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Abstract

Text preprocessing is a fundamental compo-
nent of high-quality speech synthesis. This
work presents a novel rule-based phonemizer
combined with a sentence-level lexical stress
prediction model to improve phonetic accuracy
and prosody prediction in the text-to-speech
pipelines. We also introduce a new benchmark
dataset with annotated stress patterns designed
for evaluating lexical stress prediction systems
at the sentence level.

Experimental results demonstrate that the pro-
posed phonemizer achieves a 1.23% word er-
ror rate on a manually constructed pronunci-
ation dataset, while the lexical stress predic-
tion pipeline shows results close to dictionary-
based methods, outperforming existing neural
network solutions.

1 Introduction

Text-to-speech (TTS) systems are essential for en-
hancing human-computer interaction across vari-
ous everyday applications, including virtual assis-
tants, language learning tools, and navigation sys-
tems, while making digital content more accessible
to people with visual impairments. The quality of
TTS output depends heavily on accurate linguistic
analysis, especially for languages with rich mor-
phology like Ukrainian.

Effective text preprocessing is a critical step
in language modeling pipelines, helping models
generalize from limited data by transforming raw
input into a standardized format (Oyucu and Do-
gan, 2023). This reduces linguistic variability and
improves consistency. While similar results can
be achieved without preprocessing, such approach
typically requires significantly larger datasets and
forces the model to learn a broader range of mor-
phological and phonological irregularities, often at
the cost of performance and interpretability. More-
over, post-training adjustments such as refining

pronunciation or stress patterns become difficult
without retraining or fine-tuning the entire model.

Phonemization and lexical stress prediction are
two areas where preprocessing can significantly en-
hance TTS quality. Ukrainian, in particular, poses
unique challenges due to its complex phonology
and non-deterministic stress system (Moisiienko
A. K., 2010; Pohribnyi, 1984). The language fea-
tures rich inflectional morphology, frequent sound
changes, such as consonant cluster reductions and
different types of assimilation.

Moreover, Ukrainian has a non-deterministic
stress system, where lexical stress may be fixed in
some word forms, but in other cases varies based on
syntactic or morphological context, influenced by
factors such as free variation, where multiple stress
placements are correct without a change in meaning
(e.g., ба́йдуже vs. байду́же — “indifferently”);
heteronyms, where identical spellings have differ-
ent meanings depending on stress (e.g., за́мок —
“castle” vs. замо́к — “lock”); and inflectional
stress shifts, where morphological changes like
case or number alter stress placement (e.g., ни-
зови́ни — nominative plural vs. низовини́ —
genitive singular, both meaning “lowlands”).

Apart from that, phonemization is an essen-
tial preprocessing step that allows Text-to-Speech
models to create speech from phoneme-based
text, improving the match between text and au-
dio data. This means that the quality of generated
speech directly depends on the accurate mapping
of graphemes to phonemes.

These complexities make accurate stress pre-
diction and phonemization essential for natural-
sounding speech synthesis.

In this work, we propose a framework for
Ukrainian in which we introduce: a benchmark
dataset for evaluating the performance of existing
stress prediction systems; a context-aware model
for lexical stress prediction; and a new rule-based
phonemizer designed to reflect the unique phono-
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logical characteristics of Ukrainian.
The benchmark, datasets, and source code are

available at the following link: https://github.
com/lang-uk/ukrainian-tts-preprocessing.

2 Related Work

2.1 Lexical Stress Prediction

Traditional methods for lexical stress prediction
in Ukrainian have primarily relied on dictionary
lookups and rule-based systems. One such ap-
proach, presented in (Syvokon, 2022), combines
dictionary-based stress assignment with part-of-
speech (POS) tagging to resolve certain ambigu-
ous cases (e.g., доро́га (noun - "road") vs дорогá
(adjective - "expensive")). Although this hybrid
approach achieves good overall accuracy, it is lim-
ited to heteronym pairs with clearly distinct gram-
matical features. Additionally, it does not handle
out-of-vocabulary (OOV) or misspelled words.

More recently, neural network models have
been applied to address stress prediction. As part
of a Grapheme-to-Phoneme system, (van Esch
et al., 2016) developed a lexical stress prediction
approach using an LSTM-based model trained
on phonemic representations of words. A simi-
lar approach, but applied to original word forms
rather than phonemes, was used in (Smoliakov and
Mykhailenko, 2022) for the Ukrainian language.
Their method relied on dictionary-based training
data for predicting stress within individual words.
While these approaches effectively handle OOV
words, they fail to resolve contextual stress ambi-
guity, as they do not consider the broader linguistic
context of the sentence.

Some studies focus specifically on homograph
disambiguation pairs, using contextual features or
embeddings (Gorman et al., 2018; Nicolis and
Klimkov, 2021; Hajj et al., 2022), though these
methods target only a small set of word pairs and
require extensive annotated data.

An initial attempt to incorporate contextual
understanding into lexical stress prediction for
Ukrainian was presented in (Mykhailenko, 2023),
where a transformer-based model was trained on
synthetic stress-annotated data generated using la-
bels from (Syvokon, 2022) pipeline. While this
demonstrated the potential of using synthetic data,
the labeling approach was constrained by a prede-
fined dictionary, limiting coverage for OOV words.

To improve generalization in low-resource set-
tings, (Geneva et al., 2023) proposed a sentence-

level neural model for Bulgarian, trained on syn-
thetic data generated from an ASR-based stress
detection pipeline. This strategy showed that large-
scale machine annotation can be a viable alternative
to manual labeling, which we similarly adopted in
our approach.

2.2 Grapheme-to-Phoneme Conversion

Grapheme-to-phoneme (G2P) conversion, also
known as phonemization, refers to the process of
mapping written text to its corresponding phonemic
representation (Prabhu and von der Wense, 2020).
G2P is a crucial component in both speech syn-
thesis and automatic speech recognition systems.
Over the years, various approaches to G2P have
been developed, ranging from rule-based meth-
ods (Mortensen et al., 2018; Sazhok and Robeiko,
2012) to statistical models (e.g. conditional and
joint models (Chen, 2003), Hidden Markov Mod-
els (Taylor, 2005)) and modern neural architectures
(e.g. LSTMs (Rao et al., 2015), CNNs (Yolchuyeva
et al., 2019), Transformers (Prabhu and von der
Wense, 2020)).

For the Ukrainian language, most of the available
systems rely on rule-based approaches (Mortensen
et al., 2018; Sazhok and Robeiko, 2012; Chaplinsky
et al.). This is due in part to the limited availability
of high-quality pronunciation dictionaries and the
challenges in aligning phonemic and orthographic
symbol sets.

Despite the relatively transparent orthography,
achieving accurate grapheme-to-phoneme conver-
sion requires careful attention to linguistic charac-
teristics, such as assimilation. Many current solu-
tions exhibit flaws in their approach:

• overgeneralizing rules (e.g. the rule regarding
the assimilation of voiceless consonants, lead-
ing to берехти instead of the correct берегти
"keep") (Sazhok and Robeiko, 2012)

• prompting the user to modify the input
(e.g. adding a letter to accurately indicate
a morphemic boundary in вiджжилий "anti-
quated", пiдзземнiй "underground") (Chap-
linsky et al.)

• ignoring all phonetic phenomena by applying
naïve mapping between letters and phonemes
(Mortensen et al., 2018)

Furthermore, many existing solutions are either
not open source or are not publicly accessible for
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evaluation. In this study, our aim is to address all
these issues.

3 Approach to Stressifier

3.1 Benchmark Dataset: Ukrainian Lexical
Stress Corpus

A standardized evaluation framework is crucial for
comparing different systems with each other and
estimating their performance for a task. However,
to the best of our knowledge, there is no publicly
available benchmark for Ukrainian lexical stress
prediction, making it difficult to measure progress
or compare approaches fairly.

To address this gap, we introduce the first bench-
mark dataset for Ukrainian lexical stress prediction.
This dataset provides sentence-level context with
gold-standard stress annotations, enabling consis-
tent and meaningful evaluation across various ap-
proaches.

3.1.1 Dataset Composition

The dataset consists of 1,026 sentences manually
annotated with primary stress by a native speaker.
We intentionally retained OOV words and mis-
spellings to reflect real-world language use better.

Sentence data was collected from two pri-
mary sources: 300 sentences were extracted from
Wikipedia (Wikimedia), representing formal and
encyclopedic language, and 438 from the Pluper-
fect GRAC corpus (Shvedova and Lukashevskyi,
2024), which introduces a wider variety of writing
styles.

To facilitate the evaluation of contextual disam-
biguation for heteronyms, we identified 288 com-
monly used words exhibiting stress ambiguity, each
occurring only once in the initial dataset. Stress pat-
tern information for these words was obtained from
the "Dictionaries of Ukraine" (Ukrainian Lingua-
Information Foundation, 2008). We created an ad-
ditional sentence for each ambiguous word, pro-
viding an alternate stress variant, augmenting the
dataset with 288 new examples. This extension en-
sures a more balanced and comprehensive coverage
of word pairs with the same spelling but different
pronunciations.

An overview of key statistics for the benchmark
dataset is provided in Table 1.

The dataset will be publicly available to encour-
age further research and reproducibility.

Statistic Count

Total number of sentences 1,026
Unique word forms (including gram-
matical inflections, derivations, etc.)

6,439

Unique words with stress ambiguity
(due to meaning or inflections)

640

Unique words with at least two stress
forms in the dataset

296

Unique out-of-vocabulary words 1,005

Table 1: Overview of the Ukrainian Lexical Stress
Benchmark

3.2 Model Architecture and Training

Developing a context-aware model for predicting
lexical stress requires a large annotated dataset.
However, there is currently no publicly available
dataset for lexical stress in Ukrainian. To address
this, we adopted a synthetic data generation ap-
proach inspired by (Geneva et al., 2023), enabling
us to construct a scalable set of training examples
without relying on manually labeled corpora.

While manual labeling remains the most accu-
rate method, it is costly and time-consuming. To
mitigate this, we utilize natural speech, which pro-
vides prosodic features such as pitch, duration, and
intonation. These acoustic cues serve as a rich
source of weak supervision and form the basis for
pseudo-annotation.

3.2.1 Synthetic Stress Corpus
For automatic speech recognition (ASR), we se-
lected the Wav2Vec2 model (Baevski et al., 2020),
configured to transcribe audio with the Ukrainian
alphabet and stress mark.

As the base for training, we used the Common
Voice 19 dataset (Ardila et al., 2020), consisting of
approximately 30,000 sentences, split into training,
development, and test subsets. Pseudo-stress labels
were generated using the Ukrainian Word Stress
tool (Syvokon, 2022), configured with the OnAm-
biguity.Skip option (skip the stress label when the
system could not fully disambiguate a given case).

When the tool failed to assign stress, we em-
ployed a model-based fallback using Ukrainian Ac-
centor (Smoliakov and Mykhailenko, 2022).

Once the model was trained, to refine the as-
signed stress labels, we applied post-correction us-
ing dictionary lookups. This approach resulted in
a stress prediction accuracy of 93.81% at the word
level and 72.00% at the sentence level, evaluated
on a test subset. Words with fewer than two vowels
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were excluded from the evaluation.
After that, we applied that pipeline to the Voice

of America Ukrainian speech corpus (Smoliakov,
2022), followed by sentence cleaning and filtering,
resulting in a synthetic dataset of approximately
135,000 sentences with stress marks containing
around 80,000 unique words.

3.2.2 Model Setup
We trained a grapheme-to-phoneme model based
on the ByT5 architecture (Zhu et al., 2022) to per-
form sentence-level lexical stress prediction. We
selected this model because it operates on byte to-
kens, making it convenient to adapt to new lan-
guages without tokenizer-introduced bias. The
model was trained on the annotated Voice of Amer-
ica dataset for 10 epochs using a learning rate of
0.0002, achieving a character error rate (CER) of
0.58%. The training was performed on normalized
text to reduce noise and improve generalization.

To manage input length during model inference,
each sentence was split into chunks of up to 150
characters before being processed by the model to
mitigate long-context performance problems due
to the encoder-decoder architecture of ByteT5. As
the model operates on normalized text, the outputs
were then merged with the original text to restore
punctuation, capitalization, and special characters.

3.2.3 Evaluation
We evaluated the proposed model by comparing it
against three established Ukrainian lexical stress
systems: Ukrainian Accentor (Smoliakov and
Mykhailenko, 2022), Ukrainian Accentor Trans-
former (Mykhailenko, 2023), and Ukrainian Word
Stress (Syvokon, 2022). In the Ukrainian Word
Stress system, when multiple stress options were
retrieved during a dictionary lookup, disambigua-
tion was attempted using the POS tags of the word
in its sentence context and the grammatical fea-
tures of the retrieved word forms. If disambigua-
tion was not possible, two strategies were used
to handle the ambiguity: OnAmbiguity.First,
which selects the first retrieved stress variant, and
OnAmbiguity.Skip, which skips stress labeling
for that word. We tested the Ukrainian Word Stress
under both disambiguation strategies.

We assess each approach using the following
metrics:

• Word-Level Accuracy: Percentage of words
with the correctly placed stress.

• Sentence-Level Accuracy: Percentage of
sentences in which all words are correctly
stressed.

• Ambiguous Word Accuracy: Accuracy on
context-dependent words that exhibit stress
ambiguity due to meaning or grammatical in-
flections.

• Unambiguous Word Accuracy: Accuracy
on words with only one valid stress pattern.

• Mean Macro F1 (Ambiguous Word Pairs):
Macro-averaged F1 score over ambiguous
word pairs, reflecting the model’s ability for
contextual stress prediction.

It is important to note that words containing fewer
than two vowels were excluded from the evalua-
tion.

3.2.4 Results and Analysis
A detailed comparison of the evaluation results
across all systems is presented in Table 2.

The ByT5 G2P model demonstrates strong per-
formance across all evaluation metrics, outper-
forming the Ukrainian Accentor baseline and
reaching the dictionary-based Ukrainian Word
Stress system in most tasks. The system also
outperforms Ukrainian Accentor Transformer,
except for unambiguous words, where the latter
achieves higher accuracy, likely due to its reliance
on dictionary-derived labels during training.

The highest overall performance is achieved
through a hybrid approach that combines the
ByT5 G2P model with Ukrainian Word Stress
(OnAmbiguity.Skip). In this setup, dictionary-
based predictions are used when disambiguation is
possible; otherwise, we used the ByT5 G2P model
to provide the stress assignment. This hybrid strat-
egy yields the best sentence-level accuracy (52.0%)
and word-level accuracy (92.5%), highlighting the
effectiveness of integrating deterministic and neu-
ral methods for stress prediction.

Among all systems, Ukrainian Word Stress
(First) achieves the best performance on ambigu-
ous words, reaching 64.3% accuracy and a Mean
Macro F1 score of 47.3%. This is primarily due to
its use of part-of-speech–based disambiguation and
a consistent fallback to one of the possible listed
stress variants when ambiguity is unresolved.

It is important to note that the classification of
words as ambiguous or unambiguous was based
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on the same dictionary used internally by the
Ukrainian Word Stress tool. The system does not
achieve 100% accuracy on unambiguous words due
to inherent inconsistencies in the dictionary itself
and the prioritization of capitalized over lowercase
forms.

4 Approach to Phonemization

4.1 Motivation for a Rule-Based Approach

In this work, we present a new rule-based G2P
system designed specifically for the Ukrainian lan-
guage. The rule-based paradigm was selected for
two primary reasons:

1. The scarcity of high-quality pronunciation
data for Ukrainian, which limits the applicability
of data-driven methods.

2. The relatively consistent and transparent
mapping between graphemes and phonemes in
Ukrainian orthography.

Despite its advantages, the rule-based approach
comes with certain limitations:

1. As the number of rules increases, the sys-
tem becomes increasingly complex and difficult to
maintain.

2. Interactions among rules can lead to unex-
pected or undesired outputs.

4.2 Symbol Inventory and Phonemic
Representation

The grapheme-to-phoneme conversion rules were
derived from an analysis of linguistic studies on
Ukrainian phonetics and phonology (Moisiienko
A. K., 2010; Pohribnyi, 1984).

Internally, the system uses a custom set of tran-
scription symbols based on the Ukrainian alphabet.
After rule application, these symbols are converted
into their corresponding International Phonetic Al-
phabet (IPA)1 representations.

The system produces IPA phonemic transcrip-
tion, with a phoneme inventory consisting of 52
symbols (see Appendix A.). These reflect the artic-
ulatory features of Ukrainian phonemes, omitting
diacritics for distinctions that are not phonemically
contrastive in the language (e.g., dental vs. alve-
olar articulation). The Ukrainian phoneme /в/ is
realized with two phonetically distinct allophones,
both of which are treated as separate phonemes in
the system (bilabial /w/ and labio-dental /v/). Like-
wise, palatalized variants of hushing sibilants, labi-

1https://www.internationalphoneticassociation.org/

als, and velars are represented as distinct phonemes
(Sj, Zj, xj, Hj, tSj, dZj, mj, pj, bj, vj, kj, gj, fj).

Since the phonological status of gemination
in Ukrainian remains debated (Moisiienko A. K.,
2010), the system takes a neutral stance by treat-
ing all sequences of identical letters as two distinct
phonemes of the same quality (tjtj: життя "life"
→ /ZItjtjA/). This approach reduces the number of
unique phoneme categories without compromising
transcription accuracy.

4.3 System Architecture

The algorithm is implemented in Python us-
ing regular expressions. Each rule for con-
verting graphemes to phonemes is expressed as
a regular expression of the form: <left con-
text> <grapheme sequence> <right context> →
<phoneme sequence> (e.g., <ле><г><к>о →
ле<х>ко "easy"; невi<с><т><ч>ин → не-
вiс<>чин, невi<с><ч>ин → невi<ш>чин
"daughter-in-law")

Contexts are defined using lookaround asser-
tions, allowing the system to apply rules condi-
tionally based on surrounding characters. Rules are
stored in ordered Python dictionaries and applied
sequentially to the entire input without tokeniza-
tion.

Because rule order can significantly affect output
in rule-based systems, the rules follow a fixed and
carefully designed sequence:

1. Mapping of specific graphemes (я, ю, є, ї, ь,
й, щ) and grapheme combinations (e.g. дз, дж) to
their phonemic equivalents (e.g. щука → шчука
"pike", яблуко → jаблуко "apple", синю → синjу
→ син´у "blue" ).

2. Consonant cluster reduction (e.g. сту-
дентс´киj → студенс´киj "student", невiстчин
→ невiсчин "daughter-in-law" )

3. Assimilation of voiced and voiceless conso-
nants (e.g. борот´ба → бород´ба "fight", зсипа-
ти → ссипати "pour" )

4. Assimilation of sibilants (e.g. л´отчик
→ л´оччик "pilot", погодишс´а → погодисс´а
"agree", дочц´i → доцц´i "daughter" )

5. Assimilation of palatalized consonants (e.g.
с´огодн´i → с´огод´н´i "today")

6. Allophonic variation (e.g. вовк → воўк
"wolf", гiлка → г’iлка "branch")

An exception to the rule order is the grapheme
sequence -ться (e.g. робиться "is being done"),
which is converted into its phonemic representation
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Model Sentence-Level
Accuracy

Word-Level
Accuracy

Ambiguous
Word Accuracy

Unambiguous
Word Accuracy

Mean-Macro F1
(Ambiguous
Word Pairs)

ByT5 G2P 35.3% 87.7% 58.1% 94.8% 37.2%
Uk Accentor 16.6% 73.2% 41.6% 78.7% 28.7%
Uk Accentor Transformer 26.9% 83.4% 43.7% 96.3% 32.4%
Uk Word Stress (First) 41.5% 88.7% 64.3% 98.6% 47.3%
Uk Word Stress (Skip) 32.5% 86.0% 42.3% 98.6% 35.7%
ByT5 G2P + Word Stress
(Skip)

52.0% 92.5% 61.0% 98.7% 46.7%

Uk Accentor + Uk Word
Stress (Skip)

48.8% 91.9% 59.1% 98.7% 46.3%

Table 2: Comparison of model performance on the Ukrainian Lexical Stress Benchmark. Ambiguous words refer to
those with identical spelling but different possible pronunciations, while unambiguous words have a single stress
pattern per word form. All evaluations are conducted on words containing at least two vowels.

Step Input
Form

Applied Rule Output
Form

1 шiстдесят mapping of
grapheme я

шiстдесjат

2 шiстдесjат mapping of
grapheme я

шiстдес´ат

3 шiстдес´ат consonant cluster
reduction (стд → сд)

шiсдес´ат

4 шiсдес´ат assimilation of
consonants (c → з )

шiздес´ат

5 шiздес´ат allophonic variation
(ш → ш’)

ш’iздес´ат

Table 3: Step-by-step transformation of the word
"sixty" through the first five steps in the G2P pipeline.

(-ц´ц´а → робиц´ц´а), before the application of
the consonant cluster reduction rule.

Each word undergoes multiple intermediate
transformations, e.g. шiстдесят → шiстдесjат
→ шiстдес´ат → шiсдес´ат → шiздес´ат →
ш’iздес´ат → ... → SjIzdEsjAt "sixty" (see Table 3).

The system can be used in two modes: without
word stress assignment or with word stress assigned
by the automatic system or the user.

While no rules explicitly rely on stress, the posi-
tion of stress must still be taken into account during
rule formulation. In particular, some rules require
explicit enumeration of morphemes (e.g. prefixes
or roots), where the location of stress can alter the
graphemic context. For example, in the case of
ле́гко and легки́й "easy", the left context for the
grapheme г can be either ле́ or ле.

4.4 Evaluation

The system was evaluated using two datasets, both
of which were reviewed by expert linguists. The

Dataset WER Notes

Manually
constructed dataset 1.23% Incorrect cases

Automatically
generated dataset 3.07% Incorrect cases

Automatically
generated dataset 6.15% Incorrect +

controversial cases

Baseline system 48.75% Incorrect cases

Table 4: G2P system evaluation results.

first 487-word dataset was manually constructed
to maximize phonemic diversity, covering a wide
range of segmental combinations. The second 553-
word dataset was automatically generated from the
VESUM dictionary (Rysin and Starko). The evalu-
ation was performed using Word Error Rate (WER)
as a metric. Because each word contained at most
a single error type, Phoneme Error Rate (PER) was
not calculated.

A baseline system implementing only simple
letter-to-phoneme mappings was also evaluated.
The results are as follows (see Table 4).

Incorrect transcriptions are those that vio-
late the established rules of Ukrainian phonet-
ics (Moisiienko A. K., 2010; Pohribnyi, 1984).
For example: надзвонюватимемся "we will
call" was transcribed as /nAdzzwonjuvAtImEmsjA/,
but the correct form is /nAdzwonjuvAtImEmsjA/;
ексдипломатiв "former diplomats" was ren-
dered as /EkzdIpëomAtjiw/, instead of the correct
/EgzdIpëomAtjiw/.

Controversial transcriptions, on the other hand,
involve cases not explicitly covered by the cur-
rent rule set. For instance: Ваньчжоу "Wanzhou"
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was transcribed as /vAnjÃZou/, though /vAnjÃou/
is more accurate; Держспоживслужба "State
Consumer Service" was transcribed as /dErzspoZI-
wsëuZbA/ instead of /dErZspoZIwsëuZbA/.

Controversial cases were excluded from the first
(manually constructed) evaluation dataset.

The lowest WER (1.23%) was observed on the
first dataset, likely due to the exclusion of abbrevi-
ations and words with complex consonant clusters
— two categories known to cause frequent errors.
In the second dataset, the rates of incorrect and
controversial transcriptions were equal, resulting
in the second figure being twice the first.

The high WER (48.75%) of the baseline system
reflects the large proportion of words with non-
phonemic orthography in the evaluation datasets.
Further evaluation on complete transcriptions of
running text is planned.

5 Conclusion

In this work, we presented a modular approach to
Ukrainian text-to-speech preprocessing that com-
bines a rule-based phonemizer with a context-
aware neural model for lexical stress prediction.
Our system achieves strong results in both tasks: it
reaches a low word error rate of 1.23% on a con-
structed phonemization dataset and shows competi-
tive performance in lexical stress disambiguation,
outperforming existing neural models and closely
matching dictionary-based approaches. As part of
this work, we also released the first publicly avail-
able benchmark dataset for evaluating Ukrainian
lexical stress at the sentence level, providing a stan-
dardized foundation for consistent evaluation and
future research.

Limitations

The proposed approach has several limitations that
present opportunities for further enhancement.

First, while ByT5 G2P shows strong potential for
context-driven disambiguation, its current perfor-
mance on ambiguous words is limited by sparse
coverage in the training data and the reliance on
automatically labeled examples using Wav2Vec-
based model. Enhancing heteronym representation
in future training datasets remains a key direction
for improvement.

Second, the current version of the phonemiza-
tion system operates strictly at the word level and
does not handle abbreviations or numerical expres-
sions. These cases are excluded due to their irregu-

lar or ambiguous phonemic patterns, which require
contextual or morphological analysis beyond the
current system’s scope. In the future, the system
may be extended to operate on the sentence level.

Finally, neither pipeline accounts for non-
standard language varieties, such as regional di-
alects.

Addressing these limitations could significantly
enhance the coverage and applicability in real-
world Ukrainian TTS applications.
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Ukrainian transcription symbols IPA symbols
Vowels

i i
и I
е E
у u
о o
а A
Nasal consonants
м m
м’ mj

н n
н´ nj

Plosives
п p
п’ pj

б b
б’ bj

т t
т´ tj

д d
д´ dj

к k
к’ kj

ґ g
ґ’ gj

Approximants
в (bilabial) w

в (labio-dental) v
в’ vj

j j
Fricatives

ф f
ф’ fj

с s
с´ sj

з z
з´ zj

ш S
ш’ Sj

ж Z
ж’ Zj

х x
х’ xj

г H
г’ Hj

Affricates
ц ţ
ц´ ţj

дз dz
дз´ dzj

ч Ù
ч’ Ùj

дж Ã
дж’ Ãj

Trill & tap (flap) consonants
р r
р´ rj

Lateral approximants
л ë
л´ lj

Table 5: Symbol inventory
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