how these
models affect radical discourse. For example,
users in radical communities may use LLMs to
generate posts, or to source information. If LLMs
are highly capable persuaders (Bai et al., 2023;
Goldstein et al., 2024), ground their answers in un-
reliable sources (Schlichtkrull, 2024), or produce
fabrications (Liu et al., 2024), those technologies
could themselves drive radicalisation processes.
Further, users in radical communities may use
generative AI to produce propaganda; this is an
existing concern for image generation (Jackson
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and Berger, 2023). Finally, use of NLP tools to
identify and filter language may increase the fre-
quency of linguistic drift, as users adopt words in
order to bypass common filters (Steen et al., 2023).

Multimodal Modelling Methods The multi-
pronged nature of online radicalisation requires
moving beyond sequence modelling, and requires
capturing temporal progressions, interactions over
multiple modalities, and complex social dynam-
ics. Machine learning models must predict user
trajectories, situated in the surrounding social net-
work contexts, and taking as input data from many
modalities. It will therefore be necessary to de-
velop new methods that can jointly model signals
from text (e.g., based on language models), so-
cial network graphs (e.g., based on graph neural
networks), and audio-visual data (e.g., from vi-
sion and speech models). Fusion approaches af-
ford studying the influence, information flow, and
the formation of echo chambers thereby allowing
for more holistic understandings of the persuasive
strategies employed by extremist groups.

5 Towards a Framework for
Radicalisation Research

Here, we turn to presenting a proposal for how re-
search on radicalisation may be actualised.

On Evaluation Frameworks As data becomes
more complex, it is necessary to ensure that that
measurements and models are valid (see Jacobs
and Wallach, 2021). Future work should there-
fore adopt multi-pronged evaluation strategies that
seek to address the temporal, spatial, contextual,
and multimodal dynamics of radicalisation. Tem-
poral dynamics, for example, can be addressed
by conducting longitudinal analyses—e.g., by pre-
dicting the duration of a user’s engagement with
an extremist community using of survival analysis
models or using time-series forecasting on linguis-
tic features to track the adoption of in-group termi-
nology (e.g., De Kock and Hovy, 2024)—instead
of static classification. Spatial dynamics, e.g.,
user migration across platforms, could be mod-
elled by constructing cross-platform graphs to pre-
dict whether a user from one community will ap-
pear in another over platforms and other geospatial
dimensions. Information such as a user’s social
network and discussion of real-world events, e.g.,
in news and podcasts, that that may trigger shifts
in discourse could also be used as broader context

beyond atomic posts. This builds on existing ap-
proaches that have used social and timing features
for prediction (Ferrara et al., 2016) and could be
evaluated by measuring the model’s ability to cor-
relate predicted shifts in sentiment or rhetoric with
specific external events.

On Privacy and Anonymity When conducting
research on radicalization within NLP, ensuring
privacy and anonymity is foundational. We out-
line the following key aspects that future work
must take into consideration. First, actively inte-
grating privacy-preserving technologies like feder-
ated learning and homomorphic encryption is cru-
cial for maintaining data and information privacy.
These technologies have been shown to allow
models to learn from decentralized data without
directly exposing sensitive information (McMa-
han et al., 2017; Gentry, 2009). Second, rigor-
ous data anonymisation and pseudonmysation pro-
cesses are important to conduct prior to analysis,
including removing direct identifiers (e.g., user-
names) and masking sensitive information within
the data (Riabi et al., 2024). Further, develop-
ing data access protocols, obtaining approval from
ethics review boards can help ensure appropri-
ate ethical oversight and mitigate risks of harms.
While radicalisation research will require taking
multiple modalities and sources of data into ac-
count, it is important that research employs data
minimisation principles to avoid collecting unnec-
essary data. Finally, it is important that researchers
develop safe data sharing protocols—e.g., gated
access to data—to facilitate research while main-
taining the privacy of data subjects.

6 Conclusion

In this paper, we have introduced and discussed
challenges in the nascent field of NLP for radical-
isation research. We argue that while NLP tech-
nologies present an opportunity for radicalisation
research, the nature of radicalisation—i.e., a lon-
gitudinal process where influence is manifested
through multiple modalities—presents challenges
for existing NLP methods which require new
approaches to model processes of radicalisation
across data from different modalities. To this end,
we provide recommendations for future work in
NLP for radicalisation and propose a framework
for radicalisation research in NLP. We hope that
our consideration can further encourage work in
the field of NLP researching online radicalisation.
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Ethical Considerations

While our work, as a position paper, does not
present any computational approaches, and there-
fore has a limit in its risk of dual use. The field
of radicalisation research has close ties to content
moderation, and the associated issues that arise for
content moderation such as censorship and per-
missions of harms also arise for radicalisation re-
search. Furthermore, radicalisation research also
closely aligns with surveillance research, and it
is therefore of particular importance that work on
radicalisation also actively engages with how their
methods might be misused (Kaffee et al., 2023),
and how to avoid that methods for researching par-
ticularly violent and dangerous communities are
misused for the surveillance other communities or
the public at large.

Limitations

This work has several limitations. Being theo-
retical in nature, we do not provide experimen-
tal validation of our proposal. Rather, our work
presents directions for future work to ensure that
work on radicalisation in computational venues
aligns to current research on radicalisation. More-
over, while we seek to provide a broad overview of
radicalisation and present guidance on that basis,
there may be aspects of radicalisation that we have
not accounted for. Therefore, our work should
serve as a starting point and researchers from NLP
seeking to address radicalisation should address
contemporary research on radicalisation.
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