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Abstract

Connectivity and message propagation are cen-
tral, yet often underutilised, sources of informa-
tion in misinformation detection—especially
on poorly moderated platforms such as Tele-
gram, which has become a critical channel for
misinformation dissemination, namely in the
German electoral context. In this paper, we
introduce Misinfo-TeleGraph, the first German-
language Telegram-based graph dataset for mis-
information detection. It includes over 5 mil-
lion messages from public channels, enriched
with metadata, channel relationships, and both
weak and strong labels. These labels are de-
rived via semantic similarity to fact-checks
and news articles using M3-embeddings, as
well as manual annotation. To establish repro-
ducible baselines, we evaluate both text-only
models and graph neural networks (GNNs) that
incorporate message forwarding as a network
structure. Our results show that GraphSAGE
with LSTM aggregation significantly outper-
forms text-only baselines in terms of Matthews
Correlation Coefficient (MCC) and F1-score.
We further evaluate the impact of subscribers,
view counts, and automatically versus human-
created labels on performance, and highlight
both the potential and challenges of weak su-
pervision in this domain. This work provides a
reproducible benchmark and open dataset for
future research on misinformation detection in
German-language Telegram networks and other
low-moderation social platforms.

1 Introduction

Disinformation and misinformation, with their
proven impact on democratic elections, have be-
come one of the most harmful online phenomena
of our age (Howard et al., 2019). Ever since main-
stream social media platforms implemented more
thorough content moderation policies against harm-
ful speech and misinformation, many users mi-
grated to Telegram (Rogers, 2020). For instance,
it was shown that around 30% of adults use the

Telegram messenger as a news source in Germany
(Holnburger, 2023). Telegram has become a key
platform for spreading misinformation, conspir-
acy theories and far-right ideologies in Germany,
while largely remaining unmoderated (Urman and
Katz, 2022; Holnburger, 2023), and solidifying
false beliefs with the echo chamber effect (Bovet
and Grindrod, 2020). Already in 2017, the Council
of Europe reported that conventional fact-checking
was becoming unable to respond to such data vol-
umes to identify check-worthy content and verify it
in a timely manner (Wardle and Derakhshan, 2017).
Therefore, in recent years, extensive research has
been conducted on identifying misinformation us-
ing machine learning methods. However, most
studies focused on data from X (formerly Twit-
ter) and on the English language, while for other
languages, including German, mostly simple text-
based methods were investigated. In this study, we
present our Misinfo-TeleGraph Dataset1, which is
a German Telegram misinformation graph dataset
including 13.845 German Telegram channels and
their messages from October 2022 to May 2024,
including the forwarding information and meta-
data regarding views and likes. 742 messages are
weakly labeled by corresponding fact-checks and
newspaper articles using similarity scores from M3-
embeddings. We trained a Graph Neural Network
(GNN) to detect misinformation and analyzed how
the incorporation of network information improves
the model’s performance in comparison to a text-
only approach. We make our code available in
GitHub2.

2 Related Work

While multiple successful methods were developed
to detect the factual correctness of news purely rely-

1https://zenodo.org/records/13362123
2https://github.com/kalkbrennerei/

MisinfoTeleGraph
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ing on textual content (Tanvir et al., 2020; Hiriyan-
naiah et al., 2020; Kaliyar et al., 2021; Zhou et al.,
2020), such models were shown to be language-
dependent (Monti et al., 2019), prone to adversar-
ial attacks (Han et al., 2020; Goodfellow et al.,
2015), and generalize badly to new data due to
over-reliance on linguistic patterns and keywords
(Solopova et al., 2024). Recent works have been fo-
cusing on including social context and propagation
patterns (Shu et al., 2017). Approaches based on
social context often focus on user demographics,
account authenticity and political bias of the thread
participants (Uppada et al., 2022), location and pro-
file pictures (Shu et al., 2019). Other approaches
look at social network structure, and user reactions
such as likes and shares (Monti et al., 2019; Li et al.,
2020; Yang et al., 2020). Zhang et al. (2019) used
message view counts and information about the
Telegram channels in which messages have been
shared, including the number of subscribers for
each channel.

Liu and Wu (2018) used multivariate time series
with recurrent and convolutional networks. Wu and
Liu (2018) inferred user embeddings with social
network structures and classified them using an
LSTM-RNN. Mishra (2020) analyzed user-to-user
interaction propagation paths over multiple hops
using a transformer architecture, while Hamdi et al.
(2020) used node2vec to create graph embeddings
from the follower-followee relationship.

Motivated by the graph structure of social net-
works, Graph Neural Networks (GNNs) were iden-
tified as a promising technique within propagation-
based approaches. Monti et al. (2019) applied a
GNN for misinformation detection based on data
from X, including content, social context, and prop-
agation features. Han et al. (2020) extended this
approach by leveraging continual learning tech-
niques to improve the performance on unseen data.
Dou et al. (2021) extracted node features from
news articles and user preferences from X using
BERT and node2vec embeddings, and compared
Graph Convolutional Network (GCN) and Graph-
SAGE architectures, while also explicitly separat-
ing endogenous and exogenous user preferences.
Comparing multiple types of GNNs for this task,
Mahmud et al. (2022) showed that GraphSAGE
(Hamilton et al., 2017) performed best, with a
test accuracy of 96.99%. Nielsen and McConville
(2022), which serves as the main inspiration for
our work, implemented a heterogeneous version
of the GraphSAGE model as a baseline for their

MuMiN dataset of multi-lingual tweets, achieving
an F1 score of 61.45% compared to the LaBSE
(Language-Agnostic BERT Sentence Embedding)
text-only baseline of 57.90%.

Most existing graph-based misinformation detec-
tion datasets, like the MuMiN and FakeNewsNet
(Shu et al., 2020), are primarily derived from X,
with limited options from other social networks.
While there are non-specific datasets from plat-
forms like Telegram, such as TGDataset (Morgia
et al., 2023) and the Pushshift dataset (Baumgart-
ner et al., 2020), research on graph neural networks
for misinformation detection in Telegram data is
notably absent. While Zhang et al. (2021) utilized
Telegram threads to train a GNN for a node classi-
fication task, to the best of our knowledge, ours is
the first work implementing GNNs with Telegram
data for misinformation detection, and also the first
on employing these for the German language.

3 Methods

To create the Telegram graph dataset, we used
weak annotation on data that we received from
Data4Transparency (2024). From this dataset, we
constructed a graph using network information,
including messages, channels, views, likes and
cross-channel message forwarding. Statistics of
the dataset are depicted in Figure 1. The anno-
tated training graph is used to train a Graph Neural
Network, where node embeddings are computed
based on their neighborhood representation using
the GraphSAGE architecture.

Our methods are inspired by Nielsen and Mc-
Conville (2022), who trained a GNN on a graph
dataset from X. Since Telegram and X are very dif-
ferent platforms, the creation of our graph dataset
differs considerably from the work of Nielsen and
McConville (2022). However, we were able to
reuse some of their code, and we employed the
same approach to train a baseline GNN model on
the data.

# Telegram channels 13,845
# Telegram messages 5,727,631
Similarity threshold 0.7
# weakly linked message-claim pairs 742
# weak pairs in the factual class 110
# weak pairs in the misinfo. class 632
# weak pairs in the ‘other’ class 542
# strongly linked message-claim pairs 651
# strong pairs in the factual class 94
# strong pairs in the misinfo. class 557

Table 1: Statistics of the MisinfoTeleGraph dataset.
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Figure 1: Weak Supervision using M3-embeddings and a knowledge base. A source text (on the left) is compared to
claims contained in a knowledge base of fact-checks and news articles (on the right). Similarity scores are computed
based on the M3-embeddings of the text and claims. The source text is linked with a claim, if the similarity score
exceeds a threshold of 0.7, as is the case for the last claim in the knowledge base with a score of 0.737. The source
text inherits the label (factual or misinformation) of the claim that it is matched with.

3.1 Telegram Data Source

For training our model, we created a dataset
based on data provided from Data4Transparency
(2024) (D4T). Their data contains information
about which channel messages are posted in and
which channel messages are being forwarded to.
From this message-forwarding network informa-
tion, we constructed a graph dataset as described
in Section 3.3.

3.2 Training Data Annotation

Since training data annotation remains a costly task,
weak annotation is a promising approach to anno-
tate data sets of misinformation from online social
networks. Manual data annotation often requires
skilled human annotators, who are knowledgeable
in their domain, such as professional fact-checkers
in the case of the detection of misinformation. In
this work, we use semantic similarity based on
M3-embeddings (Chen et al., 2024) to pre-select
Telegram messages that potentially contain misin-
formation and manually annotate the pre-selected
collection. This approach is shown in Figure 1. For
the weak annotation, we use a knowledge base of
newspaper articles and fact-checking articles that
contain texts from the sources in Table 2. The fact-
checks were fetched from the Google Fact Check
Tools API (API, 2024) and the newspaper articles
were fetched from WoldNewsAPI 3.

The texts from the knowledge base are compared
to the telegram messages using semantic similar-
ity. We compared different semantic similarity

3https://worldnewsapi.com/

Source # articles
BR (Bayrischer Rundfunk) 343

CORRECTIV 2568
DPA (Deutsche Presseagentur) 2271
AFP (Agence France-Presse) 1012

presseportal.de 378
Zeit 2396
Taz 1293

Süddeutsche 655

Table 2: German knowledge base sources. Fact-
checking articles on top and newspaper articles below.

thresholds by precision. We found that a thresh-
old of 0.7 matches enough message-claim pairs
with an acceptable precision of 67.86%. The re-
sulting 868 weakly annotated message-claim pairs
were annotated by hand to obtain 589 strongly an-
notated message-claim pairs. The precision was
computed by dividing the number of strongly anno-
tated message-claim pairs by the number of weakly
annotated pairs.

3.3 Network Information from message
forwarding

To feed both textual information and network infor-
mation into a graph neural network, we created a
graph G with two node classes for Telegram chan-
nels and Telegram messages. We use the following
two edge classes to describe the information about
messages being forwarded across channels:

• IS_PART_OF describes the relationship of a
message being posted in a channel
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Figure 2: Example of a Social Network Graph. The example shows the “Pizzzagate Archiv“ Telegram channel
depicted in purple on the right. There are three messages (depicted in red) that were posted in the “Pizzagate Archiv“
channel and are thus connected via an IS_PART_OF relation. One of the messages (depicted in the middle) has
also been forwarded to two other channels, namely the “Q Digital Patrioten“ channel and the “WAKE UP Media“
channel. To preserve the information in which channel a message has been posted first, the messages are duplicated
and linked by a FORWARDED relationship to the original messages when they are being forwarded. This is why
the message in the middle appears three times in the middle. Every message only has one IS_PART_OF relationship
with one channel.

• FORWARDED describes the relationship of a
message being forwarded to a channel.

To preserve the information in which channel a
message has been posted first, the messages are
duplicated and linked by a FORWARDED relationship
to the original messages when they are being for-
warded.

Every node n has a feature vector Xn that con-
tains the M3-embedding of the message text or the
channel description concatenated with metadata.

A subgraph of the graph that we created can be
seen in Figure 2.

3.4 Training of the GNN

To train the GNN model, we followed the proce-
dure of (Nielsen and McConville, 2022), using a
GraphSAGE architecture as proposed by (Hamil-
ton et al., 2017). We experimented with different
numbers of GraphSAGE layers and different ag-
gregation functions. The GraphSAGE architecture
setup is depicted in Figure 3. We set the learning
rate to 1e-3 with a learning rate scheduler that starts
at 1e-3 and ends at 1e-5 after 100 iterations, using
a weight decay of 1e-5 for all experiments.

GS GS FC FC S

p(factual)
N×

Figure 3: GraphSAGE model architecture. The network
takes a node to be classified and its surrounding graph as
an input. The graph is passed through N GraphSAGE
layers (GS). The node embedding of the node to be clas-
sified is then passed through two fully connected layers
(FC). A Sigmoid function (S) is applied to the resulting
logits to compute the probabilities of belonging to the
factual or the misinformation class.

4 Experimental Setup

For the GNN architecture depicted in Figure 3,
we experimented with different numbers of Graph-
SAGE layers, different aggregator architectures
and number of epochs. We then used the best-
performing combination to verify our main hy-
potheses:

1. Including additional graph information (for-
warding information) to train a GNN has an
edge over the text-only misinformation classi-
fication baseline.

2. Including view and subscriber counts im-
proves the GNN baseline.
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3. Using weak labels for GNN training does not
result in significantly poorer performance and
calibration compared to strong labels.

For the text-only baseline, we use an architecture
based on M3 that is depicted in Figure 4.

Text Data

M3 FC S

p(factual)

Figure 4: Text-based model architecture. Based on
the text data of the messages to be classified, M3-
embeddings are computed (M3). The embeddings are
then classified by a fully connected layer (FC) and a
Sigmoid function (S).

5 Results

5.1 Metrics
As standard evaluation metrics, we use Precision,
Recall and their harmonic average F1-score, consid-
ering these indicators separately for misinformation
and true samples. We also use the Matthews corre-
lation coefficient (MCC), which is robust to unbal-
anced datasets, as a combination of precision and
recall. Finally, we calculate the Expected Calibra-
tion Error (ECE) from (Nixon et al., 2019), which
measures if a model’s predicted output probabili-
ties reflect the accuracy of its decision, to assess
whether the model is exhibiting over-confidence or
under-confidence. It is computed by

ECE =
B∑

b=1

nb

N
|acc(b)− conf(b)|, (1)

where B is the number of bins, nb is the number
of predictions in bin b, and N is the total num-
ber of data points. Each prediction is assigned to
a bin based on its confidence score (i.e., the pre-
dicted probability of the top class), and acc(b) and
conf(b) denote the average accuracy and average
confidence within bin b, respectively.

5.2 Qualitative findings during annotation
While manually annotating message–claim pairs
generated by the weak annotator model, we ob-
served that it performs surprisingly well in cross-
lingual contexts. Despite the dataset being com-
posed of German-language Telegram channels, sev-
eral English and Russian messages that were also
contained in the channels were matched correctly

with German claims. For example, an English mes-
sage about the U.S. deploying Marines to Israel
was successfully paired with a German-language
claim falsely reporting that thousands of U.S. sol-
diers had landed in Israel (see Table 8). Further
examples can be found in Appendix A.

However, the model often failed to capture log-
ical specificity. For instance, it confused claims
about vaccine-related deaths with those referring
to COVID-19 fatalities, and did not consistently
distinguish between adverse effects and death. Sim-
ilarly, in messages related to the Gaza conflict, the
model was unable to identify which actor—Israel
or Hamas—was described as initiating violence.

These cases suggest that, while cross-lingual
matching is a strength, the weak annotator model
struggles with logical entailment and causal nuance,
highlighting a key area for improvement in future
work.

5.3 GNN architecture
We compare different numbers of GraphSAGE lay-
ers, LSTM and mean aggregation, and different
numbers of epochs.

Similar to Nielsen and McConville (2022), we
are able to verify that LSTM aggregation performs
best in terms of all considered metrics as depicted
in Table 3. This is likely due to the ability of LSTM
to remember long-term dependencies over multiple
“hops" of the graph.

mean agg. LSTM agg.
factual precision 0.357 0.75

misinfo precision 0.935 1.0
factual recall 0.833 1.0

misinfo recall 0.617 0.914
factual F1 0.5 0.857

misinfo F1 0.744 0.956
MCC 0.363 0.828

Table 3: Test set metrics for mean and LSTM aggrega-
tors on the weak training set and 4 GraphSAGE layers
after 10 epochs.

Unlike Nielsen and McConville (2022), which
achieved the best performance for two GraphSAGE
layers, we are able to observe the best performance
in terms of almost all metrics measured for four
GraphSAGE layers. Four GraphSAGE layers cor-
respond to four “hops“ in the graph depicted in
Figure 2. This is likely due to the graph struc-
ture, as channel nodes are never directly connected.
The four-hop neighborhood of a Telegram message
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Figure 5: Test set metrics across two training configurations: (a) different numbers of training epochs using LSTM
aggregators and 4 GraphSAGE layers. after 100 iterations, and a weight decay of 1e-5; (b) different numbers of
GraphSAGE layers using mean aggregation. 10 epochs, learning rate 1e-3 with the same learning rate scheduler.

contains all messages of the same channel and all
messages of the channels they are being forwarded
to. We were unable to test more than four Graph-
SAGE layers due to hardware restrictions. Figure 5
depicts the results for different numbers of Graph-
SAGE layers and numbers of epochs.

Hence, the overall best-performing architecture
is the one using LSTM aggregation and 4 Graph-
SAGE layers. Due to hardware restrictions, we
use 10 epochs for the experiments in the following
sections.

5.4 Comparison of GNN and Text-only Model

graph-based text-based
factual precision 1.0 0.714

misinfo precision 0.979 0.943
factual recall 0.923 0.833

misinfo recall 1.0 0.893
factual F1 0.960 0.769

misinfo F1 0.989 0.917
MCC 0.950 0.691

Table 4: Test set metrics for the text-only baseline in
comparison with the graph baseline. The graph baseline
uses an LSTM aggregator and 4 GraphSAGE layers.

In this Section, we compare the GNN model de-
picted in Figure 3 to the text-based model depicted
in Figure 4. Table 4 shows the different metrics for
the two baselines. The GNN model outperforms
the text-based model for all metrics. We achieved
a 95% MCC score for the graph-based model and
69.1% MCC for the text-based model. Our results
are comparable to those of Mahmud et al. (2022),
who achieve 78.12% test accuracy for a text-based
model and 96.99% test accuracy for a GraphSAGE
model for the classification of misinformation. The
results from this section verify our hypothesis (1)

from Section 4 that taking additional network infor-
mation into account improves performance over the
text-only misinformation classification baseline.

5.5 Effect of using View and Subscriber
Counts

incl. counts w/o counts
factual precision 1.0 0.923

misinfo precision 0.979 0.978
factual recall 0.923 0.923

misinfo recall 1.0 0.978
factual F1 0.960 0.923

misinfo F1 0.989 0.978
MCC 0.950 0.901

Table 5: GNN applied to the datasets including sub-
scriber and view counts and without including them
compared by their metrics. The model uses an LSTM
aggregator and 4 GraphSAGE layers.

weak data strong data
factual precision 1.0 1.0

misinfo precision 0.979 0.974
factual recall 0.923 0.875

misinfo recall 1.0 1.0
factual F1 0.960 0.933

misinfo F1 0.989 0.987
MCC 0.950 0.923
ECE 0.033 0.051

Table 6: GNNs trained on the weak and strong datasets,
compared by their test metrics. The model uses an
LSTM aggregator and 4 GraphSAGE layers.

To compute the node features used in the GNN
model in all previous experiments, we concate-
nated the M3-embedding with additional metadata.
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Channel CDf
Out In

Eva Herman Offiziell 17,522 16,420 1,102
Tagesereignisse der Offenbarung 13,617 1,084 12,533
AUF1 12,969 12,966 3
Impfen-nein-danke.de 11,424 437 10,987
Freie Sachsen 11,290 11,157 133

Table 7: Top 5 channels by forward-degree centrality (CDf
)

The embedding of the channel name was concate-
nated with the number of subscribers. The mes-
sage embedding was concatenated with the number
of views. In this Section, we removed the view
and subscriber counts to test if the model performs
worse. The results can be seen in Table 5. The
model that uses only M3-embeddings and does not
have access to view and subscriber counts on the
right performs slightly worse for all metrics except
factual recall. This verifies the hypothesis (2) from
Section 4.

5.6 Weak and Strong Labels

In this section, we compare the weak and strong
datasets. Weakly annotated datasets introduce
some noise because there are training examples
that have incorrect labels. In some cases, this may
lead to perturbations of the classifier (Dehghani
et al., 2017), but in many cases, the results are
still promising (Tekumalla and Banda, 2023). To
test if the weak dataset perturbs the classifier, we
manually annotated the test set. Table 6 shows a
comparison of the metrics over the weak and strong
datasets. The classifier performs similarly on both
datasets, which suggests that there are no strong
perturbations, verifying our hypothesis (3) from
Section 4.

In this experiment, we also computed the ECE
for both classifiers, trained on the weak and the
strong dataset. Both values are below 0.1, which
implies that both models are calibrated well. It
remains to be seen in future work if we can con-
firm these results with a larger weakly-annotated
dataset.

6 Additional network analysis

To illustrate the potential of the MisinfoTeleGraph
dataset for network analysis, we explore structural
properties of the message forwarding graph. The
dataset includes forwarding relations between Tele-
gram messages and channels, allowing for classic
social network analysis such as centrality computa-

tions.
Inspired by Das et al. (2018) and Landherr et al.

(2010), we computed several centrality measures
using the Neo4j Graph Data Science (GDS)4 li-
brary, including variations of degree centrality and
betweenness centrality. These measures highlight
the most influential Telegram channels in terms of
content dissemination and information flow. Since
degree centrality takes all edges into account, we
introduce a variant of degree centrality, which
we named forward-degree centrality. This metric
specifically counts the number of edges that repre-
sent content forwarding actions. Unlike traditional
degree centrality, which includes all edge classes,
forward-degree centrality captures only the edges
from the FORWARDED class. This measure allows
to capture information propagation across the plat-
form, reflecting how actively a Telegram channel
participates in origination and redistribution pat-
terns of misinformation-related messages.
Table 7 shows the top-ranked channels according
to this measure. We also differentiate between in-
degree and outdegree as is usually done for degree
centrality.

Notably, channels like AUF1 and Freie Sach-
sen act as broadcast hubs with high outgoing edge
counts, while others like Tagesereignisse der Offen-
barung mostly redistribute external content. This
asymmetry illustrates distinct roles in the misin-
formation ecosystem — original content creators
versus amplifiers — and offers interpretable context
for GNN-based classification. Additional centrality
metrics, extended tables, and Cypher queries are
available in Appendix B.

7 Discussion

The evaluation of our GNN-based misinformation
detection model on the MisinfoTeleGraph dataset
has yielded several key insights.

Quantitative evaluation showed that our GNN-
based model outperformed a text-only baseline.

4https://github.com/neo4j/graph-data-science
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The graph-based approach achieved an MCC of
0.95 compared to 0.69 for the text-only model, con-
firming that incorporating network structure im-
proves misinformation classification. Additional
experiments with different numbers of GraphSAGE
layers indicated that four layers provided the best
performance, likely due to the specific Telegram
message forwarding network structure. Moreover,
the use of an LSTM aggregator consistently outper-
formed mean aggregation, underscoring the impor-
tance of long-term dependency capture in graph-
based misinformation detection.

Additionally, we identified cross-lingual capaci-
ties of the chosen embeddings, successfully match-
ing German claims with messages in English and
Russian on multiple samples. However, qualitative
evaluation revealed limitations in handling logi-
cal entailment, particularly in differentiating spe-
cific statistical claims related to COVID-19 and
distinguishing actors in conflicts like the Gaza war.
Finally, we noticed that statistical claims that are
often found in health-related misinformation, this
topic remains hard to classify.

8 Conclusion

This study shows that integrating network infor-
mation into misinformation detection models im-
proves performance over text-only approaches. We
present the MisinfoTeleGraph dataset and a repro-
ducible baseline to support future research. Our
findings highlight AI’s potential in fact-checking,
while acknowledging its limits in logical entailment
and bias.

AI should assist, not replace, human verification,
especially as its generative power still outpaces its
detection, reinforcing the need for media literacy
and broader misinformation countermeasures. Fu-
ture work should focus on multi-modal detection,
better weak annotations, and ethical deployment in
sensitive contexts to build more robust misinforma-
tion detection systems.

Limitations

One of the main limitations of this study is the
relatively small dataset size. The weakly anno-
tated dataset contains 873 message-claim pairs, and
the strongly annotated dataset consists of only 651
pairs. The small dataset size may contribute to
potential overfitting and could lead to inflated per-
formance metrics. Future work should aim to scale
up the dataset by increasing the number of sim-

ilarity scores computed per claim and exploring
additional sources for annotation. Additionally,
misinformation often spreads through multi-modal
content such as images and videos, which were not
considered in this study. Integrating multi-modal
features into the dataset could further improve mis-
information detection models.

Another issue relates to data redundancy. Dur-
ing annotation, many messages were found to be
thematically similar due to message forwarding
and minor text modifications. This raises con-
cerns about potential data leakage, where simi-
lar messages may appear in both the training and
test sets. Implementing stricter data-splitting tech-
niques, such as clustering similar messages before
partitioning, could help mitigate this risk.

The weak annotation approach used in this study
was computationally intensive and thereby ren-
ders a future expansion of the dataset difficult.
The current method relies on computing similarity
scores between messages and claims using M3-
embeddings, which is effective but slow. Future
research should explore hybrid retrieval methods,
such as combining BM25 for fast pre-selection
with M3-embeddings for precise matching. While
GraphSAGE was effective in capturing network
structures, alternative GNN architectures could fur-
ther enhance performance. Graph Attention Net-
works (GAT) or Graph Isomorphic Networks (GIN)
may provide improvements by learning more com-
plex interactions within the network. Addition-
ally, techniques such as neighborhood extension
via k-nearest neighbors could help address issues
related to low-degree nodes, ensuring that nodes
with fewer connections still receive sufficient con-
textual information.

Finally, deploying a GNN-based misinforma-
tion detection model in real-world settings presents
challenges due to the need for network information.
Unlike text-based models that require only mes-
sage input, GNNs rely on the surrounding network
structure. To facilitate deployment, a continuously
updated graph database representing the Telegram
ecosystem would be necessary. However, integrat-
ing the model into an online fact-checking system
or browser extension could provide users with real-
time misinformation alerts and be used for select-
ing check-worthy occurrences for fact-checkers to
consider. It would be especially valuable to create
cross-lingual and cross-platform graphs to iden-
tify coordinated campaigns across languages and
different social media websites.
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A Examples for Cross-lingual
Message-claim Pairs

Message Claim
The United States is
sending 2 thousand
marines from the rapid
reaction brigade to the
shores of Israel...

Tausende von US-
Marines oder Soldaten
sind gerade in Israel ge-
landet (misinformation –
DPA).

NEW – Large German
health insurance com-
pany analyzed data from
10.9 million insured in-
dividuals regarding vac-
cination complications.
"According to our cal-
culations, we consider
400,000 visits to the doc-
tor by our policyholders
because of vaccination
complications...

Bei der Techniker
Krankenkasse seien
im Jahr 2021 knapp
440.000 Fälle von
Impfnebenwirkungen
erfasst worden. In
Blog-Artikeln werden
die Zahlen mit Werten
für 2019 und 2020
verglichen und mit Impf-
schäden in Verbindung
gebracht. (misinforma-
tion – CORRECTIV)

NEW – U.S. CDC has
quietly deleted the state-
ment that the "mRNA
and the spike protein
do not last long in the
body" from their web-
site...

US-Behörde CDC gibt,
dass mRNA und Spike-
protein lange im Körper
verbleiben und löscht
Entwarnung zu Corona-
Impfstoffen von ihrer
Webseite. (misinforma-
tion – DPA)

Экономика России
приходит в упадок –
Путин загоняет свою
страну в пропасть
(“Russia’s economy is
in decline – Putin is
driving his country into
the abyss” – DeepL
translation)

Russlands
Kriegswirtschaft:
Putin ruiniert sein Land
(newspaper article – taz)

Table 8: Cross-lingual message–claim pairs

B Graph Network Analysis

In this appendix, we propose exemplary graph net-
work analyses that can be done using the Misin-
foTeleGraph dataset.

Channel Subscribers Degree Centrality
AUF1 252,897 12,969
Eva Herman Offiziell 185,259 34,835
Freie Sachsen 148,628 11,290
Tagesereignisse der Offenbarung 2,045 46,925
WELT 547 86,962

Table 9: Top 5 Telegram channels by subscriber count
and degree centrality

B.1 Degree Centrality Analysis
Degree Centrality captures the immediate influence
of a node by counting its direct connections (Das
et al., 2018). Formally, it is defined as

CD(x) = dx (2)

where dx is the degree of the node. It is one of the
centrality measures that is the easiest to compute
in O(n) time because the algorithm iterates over
every node once and counts the number of nodes
to which the node is linked.

The following cypher query was used to compute
the Degree Centralities.

1: Cypher query for computing Degree Centrality
CALL gds.degree.write(
’messages_and_channels’,
{ writeProperty: ’degree’ }

) YIELD centralityDistribution,
nodePropertiesWritten

RETURN centralityDistribution.min as minScore,
centralityDistribution.mean as meanScore,
nodePropertiesWritten

Running the degree centrality query took 41992
ms. The minimum score was 0, which means that
there are isolated nodes that do not have neighbors,
and the mean score was 2.96. Since a Telegram
message can only be part of one Telegram channel,
a high degree means that a Telegram message has
been forwarded many times.

Table 10 depicts the ten Telegram channels with
the highest degrees, where the “WELT“ channel is
by far the channel with the highest degree. Note
that there are different edge types that channels
have that are counted here. They are ingoing and
outgoing FORWARDED edges and IS_PART_OF edges
and not all Telegram messages for each channel are
included in the dataset. That means that the Degree
Centrality of a Telegram channel can be interpreted
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CD Channel Subscribers
86962 WELT 547
46925 Tagesereignisse der Offenbarung 2045
46827 impfen-nein-danke.de offiziell 11093
45146 BILD 492
39649 OutoftheBoxTV_DerIrrsinnhatProgramm 4548
35872 Schuberts Lagemeldung - Stefan Schubert

Offiziell
36247

34835 Eva Herman Offiziell 185259
33814 Aufgewacht 75
32844 Alternative News 694
31728 Nyx News | Ukraine 1123

Table 10: Top 10 Degree Centrality (CD) of Telegram
channels

as how influential a Telegram channel is according
to the topics in the fact-checking and news articles.

B.2 Forward-Degree Centrality Analysis

To determine influential Telegram channels, the
number of how many messages forwarded from or
to them, the FORWARDED edge type is an interesting
feature. Therefore, we computed a new measure,
forward-degree centrality, which is defined as

CDf
(x) = dxf

(3)

where dxf
is the degree of x when only taking the

FORWARDED edge type into account. The measure
can be interpreted as how influential a Telegram
channel is in spreading information that is related
to the fact-checking articles. We used the following
Cypher projection where the IS_PART_OF relations
are dropped, and computed the degree centrality on
the graph projection:

2: Cypher query for computing forward-degree central-
ity
CALL gds.graph.create.cypher(

’messages_and_channels_forwards’,
’MATCH (n) where (n:TGMessage and n.degree >

1) or n:TGChannel
RETURN id(n) AS id’,
’MATCH (n)-[e:IS_FORWARDED_FROM |

IS_FORWARDED_TO]-(m)
RETURN id(n) AS source, e.weight AS weight,

id(m) AS target’)

B.3 Ingoing and outgoing edges

The number of outgoing and ingoing edges can
vary a lot in some cases, as can be seen in Ta-
ble 11, where many channels have only a few in-
going edges, but a lot of outgoing edges. This
might indicate that they create a lot of content that
gets frequently forwarded, but do not typically for-
ward messages from other channels themselves. On

the other side, e.g. “Impfen Nein Danke“, “Tage-
sereignisse der Offenbarung“ are channels that of-
ten forward information but do not create new orig-
inal content.

B.4 Betweenness centrality
Betweenness centrality is a measure that determines
the actor that controls information among other
nodes via connecting paths (Das et al., 2018).

The Betweenness centrality CB(x) of a node x
is defined by

CB(x) =
∑

u̸=v∈V(G)

σuv(x)

σuv
(4)

where σuv is the number of shortest u − v paths
and σuv(x) is the number of shortest u − v paths
that contain x. Computing the Betweenness cen-
trality for a graph with n nodes and m edges has
a time complexity of O(nm) (Das et al., 2018).
For the graph created from our data, computing the
Betweenness scores took around 2 months.

The following cypher query was used to compute
the Betweenness Centralities:

3: Cypher query for computing Betweenness Centrali-
ties
CALL gds.betweenness.write(’

messages_and_channels’,
{ writeProperty: ’betweenness’ })
YIELD centralityDistribution,

nodePropertiesWritten
RETURN centralityDistribution.min AS

minimumScore,
centralityDistribution.mean AS meanScore,

nodePropertiesWritten

The results are depicted in Table 12. The ten
Telegram channels with the highest Betweenness
centrality are either part of the 10 channels with
the highest degree centrality or with the highest
forward-degree centrality.

CB Channel Subscribers
1815135347746 Tagesereignisse der Of-

fenbarung
2045

1540030673515 AUF1 252897
1401343526977 Eva Herman Offiziell 185259
1344917542040 Aufgewacht 75
988463077140 WELT 547
914524232655 Freie Sachsen 148628
811428932945 impfen-nein-danke.de

offiziell
11093

810381539513 henning rosenbusch -
channel

65474

709972834297 Mäckle macht gute
Laune

130755

689059267090 OutoftheBoxTV 4548
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Table 11: Top 10 Forward-Degree Centrality (CDf
) of Telegram channels

CDf
Out In Channel Subscribers

17522 16420 1102 Eva Herman Offiziell 185259
13617 1084 12533 Tagesereignisse der Offenbarung 2045
12969 12966 3 AUF1 252897
11424 437 10987 impfen-nein-danke.de offiziell 11093
11290 11157 133 Freie Sachsen 148628
10139 7537 2602 Mäckle macht gute Laune 130755
10192 30 10162 OutoftheBoxTV_DerIrrsinnhatProgramm 4548
9576 9549 27 henning rosenbusch - channel 65474
8575 7499 1076 Haintz.Media #FreeAssange 81527
8135 511 7624 RBK - Ceterum censeo NATO esse delendam!

Raus aus der NATO!
2045

Table 12: Top 10 Betweenness Centrality (CB) of Telegram channels
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