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Abstract

Named Entity Recognition (NER) is a funda-
mental task in Natural Language Processing
(NLP), yet achieving high performance for low-
resource languages remains challenging due
to limited annotated data and linguistic com-
plexity. Ukrainian exemplifies these issues
with its rich morphology and scarce NLP re-
sources. Recent advances in Large Language
Models (LLMs) demonstrate their ability to
generalize across diverse languages and do-
mains, offering promising solutions without
extensive annotations. This research explores
adapting state-of-the-art LLMs to Ukrainian
through prompt engineering, including chain-
of-thought (CoT) strategies, and model refine-
ment via Supervised Fine-Tuning (SFT). Our
best model achieves 0.89 F1 on the NER-UK
2.0 benchmark, matching the performance of
advanced encoder-only baselines. These find-
ings highlight practical pathways for improving
NER in low-resource contexts, promoting more
accessible and scalable language technologies.

1 Introduction and Motivation

Accurate identification of named entities underpins
a wide range of NLP applications, including infor-
mation extraction, question answering, and data
anonymization, particularly in privacy-sensitive do-
mains such as healthcare, legal document process-
ing, and finance (Keraghel et al., 2024). However,
developing robust NER systems for low-resource
languages, such as Ukrainian, remains challenging
due to the scarcity of annotated datasets and the
complexity of linguistic features (Chaplynskyi and
Romanyshyn, 2024).

Traditional NER approaches, including rule-
based methods and early deep learning models, rely
on large annotated corpora, which are difficult to
obtain for low-resource languages (Li et al., 2022;
Brandsen et al., 2020). Ukrainian’s rich morphol-
ogy and free word order further complicate direct

adaptation from resource-rich languages (Chaplyn-
skyi and Romanyshyn, 2024; Artetxe et al., 2020),
leaving a significant performance gap.

Recent advances in LLMs offer promising so-
lutions for low-resource NER through zero-shot
and few-shot learning, leveraging large-scale pre-
training to operate with minimal task-specific data
(Shen et al., 2023; Wang et al., 2025). Techniques
such as CoT prompting (Wei et al., 2022b) and
SFT (Wei et al., 2022a; Keloth et al., 2024) fur-
ther enhance adaptability to linguistic complex-
ity. In this study, we also evaluate state-of-the-art
encoder-only models as competitive baselines to
assess whether LLM-based approaches offer mea-
surable gains. Our goal is to address data scarcity
in Ukrainian NER and contribute to bridging the
performance gap between low- and high-resource
languages (Monajatipoor et al., 2024).

The remainder of this paper is structured as fol-
lows. Section 2 reviews related literature. Section
3 defines research gaps and study objectives. Sec-
tion 4 describes the dataset. Section 5 outlines the
methodology, including model selection, experi-
mental setup, and evaluation. Section 6 presents
and analyzes the results. Section 7 summarizes
findings and suggests future directions. Section 8
discusses limitations, and covers ethical considera-
tions.

2 Related Work

2.1 NER Fundamentals

Early NER systems relied on rule-based methods
using manually created rules, dictionaries, and reg-
ular expressions. Though effective for structured
texts, these systems lacked flexibility and scalabil-
ity across diverse domains and languages (Aliwy
et al., 2021). Feature-based machine learning ap-
proaches, including Conditional Random Fields
(CRFs) and Support Vector Machines (SVMs), re-
duced manual rule creation by leveraging linguis-
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tic features but still required extensive annotated
datasets (Li et al., 2022).

The adoption of deep learning transformed NER
methods. Recurrent Neural Networks (RNNs), es-
pecially Long Short-Term Memory (LSTM) net-
works (Sherstinsky, 2020), automated feature ex-
traction and enhanced performance. Transformer-
based encoder-only architectures, notably BERT
(Devlin et al., 2019), further improved results
through self-attention mechanisms (Vaswani et al.,
2017), setting new benchmarks. However, these
models are highly dependent on high-quality,
resource-rich data to effectively generalize across
varied linguistic contexts.

2.2 NER in Low-Resource Languages
Low-resource languages like Ukrainian pose chal-
lenges due to limited annotated corpora, complex
morphology, and flexible syntax. These charac-
teristics demand expert annotation and make the
development of robust models particularly diffi-
cult (Brandsen et al., 2020). To mitigate the need
for extensive labeled data, researchers have ex-
plored alternative strategies such as transfer learn-
ing, data augmentation, zero-shot prompting, and
active learning (Keraghel et al., 2024).

The most comprehensive publicly available re-
source is NER-UK 2.0 (Chaplynskyi and Ro-
manyshyn, 2024), a manually annotated dataset
covering a wide range of genres and entity types.
Other initiatives, such as a news-focused dataset
described in (Makogon and Samokhin, 2022), have
not been released publicly, limiting their utility for
reproducible research. Automatically annotated
corpora—such as POLYGLOT-NER (Venkatasub-
ramanian and Ye, 2015), WikiANN (Pan et al.,
2017), and Ukr-Synth21—offer broader coverage
but are constrained by limited entity schemas and
lack human verification. The SlavNER corpus
(Piskorski et al., 2024) includes high-quality man-
ual annotations for Ukrainian, though it is restricted
to five entity types and Wikipedia-derived text.
Overall, these resources provide useful foundations,
but vary in quality, genre diversity, and annotation
scope—highlighting the need for a robust, publicly
available dataset with rich entity coverage.

2.3 Large Language Models and NER
LLMs such as GPT-4 (OpenAI, 2023) and LLaMA
(Touvron et al., 2023) have demonstrated strong

1https://huggingface.co/datasets/ukr-models/
Ukr-Synth

performance in NER, particularly in low-resource
settings. Pre-trained on large-scale corpora, these
models generalize well across domains and require
minimal task-specific supervision. Their ability to
perform NER in zero-shot and few-shot scenarios
makes them especially suitable for languages with
limited annotated data (Brown et al., 2020; Ji, 2023;
Hu et al., 2024; Monajatipoor et al., 2024; Li and
Zhang, 2024; Shen et al., 2023).

In zero-shot settings, LLMs extract entities
based on natural language instructions, while few-
shot setups incorporate a small number of labeled
examples to improve accuracy. Methods like GPT-
NER (Wang et al., 2025) and PromptNER (Shen
et al., 2023) showcase the effectiveness of prompt-
based approaches across both low-resource and
domain-specific NER tasks.

SFT and prompt engineering improve LLM per-
formance by aligning model behavior with task-
specific prompts, showing strong results in domains
like biomedical NER (Keloth et al., 2024). While
challenges remain, such as high computational cost
and prompt sensitivity, LLMs have proven effec-
tive in Ukrainian NLP tasks (Paniv et al., 2024),
making them promising for low-resource NER.

3 Research Gaps and Objectives

Despite progress, Ukrainian NER faces key chal-
lenges: limited high-quality annotated data, un-
derexplored use of LLMs, and heavy reliance on
proprietary models, which restricts transparency. In
addition, the absence of standardized benchmarks
hinders consistent evaluation and comparison.

To address these gaps, this study pursues the
following objectives:

• Investigate the effectiveness of LLMs for
Ukrainian NER under prompt-based and su-
pervised fine-tuning scenarios.

• Benchmark open-source LLMs against propri-
etary models to assess their viability in low-
resource settings.

• Propose standardized evaluation pipeline for
LLMs.

4 Dataset Overview

Given the limitations of existing resources, we se-
lect NER-UK 2.0 (Chaplynskyi and Romanyshyn,
2024) as the primary benchmark for this study. It
is the largest public manually annotated Ukrainian
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NER corpus, comprising 560 texts and 21,993 en-
tities across 13 categories. The dataset includes
diverse genres—such as news, social media, legal
documents, and procurement contracts, and fol-
lows the widely adopted Inside-Outside-Beginning
labeling scheme.

NER-UK 2.0 offers comprehensive entity cover-
age but has limitations like domain bias, class im-
balance (e.g., frequent PERS and ORG vs. rare DOC
and TIME), and subjective annotation challenges
(e.g. MISC). Despite these, it remains invaluable for
Ukrainian NER research.

5 Methodology

5.1 Experiments Set Up
A series of experiments will be conducted to eval-
uate the performance of the LLM models under
different conditions, structured as follows:

• Encoder-only Model Fine-tuning. Estab-
lishes a robust baseline using state-of-the-art
encoder models, providing a point of compar-
ison for LLM-based approaches. Training is
conducted via spaCy2 pipeline.

• Zero-shot, Few-shot, and CoT Prompting.
Assesses model performance with minimal an-
notated data, reflecting realistic low-resource
scenarios. Inference is performed using vLLM3

for scalable decoding.

• LLM Supervised Fine-tuning. Assesses fine-
tuned LLMs against encoder baselines, with a
focus on rare entity types. Fine-tuning is car-
ried out using Unsloth4 with LoRA adapters
for parameter-efficient training, and inference
is performed using Transformers5.

5.2 Model Selection
We selected top-performing LLMs from diverse
architectures, including high-ranking open-source
models from the Hugging Face Open LLM Leader-
board6 and proprietary models accessed via APIs.
To manage computational constraints, open-source
models were limited to 27 billion parameters, ensur-
ing a balanced comparison. A full list of selected
models is provided in Appendix A.

2https://spacy.io/
3https://docs.vllm.ai/
4https://unsloth.ai/
5https://huggingface.co/docs/transformers
6https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard

To establish meaningful baselines, we trained
prominent encoder-only models on the Ukrainian
NER dataset. These included GLiNER (Zaratiana
et al., 2024), XLM-RoBERTa (Conneau et al.,
2019), Modern BERT (Warner et al., 2024) vari-
ants, as well as other transformer-based models
pre-trained on multilingual or domain-specific cor-
pora relevant to Ukrainian NER. Such models offer
strong performance in resource-efficient setups and
serve as reliable benchmarks to evaluate the added
value of LLM-based approaches.

5.3 Evaluation
This study uses the F1-score as the primary eval-
uation metric. Following the NER-UK 2.0 (Chap-
lynskyi and Romanyshyn, 2024) paper, employing
entity-level evaluation.

To assess model performance under different
validation levels, we define three evaluation stages:

• Bronze. Raw model output without any vali-
dation or cleaning.

• Silver. Light cleaning of LLM outputs, re-
moving hallucinations and correcting word
variants via char-level similarity7.

• Gold. Rule-based filtering enforcing con-
straints like disallowing person entities that
begin with lowercase letters or are pronouns8.

The code and experiments are available9.

6 Results and Discussion

6.1 Encoder-Only Model Fine-Tuning
Encoder-based models show consistent perfor-
mance, with F1 scores ranging from 0.855 to 0.890
(Appendix B). During this study, we identified and
corrected a training issue in the previously released
uk-ner-web-trf-13class, where the test set was
inadvertently used used as evaluation set to define
best model. The model was retrained with the ap-
propriate validation setup for fair comparison.
ModernBERT-large underperforms, reaching

0.762 F1, likely due to its monolingual architec-
ture and limited exposure to Ukrainian. The best
performance is achieved by roberta-large-NER
with 0.890 F1, showing strong results across both
frequent (PERS, ORG) and less frequent (ART, JOB)
entity types, indicating robust generalization.

7Char n-gram cosine similarity aligns noisy spans with
valid input.

8Pronouns are detected using POS tags from stanza.
9https://github.com/pofce/NER-Ukrainian-LLMs
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6.2 Zero-Shot, Few-Shot, and CoT Prompting

Few-shot prompting consistently outperforms zero-
shot, confirming the effectiveness of minimal in-
context learning. CoT prompting does not yield
consistent improvements, suggesting its limited
value for span-based tasks. Full results are avail-
able in Appendix C.

Post-processing significantly improves output
quality; moving from Bronze to Gold evaluation
often yields substantial F1 gains, indicating that
LLMs frequently generate near-correct predictions
that benefit from light normalization.

While larger models generally perform better,
architecture and pretraining quality remain critical.
Notably, open-source models like Gemma-3-27B-
IT reach 0.71 F1, closing the gap with proprietary
models such as GPT-4. However, this performance
comes at the cost of added complexity. In contrast,
generalist models like gliner achieve up to 0.67
F1 (Appendix D) with minimal setup, highlighting
a trade-off between performance and usability. 10

6.3 LLM Supervised Fine-Tuning

Supervised fine-tuning of LLMs yields perfor-
mance comparable to encoder-only baselines.
For instance, Gemma-3-27B-IT reaches 0.888 F1,
closely aligning with roberta-large-NER (Ap-
pendix F). However, gains are limited on low-
resource categories such as TIME, MISC, and DOC,
indicating that increased model capacity alone does
not resolve data sparsity challenges.

All LLMs were fine-tuned with minimal hyper-
parameter tuning for consistency and efficiency
(Appendix E). While fine-tuned LLMs remain com-
petitive, their marginal improvements relative to
computational cost highlight the need for more ef-
ficient and targeted approaches for low-resource
NER.

7 Conclusion and Future Work

LLMs demonstrate strong performance for
Ukrainian NER under minimal supervision, par-
ticularly in few-shot settings. However, this comes
at the cost of increased computational demands
and system complexity. In contrast, generalist mod-
els like gliner, while less accurate, offer a more
efficient and accessible alternative.

10Prompt templates and code are available at
https://github.com/pofce/NER-Ukrainian-LLMs/
tree/main/experiments/prompting

Supervised fine-tuning of LLMs yields results
comparable to encoder-only baselines but provides
limited improvement on low-resource entity types
and requires significantly more resources.
roberta-large-NER emerged as the best-

performing model on the NER-UK 2.0 benchmark,
establishing a new state-of-the-art. A full side-by-
side comparison of top models from each approach
is provided in Appendix G.

Model Experiment F1 Score

roberta-large-NER Fine-tuning 0.890
Gemma-3-27B-IT Fine-tuning 0.888
GPT-4o Zero-shot 0.724
Gemma-3-27B-IT Few-shot 0.712
GLiNER Zero-shot 0.670

Table 1: Best-Performing Models Across Approaches

Future work will explore adapting LLMs into
encoder-style architectures for more efficient token-
level prediction and reinforcement learning from
human feedback tuning techniques. We also plan
to annotate the social media portion of UberText
2.0 (Chaplynskyi, 2023) using the best-performing
model to create a silver-standard NER dataset.

Limitations and Ethical Considerations

This study acknowledges several limitations:

• The analysis focused on open-source models
under 27B parameters, and proprietary mod-
els were minimally considered due to limited
access.

• Prominent LLM-based NER techniques were
not extensively applied due to time and re-
source constraints.

• LLMs were treated as generative models; in-
tegration into encoder-style architectures for
token-level prediction remains unexplored and
may offer benefits in span-based tasks.

• All experiments were based on a single
dataset.

In this study, no personally identifiable informa-
tion was used. ChatGPT11 was used to paraphrase
and improve the textual clarity during the writing
process.

11https://chatgpt.com/
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A. Model Sizes

Model Number of Parameters Model Category
gpt-4o-2024-11-20 - Proprietary LLM
Gemma-3-27B-IT 27.4B Open-Source LLM
Gemma-2-27B-IT 27.2B Open-Source LLM
Gemma-2-9B-IT 9.2B Open-Source LLM
Phi-4 14.7B Open-Source LLM
Qwen-2.5-14B-Instruct 14.8B Open-Source LLM
Qwen-2.5-7B-Instruct 7.6B Open-Source LLM
DeepSeek-R1-Distill-Qwen-14B 14.8B Open-Source LLM
Gemma-2-2B-IT 2.6B Open-Source LLM
Qwen-2.5-3B-Instruct 3.0B Open-Source LLM
Llama-3.2-3B-Instruct 3.2B Open-Source LLM
Phi-3-mini-4k-instruct 3.8B Open-Source LLM
Llama-3.1-8B-Instruct 8.3B Open-Source LLM
Aya-expanse-8b 8.0B Open-Source LLM
Aya-101 13.0B Open-Source LLM
roberta-large-NER 561M Encoder-only
xlm-roberta-large 561M Encoder-only
NuNER-Zero 449M Encoder-only
Modern-BERT-large 396M Encoder-only
gliner-multi-v2.1 209M Encoder-only
gliner-multi-pii-v1 209M Encoder-only
uk-ner-web-trf-13class 110M Encoder-only

B. Final Results on Encoder-Only Model
Tuning

Entity roberta-
large-NER

xlm-roberta-
large

gliner-multi-
v2.1

Modern-
BERT-large

uk-ner-web-
trf-13class

JOB 0.699 0.689 0.699 0.470 0.696
PERIOD 0.743 0.742 0.712 0.596 0.769
QUANT 0.915 0.929 0.819 0.803 0.860
DOC 0.561 0.556 0.456 0.271 0.574
LOC 0.916 0.918 0.880 0.720 0.899
DATE 0.895 0.896 0.881 0.839 0.908
ORG 0.916 0.913 0.875 0.791 0.918
PERS 0.968 0.968 0.951 0.862 0.967
TIME 0.500 0.609 0.471 0.000 0.700
MON 0.955 0.960 0.906 0.915 0.919
MISC 0.344 0.386 0.249 0.138 0.359
ART 0.737 0.759 0.639 0.508 0.757
PCT 1.000 0.989 0.961 0.977 0.973
Overall 0.890 0.889 0.855 0.762 0.887
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C. LLM Performance Across Evaluation
Stages

Model Bronze Silver Gold
Zero-
Shot

Few-
Shot

CoT Zero-
Shot

Few-
Shot

CoT Zero-
Shot

Few-
Shot

CoT

GPT-4o 0.67 0.71 0.60 0.68 0.71 0.61 0.72 0.71 0.68
Gemma-3-27B-IT 0.39 0.67 0.40 0.41 0.69 0.43 0.56 0.71 0.58
Gemma-2-27B-IT 0.45 0.62 0.38 0.49 0.66 0.40 0.58 0.70 0.51
Gemma-2-9B-IT 0.42 0.49 0.42 0.46 0.54 0.47 0.55 0.62 0.60
Phi-4 0.38 0.48 0.36 0.43 0.53 0.41 0.52 0.61 0.51
Qwen-2.5-14B-Instruct 0.42 0.50 0.36 0.44 0.53 0.38 0.53 0.57 0.48
Qwen-2.5-7B-Instruct 0.34 0.36 0.30 0.36 0.38 0.33 0.45 0.45 0.44
DeepSeek-R1-Distill-Qwen-14B 0.34 0.11 0.35 0.36 0.13 0.38 0.42 0.13 0.46
Gemma-2-2B-IT 0.16 0.30 0.25 0.20 0.37 0.28 0.28 0.47 0.36
Qwen-2.5-3B-Instruct 0.18 0.33 0.20 0.22 0.37 0.23 0.28 0.45 0.30
Llama-3.2-3B-Instruct 0.17 0.28 0.13 0.24 0.41 0.23 0.30 0.45 0.25
Phi-3-mini-4k-instruct 0.16 0.27 0.19 0.19 0.32 0.24 0.23 0.39 0.29
Llama-3.1-8B-Instruct 0.14 0.23 0.14 0.18 0.29 0.18 0.25 0.37 0.23
Aya-expanse-8b 0.23 0.03 0.23 0.31 0.03 0.28 0.34 0.03 0.29
Aya-101 - 0.31 - - 0.38 - - 0.41 -

D. Zero-Shot Performance of Generalist
Models

Model Bronze Silver Gold
gliner-multi-v2.1 0.53 0.53 0.67
gliner-multi-pii-v1 0.46 0.46 0.62
NuNER-Zero 0.41 0.41 0.58

E. Parameter Tuning with Different
LoRA Parameters (80% Data)

Model LoRA r=16 LoRA r=32 LoRA r=64
Qwen-2.5-14B-
Instruct

0.851 0.851 0.853

Phi-4 0.869 0.871 0.874
Gemma-2-27B-IT 0.865 0.860 0.864
Gemma-3-27B-IT 0.867 0.879 0.882
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F. Final SFT Results

Entity Qwen2.5-14B-
Instruct

Phi-4 Gemma-2-27B-
IT

Gemma-3-27B-
IT

JOB 0.624 0.638 0.662 0.642
PERIOD 0.667 0.714 0.742 0.747
QUANT 0.812 0.833 0.864 0.897
DOC 0.479 0.464 0.537 0.514
LOC 0.890 0.907 0.903 0.929
DATE 0.866 0.885 0.900 0.906
ORG 0.898 0.911 0.918 0.923
PERS 0.955 0.967 0.966 0.965
TIME 0.400 0.571 0.824 0.632
MON 0.950 0.958 0.964 0.953
MISC 0.390 0.314 0.311 0.350
ART 0.725 0.774 0.740 0.716
PCT 0.977 0.966 0.994 0.989
Overall 0.867 0.882 0.886 0.888

G. Comparison of Best-Performing
Models Across Approaches

Entity Tuning Prompting
roberta-large-
NER

Gemma-3-
27B-IT

GPT-4o Gemma-3-
27B-IT

GLiNER

JOB 0.699 0.642 0.332 0.381 0.141
PERIOD 0.743 0.747 0.263 0.280 0.105
QUANT 0.915 0.897 0.475 0.000 0.155
DOC 0.561 0.514 0.122 0.000 0.111
LOC 0.916 0.929 0.775 0.782 0.705
DATE 0.895 0.906 0.650 0.738 0.663
ORG 0.916 0.923 0.809 0.757 0.672
PERS 0.968 0.965 0.900 0.870 0.863
TIME 0.500 0.632 0.308 0.111 0.154
MON 0.955 0.953 0.916 0.525 0.812
MISC 0.344 0.350 0.077 0.000 0.000
ART 0.737 0.716 0.289 0.000 0.175
PCT 1.000 0.989 0.910 0.949 0.867
Overall 0.890 0.888 0.724 0.713 0.669
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