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Abstract

In this paper, we propose a model-agnostic
cost-effective approach to developing bilingual
base large language models (LLMs) to sup-
port English and any target language. The
method includes vocabulary expansion, initial-
ization of new embeddings, model training and
evaluation. We performed our experiments
with three languages, each using a non-Latin
script—Ukrainian, Arabic, and Georgian.

Our approach demonstrates improved language
performance while reducing computational
costs. It mitigates the disproportionate penaliza-
tion of underrepresented languages, promoting
fairness and minimizing adverse phenomena
such as code-switching and broken grammar.
Additionally, we introduce new metrics to eval-
uate language quality, revealing that vocabulary
size significantly impacts the quality of gener-
ated text.

1 Introduction

The discovery of the Transformer architec-
ture (Vaswani et al., 2017) has opened doors for
creating large language models (LLMs) with bil-
lions of parameters, trained on datasets of trillions
of tokens. One of the notable features of the LLMs
is cross-lingual language understanding (XLU),
which allows models to possess multilingual capa-
bilities. However, the XLU ability is restricted by
the so-called curse of multilinguality, which refers
the difficulties and constraints encountered in creat-
ing multilingual LLMs. Studies showed that a sub-
stantial drop in performance occurs as the number
of languages increases, due to the model’s limited
capacity to adequately capture and represent the
nuances of each language (Conneau et al., 2020).
The efforts to examine and address the problem
have highlighted two key factors: the composition
of the dataset and vocabulary composition (Pfeif-

fer et al., 2022; Blevins et al., 2024). Some stud-
ies (Chang et al., 2023) suggest that the natural
limitations on the model capacity, vocabulary and
training dataset sizes along with differences in lan-
guage structures do not allow the creation of the
ultimate multilingual model to perform equally in
many languages, favoring the creation of custom
models targeted at specific languages instead.

The most obvious yet often overlooked conse-
quence of low language representation in a model’s
vocabulary is a much higher cost of language pro-
cessing. A sentence in Ukrainian requires about
3 times more tokens for the GPT-4 model (et al.,
2024) than the same sentence in English due
to higher tokenization fertility (see Section 6.1).
Three times higher fertility means three times
smaller context window, three times higher mem-
ory usage, and nine times higher computation cost
due to attention’s quadratic dependence on the se-
quence length. On the other hand, high computa-
tional costs are not the only ramifications of a poor
vocabulary. Recent studies (Rust et al., 2021a) in-
dicate that representation in an LLM vocabulary
of a specific language directly relates to the per-
formance of the model in that language (Petrov
et al., 2023). In particular, it may be a reason
for the generation of non-existing words, code-
switching (Winata et al., 2021; Zhang et al., 2023),
and broken grammar. Languages that use a non-
Latin alphabet are particularly affected by poor vo-
cabulary representation since they cannot rely even
on the overlapping tokens with better represented
languages.

An insufficient training dataset affects the per-
formance of LLMs as much as it does any other
deep learning model. The model might generate a
response in the wrong language, probably the one
it is most familiar with, such as English (Marchisio
et al., 2024). In this work, exposing the model to
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additional data in the target language via continual
pre-training helped mitigate these effects.

In this paper, we present a model-agnostic
resource-effective method to create a base bilin-
gual LLM that supports English and another lan-
guage. By addressing the above-mentioned issues
of dataset and vocabulary composition, we make
sure to improve its language capabilities along with
boosting its computational efficiency. We illustrate
our method in three languages with non-Latin al-
phabets: Ukrainian, Georgian, and Arabic.

The contributions of our work are as follows:

• We propose a vocabulary extension procedure
that preserves the model’s accumulated knowl-
edge of English and extends the target lan-
guage comprehension. The method is verified
with Gemma 2 and Mistral models (see Sec-
tion 3.1).

• We trained two separate bilingual LLMs
(English-Ukrainian and English-Arabic) on
language-specific datasets using the Mis-
tral (Jiang et al., 2023) 7B model. The models
were continually pre-trained for the next token
prediction task on the parallel corpora for En-
glish and corresponding language. Our exper-
iments showed that the proposed tokenization
method reduces computational complexity
and inference time for Ukrainian and Ara-
bic respectively, while also improving model
performance for code-switching and grammar
correctness tasks. Additionally, we have con-
ducted experiments to test the adoption of ex-
tended Georgian vocabulary for the English-
Georgian model.

• We introduced new metrics for measuring
code-switching and non-existing words ra-
tio for Ukrainian and Arabic. The code-
switching metric leverages the unique features
of each language to detect instances of code-
switching, following the rules of the respec-
tive languages.

2 Related Work

The shortcomings of existing multilingual LLMs
have motivated numerous scholars and practition-
ers to address the insufficient performance of un-
derrepresented languages.

Perhaps the most fundamental approach is to
design and train a model from scratch, as demon-
strated by EuroLLM (Martins et al., 2024). While

this method offers maximal flexibility, it is highly
demanding in terms of effort and computational
resources.

More commonly, available open-source LLMs
are used as a starting point, leveraging transfer
learning and building on available weights (Tejaswi
et al., 2024). This can still involve significant ar-
chitectural changes compared to other methods, as
seen in the SOLAR model (Kim et al., 2024). De-
spite utilizing transfer learning, such approaches
often require pre-training on vast datasets, some-
times reaching trillions of tokens.

A number of publications (Cui et al., 2024; "he-
manth kumar"; Nguyen et al., 2023; Vo, 2024)
suggest a more lightweight approach, where the
model’s vocabulary is extended by 10,000–20,000
tokens, entailing the extension of the embedding
layer and the language modeling head, while leav-
ing the rest of the architecture unchanged. This
method reduces the required training dataset to hun-
dreds, or even tens, of billions of tokens, while still
delivering notable improvements in the model’s
language abilities and computational efficiency.

Finally, instruction fine-tuning (Basile et al.,
2023; Azime et al., 2024; Kohli et al., 2023) offers
a highly resource-efficient alternative by skipping
the base model composition step. While this ap-
proach can yield some improvements, it does not
enhance the model’s factual knowledge or address
tokenization issues.

Our approach, in contrast, maintains the overall
vocabulary size and keeps the model architecture
intact. To create a bilingual model, we extend the
vocabulary of the target language at the expense of
other languages in the model, except English. This
allows us to reduce the pre-training dataset to as
little as 2 billion tokens while still improving the
model’s factual knowledge, enhancing the dataset,
and achieving visible improvements in target lan-
guage generation.

3 Methodology

Our proposed pipeline for training of bilingual
LLMs supporting English and a target language
L consists of the following steps:

1. Vocabulary Extension. The aim of this step
is to create a new bilingual tokenizer T that
retains the exact tokenization for English as
in the original model, while incorporating an
extended vocabulary for the target language
L, thus reducing fertility.
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2. Embeddings Initialization. Initialize new
embedding vectors for the newly added L-
specific tokens.

3. Continual model pre-training. In order to
allow the model to adopt the new tokens and
use them during the text generation we have
continually pre-trained the model with new
extended vocabulary.

Each step will be explained in more detail in the
following subsections.

3.1 Vocabulary Extension Methodology
In this paper, we experimented with Mistral and
Gemma 2 tokenizers, which have vocabulary sizes
of 32,768 and 256,000 tokens respectively. Both
models use SentencePiece tokenizers (Kudo and
Richardson, 2018).

Our vocabulary extension technique can be de-
scribed as follows. Consider the original tokenizer
To that includes multilingual tokens. We trained a
new tokenizer TL for the target language L using a
language-specific dataset. Next, the two tokenizer
models are combined in order to obtain a bilingual
tokenizer TEn−L that will be used during the train-
ing of the bilingual LLM. This is achieved via the
following steps:

1. In order to keep the English tokenization in-
tact we copy all the English tokens from the
original tokenizer model To into bilingual tok-
enizer TEn−L along with their scores and IDs.
We assumed that all tokens that contain only
ASCII characters belong to English. We have
also kept all the byte fallback tokens, control
tokens (e.g. “[SEP]”), and service tokens (e.g.
“[UNK]”).

2. Tokens that belong in both To and TL are as-
signed IDs from To and scores from TL. This
procedure ensures tokenization according to
the rules of TL and at the same time allows
the LLM to recognize familiar tokens of the
target language L and to use the existing em-
beddings.

3. Lastly, the vocabulary of TEn−L is filled with
new tokens from TL ensuring that the vocabu-
lary size matches the original tokenizer To.

The resulting bilingual tokenizer TEn−L is iden-
tical to To in the tokenization of the English lan-
guage. On the other hand, in the target language,

its fertility is improved thanks to the extended vo-
cabulary (see Table 2).

3.2 Embeddings Initialization

Upon the vocabulary extension, the embedding vec-
tors for the new tokens must be reinitialized. A
proper embedding initialization can significantly
improve the training convergence speed, while fail-
ing to do so might lead to a slower convergence or
even non-convergence (Glorot and Bengio, 2010).
In our experiments, we have tried a number of
embedding initialization techniques, such as ran-
dom, mean (Hewitt, 2021), FOCUS (Dobler and
de Melo, 2023) and technique we called NAtural
CHaracter Overlap Segmentation (NACHOS). We
selected NACHOS because it has shown better con-
vergence during training (see Appendix A). NA-
CHOS works as follows. New tokens in TEn−L
are expressed through the tokens that have already
existed in the original tokenizer model To. Every
longer token tnew can be split into a n of shorter
tokens t: tnew → (t1...tn), with shorter tokens be-
longing to the overlapping vocabulary. We then
initialize the embeddings of these new tokens by
computing the mean of the shorter tokens embed-
dings (see Eq. 1):

E(tnew) =
1

n

n∑

1

E(tn), (1)

where E(tnew) represents the embedding vector of
the new token, E(tn) denotes the embeddings of
the overlapping token tn into which the new token
is segmented.

3.3 Continual pre-training

As a final step, the newly composed model with the
extended vocabulary and initialized embeddings
is trained on the bilingual parallel corpora. This
allows the model to fully adopt the new tokens,
which we have verified by checking the token IDs
of the model output. This process of new token
adoption is put under scrutiny and discussed in
detail in Section 7.2.

4 Datasets

Vocabulary Extension Datasets The monolin-
gual language-specific tokenization models TL
have been trained on monolingual datasets. For
the Ukrainian language we’ve trained on the pub-
licly available UberText 2.0 (Chaplynskyi, 2023),
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that contains 3.274B words and consists of 8.59M
texts.

To train an Arabic tokenizer we have used a pri-
vate dataset of non-fiction books of 430 million
words based on (ACRPS). For Arabic, we inte-
grated one more additional preprocessing step. As
an Arabic word could correspond to several words
in another language transmitting the same meaning,
it is the best practice to perform light stemming
to allow the models to pick the similarity of the
semantics of the main parts of words (Larkey et al.,
2002). For example, we consider þ�� (English trans-
lation: the) as a separate token when it prefixes a
word. We processed attached pronouns and gender
specifiers in similar way.

For our experiments with Georgian we have
used the Georgian section of the public OSCAR
dataset (OSCAR), which contains 171.9M words.
This dataset has been used for both tokenizer
training and continual pre-training of the English-
Georgian Mistral model for token adoption experi-
ments.

Continual Pre-training Datasets For continual
pre-training we created parallel datasets, consisting
of both English and target language.

For Ukrainian and Arabic, we considered
Wikipedia parallel dataset dump from June 20th
2024 archive dump1. For Ukrainian, the size of
the datasets is approximately 2B tokens. The total
number of articles was 2.1M (791,336 in Ukrainian
and 1,327,709 in English). The total number of
Ukrainian tokens was 1.02B and the total number
of English tokens was 1.05B. For Arabic, the size
of the datasets is approximately 1.8B tokens. The
total number of articles was 2.1B (1.2B in Ara-
bic and 882,534 in English). The total number of
Arabic tokens was 621.51M and the total number
of English tokens was 1.1B. For Georgian token
adoption experiments, we trained a model on par-
allel corpora from the same dump. The dataset
was much smaller due to a sparsity of resources
in Georgian. It contained 107,123 and 169,602 ar-
ticles in English and Georgian, respectively. The
total number of tokens was approximately 395.2M
(219.88M in English and 175.32M in Georgian).

The articles were shuffled to create the train-
ing dataset with equal representation of the target
language (Arabic or Ukrainian) and English. To de-
termine the amount of tokens, we used the Gemma

1https://huggingface.co/collections/PolyAgent/
parallel-datasets-6707e4197a737319934d2a48

2 tokenizer.
To evaluate the results, we used FLORES-

200 (Team, 2022) dataset for corresponding lan-
guages. The dataset is a collection of parallel trans-
lation corpora for 200 distinct languages, including
Ukrainian and Arabic. We selected 500 text sam-
ples per language from the “devtest” split of the
dataset in Arabic and Ukrainian. Each text was
separated into tokens by space, and only initial 3
tokens were kept as a model input. Finally, these
inputs were provided to the model to generate a
completion with a maximum generated sequence
length of 128. For Ukrainian inputs, we obtained
1,500 tokens and 1,098 unique tokens. For Arabic
inputs, we obtained 1,500 tokens and 1,000 unique
tokens.

5 Experimental Setup

We continually pre-trained bilingual models on the
next token prediction task on the parallel corpora
utilizing HuggingFace (Wolf et al., 2019; Tunstall
et al.) instructions for 8x80Gb GPUs. To launch
training, we used the SkyPilot framework (Yang
et al., 2023). In order to isolate the effects of ex-
tended vocabulary and additional pre-training we
have conducted the same pre-training for the vanilla
models and then compared the performances. For
hyper-parameter optimization we used grid search.
The selected set of hyper-parameters can be found
in our GitHub repository.

6 Evaluation Metrics

Since we work on the base completion model, we
focused mainly on the metrics that reflect the text
completion performance: tokenizer fertility, code
switching score, non-existing words ratio, and man-
ually evaluated grammar correctness score.

6.1 Tokenizer Fertility

Fertility is the most common metric for evaluating
tokenizer performance (Scao and et al., 2023; Rust
et al., 2021b). This is an intrinsic metric of the
tokenization model and is defined as the average
number of tokens required to represent a word. For
a tokenizer T and a dataset D, fertility is calculated
by dividing the total number of tokens in T (D) by
the total number of words in D.

6.2 Non-Existing Words Ratio (NEWR)

We used a following heuristic to detect non-existent
words generated by LLMs. A word is considered
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non-existent if it is absent from a large language-
specific corpus or vocabulary. For Ukrainian, we
used the Ubertext fiction corpus (Chaplynskyi,
2023) to create a set of 2.6M unique words, mostly
Ukrainian. Each generated word is checked against
this set, and if absent, it is marked as non-existent.
The Non-Existing Words Ratio (NEWR) was cal-
culated as the percentage of non-existent words in
the output for each language-specific LLM output.

Arabic requires more processing, as it is a
language with several dialects associated with it.
While each Arabic-speaking region has its own di-
alect, it significantly intersects with the modern
standard Arabic (MSA), which is used in legal,
news and other domains. While in this work we
focused on MSA, dialectal words are often present
in MSA. Therefore, we used the corpora associ-
ated with the Doha historical dictionary of Ara-
bic (ACRPS)2 to cover traditional Arabic (Albared
et al., 2023), Aya Dataset (Singh and Vargus, 2024)
to cover MSA, and Lisan corpora (Jarrar et al.,
2023) to cover accepted dialectal words, 3.9M
words in total.

6.3 Code Switching Word Ratio (CSWR)

In linguistics, code switching is a phenomenon,
when a speaker uses (or “switches” between) two
or more different languages in a conversation. To
detect code switching in LLM outputs, we intro-
duced a novel metric: Code Switching Word Ra-
tio (CSWR). Unlike previous token-based meth-
ods (Marchisio et al., 2024), our approach uses
language-specific rules to better identify code
switching. The implementations are available in
the GitHub repository3.

CSWR is a ratio of words in the text that in-
cludes at least one foreign symbol (outside of the
alphabet of the language, not a number or punctua-
tion) and does not fit the rules of the correct code
switching usage. The lower this ratio is - the better
performance model showed from a code switching
perspective.

The correct instances of code switching are de-
tected depending on the language. A detailed ex-
planation and a list of rules are provided in the
Appendix B.

2https://dohadictionary.org/
3https://github.com/PolyAgent/

PNaCoS-NER-Metric

6.4 Grammar Correctness Score (GCS)

To evaluate grammar correctness, the model gener-
ated text was evaluated by experts for the particular
language on the following criteria: usage of incor-
rect words (e.g. wrong gender of the word, plu-
ral and single word form confusion, non-existing
words, word merging, typos etc.), incorrect capital-
ization and punctuation and instances of incorrect
code switching. If any of those flaws were encoun-
tered by the annotator the score of 0 was assigned
to the text. If the text passes the check, it was
assigned the score of 1. Finally, the Grammar
Correctness Score (GCS) is calculated as an aver-
age of all assigned scores for the test completions.

For each language (Ukrainian and Arabic) we
employed three native speakers annotators.

7 Results

7.1 Tokenizer Intrinsic Performance

The comparison of the original model tokenizer
with the customized bilingual tokenizers developed
by us via the procedure described in Section 3.1
can be found in Table 2. Besides Mistral with its
32,768 tokens in the vocabulary we have also ex-
perimented with Gemma 2, which has a vocabulary
8 times larger. That has allowed us to substan-
tially extend the target language vocabulary with-
out changing the model architecture. Naturally, in
every case the extended vocabulary has improved
the tokenization fertility in the target language, al-
lowing the model to process the same amount of
text at lower computational cost. The non-linear
fertility improvement is expected due to the loga-
rithmic character of its dependence on the vocabu-
lary size (Tao et al., 2024).

Ukrainian In the case of the Ukrainian language,
it was challenging to estimate the exact number
of the language-specific tokens in the original vo-
cabulary due to possible confusions with other lan-
guages that use the Cyrillic alphabet. The number
presented in the Table 2 is a lower estimate. Fertil-
ity has been measured with 13 million words from
the Ukrainian section of the OSCAR dataset. No-
tably in the case of Gemma 2 we have developed a
tokenizer that ensures comparable fertility for the
English and Ukrainian languages, thus reaching
parity between the two (1.52 for Ukrainian and
1.53 for English). Parallel fertility has been mea-
sured using the Macocu parallel English-Ukrainian
dataset (Bañón et al., 2023).
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Arabic For the Arabic language, fertility was
measured using a stemmed dataset (see Section 4).
Due to this, the numerical fertility results for Ara-
bic differ from those of the other languages and
can’t be directly compared to them.

Georgian The original Mistral vocabulary did
not cover 6 letters from the Georgian alphabet,
which has forced the model to resort to byte fall-
back (see also Section 7.2), which affected the orig-
inal model’s fertility in Georgian. Extending the
vocabulary by 5,500 tokens has allowed to improve
token usage by nearly three times. Due to Geor-
gian dataset size limitations we were not able to
properly train and evaluate a Gemma-compatible
tokenizer for the Georgian language.

7.2 Token Adoption Process
In this subsection, we investigate the token com-
position of the Mistral model output during the
continual pre-training that followed the vocabu-
lary extension for Ukrainian (Mean initialization),
Georgian (NACHOS initialization), and Arabic lan-
guages respectively. The output tokens have been
split into 5 categories:

• Existing: tokens of the target language that
exist in the default Mistral vocabulary.

• New: tokens of the target language that were
added to the vocabulary.

• English: tokens used to represent English.

• Byte-encoded: 256 byte fallback tokens used
to encode characters absent in the vocabulary
in UTF-8 format.

• Other: tokens that do not belong to any of the
above-mentioned categories (e.g. tokens of
other languages, punctuation, etc.).

On Figure 1, Y axis of the plot corresponds to the
relative fraction of the tokens in each category (all
categories sums up to 1). In general, we observed
similar phenomena in all three languages. Being
prompted in a target language, the original Mistral
model is likely to produce a response in English,
most probably due to insufficient pre-training on
the target language corpus. Once our pre-training
starts, the model learns to produce responses in the
target language and after a few hundred training
steps it outputs little to no English tokens.

At first, the model favors the usage of familiar
tokens that already exist in its vocabulary before

the extension. Subsequent pre-training teaches the
model to use the new tokens along with the famil-
iar ones. After 2,000 training steps, the process
stabilizes and becomes nearly static between 5,000
and 10,000 steps.

The same pattern holds in all three of the con-
sidered languages, though with some differences
which we would like to discuss in more detail. We
experimented with Ukrainian, Georgian, and Ara-
bic.

Ukrainian Ukrainian is much better represented
in Mistral model than Arabic and Georgian. The
original Mistral vocabulary contains 1,731 Cyrillic
tokens, with about 1,600 of them suitable for the
Ukrainian language representation. The original
model occasionally replies in English if prompted
in Ukrainian, producing about 35% of English
tokens in the output. Upon the start of the pre-
training the model learns to use Ukrainian tokens,
though initially the model tends to use the existing
Ukrainian tokens. After 200 training steps, this
ratio increases to about 65%. With more train-
ing, this number drops to 50%, indicating that the
model fully adopted new tokens. However, despite
the new tokens make about 75% of the extended
Ukrainian vocabulary, the fraction of existing to-
kens remains dominant due to higher frequency of
occurrence.

Arabic Qualitatively, the situation with the Ara-
bic language is similar to that of the Ukrainian, but
with two important differences. When prompted in
Arabic, original Mistral is more likely to respond
in English, with the fraction of produced English
tokens reaching 60%. In the original Mistral vocab-
ulary there is 70 Arabic tokens, which is enough
to avoid byte fallback, but is still a relatively small
number. That is why the fraction of the new tokens
overtakes as early as 200 training steps and remains
dominant afterwards.

Georgian There are 29 Georgian tokens in the
original Mistral vocabulary, which does not even
cover the Georgian alphabet (35 letters). That
forces the model to resort to byte fallback when
generating text in Georgian more frequent than in
Ukrainian or Arabic. The fraction of the byte en-
codings grows when the model learns to respond in
Georgian and then drops along with the adoption of
the new tokens, similarly to previously discussed
languages. In case if Georgian, the token adap-
tation takes longer, as the model resorts to using
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Figure 1: Tokens adoption by Mistral model.

Model GCS ↑ NEWR ↓ CSWR ↓
Ukrainian

Vanilla 0.264 0.089 0.515
Tuned 0.388 0.032 0.002
Ours 0.503 0.030 0.001

Arabic
Vanilla 0.040 0.863 0.450
Tuned 0.238 0.079 0.004
Ours 0.548 0.050 0.002

Table 1: Results for trained model of Grammar Correct-
ness Score (GCS), Non-Existing Words Ratio (NEWR),
and Code Switching Word Ratio (CSWR). “Vanilla”
refers to the original Mistral 7b model without addi-
tional training, “Tuned” refers to the continually pre-
trained Mistral model on the same datasets, “Our” refers
to Mistral continually pre-trained with extended vocab-
ulary. ↑ indicates that bigger value is better. ↓ indicates
that lower value is better.

the byte encodings for the text prediction while
learning new tokens. Byte encodings are always
encoded with a pair of tokens and that might ex-
plain a longer period of adopting the new Georgian
tokens.

7.3 Performance Metrics

The results for the trained model of Grammar Cor-
rectness Score (GCS), Non-Existing Words Ratio
(NEWR), and Code Switching Word Ratio (CSWR)
are presented in Table 1.

The results showed that the model trained with
our approach outperformed both Vanilla and Tuned
models in terms of GCS in Ukrainian and Arabic.
Notably, the vanilla model struggled with gram-
matical accuracy, achieving a score of 0.264 on
Ukrainian compared to the our model’s score of
0.503. Tuned English-Ukrainian model achieved
GCS of 0.388. For Arabic, tuned model achieved
0.238 and 0.04 for the vanilla model, demonstrat-
ing lack of grammatical knowledge. Our model

achieved GCS score of 0.548.

Our method demonstrated NEWR of 3%, which
is not significantly different from the score of the
tuned model (3.2%) for Ukrainian. The reason
for such similarity could be in a better representa-
tion of Ukrainian tokens in Mistral (see Figure 1).
Vanilla model showed 8.9% of non-existing words
in its generated texts. On the other hand, for Ara-
bic our approach obtained NEWR of 5%, when
vanilla and tuned models obtained 86.3% and 7.9%
respectively. The vanilla model’s performance was
really poor when it comes to generating existing
modern Arabic words. The tuning improved the
performance in more than 10 times, but our model
outperformed it.

Finally, we achieved a score of 0.001 for CSWR
for Ukrainian, which indicates a very little incor-
rect usage of foreign languages in the text. The
second best score was obtained for tuned model
(0.002). The vanilla model performed significantly
worse: 0.515, indicating that more than half of gen-
erated words are used incorrectly in terms of code
switching. For Arabic, the situation is similar. Our
model obtained a score of 0.002, outperforming
tuned model (0.004) and vanilla model (0.45).

7.4 Preventing catastrophic forgetting in
English

After a series of experiments, we found that after
just 1 epoch of training on the bilingual corpora, the
models showed improvement in the target language
but experienced a substantial drop in the English
MMLU benchmark (Hendrycks et al., 2021b,a).
However, by lowering the learning rate from 1.5e−
5 to 2e − 6, training resulted in a much smaller
loss in MMLU benchmark points. These important
results demonstrate that, with the right training,
the model can retain its English performance and
remain bilingual, as shown in Table 3.
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Mistral Vanilla Ours
Tokens Fertility Tokens Fertility

Ukrainian 1,077 3.35 5,552 2.55
Arabic* 70 3.3 3,618 1.68

Georgian 29 7.61 5,531 2.68
Gemma Vanilla Ours

Tokens Fertility Tokens Fertility
Ukrainian 6,426 2.55 75,704 1.56
Arabic* 6,075 1.65 32,333 1.52

Table 2: Tokenization metrics. *Stemmed tokenization
for Arabic.

Model GCS↑ NEWR ↓ CSWR↓ MMLU↑
Vanilla 0.26 0.09 0.52 0.59
Tuned 0.39 0.03 2e-3 0.34
Ours 0.50 0.03 1e-3 0.25
Tuned† 0.31 0.03 2e-3 0.49
Ours† 0.42 0.03 9e-4 0.507

Table 3: Retention of the MMLU performance in the
English-Ukrainian models trained with low learning rate
(denoted with †).

8 Discussion

The obtained results highlight a subject that has
been largely overlooked, particularly in the context
of generative LLMs: the impact of vocabulary size
and composition an on the quality of generated
text.

Our experiments with the vanilla model pre-
training demonstrated that the effects of training
on additional data can be mitigated via the vocab-
ulary extension. Additional pre-training on the
target language corpus can noticeably increase text
quality, particularly in addressing issues like code-
switching and the generation of non-existent words.
However, handling more complex linguistic fea-
tures, such as grammar, requires vocabulary ex-
tension. Ukrainian and Arabic tokens are repre-
sented differently in the original model’s vocabu-
lary, resulting in distinct yet complementary out-
comes for the two languages. While for Ukrainian a
substantial 29.6% improvement was obtained with
the extended vocabulary, the severely underrepre-
sented Arabic achieves a much higher 90.5% im-
provement. This effect was confirmed with another
round of training at a lower learning rate for the
English-Ukrainian models, which showed a 35%
improvement utilizing the model vocabulary exten-
sion.

We propose the following explanation for this
phenomenon: a poor vocabulary results in tokens
that contain only one or a few characters, convey-
ing very little specific semantic meaning. As a

result, the model is forced to rely heavily on con-
text during training and inference. This increases
the noisiness of the data and prevents the model
from learning nuanced meanings or effectively con-
structing complex grammatical structures.

Unfortunately, a static and limited vocabulary
with fixed token-to-embedding mappings is a lim-
itation of the standard transformer architecture.
This makes it challenging to create a transformer-
based LLM that is equally proficient in multi-
ple distinct languages. Some methods that uti-
lized char-based (CANINE (Clark et al., 2022)),
patch-based (MegaByte (Yu et al., 2023)), or byte-
based (Pagnoni et al., 2024) transformers were sug-
gested. They often suffer from longer sequences,
reduced linguistic abstraction, and increased com-
putational cost, which can hinder downstream per-
formance compared to efficient BPE-based tok-
enization.

For this reason, we advocate training bilingual
models, which are both cost-effective and proficient
in their target languages.

9 Conclusions

In this work, we introduced a model-agnostic, cost-
effective method for developing bilingual base com-
pletion LLMs that support English and a target lan-
guage, including low-resource or underrepresented
languages. Our approach, centered on vocabulary
extension and efficient embedding initialization,
was validated by creating two bilingual LLMs:
English-Ukrainian and English-Arabic. Moreover,
we conducted experiments with Georgian tokeniza-
tion and explored token adoption process during
the training of a English-Georgian model. Geor-
gian has a unique underreprsentation in the Mistral
tokenizer.

We demonstrated that extending the vocabulary
of a pre-trained model enhances its performance in
target language while maintaining its English per-
formance. Specifically, the grammar correctness re-
sults indicate that pre-training alone provides only
limited improvement. The comparison between
Ukrainian and Arabic further emphasizes the limi-
tations of poor vocabulary for the underrepresented
language. Expanding the tokenizer’s vocabulary
with target language tokens reduced tokenizer fer-
tility, resulting in lower computational costs and
improved processing efficiency. Finally, retaining
the original English tokens in the custom tokenizer
while adding new language-specific tokens lead to
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preservation of the model’s English performance
on the MMLU benchmark, while also improving its
performance in the target language from perspec-
tive of grammar, code switching and non-existant
word ratios.

Our approach promotes a more equitable and
inclusive NLP ecosystem, contributing to the revi-
talization of underrepresented languages. By lower-
ing the barrier to developing more literate and gram-
matically capable models, we believe our work also
paves the way for enhanced economic viability of
using LLMs in non-English languages.

10 Limitations

In this work, we have focused on creating a min-
imal working example of a base bilingual model
with an extended vocabulary in a cost-effective way.
While our approach is model-agnostic, it has yet
to be tested with models other than Mistral 7B.
Gemma 2 is the most likely candidate, as we have
already concluded tokenizer experiments. How-
ever, applying the method to other open-source
models, such as Llama 3 or Qwen, would provide
further validation for our approach.

Another important limitation is that the method
was eventually tested only for English-Ukrainian
and English-Arabic models. Due to the limited
availability of Georgian corpora, we were un-
able to complete the experiment with the English-
Georgian model.

The retention of English language capabilities
has only been tested with the English-Ukrainian
model. We are currently in the process of testing it
for the English-Arabic model.

Further experiments with the vocabulary size and
composition could help to find the optimal parame-
ters along with their dependence on the available
dataset size and individual language properties.

To fully evaluate the model across a variety of
downstream tasks, such as machine translation,
question answering, summarization, or text com-
pletion, instruction tuning will be required. This
step, however, goes beyond the scope of our current
work.

While we believe that the proposed metrics for
assessing the language quality are an important
step, they leave enough space for refinement. In
particular, the code-switching metric for Ukrainian
and Arabic might benefit from implementing addi-
tional rules. In our evaluation we did not test on
downstream tasks like machine translation, summa-

rization, QA etc.
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A Embedding Initialization Comparison

In the Table 4 the metrics for the different lan-
guages and embedding initializations are presented.
The graph of training and evaluation losses are pre-
sented on the Figure 3 and 2.

Figure 2: Ukrainian evaluation graph per training step.
The name includes the embedding initialization tech-
nique: mean, residual, and NACHOS.

Figure 3: Arabic evaluation graph per training step. The
name includes the embedding initialization technique:
FOCUS, NACHOS, and mean.

Model NEWR↑ CSWR↓
Vanilla 0.9118 0.5156
Tuned 0.9667 0.0006
Mean 0.9667 0.0009
NACHOS 0.9665 0.0009
FOCUS 0.9634 0.0011

Table 4: Comparison of Model Performance on NEWR
and CSWR Metrics

In our experiments, NACHOS demonstrated a
better convergence compared to other methods,
however the performance results for the final mod-
els were similar. As complete evaluation is com-
putationally expensive and requires manual annota-
tion, we decided to continue only with NACHOS
approach.

B Code Switching scoring rules

To calculate the score for each language, the same
initial preprocessing for the generated text was ap-
plied: the accents were replaced with regular corre-
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sponding letters and HTML formatting tags were
removed.

2.0.1 Ukrainian CSWR Rules
In Ukrainian, the usage of code switching is al-
lowed if it respects the following rules. All the
mentions of the following entities are allowed in a
foreign language:

• Proper names: names of the music bands, loca-
tions, restaurants, libraries, cities, titles, iden-
tification numbers etc. For example, Pythago-
ras, California, MIT, Metallica, F-16 and so
on.

• Medical terms, additives and vitamins. For
example, (vitamin) B12, (food additive) E110
etc.

• Roman integers and math symbols. For exam-
ple, II, X,

∑N
i=1, etc.

• Quotes. If text is a direct quote, it can be used
in Ukrainian without translation, marked with
the special symbols.

• URL links, hashtags, encoding names, men-
tions of the most common file formats and
filenames. For example, PDF, my_cv.pdf,
mydog.png, https://www.wikipedia.org,
UTF-8, #Euro2012 and so on.

• Common Latin phrases. Some of the well-
known Latin sayings and quotes can be used
as is if they are widely known. For example,
Veni, vidi, vici, A priori etc.

To accommodate these rules, our metric utilizes
an ensemble of named entity recognition (NER)
models as well as a rule-based approach to pick
up the correct usage of foreign words or sym-
bols. In particular, we have used XML-based
Ukrainian NER model4, SpaCy (Honnibal et al.,
2020) uk_core_news_lg5 model, and Stanza (Qi
et al., 2020) Ukrainian model. All the URL links,
Roman integers, math symbols, and text in quota-
tion marks were extracted as separate named en-
tities with the regular expressions. Finally, each
sentence were checked if it contained any char in
Ukrainian. If it did not and the whole sentence was
not considered to be a named entity, the whole sen-
tence and words in it were considered as incorrect.

4https://huggingface.co/EvanD/
xlm-roberta-base-ukrainian-ner-ukrner

5https://spacy.io/models/uk#uk_core_news_lg

To accommodate medical terms, additives and
vitamins usage rule, we manually extracted a list of
them from the US Food and Drug Administration6,
as they can be used in Ukrainian language as well
without translation. The total number of terms is
2,729.

To extract encoding names, file formats and file-
names, and widely recognised Latin phrases, we
manually retrieved them from Wikipedia. We ob-
tained a list of 79 encoding names, 1,995 file for-
mats, and 2,373 Latin phrases.

All of the resources are available on our GitHub
repository7.

2.0.2 Arabic CSWR Rules
Arabic follows the following rules.

• Arabic does not have capital letters which
renders named entity detection especially for
proper names a specialized task.

• In Arabic, both Indian or Arabic numerals can
be used.

• Some Arabic characters are non-connecting
characters and are written separately from the
next word, even if there is no space between
them. Arabic is written right to left, but Ara-
bic words followed by non-Arabic words writ-
ten in the other direction (sometimes with no
white space separation).

To address these issues, we utilized a different
ensemble of NER models, specifically Flair (Akbik
et al., 2019) pre-trained Arabic NER model (Mega-
hed, 2021)8, transformer-based Arabic NER mod-
els (Lan et al., 2020; Inoue et al., 2021)9, and
Stanza (Qi et al., 2020) Arabic model. Resources
and algorithms to identify medical terms, additives,
vitamins, hashtags, encoding names, URL links,
file formats, roman integers and quotes are the same
as we introduced in the Ukrainian Code Switching
Metric.

6https://www.fda.gov/food/
food-additives-petitions/
food-additive-status-list

7https://github.com/PolyAgent/
PNaCoS-NER-Metric

8https://huggingface.co/megantosh/
flair-arabic-multi-ner

9https://huggingface.co/ychenNLP/
arabic-ner-ace, https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-mix-ner
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