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Abstract

We participated in the Fourth UNLP shared
task on detecting social media manipulation
in Ukrainian Telegram posts (Kyslyi et al.,
2025), addressing both multilabel technique
classification and token-level span identifica-
tion. We propose two complementary solutions:
for classification, we fine-tune the decoder-only
model with class-balanced grid-search thresh-
olding and ensembling. For span detection,
we convert causal LLM into a bidirectional en-
coder via masked language modeling pretrain-
ing on large Ukrainian and Russian news cor-
pora before fine-tuning. Our solutions achieve
SOTA metric results on both shared task track.
Our work demonstrates the efficacy of bidi-
rectional pretraining for decoder-only LLMs
and robust threshold optimization, contributing
new methods for disinformation detection in
low-resource languages.

1 Introduction

1.1 Motivation & Context
Disinformation on social media poses significant
threats to public discourse and democratic pro-
cesses. In the Ukrainian context, Telegram is a
primary channel for news dissemination and pro-
paganda, where rhetorical manipulation techniques
can influence opinions without factual support. Ac-
curate detection of these techniques at both the doc-
ument and span levels is crucial for fact-checking,
media literacy, and automated moderation.

1.2 Shared Task Overview
The Fourth UNLP workshop, held alongside ACL
2025, hosted a shared task on detecting social me-
dia manipulation in Ukrainian Telegram posts. Par-
ticipants addressed two subtasks: multilabel clas-
sification of manipulation techniques per post and
char-level identification of manipulative spans. The
dataset comprises 9,500 posts annotated by media
experts.

1.3 Contributions
We make 2 key contributions:

1. We demonstrate that threshold optimization
via grid search regularized with respect to
the class balance improves F scores for both
shared task tracks.

2. We introduce a bidirectional pretraining proce-
dure for converting a decoder-only LLM into
an encoder via masked language modeling on
large Ukrainian and Russian corpora, yielding
superior span detection performance.

2 Related Work

2.1 Disinformation & Propaganda Detection
One of the very first works to address the task of
detecting manipulative techniques in texts in de-
tail was written by Da San Martino et al. (2019).
It introduces the task of fine-grained propaganda
analysis, which involves identifying specific text
fragments that contain propaganda techniques and
classifying them by type. The issue of manipula-
tion and propaganda in the media is also explored
in the context of the Ukrainian media space, espe-
cially in Telegram channels. For example, in the
study by Steblyna (2022), pro-Kremlin propaganda
in popular Odessa-based Telegram channels is de-
tected using frame analysis. This topic is highly
important due to the ongoing Russo-Ukrainian war.

An additional challenge in manipulation detec-
tion in social media is domain shift, especially
when it comes to specific sources like Telegram.
In a recent study by (Bazdyrev, 2025), it is shown
that Telegram channel data containing manipulative
content related to the Russia-Ukraine war signifi-
cantly differs from more general news and social
texts. The author conclude that domain-adaptive
pretraining of models on Telegram corpora is nec-
essary. Given that our task is situated in a similar
domain, we likewise apply pretraining on Telegram
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posts to improve the model’s robustness to source-
specific characteristics and the stylistics of manipu-
lative content.

2.2 LLMs in Low-Resource Languages

Applying large language models (LLMs) to
low-resource languages presents a significant chal-
lenge, owing to the lack of high-quality training
data and their limited representation in existing
pre-training corpora. Researchers have investigated
several remedies, including further pre-training on
synthetic corpora generated with machine transla-
tion (Joshi et al., 2024) and the injection of struc-
tured linguistic knowledge through adapters and
knowledge graphs (Gurgurov et al., 2024).

While the field remains challenging, recent ini-
tiatives such as Meta’s No Language Left Behind
project (Costa-Jussà et al., 2022) and multilingual
evaluation benchmarks like XTREME (Hu et al.,
2020) have pushed companies to invest more seri-
ously in improving multilingual coverage. Never-
theless, performance in truly low-resource settings
is still lagging, especially in tasks requiring domain
adaptation or fine-grained understanding.

2.3 Adapting Decoder Models for
Encoder-Specific Tasks

Recent studies have explored methods to adapt
decoder-only models for encoder-specific tasks
by addressing their causal, unidirectional atten-
tion limitations. Proposed solutions range from
training-free to complex multiple stage pretraining
pipelines.

Training-free methods enhance models without
further training. Springer et al. (2024) showed
that repeating input text (echo) improves embed-
dings. Fu et al. (2024) proposed feeding each
layer’s decoded sentence embedding to the begin-
ning of the sentence in the next layer’s input for
pseudo-bidirectional context.

Another line of work explores modifying atten-
tion behavior during fine-tuning to enable bidirec-
tional context. Li et al. (2023) removed causal
masks entirely when fine-tuning LLaMA2 for tasks
like classification and named entity recognition
(NER). Li and Li (2023) enabled bidirectional at-
tention only in the final layer to improve sentence
embeddings. Dukić and Šnajder (2024) extended
this idea across multiple layers for NER and chunk-
ing tasks. Extending this line of work, Suganthan
et al. (2025) made a in-depth evaluation of different

causal unmasking strategies across a wide set of
tasks.

Incorporating additional pretraining,
BehnamGhader et al. (2024) introduced LLM2Vec,
a method that applies two stage pretraining before
fine-tuning.

3 Dataset

3.1 Data Source & Annotation

The UNLP shared task dataset1 is a multilingual
annotated collection of social media posts, mainly
in the context of the ongoing war in Ukraine. It
is annotated for the presence of manipulation and
the corresponding manipulative spans. A single
dataset is used for both tasks. For the classification
task, the goal is to predict the binary manipulative
label. For the span detection task, the model must
also identify character spans (i.e., trigger_words)
responsible for manipulation. Annotation guide-
lines are available at the shared task repository.

3.2 Structure & Target Format

Each data sample in the dataset includes the follow-
ing fields:

• id: A unique identifier for the message.

• content: The full text of the social media
post.

• lang: The language code of the post (e.g.,
uk for Ukrainian, ru for Russian).

• manipulative: A binary label indicating
whether the content is manipulative (True)
or not (False).

• techniques: A list of manipula-
tion techniques used in the message
(e.g., loaded_language, euphoria,
cherry_picking).

• trigger_words: A list of character-span
indices identifying the positions of manipu-
lative text segments within the content. This
enables fine-grained span-level supervision
for models.

The dataset provides distinct target formats for
the two subtasks:

1https://github.com/unlp-workshop/
unlp-2025-shared-task
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1. Classification: The target is a multi-label bi-
nary vector over 10 manipulation categories.

2. Span Identification: The target consists of
character-level spans for each sample where
manipulative content occurs.

3.3 Data Splits & Stratification

Since the dataset is shared between the classifica-
tion and span identification tasks, the same split
is suitable for both. This approach ensures consis-
tency across tasks and maintains label balance.

We divided the dataset into 5 folds using multi-
label stratified K-Fold cross-validation. One of the
folds was selected as the validation set, while the
remaining four folds were used for training. The
test set corresponds to the official leaderboard data
provided by the competition organizers and was
not used during training or validation.

Split Posts Avg. Chars

Train 3,058 612
Val 764 588
LB 5,735 590

Table 1: Dataset Statistics

3.4 Pretraining Corpora

We also prepared a pretraining news corpora,
constructed by merging two publicly available
datasets:

• Ukrainian news: 200K documents2

• Russian news: QA pairs3

4 Evaluation Metric and Threshold
Optimization

4.1 Evaluation Metric: F1 Score

The F1 score is a widely used metric for evaluat-
ing classification models, particularly under class
imbalance, as it balances precision and recall.

We evaluated our tasks with F1, but with dif-
ferent levels of aggregation. For more detailed
information, see Table 2.

Given the multi-label nature of the classifica-
tion task and the imbalance between classes, we

2https://huggingface.co/datasets/
zeusfsx/ukrainian-news

3https://huggingface.co/datasets/
AIR-Bench/qa_news_ru

Task Evaluation Metric

Classification Macro-averaged F1

Span detection Character-level F1

Table 2: Evaluation metrics used for each task.

focused on optimizing the F1-score during training
and postprocessing. To convert predicted probabil-
ities into binary decisions, we performed a class-
specific threshold search. This approach allowed
us to handle both frequent and rare classes more
effectively, rather than relying on a fixed threshold.

4.2 F1-Maximizing Grid Search
For each class, we perform an independent grid
search over t ∈ [0, 1] to find the threshold that
maximizes validation F1:

tgs = argmax
t

F1val(t).

While this yields the highest F1 on local cross-
validation, it risks overfitting to validation idiosyn-
crasies.

4.3 Class-Balance Regularization
To counteract overfitting, we select a threshold that
matches the predicted positive rate to the true class
prevalence. Denote by r∗ the true positive rate and
by r(t) the predicted positive rate at threshold t.
We choose

tcb = argmin
t
| r(t)− r∗|.

This ensures the classifier’s output distribution mir-
rors the dataset’s class balance, enhancing stability.

4.4 Alternative Method
We also evaluated the thresholding method of Lip-
ton (Lipton et al., 2014), but found its performance
inferior to hybrid the F1-maximizing and class-
balance approach in our setting.

4.5 Hybrid Threshold
We average the two thresholds to obtain

tfinal = α tgs + β tcb,

where the weights are defined as

α = β =
1

2
.

Thereby combining peak F1 performance with dis-
tributional robustness.
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5 Experimental Setup

5.1 Technique Classification

We conducted a series of experiments4 with
such models as Aya-Expanse (Dang et al., 2024),
LLaMA3 (AI@Meta, 2024), and Mistral-Large
(Mistral AI team, 2024) on held-out validation data,
evaluating our competiton metric. Gemma2 consis-
tently outperformed all alternatives, demonstrating
superior capacity to capture nuanced patterns in the
text. Accordingly, Gemma2-27B was adopted as
the core architecture for our classification pipeline.

5.1.1 Performance Summary
Results in Table 3 confirm that scaling to larger
decoder-only architectures and combining F1-
maximizing grid search with class-balance regu-
larization [4.5] yields solid performance and ro-
bust generalization across public and private leader-
boards.

5.2 Span Identification

The nature of the sequence labeling task requires
models to be capable of bidirectional contextual un-
derstanding. Consequently, our experiments were
primarily focused on encoder-only architectures,
including models such as mBERT (Devlin et al.,
2018), XLM-RoBERTa (Conneau et al., 2019),
EuroBERT (Boizard et al., 2025), mDeBERTaV3
(He et al., 2021), Aya-101 (encoder) (Üstün et al.,
2024).

We also investigated whether large-scale archi-
tectures with robust pretraining could overcome

4https://github.com/AntonBazdyrev/
unlp2025_shared_task

their inherent unidirectional limitations. We ex-
perimented with decoder-only architectures, in-
cluding Mistral (Mistral AI team, 2024), Phi4
(Abdin et al., 2024), LLaMA3 (AI@Meta, 2024),
Gemma2 (Gemma Team, 2024), Gemma3 (Gemma
Team, 2025). Among these, Gemma models per-
formed competitively, achieving results compara-
ble to encoder-only models.

5.2.1 Bidirectional Pretraining
Given Gemma’s promising performance despite its
unidirectional attention, we explored strategies to
enhance its bidirectional capabilities. Motivated by
approaches outlined in related literature [2.3], we
adopted a two-stage training pipeline:

1. Causal Unmasking via Masked Language
Modeling (MLM): We conducted MLM pre-
training on domain-related corpra [3.4] to im-
prove Gemma2’s bidirectional context mod-
eling capabilities, which resulted to what we
call the biGemma2 encoder model.

2. Span Identification Fine-tuning: Subse-
quently, we fine-tuned the model specifically
for span identification, optimizing its ability
to detect token-level manipulation.

5.2.2 Performance Summary
We employed F1-Maximizing Grid Search [4.2] for
threshold selection. While we experimented with
Class-Balance Regularization [4.3, 4.5], we found
it less effective as our data splits were stratified
by classification labels, resulting in different span
distributions and more balanced classes compared
to the classification task.

Model Local Validation Public LB Private LB

Gemma2-27b (ensemble) - 0.474 0.494
Gemma2-27b 0.500 0.460 0.481
Gemma2-9b 0.496 0.440 0.480
Gemma3-27b 0.483 0.439 0.468
Gemma2-27b (Lipton) 0.493 0.428 0.457
Gemma2-2b (translated) 0.413 0.375 0.370

Aya-Expanse-8b 0.419 0.389 0.414
Aya-101 0.307 - -

LLaMA3.2-3b translated texts 0.410 0.334 0.357
Phi-4 0.412 - -
Mistral-Large-123b 0.458 - -

Table 3: Technique Classification Performance (Macro-F1)
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Our bidirectional Gemma2-27B5 achieves Char-
F1 of 0.640, outperforming both encoder-only and
decoder-only baselines. Table 4 presents perfor-
mance metrics across models.

6 Alternative Approaches

In addition to our primary architectures, we ex-
plored several complementary strategies. Although
these methods offered conceptual advantages, none
outperformed our main models during evaluation.

6.1 Technique Classification

6.1.1 Translation-Based Methods

To leverage mature English-language LLMs, we
translated Ukrainian posts into English and applied
LLaMA3 and Gemma2 for multilabel technique
classification. Despite the strong performance
of these models in English, translation-induced
noise and domain mismatch significantly degraded
their macro-F1 scores compared to models trained
directly on Ukrainian text. This translation ap-
proach is applicable only to the classification task
since span detection requires precise character-
level alignment with the original text.

5https://huggingface.co/ABazdyrev/
bigemma-2-27b-lora

6.1.2 Zero-Shot Classification & Annotation
Consistency

In a zero-shot evaluation, GPT-4o achieved an F1
score of 0.32 for identifying manipulation tech-
niques. Introducing a chain-of-thought prompting
strategy raised the score to 0.36, but this remained
far below the performance obtained via fine-tuning,
suggesting potential issues with label reliability.
To assess annotation consistency, three experts in-
dependently re-annotated a small sample of the
dataset according to the original guidelines. The
resulting inter-annotator disagreements exposed
overlapping class definitions and ambiguous labels,
which likely impose an upper bound on model per-
formance. We therefore recommend (1) combining
multiple independent estimators—such as diverse
human annotators and complementary automated
models—and (2) refining and enforcing stricter la-
bel definitions. Although these methods have not
yet been applied at scale, we anticipate they will
improve both the consistency of annotations and
the accuracy of social-media manipulation classifi-
cation and detection.

6.2 Span Identification

6.2.1 LLaDA

We explored LLaDA (Nie et al., 2025), an 8-billion-
parameter bidirectional text diffusion model, for
token-level span detection. Although its architec-

Model Local Validation Public LB Private LB

biGemma2-27b/Aya-101/mDeBERTa-v3 (ensemble) - 0.646 0.642
biGemma2-27b (ensemble) - 0.646 0.641
biGemma2-27b 0.650 0.641 0.640
biGemma2-9b 0.646 0.632 0.637
Gemma3-27b 0.633 0.615 0.613
Gemma2-27b 0.627 0.610 0.611

biLLaMA3.1-8b 0.611 0.615 0.614
LLaMA3.3-70b 0.547 - -
LLaMA3.1-8b 0.581 0.570 0.572
LLaDA-8b 0.553 0.540 0.542

Mistral-Large-123b 0.599 - -
Aya-101 (encoder) 0.628 0.611 0.613
mDeBERTa-v3 0.624 0.610 0.612
EuroBERT-2b 0.566 - -
mT5 0.572 - -
No ML solution 0.396 0.393 0.389

Table 4: Span Detection Performance (Char-F1)
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ture and scale suggested potential advantages over
smaller encoder-only or unidirectional decoder-
only models, LLaDA underperformed both mDe-
BERTa and Gemma2 – likely due to language and
domain adaptation challenges.

6.2.2 Two-Stage Positive-Only Pipeline
To mitigate errors in span predictions on non-
manipulative posts, we devised a two-stage frame-
work: a binary classifier to detect manipulative
posts, followed by a dedicated span identifier ap-
plied only to positive instances. This approach
reduced spurious spans on clean posts but suffered
from error propagation, ultimately yielding lower
char-level F1 than our end-to-end sequence labeling
baseline.

6.3 Combining Both Tasks With Auxiliary
Loss

Recognizing the potential synergy between tasks,
we implemented a dual-head fine-tuning strategy
on mDeBERTa and Gemma2, combining a multi-
label classification head with a token-level span
detection head via an auxiliary loss. Although
training remained stable, joint optimization in-
troduced task interference: neither classification
macro-F1 nor span-level char-F1 improved over
separate single-task models.

7 Conclusions & Future Work

7.1 Summary of Findings

Our experiments demonstrate that incorporating
bidirectional context into the encoder is essential
for accurately identifying span boundaries, yielding
a marked improvement over unidirectional base-
lines. Moreover, we find that naively applied thresh-
olds can exacerbate performance degradation in the
presence of class imbalance; instead, class-aware
threshold selection consistently maintains preci-
sion–recall balance. Finally, out-of-fold ensem-
bling offers a dependable mechanism to smooth out
idiosyncratic errors across folds, thereby substan-
tially enhancing model robustness. Collectively,
these results underscore the importance of care-
fully calibrated architectural and post-processing
strategies in low-resource settings.

7.2 Broader Impacts

Beyond raw performance gains, our method-
ological advances have tangible applications for
fact-checking and misinformation detection in

Ukrainian media ecosystems. By demonstrating
transferability of bidirectional pretraining, we pave
the way for adoption in other under-resourced lan-
guages, where annotated data are scarce and an-
notation consistency remains a concern. In doing
so, we believe this work establishes a new state
of the art for a broad array of Ukrainian-language
downstream tasks.

7.3 Future Directions

Scaling masked language model pretraining to
vastly larger Ukrainian text corpora is an important
direction for enriching contextual representations.
Equally critical is the establishment of a formal
annotation-consistency framework—comprising
inter-annotator agreement studies, iterative guide-
line refinement, and automated label-overlap de-
tection. Together, these measures help ensure
cleaner training signals and drive model perfor-
mance closer to its theoretical upper bound.

Limitations

Despite our advances, this study remains limited
by the relatively small and unevenly distributed an-
notated corpora available for a Ukrainian language,
as well as variability in the consistency and quality
of disinformation labels.
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