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Abstract

This paper presents one of the top-performing
solutions to the UNLP 2025 Shared Task on De-
tecting Manipulation in Social Media. The task
focuses on detecting and classifying rhetorical
and stylistic manipulation techniques used to in-
fluence Ukrainian Telegram users. For the clas-
sification subtask, we fine-tuned the Gemma 2
language model with LoRA adapters and ap-
plied a second-level classifier leveraging meta-
features and threshold optimization. For span
detection, we employed an XLM-RoBERTa
model trained for multi-target, including token
binary classification. Our approach achieved
2nd place in classification and 3rd place in span
detection.

1 Introduction

In times of war, information can have the same
power as weaponry. During the 2022 Russian inva-
sion of Ukraine, Telegram emerged not only as a
battlefield communication tool but also as the pri-
mary source of information for 44% of Ukrainians.
Its speed, reach, and anonymity became an impor-
tant tool for civilians and military actors. How-
ever, these features — particularly minimal content
moderation and user anonymity — have also made
Telegram a favorable environment for influence
operations (Vorobiov, 2024).

Manipulation on social media is a complex and
nuanced phenomenon. It includes not just factual
distortions (i.e., disinformation) but also rhetorical
strategies, emotional appeals, and narrative fram-
ing that are designed to influence perception or
behavior subtly. In this paper, we present the solu-
tion1 to the UNLP 2025 Shared Task,2 focused on
manipulative narratives detection, which is defined
as the intentional use of language and messaging

1https://github.com/akhynkokateryna/
manipulative-narrative-detection

2https://github.com/unlp-workshop/
unlp-2025-shared-task

tactics aimed at influencing beliefs, emotions, or
attitudes, without providing clear factual support.

The task includes several challenges that make it
particularly complex. First, it focuses exclusively
on the textual content of social media posts with-
out incorporating metadata such as user history or
engagement metrics. Second, the dataset presents
multiple layers of complexity: it is imbalanced
across manipulation types, multilingual (primarily
Ukrainian and Russian), and multi-label, meaning
that a single post can include several manipula-
tion techniques simultaneously. Finally, the span
detection subtask requires identifying the exact tex-
tual fragments responsible for the manipulation,
often implicit, rhetorical, or emotionally charged
language that is difficult to isolate.

Given these challenges, we developed a system
that achieved second place in manipulation tech-
niques classification and third place in span de-
tection subtasks (see Figure 1). For classification,
we fine-tuned the Gemma 2 language model us-
ing LoRA adapters and introduced a second-level
classifier that leveraged meta-features and custom
threshold optimization. For span detection, we
trained an XLM-RoBERTa model capable of multi-
target, token-level binary classification to locate
manipulative spans within posts.

2 Related Work

Our research is based on a growing body of work in
detecting propaganda and misinformation analysis.
Numerous studies have focused on identifying pro-
paganda techniques in news articles, particularly in
the context of SemEval-2020 Task 11. Da San Mar-
tino et al. (2020) explored detecting propaganda
techniques in news articles through span identifica-
tion and technique classification tasks.

Similarly to previous research, the UNLP 2025
Shared Task includes two subtasks: manipulation
technique classification (a multi-label classifica-
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Figure 1: Sketch of manipulation techniques classifica-
tion and span detection problems

tion) and span detection (a token classification).
Within this framework, research from SemEval-
2020 Task 11 demonstrated BERT’s remarkable
capabilities for propaganda technique identifica-
tion (Altiti et al., 2020). Further advancing this line
of inquiry, Da San Martino et al. (2020) showcased
RoBERTa’s performance in addressing both tasks
simultaneously.

At the same time, the nature of propaganda on
social media evolves continuously, adapting to spe-
cific circumstances to remain undetected. Solopova
et al. (2023) explored this process by combining
machine learning and linguistic analysis to reveal
how pro-Kremlin propaganda evolved in the con-
text of the 2022 Russian invasion of Ukraine. In
this context, it is important to note that while our
work has a similar goal, we focus specifically on
detecting manipulative narratives regardless of the
factual support of the claim. This distinguishes
our approach from fact-checking or knowledge ma-
nipulation detection methods (Trokhymovych and
Saez-Trumper, 2021; Trokhymovych et al., 2025).

In our case, we are dealing with multilingual
Telegram data containing Ukrainian and Russian
texts. In this scenario, fine-tuning a multilin-
gual model, such as XLM-RoBERTa, appears to
be a more productive approach, as demonstrated
in research on hostility identification for low-
resource Indian languages (Sai et al., 2021). More-
over, XLM-RoBERTa-based models have demon-
strated cross-lingual strengths in other downstream
tasks, including those involving Ukrainian and Rus-
sian languages (Mehta and Varma, 2023; Trokhy-
movych et al., 2024).

While Sprenkamp et al. (2023) discovered that
fine-tuned RoBERTa outperformed zero and few-
shot learning approaches with LLMs for propa-
ganda detection, newer advances in large language

Figure 2: Co-occurrence of manipulation techniques in
the combined training and testing sets

models show considerable promise. Recent innova-
tions have developed methods to transform decoder-
only LLMs into effective text encoders suitable for
classification tasks (BehnamGhader et al., 2024).
Models such as Gemma offer particularly interest-
ing customization potential for classification chal-
lenges (Team et al., 2024).

Notably, Gemma-family models enable fine-
tuning with LoRA adapters and support quantiza-
tion techniques, making them viable options even
with limited computational resources. Building on
this foundation, (Kiulian et al., 2024) ventured into
fine-tuning both Gemma and Mistral specifically
to enhance Ukrainian language representation, pro-
viding valuable insights that directly inform our ap-
proach to detecting manipulative narratives within
Telegram content from the region.

3 Data

The UNLP shared task dataset contains more than
9,500 text samples collected from Telegram chan-
nels, with 68% of these collected samples contain-
ing manipulative narratives. This dataset forms the
basis for a dual-task challenge: classifying manip-
ulation techniques and identifying corresponding
text spans.

The data is divided into training and testing sets,
with 3,822 samples allocated for training and 5,735
for testing. Among the 3,822 training samples,
2,147 (56%) are in Ukrainian and 1,675 (44%) are
in Russian. At the same time, the testing set does
not include language labels. Notably, the testing
set is further split into public and private sets for
leaderboard evaluation.

195



Each post is annotated for both classification and
span detection tasks. Specifically, every sample is
labeled with one or more of ten predefined manipu-
lation techniques, detailed in Appendix A. Manipu-
lative text segments are also defined, irrespective
of the specific technique involved.

Figure 2 illustrates manipulation techniques’ co-
occurrence patterns across training and testing sets.
As the distribution of labels is similar in both sub-
sets, we present them together for clarity.

4 Methodology

In this section, we present our approaches for solv-
ing the technique classification and span identifica-
tion subtasks.

4.1 Technique Classification

The manipulation technique detection task is for-
mulated as a multi-label text classification problem,
where each input text may contain multiple manipu-
lation strategies. Each sample is annotated with any
number of 10 predefined manipulation techniques.

Our best-performing solution involves multi-
stage fine-tuning of the instruction-tuned Gemma
2 2B IT model.3 The complete fine-tuning pipeline
schema is presented in Figure 3.

Firstly, we fine-tune the model using a causal
language modeling (CLM) objective, where the
model learns to predict the next token given a left-
to-right context. Specifically, we employed the
AutoModelForCausalLM class from HuggingFace
Transformers.

The model was trained to autoregressively gen-
erate a comma-separated list of manipulation tech-
niques based on a task-specific prompt. We con-
structed a dataset of prompt inputs for each training
data point, which included:

• an instruction to identify manipulative tech-
niques in a text;

• descriptions of all ten manipulation tech-
niques;

• four few-shot examples, selected from the
training set: two were chosen based on cosine
similarity between the target text and other
texts in the training set, and the other two
based on cosine similarity between the target
text and the trigger phrases (i.e., manipulative
spans in texts) found in other training samples.

3https://huggingface.co/google/gemma-2-2b-it

To control input length, we select the few-shot
examples from the subset limited by texts shorter
than 500 characters. To get a vector representation
of the texts, we encode them using SentenceTrans-
formers, employing mGTE model (Reimers and
Gurevych, 2019; Zhang et al., 2024). Later, these
vectors are used for few-shot candidates selection
and text clustering.

As for this stage of model tuning, we used al-
most the whole training dataset, as our main goal
was to expose the model to as much relevant data
as possible rather than tuning to a specific down-
stream task. Due to the high computational cost of
full model fine-tuning, we instead trained LoRA
adapter using a CLM objective. The adapter was
configured with causal LM task type via the PEFT
library to ensure compatibility with the CLM setup.
Finally, we got the fine-tuned adapter for the text
generation in the form of a list of manipulation
techniques.

In the second stage, we merged the LoRA
adapter from the first stage with the base model,
set the model to a multi-label classification mode,
and trained an additional LoRA adapter. The input
for this stage consisted of text samples and their
corresponding technique labels.

In the third stage, we combined the probability
outputs from the previous stage with a set of engi-
neered meta-features to train a CatBoost model for
multi-label classification on the same training set.
The additional features include:

1. distances from each text to the centroids of
clusters formed by triggered phrases from the
training set using K-means;

2. frequency of each manipulation technique
among the most similar examples from the
training set selected based on cosine similar-
ity with their text and trigger phrases;

3. additional meta-features such as word count,
number of question marks, presence of URLs,
etc.

To construct the clustering-based features, we
applied the K-means clustering algorithm to the
set of triggered phrases extracted from the training
set. Firstly, we encode the text with SentenceTrans-
formers as mentioned earlier. We set the number
of clusters (K) to be K=10, equal to the number of
unique manipulation techniques. Finally, for each
sample text, we calculate the cosine distance to the
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Figure 3: Pipeline of technique classification solution

centroid of each cluster. This approach allows the
model to capture how semantically close a text is
to common manipulation patterns identified in the
training data.

For the similarity-based frequency features, we
computed pairwise cosine similarity between the
embedded texts. For each text, we selected two
sets of 10 most similar examples from the training
set: (1) based on overall similarity to other full
texts, and (2) based on similarity to trigger phrases
from other texts. We calculated the frequency dis-
tribution of manipulation techniques among the
nearest neighbors in both cases. These techniques
and meta-linguistic features (e.g., word count, pres-
ence of punctuation) were combined with model
probabilities to train the final CatBoost classifier.

Finally, since the dataset is highly imbalanced,
we optimized class-wise thresholds by performing
k-fold cross-validation and choosing the median of
the best thresholds within folds for each class sepa-
rately. This approach avoids the pitfalls of using a
single global threshold, especially for rare classes,
and improves overall performance on the macro F1
score, which treats all classes equally. So, we used
this method to construct the final prediction using
the probability scores from the CatBoost model.

4.2 Span Identification

Span identification for manipulative content is de-
fined as a binary token classification task, where
each token is labeled as either manipulative or non-
manipulative, independent of the specific manip-
ulation technique. Identified manipulative tokens
are then mapped to character indices and grouped
into spans, allowing for precise extraction of ma-
nipulative text.

For this task, we employ a multi-headed archi-
tecture based on the XLM-RoBERTa-Large4 (see
Figure 4). Two custom classification heads are
introduced: one dedicated to classifying manipula-

4https://huggingface.co/FacebookAI/
xlm-roberta-large

Figure 4: Pipeline of span identification solution

tive techniques (multi-label classification) and the
other to token classification. Both heads share a
common encoder, allowing the model to benefit
from shared representations across tasks.

The span identification head consists of a sin-
gle linear layer applied to the contextualized token
representations, predicting the likelihood of each
token being part of a manipulative span.

The technique classification head operates on a
pooled representation formed by concatenating the
[CLS] token embedding, mean-pooled, and max-
pooled token embeddings. This concatenated vec-
tor is passed through a linear layer that projects it to
a lower-dimensional space of size 256, followed by
a GELU activation. The intermediate representa-
tion is then regularized through layer normalization
and dropout before being passed to a final linear
layer that projects it to the space of manipulation
technique labels.

To balance the influence of both tasks during
training, we apply a reduced weighting coefficient
to the classification head’s loss when computing the
overall objective. This ensures that span detection
remains the primary focus, while the model still
benefits from auxiliary guidance.

Consistent with Technique Classification Sub-
task, we determine optimal prediction thresholds
through k-fold cross-validation, ensuring robust
calibration and generalization across splits.
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5 Evaluation

5.1 Technique Classification

The manipulation techniques classification subtask,
as defined in the shared task, uses a macro-averaged
F1 score as its primary evaluation metric. This
metric treats all classes equally, regardless of their
frequency in the dataset. Appendix B.1 provides a
detailed explanation of the metric.

Our main results are summarized in Table 2,
where F1 scores were recalculated on the full test-
ing set. As a baseline, we used a multi-label Cat-
Boost model with threshold optimization. For base-
line training, we use a dataset that consists only of
meta-features used in the final step, as explained in
Section 4.1.

Although the baseline appeared to be an effective
solution regarding resource efficiency and perfor-
mance, it was insufficient to remain competitive
in the challenge. This motivated integrating the
Gemma 2-based solution, as introduced in Sec-
tion 4.1. In our final comparison, we present two
configurations of this model—with and without
final post-processing using CatBoost and metafea-
tures. The results demonstrate that Gemma-based
solutions significantly outperform the baseline. Al-
though the post-processing step results in only a
minor improvement, it is essential to achieve a com-
petitive advantage in the competition.

We also conducted a performance analysis for
each class (see Table 1), revealing considerable
variation in the model’s effectiveness across differ-
ent techniques. Notably, the model performs sig-
nificantly worse on underrepresented classes such
as whataboutism, straw_man, and bandwagon. In
contrast, it achieves the highest performance on the
loaded_language class, which has over ten times
more samples than the mentioned underrepresented
ones.

5.2 Span Identification

Like the previous subtask, span identification relies
on the evaluation metrics defined in the shared task.
Specifically, we use the span-level F1-score, quan-
tifying the overlap between predicted and defined
character spans. Appendix B.2 provides a detailed
explanation of this metric.

Our span detection pipeline also incorporates
post-processing and a threshold selection step, as
described in Section 4.2. As a strong baseline, we
employed the XLM-RoBERTa model configured
for token classification. Building on top of it, we ex-

Technique F1 score Support
appeal_to_fear 0.450 449
bandwagon 0.215 236
cherry_picking 0.467 768
cliche 0.328 695
euphoria 0.550 695
fud 0.525 576
glittering_generalities 0.644 723
loaded_language 0.782 2959
straw_man 0.287 207
whataboutism 0.296 235

Table 1: Classification report for technique prediction

Solution F1 macro
Baseline (CatBoost) 0.40801
Gemma 0.45007
Gemma with post-processing 0.45447

Table 2: Comparison of our solutions for technique
classification during the competition

plored the hypothesis that a two-head transformer,
combined to address both subtasks simultaneously,
could enhance generalization and improve results.
Although, as shown in Table 4, the performance
gain was not large. This approach ultimately se-
cured us third place in the competition, as reported
in Table 5. These findings suggest that, for practi-
cal applications, a simpler baseline approach may
be more robust and justified.

6 Conclusion

To sum up, this paper presents a competitive so-
lution to the UNLP 2025 Shared Task on detect-
ing manipulative narratives in Ukrainian Telegram
news. By leveraging a multi-stage fine-tuned
Gemma 2 language model with LoRA adapters for
technique classification and a two-headed XLM-
RoBERTa architecture for span detection, our ap-
proach secured second and third place in the re-
spective subtasks.

Key achievements include a two-phase fine-

Team Public Private
GA 0.47369 0.49439
MolodiAmbitni 0.46203 0.46952
CVisBetter_SEU 0.43669 0.45519

Table 3: Comparison of metrics for top-3 solutions from
competition leaderboard for manipulation classification
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Solution Span-level F1
Baseline 0.58588
Two-head transformer 0.59888

Table 4: Comparison of our solutions for span detection
during the competition

Solution Public Private
GA 0.64598 0.64058
CVisBetter_SEU 0.59873 0.60456
MolodiAmbitni 0.59662 0.60001

Table 5: Comparison of metrics for top-3 solutions from
competition leaderboard for span detection subtask

tuning of a decoder-only model (Gemma) for classi-
fication, first via causal language modeling, then su-
pervised multi-label learning. We further enhanced
performance with a post-processing step using a
CatBoost classifier that combined meta-features
with previously predicted class probabilities. Per-
class threshold optimization addressed label imbal-
ance and improved macro-F1 performance. For
span detection, we introduced a dual-head archi-
tecture that jointly learned classification and token-
level labeling, encouraging better generalization
through shared representations.

Results show that each enhancement added mea-
surable value. Post-processing raised the classifica-
tion macro-F1 from 0.45007 to 0.45447, while span
detection improved from 0.58588 to 0.59888 with
the dual-head setup. However, performance varied
notably across manipulation types: while frequent
classes like loaded_language were predicted with
high accuracy, rarer classes such as whataboutism
and straw_man remained challenging.

Limitations

We are working with a dataset that includes texts
only in Ukrainian and Russian. While LLMs
are improving multilingual support, existing open-
source models have limited support for those lan-
guages. Also, Telegram posts often contain infor-
mal language, slang, neologisms, emojis, and irreg-
ular formatting. It may reduce the effectiveness of
pre-trained models, which are typically trained on
more formal text.

While the dataset was annotated by experienced
professionals, the manipulation signal is subjective
and context-dependent. This can lead to ambiguous
labels, especially in span identification, where the
boundaries of manipulative content are not always

clearly defined.
Moreover, the dominance of certain manipula-

tion techniques (e.g., loaded language) makes the
classification task imbalanced. Although steps can
be taken to mitigate this (e.g., resampling, class
weighting, or threshold selection in our case), per-
formance on rare techniques remains a challenge.

The dataset presented for the competition ap-
pears to be divided into training and test sets with-
out considering the chronological order of posts.
As a result, the evaluation may not reflect the real-
world scenario of predicting new, emerging manip-
ulation patterns.
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A Manipulation Techniques

Table 6 contains each class explanation that was
provided by the organisers.5

B Metrics

B.1 Techniques Classification

To evaluate the classification of manipulation tech-
niques, we use the macro-averaged F1 score, which
ensures balanced assessment across all techniques.
Given a set of texts V and manipulation techniques
T , each text is labeled with a binary vector indicat-
ing the presence of techniques. The model predicts
a vector of the same size, and for each technique
t ∈ T , we compute the F1 score:

F1t =
2 · Pt ·Rt

Pt +Rt

where precision Pt measures correct predictions
among all predicted instances, and recall Rt mea-
sures correct predictions among actual instances.
The final macro-F1 score is obtained as:

F1macro =
1

|T |
∑

t∈T
F1t

This approach is particularly useful for handling
class imbalances as it prevents frequently occur-
ring techniques, which are typically detected with
greater accuracy, from dominating the overall per-
formance score.

B.2 Span Identification

To evaluate the accuracy of detected spans, we
use the span-level F1 score, which measures the
overlap between predicted and actual spans. Let V
be the set of all texts in the dataset. Each text v ∈ V
has a set of ground truth spans Sv and predicted
spans Ŝv. The set of manipulated tokens in text v
is defined as the collection of all characters whose
index falls in at least one manipulation span:

Tv =
⋃

(s,e)∈Sv

{s, s+ 1, . . . , e− 1}

T̂v =
⋃

(s,e)∈Ŝv

{s, s+ 1, . . . , e− 1}

Precision and recall are computed as:

5https://github.com/unlp-workshop/
unlp-2025-shared-task/blob/main/data/
techniques-en.md

P =

∑
v∈V |Tv ∩ T̂v|∑

v∈V |T̂v|

R =

∑
v∈V |Tv ∩ T̂v|∑

v∈V |Tv|
The final span-level F1 score is given by:

F1 =
2PR

P +R
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Name Description
Loaded Language The use of words and phrases with a strong emotional connotation (positive or

negative) to influence the audience.
Glittering Generalities Exploitation of people’s positive attitude towards abstract concepts such as

“justice,” “freedom,” “democracy,” “patriotism,” “peace,” “happiness,” “love,”
“truth,” “order,” etc. These words and phrases are intended to provoke strong
emotional reactions and feelings of solidarity without providing specific infor-
mation or arguments.

Euphoria Using an event that causes euphoria or a feeling of happiness, or a positive event
to boost morale. This manipulation is often used to mobilize the population.

Appeal to Fear The misuse of fear (often based on stereotypes or prejudices) to support a
particular proposal.

FUD (Fear, Uncertainty,
Doubt)

Presenting information in a way that sows uncertainty and doubt, causing fear.
This technique is a subtype of the appeal to fear.

Bandwagon/Appeal to
People

An attempt to persuade the audience to join and take action because “others are
doing the same thing.”

Thought-Terminating
Cliché

Commonly used phrases that mitigate cognitive dissonance and block critical
thinking.

Whataboutism Discrediting the opponent’s position by accusing them of hypocrisy without
directly refuting their arguments.

Cherry Picking Selective use of data or facts that support a hypothesis while ignoring counter-
arguments.

Straw Man Distorting the opponent’s position by replacing it with a weaker or outwardly
similar one and refuting it instead.

Table 6: Explanation of Manipulation Techniques provided by UNLP Shared Task
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