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Abstract

Implicit hate speech poses a persistent chal-
lenge in NLP, driven by subtle semantics and
culturally grounded cues that evade surface-
level detection. This study evaluates a se-
lected set of masked and autoregressive lan-
guage models (MLMs), including both in-
structed and non-instructed large language
models (LLMs) with fewer than 1B parameters,
across zero-shot, few-shot, and fully supervised
settings for Implicit Hate Target Span Identifi-
cation (iTSI). Using SBIC and IHC as primary
benchmarks and OffensiveLang as an auxil-
iary testbed, results show that RoBERTa-Large-
355M achieves the highest zero-shot F1 scores
of 72.5 on IHC and 75.8 on SBIC, outper-
forming LLaMA 3.2-1B, while the lightweight
ModernBERT-125M closely matches its perfor-
mance with F1 scores of 72.2 and 75.1 respec-
tively.

Instruction tuning consistently enhances
generalization across model architectures.
Instruction-tuned variants such as LLaMA
3.2 1B Instruct and SmolLM2-135M Instruct
outperform their non-instructed counterparts
by up to +2.1 F1 on SBIC and +1.7 on IHC.
When optimized with Low-Rank Adaptation
(LoRA), SmolLM2-135M Instruct achieves
few-shot F1 scores of 68.2 on SBIC and 64.0
on IHC, trailing full-data fine-tuning (69.8 and
66.0) by only 1.6 and 2.0 points respectively,
with accuracy variations under 0.5 points.

Error analysis using Latent Dirichlet Alloca-
tion (LDA) reveals that models frequently con-
flate political or advocacy discourse with hate
speech and fail to capture contextually veiled
hostility, indicating persistent challenges in
pragmatic inference and sociolinguistic sensi-
tivity.

1 Introduction
Warning: This paper contains offensive content and may be

distressing.

Content:

“Immigrants are taking all the jobs, and
soon there won’t be any left for us.”

Implicit Target Span Identifier Output:

Target Spans: Immigrants , jobs

Figure 1: Implicit Target Span Identification Example.

2 Introduction
Warning: This paper contains offensive content and may be

distressing.

Implicit hate speech is a covert and insidious
form of prejudice that avoids overtly offensive
language while still conveying harmful social at-
titudes or exclusionary ideologies. Unlike ex-
plicit hate—typically marked by recognizable slurs
or hostile phrasing—implicit hate is expressed
through subtle lexical patterns, contextualized in-
ferences, and culturally situated cues that require
deeper semantic reasoning (Garg et al.; Jafari et al.,
2024). This makes implicit hate particularly chal-
lenging to detect and annotate.

Crucially, the harmful implication often resides
in localized linguistic expressions—such as group
references, ideologically charged phrases, or eu-
phemistic constructions—that serve as the semantic
anchors of bias (see Figure 1). Identifying these im-
plicit target spans is essential for token-level mod-
eling, supporting more fine-grained supervision,
enhancing interpretability, and enabling targeted in-
terventions in applied settings such as moderation
or legal auditing.

Sentence-level classification alone fails to cap-
ture the internal structure of implicitly hateful ut-
terances, treating all tokens uniformly and offer-
ing limited interpretability and granularity (Jafari
et al., 2024). Span-level identification addresses
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this shortcoming by isolating the linguistic ele-
ments responsible for the hateful implication. This
capability is especially critical in high-stakes ap-
plications such as platform moderation, forensic
audits, and responsible NLP pipelines, where trace-
ability and accountability are essential.

Despite growing interest in implicit hate detec-
tion, most prior work has concentrated on binary
classification (Raza et al., 2024; Kibriya et al.,
2024). Only a limited number of studies tackle
the dual challenge of both detecting and localiz-
ing implicit bias within text (Jafari et al., 2024).
Furthermore, while recent advances LLMs and
MLMs have demonstrated impressive zero- and
few-shot capabilities, their ability to identify sub-
tle, context-sensitive expressions of hate remains
underexplored, particularly in low-resource train-
ing regimes (Garg et al.; Kumarage et al., 2024).

Although larger LLMs have shown strong perfor-
mance in explicit hate detection tasks (Kumarage
et al., 2024; Garg et al.), their deployment for im-
plicit content must also consider efficiency and op-
erational scalability. Especially for deployment in
real-world moderation systems or edge computing
environments, lightweight models under 1 billion
parameters present an attractive balance of inter-
pretability, performance, and resource efficiency.

In this study, we benchmark a diverse set of
MLMs and instruction-tuned LLMs—focusing
exclusively on sub-billion parameter architec-
tures—to evaluate their capacity to detect and
ground implicit hate speech spans. Our approach
integrates instruction prompting with span-level su-
pervision to test whether these models can infer
indirect hostility across SBIC, IHC, and Offensive-
Lang datasets.

To better understand the limitations of these sys-
tems, we perform a detailed error analysis using
LDA, a topic modeling technique that enables us to
surface the latent themes behind systematic model
failures. These include conflations of political dis-
course with hateful intent and misinterpretations
of socio-cultural insinuations, revealing persistent
challenges in context-aware language understand-
ing.

We organize our investigation around the following
research questions:

• RQ1: Does increasing LLM parameter size
improve performance on implicit content de-
tection and span identification tasks?

• RQ2: How do instruction-tuned LLMs com-
pare to non-instructed models in identifying
and localizing implicit hate?

• RQ3: Can few-shot fine-tuning match or ex-
ceed full-dataset training in detecting implicit
hate under data-scarce settings?

• RQ4: Can topic-guided error analysis reveal
systematic failure modes and inform model
improvement?

Our main contributions are as follows:

• We present a unified benchmark for sentence-
level detection and span-level identification of
implicit hate across three datasets.

• We show that increased model scale does not
guarantee improved performance without do-
main adaptation and task-specific alignment.

• We demonstrate the effectiveness of
instruction-tuned LLMs in enhancing model
sensitivity to indirect and context-dependent
hate.

• We evaluate few-shot learning as a resource-
efficient alternative to full fine-tuning, high-
lighting its practical viability.

• We employ topic modeling to characterize
misclassifications and derive interpretable er-
ror taxonomies.

• We analyze generalization across SBIC, IHC,
and OffensiveLang datasets, highlighting an-
notation and domain-specific gaps.

3 Related Work

Early approaches to hate speech detection predomi-
nantly relied on traditional machine learning meth-
ods, such as Support Vector Machines (SVMs)
and Logistic Regression, which leveraged hand-
engineered linguistic features like n-grams, syntac-
tic dependencies, and sentiment lexicons (Raza
et al., 2024; Rawat et al., 2024). While inter-
pretable, these models lacked the capacity to cap-
ture nuanced or implicit hate speech, often leading
to high false-negative rates and limited generaliza-
tion across domains (Reghunathan et al., 2024).

The introduction of deep learning architectures,
including Recurrent Neural Networks (RNNs) and
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Bi-GRUs, improved sequence modeling by captur-
ing contextual dependencies in text (Kibriya et al.,
2024). However, the most substantial performance
improvements came with transformer-based mod-
els such as BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and HateBERT (Caselli et al.,
2021), which enabled richer semantic representa-
tions. Despite their effectiveness, these models
were often trained on datasets dominated by ex-
plicit hate content, limiting their ability to recog-
nize more subtle or indirect forms of toxicity. To
address this, techniques like Implicit Target Span
Detection (ITSD) were proposed to identify the
latent linguistic triggers of hate within a sentence
(Jafari et al., 2024).

The emergence of LLMs such as LLaMA (Tou-
vron et al., 2023) and Mistral (Jiang et al., 2023)
has further pushed the boundaries of hate speech
detection. These models demonstrate strong zero-
shot and few-shot capabilities, particularly when
instruction-tuned to align with task-specific goals
(Ouyang et al., 2022). Efficient fine-tuning strate-
gies such as LoRA)(Xu et al., 2023; Dettmers et al.,
2023) offer scalable solutions for adapting large
models to domain-specific tasks involving subtle
and context-dependent hate expressions (Hindy
et al., 2022).

Beyond performance gains, recent research has
emphasized interpretability and model behavior
analysis. Studies by (Masud et al., 2024; Roy et al.,
2023) investigate how LLMs represent and gener-
alize hate-related knowledge. In parallel, rationale-
guided methods (Saha et al., 2023) and explanatory
frameworks like HateXplain (Mathew et al., 2020)
promote transparent decision-making by aligning
model predictions with human-understandable jus-
tifications.

Data curation and augmentation also play a cen-
tral role in enhancing detection systems. Advances
in dataset quality include the incorporation of hard
negatives for robustness (Ocampo et al., 2023),
GPT-driven paraphrastic augmentation for annota-
tion diversity (Kim et al.), and normalization tech-
niques that reformulate hate speech into less toxic
equivalents (Masud et al., 2022). Additionally, the
expansion of annotated resources—such as Offen-
siveLang, IHC, and ViHOS for Vietnamese—has
contributed to better cross-lingual generalization
and cultural relevance in detection efforts (Hoang
et al., 2023).

A complementary line of work explores the nar-

rative framing of hate speech and its dissemination
dynamics. For instance, Antoniak et al. (Antoniak
et al., 2024) examine how storytelling structures
influence the perception and spread of harmful con-
tent on social platforms, underscoring the need for
models that account for discourse-level context.

4 Implicit Target Span Identification

Implicit Target Span Identification is a key sub-
task in detecting covert hate speech that lacks
overtly toxic markers. The goal is to localize
specific lexical spans using the standard BIO (Be-
gin–Inside–Outside) tagging scheme.

Figure 2: Pipeline of iTSI, integrating contextual mod-
eling, structured tagging, and post-processing.

Figure 2 presents the end-to-end pipeline for
iTSI. The process begins with standard input pre-
processing, including tokenization, normalization,
and subword segmentation. The processed input
is then passed through a span detection model that
outputs token-level BIO labels. These predicted
labels are subsequently used to extract span can-
didates, which are further refined through post-
processing. This includes merging overlapping
spans and filtering out vague predictions. The fi-
nal output is a set of contextually grounded target
spans.

We compare two modeling paradigms: (i)
MLMs, fine-tuned with supervised learning on an-
notated span data, and (ii) lightweight LLMs, eval-
uated under zero- and few-shot conditions using
prompt-based inference.

We conduct evaluations across SBIC, IHC, and
OffensiveLang datasets with consistent optimiza-
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tion protocols. MLMs are trained using full super-
vision as well as limited-shot settings (5 and 10
examples per dataset). LLMs are prompted directly
for span outputs.

Given the limited availability of human-
annotated span-level data in the mentioned corpora,
we employed an OpenAI GPT model (Ye et al.,
2023) as an automated annotator to generate the
span-level labels used in our experiments.

Our experimental design follows the research
questions outlined in Section 1, examining the in-
fluence of model scale (RQ1), the benefits of in-
struction tuning (RQ2), the viability of few-shot
learning (RQ3), and error analysis via topic-guided
modeling using LDA on false negatives to identify
recurring blind spots in model behavior (RQ4). An
example of the span extraction prompt used for
LLM inference is provided in Appendix A.9.

5 Experimental Setup

5.1 Datasets

Our core datasets are the Social Bias Inference
Corpus (SBIC) and the Implicit Hate Corpus
(IHC), both widely used in research on implicit
hate speech and social bias reasoning. To further
assess robustness and instruction-following capa-
bilities, we include OffensiveLang, a synthetic
benchmark designed for controllable offensive con-
tent generation.

SBIC (Sap et al., 2020) comprises over 150,000
crowd-annotated social media statements designed
to assess the social implications of biased language.
It includes over 34,000 implicitly biased statements,
annotated with justifications and targeted demo-
graphic categories. This corpus is particularly well-
suited for implicit hate detection as it captures nu-
anced expressions of prejudice in everyday dis-
course. However, as it lacks token-level annota-
tions, we employ a weak supervision approach to
derive span labels. Following strategies proposed
in prior work (Shwartz et al., 2020; Kartal et al.,
2022; Mandl et al., 2019).

IHC (ElSherief et al., 2021) consists of 22,056
tweets, including 6,346 instances labeled as im-
plicitly hateful. It focuses on latent hate speech
collected from extremist-affiliated accounts, mak-
ing it a high-value resource for studying real-world
covert toxicity. While IHC also lacks span-level
annotations, we apply the same weak supervi-
sion pipeline as with SBIC, adapting SRL and
dependency-based filtering to the Twitter domain.

OffensiveLang (Das et al., 2024) is a recent dataset
containing 8,270 ChatGPT-generated utterances,
annotated as “offensive” (6,616) or “not offensive”
(1,654). Unlike the previous corpora, it includes
both model-generated and human-validated span
annotations, offering a unique setting for evalu-
ating span extraction in generative and zero-shot
contexts.

We adopt an 80/10/10 stratified split
(train/validation/test) for each corpus. Stratification
is performed by the original implicit/non-implicit.
For few-shot experiments, we sample k=10
training instances per corpus from the same train
partition under ten independent seeds (42–51),
these draws are reported in Appendix A.5.

5.2 Models

We conduct systematic experiments on a cu-
rated selection of masked and generative lan-
guage models under both zero-shot and fine-
tuned conditions. For MLMs, we include BERT-
Base(Devlin et al., 2019), RoBERTa-Large(Liu
et al., 2019), HateBERT(Caselli et al., 2021),
ModernBERT(Warner et al., 2024).

For LLMs, we focus on parameter-efficient
instruction-tuned variants constrained to approx-
imately 1 billion parameters or fewer, ensuring
feasibility for fine-tuning and deployment. This
includes LLaMA-3.2 1B 1, the quantized Mistral-
1B-GPTQ 2 model, and the Small-Scale Language
models such as SmolLM2 series (Allal et al., 2025)
with 135M and 360M variants.

For fine-tuning, we employ LoRA to efficiently
update a small subset of model parameters. Fol-
lowing a comparative evaluation against alternative
lightweight adaptation techniques such as VeRA
and DoRA (see Appendix A.1), we select LoRA
with a fixed rank r = 16, which achieved the
highest average F1 scores across all datasets (Ap-
pendix A.2).

All models are fine-tuned using the Adam opti-
mizer with a learning rate of 0.01 and a batch size
of 16. Each model is trained for up to 40 epochs
with early stopping (patience = 5) based on valida-
tion F1 score. We apply a dropout rate of 0.1 to all
transformer layers. For LoRA-specific settings, we
use an alpha value of 16 and a LoRA dropout rate
of 0.05. All training procedures are implemented

1https://huggingface.co/meta-llama/Llama-3.
2-1B

2https://huggingface.co/Muhammadreza/
Mistral-1B-GPTQ
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using the Hugging Face Transformers library and
PyTorch, and executed on a single NVIDIA L40
GPU3.

5.3 Evaluation Metrics
For the downstream task of implicit target span
identification, we evaluate model performance us-
ing token-level precision, recall, accuracy, and F1-
score, computed with respect to the standard BIO
tagging format using strict boundary matching.

All reported metrics are macro-averaged across
instances to account for class imbalance and varied
span frequencies.

6 Results

6.1 Zero-Shot Model Comparison and
Cross-Domain Generalization

We evaluate six language models to assess
architecture-level performance and cross-domain
generalization. MLMs, domain-adapted transform-
ers, are fine-tuned using labeled span data, only
instruction-tuned autoregressive lightweight LLMs
are evaluated in a true zero-shot setting.

Model #Params F1 (IHC) F1
(SBIC)

BERT-Base 110M 67.0 63.4
Hate-BERT 110M 68.5 69.2
RoBERTa-Large 355M 72.5 75.8
ModernBERT 125M 72.2 75.1
LLaMA 3.2 1B 1000M 70.8 74.2
SmolLM2-135M 135M 69.0 71.5
SmolLM2-360M 360M 71.1 73.9

Table 1: Zero-shot F1 performance across models on
SBIC and IHC for target span detection

Across both IHC and SBIC, RoBERTa-Large
achieves the highest F1 scores (72.5 and 75.8), fol-
lowed closely by ModernBERT (72.2 and 75.1), de-
spite having only 35% of the parameters. This high-
lights the strength of architecture refinement and
pretraining strategies over brute parameter scaling.
Hate-BERT surpasses BERT-Base on both bench-
marks, reflecting the gains from domain adaptation.
Among instruction-tuned models, SmolLM2-360M
outperforms its smaller variant (135M) with F1
scores of 71.1 (IHC) and 73.9 (SBIC), while also
surpassing the much larger LLaMA 3.2 1B (70.8
and 74.2).

3https://www.nvidia.com/en-us/data-center/
l40/

Model Params
(M)

F1 (All)

BERT-Base 110 63.8
Hate-BERT 110 66.1
RoBERTa-Large 355 72.4
ModernBERT 125 68.9
LLaMA 3.2 1B 1000 71.5
SmolLM2-135M 135 70.1
SmolLM2-360M 360 69.8

Table 2: Zero-shot target span detection performance
on the fused evaluation set combining SBIC, IHC, and
OffensiveLang.

In the merged cross-domain setting (Table 2),
RoBERTa-Large remains the top performer (72.4),
though the margin narrows. LLaMA 3.2 1B follows
with 71.5, and SmolLM2-135M achieves a com-
petitive 70.1, despite being significantly smaller.
Interestingly, the larger SmolLM2-360M trails its
smaller counterpart slightly at 69.8, suggesting di-
minishing returns with scale in the absence of task-
specific adaptation. ModernBERT scores 68.9, re-
flecting strong generalization and a slight drop un-
der distributional shift. Both SmolLM2 variants
outperform all traditional MLMs, including the
domain-specialized Hate-BERT (66.1).

6.2 Few-Shot vs Full Dataset Fine-Tuning

We compare few-shot (FS) and full-dataset (FD)
fine-tuning using SmolLM2-135M-Instruct to eval-
uate the trade-off between performance and data
efficiency (Table 3).

Setting IHC SBIC

F1 P R Acc F1 P R Acc

SmolLM2-135M-Instruct_FD 66.0 68.0 64.2 92.7 69.8 69.0 70.5 94.0
SmolLM2-135M-Instruct_FS 64.0 66.0 62.0 92.2 68.2 67.0 69.0 93.8

Table 3: FS and FD fine-tuning performance on target
span identification (IHC and SBIC).

On IHC, the fine-tuned SmolLM2-135M-
Instruct_FD yields an F1 score of 66.0, with a pre-
cision of 68.0 and recall of 64.2. The FS variant
trails with an F1 of 64.0, showing a 2.0-point drop.
Precision decreases by 2.0 points (66.0 vs. 68.0),
and recall drops slightly more—by 2.2 points (62.0
vs. 64.2). Despite this reduction, accuracy remains
high and nearly identical across both configurations
(92.2 vs. 92.7), suggesting that FS training main-
tains strong overall prediction consistency even
with limited supervision.
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A similar pattern holds for the SBIC dataset.
SmolLM2-135M-Instruct_FD achieves an F1 score
of 69.8, with precision at 69.0 and recall at 70.5.
The FS version attains an F1 of 68.2, reflecting a
1.6-point decrease. Precision in FS drops by 2.0
points (67.0 vs. 69.0), and recall declines by 1.5
points (69.0 vs. 70.5). Accuracy also remains sta-
ble, moving marginally from 94.0 to 93.8. These
results suggest that FS fine-tuning provides a viable
approximation of FD training for span identifica-
tion, maintaining high performance across all major
evaluation dimensions.

6.3 Instruction-Tuned vs Non-Tuned Models

To assess the impact of instruction tuning on tar-
get span detection, we compare models of similar
architecture and size in both instruction-tuned and
non-instructed variants. Table 4 presents the F1
scores for IHC and SBIC under zero-shot settings.

Model IHC (F1) SBIC (F1)

LLaMA 3.2 1B Instruct 68.5 72.5
LLaMA 3.2 1B (Base) 66.8 70.4
Mistral-1B-GPTQ 67.5 71.0
Mistral-1B (Base) 65.8 69.3
SmolLM2-135M Instruct 66.0 69.8
SmolLM2-135M (Base) 64.3 67.5
SmolLM2-360M Instruct 65.0 68.5
SmolLM2-360M (Base) 63.7 66.8

Table 4: Zero-shot performance (F1) on IHC and SBIC
for instruction-tuned and non-instructed models.

Instruction tuning yields consistent improve-
ments across all evaluated models. On IHC, the
instruction-tuned versions outperform their non-
instructed counterparts by an average of +1.7 F1,
with LLaMA 3.2 1B Instruct leading at 68.5 com-
pared to its base version at 66.8. On SBIC, the
gains are even more pronounced, with LLaMA
3.2 1B Instruct scoring 72.5 (+2.1) over its non-
instructed counterpart. The Mistral-1B-GPTQ also
shows similar improvements over Mistral-1B Base
(+1.7 on IHC and +1.7 on SBIC), reinforcing the
impact of instruction alignment.

The effect holds for smaller models as well.
SmolLM2-135M Instruct outperforms its base ver-
sion by +1.7 F1 on IHC (66.0 vs. 64.3) and +2.3
on SBIC (69.8 vs. 67.5). Interestingly, the larger
SmolLM2-360M variant follows the same pattern:
instruction tuning provides a +1.3 boost on IHC
(65.0 vs. 63.7) and +1.7 on SBIC (68.5 vs. 66.8),

though its performance remains below the smaller
135M model—suggesting that instruction tuning
may be more critical than raw parameter count in
low-data scenarios.

7 Error Analysis

Our error analysis highlights several persistent
challenges faced by contemporary hate speech de-
tection systems, particularly in identifying subtle,
context-dependent, or inferential forms of toxicity.

A significant source of error arises from false
positives, where models incorrectly classify non-
hateful or mildly opinionated statements as offen-
sive. For instance, the sentence “Non-binary is
a concept for progressive people” was frequently
misclassified as hate speech. This suggests that
current models disproportionately rely on surface-
level lexical cues, reacting to the presence of polit-
ically charged or socially contentious terms such
as “non-binary” and “progressive” without suffi-
cient regard for the speaker’s intent or the broader
discourse context. Such misclassifications indi-
cate a fundamental limitation: an oversensitivity
to identity-related language that is not inherently
toxic, resulting in unwarranted censorship of be-
nign or affirming discourse.

In contrast, false negatives were prevalent in
examples where toxicity was conveyed implicitly
through tone, insinuation, or ideological framing.
Statements like “F—ing liberals and their policies”
or “Women are too emotional for politics” were
frequently overlooked by the model, despite con-
taining overt ideological hostility or gender-based
stereotypes. These errors reveal that models strug-
gle to capture offensive content when it is expressed
indirectly, particularly in instances where dismis-
sive tone, sarcasm, or culturally encoded bias re-
place explicit slurs. This suggests a systemic gap
in the model’s ability to detect the pragmatics of
hate speech—namely, the subtle communicative
acts through which social exclusion or denigration
is performed.

To better understand the structure of model mis-
classifications, we applied LDA to the subset of
false negatives from the SBIC dataset. The model
was implemented using Scikit-learn, trained on TF-
IDF-weighted unigram representations of the mis-
classified examples. We initially extracted 10 la-
tent topics, using default symmetric Dirichlet priors
(α = 1.0, β = 1.0) and trained for 1000 iterations.
From these, we manually selected three themati-
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cally coherent topics for in-depth analysis, based
on relevance to sociolinguistic bias. The resulting
topics were visualized with Matplotlib.

Figure 3 illustrates these three dominant clusters.
The first is centered on feminist and gender-rights
discourse, with salient terms such as “women,”
“rights,” and “movements.” Models often misin-
terpret advocacy-focused or feminist language as
neutral, missing subtle implications of group target-
ing. The second topic involves political ideology,
including terms like “liberals,” “progressive,” and
“values,” indicating that politically charged but non-
toxic language is frequently overlooked due to its
subjective tone. The third topic relates to social
identity and gender constructs, with terms such
as “non,” “binary,” and “concept,” where models
struggle to identify implicit bias embedded in dis-
cussions of gender diversity.

Figure 3: LDA topic modeling of model misclassifica-
tion clusters.

8 Discussion and Conclusion

In addressing the impact of model size (RQ1),
our findings indicate that scaling parame-
ter counts—particularly within the sub-1B
range—does not guarantee better performance for
implicit hate detection. RoBERTa-Large-355M
consistently outperforms the much larger LLaMA
3.2-1B, achieving top F1 scores on both SBIC
(75.8) and IHC (72.5). Similarly, ModernBERT-
125M matches LLaMA’s performance with
a significantly smaller footprint, illustrating
that architecture refinement and task-aligned
pretraining objectives can outweigh sheer scale.
This trend also holds among instruction-tuned
models: SmolLM2-135M delivers competitive
F1 scores that surpass its larger non-instructed
sibling SmolLM2-360M, indicating diminishing
returns from scaling when instruction alignment or

domain adaptation is absent.

LDA Topic Cluster Example of Misclassified
Phrase

Racial Tension “white southern Christian”
Political Bias “Jewish privilege”
Immigration Debate “immigration laws”
Conspiracy Theories “white genocide”
Social Justice “angry white bigots”
War and Nationalism “another war for Israel”

Table 5: Examples of Misclassified Topics from LDA
Analysis

Regarding instruction tuning (RQ2), we observe
consistent performance gains across all evaluated
model families and sizes. Instruction-tuned vari-
ants of LLaMA, Mistral, and SmolLM2 outper-
form their non-instructed counterparts by up to
+2.3 F1. LLaMA 3.2 1B Instruct achieves the
best results in its group—72.5 on SBIC and 68.5
on IHC—demonstrating the effectiveness of align-
ing models with task-specific objectives, especially
for identifying implicit or pragmatically encoded
hate speech. Notably, SmolLM2-135M Instruct
not only surpasses its base variant but also outper-
forms the larger 360M non-instructed version, fur-
ther confirming that instruction tuning enhances the
model’s ability to detect subtle, context-dependent
toxicity more effectively than scale alone.

For few-shot learning (RQ3), we find that mod-
els trained with only 5–10 labeled examples per
dataset perform surprisingly well, approximating
full-dataset performance with minimal loss. On
SBIC, the F1 drop from full-data to few-shot fine-
tuning is just 1.6 points (69.8 vs. 68.2), and on IHC,
only 2.0 points (66.0 vs. 64.0). Precision, recall,
and accuracy also remain stable, with accuracy dif-
ferences under 0.5 points. This is encouraging for
low-resource deployment, where high-quality span
annotations are costly to obtain. Few-shot setups
prove not only efficient but scalable—especially
when combined with instruction-tuned architec-
tures like SmolLM2-Instruct.

Exploring model failure patterns (RQ4), our
LDA-based analysis of false negatives in SBIC
surfaces three key clusters where models struggle:
gender discourse, political ideology, and identity
constructs. As illustrated in Figure 3, these mis-
classifications often involve neutral or affirming
language—such as references to “feminism,” “lib-
erals,” or “non-binary”—that are either wrongly
flagged or completely missed. This suggests that
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models rely heavily on surface lexical features and
lack deeper discourse-level or pragmatic inference.
Table 5 further highlights examples of such failures,
including “white southern Christian” and “angry
white bigots,” which models misclassify due to
contextual ambiguity or ideological framing.

Span-level evaluation reveals additional weak-
nesses. Many models exhibit segmentation errors,
such as confusing the beginning (B-SPAN) with
continuation (I-SPAN) labels, or failing to capture
complete spans. These inconsistencies reduce in-
terpretability and may mask performance issues un-
der coarse sentence-level evaluation metrics. The
current reliance on sentence-level annotations ex-
acerbates this problem, as it overlooks the nuanced
localization of toxic content, particularly in im-
plicit or ideologically encoded hate speech. This
underlines the need for more fine-grained super-
vision, sequence-aware modeling, and evaluation
protocols that reward accurate span detection.

Altogether, our findings demonstrate that per-
formance in implicit hate detection is not dictated
by parameter count alone. Instead, architectural
refinement, instruction alignment, and efficient
learning strategies such as few-shot fine-tuning
play a critical role in model effectiveness. Mod-
els like RoBERTa-Large and ModernBERT show
that well-optimized transformers can outperform
much larger systems, while instruction-tuned mod-
els like LLaMA3.2 Instruct and SmolLM2-Instruct
consistently yield stronger performance and gener-
alization. These trends validate the importance of
model-task alignment, especially for detecting sub-
tle and context-sensitive forms of bias and toxicity.

9 Future Directions

This work benchmarks a diverse range of models,
including masked language models and autoregres-
sive LLMs with fewer than 1B parameters. Fu-
ture extensions should explore larger-scale archi-
tectures, domain-specialized models, and multilin-
gual data to enhance contextual understanding and
capture sociolinguistic nuance across diverse lan-
guages and cultural settings.

To better evaluate generative models, sequence-
level metrics such as ROUGE or Exact Match
should be incorporated, as they align more closely
with the output structure of instruction-following
LLMs. Additionally, Retrieval-Augmented Gener-
ation (RAG) represents a promising path toward
grounding model predictions in external knowl-

edge, particularly in culturally embedded or infer-
ential cases of hate speech.

Finally, explainability and robustness remain
crucial. Techniques such as attention heatmaps,
SHAP-based interpretability, and adversarial or
paraphrastic data augmentation can help elucidate
model decisions and improve generalization across
domains and discourses.

10 Limitations

This study is limited in three important ways. First,
the analysis is constrained to models with up to 1B
parameters, which prevents us from fully assessing
how larger-scale architectures might influence hate
speech detection performance. Second, the scope is
monolingual, focusing solely on English datasets,
which restricts the generalizability of our findings
to multilingual or cross-lingual settings—an essen-
tial aspect given the global nature of implicit hate
speech. Third, we do not implement a complete
sequence-to-sequence (seq2seq) evaluation, limit-
ing the granularity of token-level error analysis.
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A Appendix

A.1 Comparing LoRA, VeRA, and DoRA

To further evaluate the effectiveness of LoRA, we
compare its performance against VeRA and DoRA,
two alternative fine-tuning techniques.

Model F1 Score (IHC) F1 Score (SBIC)

VERA 68.8 71.2
DORA 69.2 71.5
LoRA 69.5 73.0

Table 6: Performance comparison of VERA, DORA,
and LoRA with LLama 3.2 (r=16).

A.2 Comparing LoRA Ranks

Figure 4: Impact of LoRA rank on F1 scores for IHC
and SBIC datasets.

To better visualize the trade-off between com-
putational efficiency and accuracy, Figure 1 below
provides a bar chart comparing F1 scores across
LoRA ranks for both the IHC and SBIC datasets.

Rank (r) F1 Score (IHC) F1 Score (SBIC)

8 69.0 72.8
16 69.5 73.0
32 68.5 71.5
64 67.8 70.9
128 66.7 69.8
256 65.8 68.9

Table 7: Performance of LoRA configurations across
datasets.

Table 7 mention that Lower-rank configurations
(r = 8 and r = 16) perform best, balancing com-
putational efficiency and accuracy (Ocampo et al.).
Lower-rank configurations (r = 8 and r = 16)

perform best, balancing computational efficiency
and accuracy (Ocampo et al.).

The results highlight a key observation: lower-
rank configurations (r = 8 and r = 16) deliver the
highest F1 scores while minimizing computational
overhead. This suggests that higher-rank values
(r ≥ 32) do not necessarily translate into better
performance, potentially introducing unnecessary
complexity and resource consumption. These find-
ings align with prior research (Ocampo et al.), rein-
forcing the idea that smaller, well-optimized LoRA
ranks can achieve competitive results without the
burden of excessive parameters.

A.3 Comparing LoRA and full-finetuning
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Table 8: Performance and training time comparison
between full fine-tuning and LoRA.
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A.4 LoRA vs. Full Fine-Tuning
The detailed performance and training time com-
parison is provided in Table 8.

Although full fine-tuning results in slightly
higher F1 scores—namely, LLama 3.2 1B from
73.0 to 74.5 on the SBIC benchmark—this minimal
gain is at an enormous computational expense. The
computational time for full fine-tuning quadruples,
from 3 hours using LoRA to 12 hours. This compu-
tational cost is even worse for smaller models like
SmolLM2-135M, where LoRA is as performant
while significantly cutting training time from 10
hours to a mere 2 hours.

A.5 Few-Shot Robustness Across Seeds
Table 9 summarises SmolLM2-135M-Instruct per-
formance across then random 10-shot samples.

Seed IHC F1 SBIC F1

42 64.0 68.2
43 63.3 67.9
44 64.7 69.1
45 63.8 68.0
46 64.2 68.5
47 63.5 67.7
48 64.4 68.9
49 63.9 67.8
50 64.1 68.6
51 64.3 68.8

Mean ± SD 64.0 ± 0.4 68.4 ± 0.5

Table 9: Few-shot variability across ten random seeds.

A.6 Comparing Instructed LLMs to
Non-Instructed
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Table 10: Performance Comparison Instructed LLMs
Vs Non-Instructed

A.7 ModernBERT Performance on
OffensiveLang Dataset

ModernBERT demonstrates a significant leap in
performance over traditional models on the Offen-
siveLang dataset, achieving an impressive F1-score
of 0.89. This result highlights its superior capabil-
ity in identifying implicit hate speech, particularly
in challenging contexts where other models strug-
gle.

ModernBERT’s superior recall rate of 1.00 sug-
gests that it captures a vast majority of offensive
content, making it particularly effective in scenar-
ios requiring high sensitivity. In contrast, other
models, including DistilBERT and BERT, strug-
gle with recall, indicating difficulty in recognizing
nuanced hate speech. The results reinforce the im-
portance of leveraging contextualized embeddings
and robust fine-tuning techniques to improve detec-
tion accuracy.
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Model Precision Recall F1-score

TF-IDF + SVM 0.65 0.47 0.55
BERT 0.68 0.54 0.53
DistilBERT 0.71 0.46 0.52
ModernBERT 0.78 1.00 0.89
SmolLM2-
135M-Instruct

0.58 0.38 0.46

Table 11: Model performance on the OffensiveLang
dataset.

Furthermore, an in-depth analysis of annota-
tion agreement across datasets reveals substantial
inconsistencies. The complexity of posts in the
SBIC, IHC, and OffensiveLang datasets suggests
that more contextually rich content poses greater
challenges for models, necessitating adaptive train-
ing strategies.

A.8 Annotation Agreement

Dataset Average Complexity Score

SBIC 4.3
IHC 3.9
OffensiveLang 3.6

Table 12: Average complexity of posts across datasets.

Dataset Agreement Metric IAA Range

SBIC Cohen’s Kappa 0.65-0.72
IHC Fleiss’ Kappa 0.55-0.60
OffensiveLang Cohen’s Kappa 0.60-0.75

Table 13: Annotation agreement levels across datasets.

A.9 Instruction Prompt for ITSI Span
Prediction:

Instruction Prompt for ITSI Span Prediction

<s>[INST] Classify multiple text spans
from the given input hate speech content
that explicitly and/or implicitly mentions,
refers to a specific protected group or
their representation or characteristics
that have been targeted:
- O: Outside
- B-SPAN: Beginning of Span
- I-SPAN: Inside Span

Text: {0} [/INST]
Label: {1}</s>
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