
Proceedings of the 5th Workshop on Trustworthy NLP (TrustNLP 2025), pages 1–12
May 3, 2025 ©2025 Association for Computational Linguistics

Beyond Text-to-SQL for IoT Defense: A Comprehensive Framework for
Querying and Classifying IoT Threats

Ryan Pavlich1, Nima Ebadi2, Richard Tarbell1, Billy Linares1, Adrian Tan1,
Rachael Humphreys1, Jayanta Kumar Das1, Rambod Ghandiparsi1, Hannah Haley1,

Jerris George1, 3Rocky Slavin, 4Kim-Kwang Raymond Choo,
4Glenn Dietrich, and 4Anthony Rios

1Data Analytics, 2Department of Electrical and Computer Engineering,
3Department of Computer Science, 4Department of Information Systems and Cyber Security

The University of Texas at San Antonio
{Ryan.Palvich, Anthony.Rios}@utsa.edu

Abstract

Recognizing the promise of natural language in-
terfaces to databases, prior studies have empha-
sized the development of text-to-SQL systems.
Existing research has generally focused on gen-
erating SQL statements from text queries, and
the broader challenge lies in inferring new in-
formation about the returned data. Our research
makes two major contributions to address this
gap. First, we introduce a novel Internet-of-
Things (IoT) text-to-SQL dataset comprising
10,985 text-SQL pairs and 239,398 rows of
network traffic activity. The dataset contains
additional query types limited in prior text-to-
SQL datasets, notably, temporal-related queries.
Our dataset is sourced from a smart building’s
IoT ecosystem exploring sensor read and net-
work traffic data. Second, our dataset allows
two-stage processing, where the returned data
(network traffic) from a generated SQL can be
categorized as malicious or not. Our results
show that joint training to query and infer in-
formation about the data improves overall text-
to-SQL performance, nearly matching that of
substantially larger models. We also show that
current large language models (e.g., GPT3.5)
struggle to infer new information about re-
turned data (i.e., they are bad at tabular data
understanding), thus our dataset provides a
novel test bed for integrating complex domain-
specific reasoning into LLMs.

1 Introduction

Relational databases contain vast quantities of
structured knowledge, often having trillions of rows
of data, spanning diverse domains from health-
care and finance to entertainment and education.
While structured query languages (SQL) provide
database experts the resources to extract, manip-
ulate, and reason over this data, many potential
users remain cut off from direct access due to the
steep learning curve of mastering these languages.
The importance of making data more accessible

durationorig_bytes…orig_portorig_ipuid

54842192.168.1.11

27100180192.168.2.12

………………

18788087192.168.3.1500

12040004000192.168.4.1501

List all connection activity where the originating IP sent more than 45 bytes

Which connections are malicious in the returned network traffic?

QUERY

Infer New Information

durationorig_bytes…orig_portorig_ipuid

54842192.168.1.11

27100180192.168.2.12

………………

18788087192.168.3.1500

12040004000192.168.4.1501

SELECT * FROM CONN_LOG WHERE orig_bytes > 45
SQL

Figure 1: This figure provides an example of querying
and reasoning over network traffic data.

and actionable for a wider audience cannot be over-
stated, given the growing centrality of data-driven
decision-making in modern society. The vision of
natural language interfaces to databases (NLIDB)
is rooted in this very imperative—to allow non-
experts to interact with databases using familiar,
everyday language. This reinforces the importance
of developing modern text-to-SQL systems that can
also reason over databases.

A system that seamlessly translates natural lan-
guage queries into SQL (text-to-SQL) not only de-
mocratizes access to data but also has the potential
to drastically reduce the time to insights for diverse
stakeholders, including managers, analysts, edu-
cators, and the general public. There have been
many advances in translating natural language to
SQL (Xu et al., 2017; Zhong et al., 2017; Bogin
et al., 2019; Wang et al., 2018; Yu et al., 2018a;
Scholak et al., 2021; Xie et al., 2022; Wang et al.,
2022a; Chen et al., 2021; Sun et al., 2022). Re-
cent work has focused on either fine-tuning trans-
formers or on the use of pre-built large language

1

models (e.g., ChatGPT) with prompt tuning and
in-context examples. For example, Pourreza and
Rafiei (2023) explored in-context learning using
ChatGPT to generate SQL statements, and Dong
et al. (2023) explored zero-shot text-to-SQL gen-
eration using ChatGPT. Wang et al. (2020a) de-
veloped a unified framework using fine-tuning for
text-to-SQL generation, leveraging relation-aware
self-attention, to tackle schema encoding, schema
linking, and feature representation. Combined with
BERT data augmentation, this framework yielded a
remarkable exact match accuracy of 65.6% on the
Spider dataset.

Much of the prior work on text-to-SQL genera-
tion has focused on simply generating SQL state-
ments from the input text queries. Some recent
work has expanded on standard studies by explor-
ing conversational text-to-SQL tasks (Yu et al.,
2019). Intuitively, Yu et al. (2019) developed a
system that can ask follow-up questions to answer
ambiguous queries better, verify returned results,
and notify users of unanswerable queries. How-
ever, there is limited work that can query a database
and make inferences (understand) the returned data.
Follow-up questions may involve making infer-
ences and returning results that are not directly
within the database. Hence, translating natural lan-
guage to SQL is only half the challenge. The true
power of such a system lies in its ability to retrieve
and infer new information about the data returned.
This ensures that the insights drawn from databases
are accurate and meaningful. For instance, in an
educational context, a student might not only ask
for the number of historical events in a given time
but might also want to know their significance or
interconnections, requiring a depth of reasoning
beyond retrieval.

At a high level, our work combines two lines of
research not explored in previous papers: tabular
data classification and question answering using
transformers (Badaro et al., 2023) and text-to-SQL
generation. There has been some recent work about
predicting various aspects of tabular data. For ex-
ample, Yang and Zhu (2021) predicts whether a
claim is true or false given an input table. Like-
wise, Deng et al. (2022) developed a system to
inform missing or corrupted data within a table.
However, much of this work assumes the table is
provided. Hence, we develop a new text-to-SQL
dataset to make predictions/inferences about the
data and query the data using a single model. An
example of our task is provided in Figure 1. As

a case study, our dataset consists of Internet-of-
Things (IoT) data from a smart building setting.
Specifically, we assume a centralized database that
captures both network traffic about the IoT devices
and sensor readings (temperature, humidity, CO2
levels, etc.). The SQL statements query the IoT
databases to return relevant data. The reasoning
component of our dataset is specific to the network
data. We classify the network traffic as malicious
(e.g., DDoS attacks, botnet activity, etc.) or benign
(non-malicious activity). Our decision to use IoT
data is due to the following reasons. First, IoT data
has a huge temporal component (Acar et al., 2020).
There have been limited text-to-dataset resources
that contain many temporal-related queries (e.g.,
Spider is based on SQLite databases and does not
support datetime columns). Second, making infer-
ences about network traffic data is non-trivial and
has not been explored in the NLP community.

In summary, the contributions of this paper
are as follows: (i) We introduce a new IoT-SQL
dataset containing 10,985 unique text-SQL pairs
and 239,398 rows of network traffic activity from
Zeek logs with annotations for malicious and non–
malicious activity (e.g., DDoS attacks). This
dataset provides a new test bed for text-to-SQL
models and LLMs towards both querying data
an actually understanding it. Specifically, cur-
rent state-of-the-art LLMs GPT3.5 fail to perform
well on this dataset for the reasoning component.1

(ii) We evaluate the performance of text-to-SQL
models that can jointly query and reason about the
data (i.e., predict whether specific network traffic is
malicious). Our results suggest that modeling both
tasks together substantially improves text-to-SQL
performance with limited impact on network-traf-
fic malicious activity detection. (iii) We perform
error analysis and provide examples of how jointly
training to query and understand the data improved
SQL generation.

2 Related Work

Text-to-SQL Datasets. Recent momentum has
grown in evaluating text-to-SQL systems, espe-
cially their generalizability, with less focus on
the medical domain. Text-to-SQL translates text
into machine-readable formats. Several datasets
exist for this task: ATIS (Dahl et al., 1994;
Srinivasan Iyer and Zettlemoyer, 2017) (airline
queries), Geography (Zelle and Mooney, 1996;

1Dataset: https://zenodo.org/records/15000588.

2

https://zenodo.org/records/15000588

Srinivasan Iyer and Zettlemoyer, 2017) (geograph-
ical data), Restaurants (Giordani and Moschitti,
2013; Tang and Mooney, 2000; Popescu et al.,
2003) (restaurant details), WikiSQL (Zhong et al.,
2017), Spider (Yu et al., 2018b), and IMDB
and Yelp (Navid Yaghmazadeh and Dillig, 2017)
(movie and business data). The Spider dataset
emerges as a cornerstone resource in the text-to-
SQL benchmarks landscape. Designed to evalu-
ate text-to-SQL systems rigorously, Spider boasts
impressive extensiveness and diversity, featuring
over 10,000 questions from over 200 databases. Its
strength lies in its volume and the complexity of its
queries.

Recent efforts have also been made to de-
velop new datasets beyond traditional text-to-SQL
pairs. Yu et al. (2019), for example, collected a
conversation-like corpus where a system can ask
follow-up questions to answer ambiguous queries
better, verify returned results, and notify users
of unanswerable queries. Similarly, researchers
have also focused on curating data (text-SQL pairs)
that capture items missing in previous datasets
(e.g., temporal-related queries). For example,
Vo et al. (2022) introduced a new dataset called
TempQ4NLIDB that contains 389 temporal-related
question-SQL pairs to overcome limitations in ex-
isting datasets (e.g., Spider). Our research ex-
pands on this work, containing more than 1,000
temporally-related queries using MySQL datetime
columns.

Text-to-SQL Methods. The field of text-to-SQL
is concerned with automatically translating natural
language queries into structured SQL queries. Re-
cent advancements in neural network models have
led to significant improvements in the accuracy and
efficiency of Text-to-SQL systems (Xu et al., 2017;
Zhong et al., 2017; Bogin et al., 2019; Wang et al.,
2018; Yu et al., 2018a; Scholak et al., 2021; Xie
et al., 2022; Wang et al., 2022a; Chen et al., 2021;
Sun et al., 2022).

Recent work has focused on fine-tuning trans-
formers or using pre-built large language mod-
els (e.g., ChatGPT) with prompt tuning and in-
context examples. For example, Pourreza and
Rafiei (2023) explored in-context learning using
ChatGPT to generate SQL statements, and Dong
et al. (2023) explored zero-shot text-to-SQL gener-
ation using ChatGPT. Wang et al. (2020a) also pro-
posed a relation-aware self-attention mechanism
for text-to-SQL generation, achieving an accuracy

of 65.6% on the Spider dataset when combined
with BERT (Wang et al., 2020a). In another inde-
pendent work, Scholak et al. (2021) introduced the
PICARD method, which uses incremental parsing
for fine-tuning formal languages. This led to state-
of-the-art results on both the Spider and CoSQL
datasets. Wang et al. (2022a) introduced a novel
approach to schema linking using the Poincaré dis-
tance metric. Their results established a new bench-
mark in performance, outperforming rule-based
methods across multiple datasets and showcasing
the effectiveness of their probing method. A more
recent thorough analysis of the Codex language
model’s text-to-SQL abilities was undertaken by
Rajkumar et al. (2022), whose findings highlighted
the model’s competitive performance across bench-
marks, even without finetuning. Particularly on the
Spider benchmark, Codex achieved an accuracy
of up to 67%. Their work also indicated that us-
ing a small set of in-domain examples could boost
Codex’s performance beyond some finetuned state-
of-the-art models.

Tabular Data Understanding. There has been a
wide array of papers about understanding tabular
data beyond text-to-SQL (Badaro et al., 2023). Ac-
cording to Badaro et al. (2023), there are six com-
mon tabular data tasks: Fact-checking, question
answering, semantic parsing (i.e., text-to-SQL), ta-
ble retrieval, table metadata prediction, and table
content population. Fact-checking related work has
generally focused on predicting whether a state-
ment/claim is factual, given the knowledge avail-
able in a Table (Yang and Zhu, 2021). Table re-
trieval research has focused on finding a table that
contains the answer to a particular question (Wang
et al., 2022b, 2021). Table metadata prediction
involves predicting information about the table,
such as the column name or a relation between
two columns (Suhara et al., 2022; Du et al., 2021).
Finally, table content population involves filling the
cells within a table because of missing or incorrect
data (Iida et al., 2021; Tang et al., 2021).

Intuitively, our task can be considered a combi-
nation of semantic parsing and table content popu-
lation. The former (semantic parsing) is the text-to-
SQL task, and the table population we are predict-
ing is malicious or benign information for network
traffic. We can think of the malicious information
as a missing column in the database. But, more
importantly, this is a highly specialized task that
large language models cannot easily reason about.

3

Train Dev Test

Examples 6591 2197 2197
Average Question Length 2.3 2.3 2.5
Min Question Length 5 6 6
Max Question Length 63 53 46
Average SQL Length 16.3 16.5 16.4
Min SQL Length 5 5 5
Max SQL Length 146 140 140

Tables 12
Columns 173

Table 1: Basic overview of the the text-to-SQL data.

Train Dev Test

Examples 125,000 57,199 57,199
Malicious Examples 50,000 19,701 19,697
Features 19 19 19

Table 2: Basic overview of the network traffic data used
to train and evaluate malicious traffic.

Hence, our dataset provides a unique research test
bed for integrating highly specialized knowledge
into LLMs for tabular QA.

3 Data

In this section, we describe the data creation pro-
cess for text-SQL pairs, the source of the network
traffic and sensor data, and how the network traf-
fic data was organized for training our malicious
network traffic activity detection model. As shown
in Figure 2, the data curation pipeline comprises
five major steps. First, we curate the data for the
database. Second, we “annotate” text-SQL pairs.
Third, we partition network traffic data from the
database to be used to train and evaluate a malicious
traffic detector. Fourth, we review the text-SQL
pairs, removing incorrect, irrelevant, or unclear
queries. Moreover, we paraphrase each text-SQL
pair to provide diversity in how things are specified.
Finally, we perform an additional round of review
after the paraphrase process.

3.1 Database Collection and Creation
We curate the data for our IoT database from two
sources: IoT-23 (Garcia et al., 2021) and the Smart
Building Sensor Data (Hong et al., 2017).
IoT-23. The IoT-23 dataset is created to facilitate
the development and validation of intrusion detec-
tion systems (IDS) for IoT devices. It contains be-
nign and malicious network traffic recordings. The
network traffic recorders are stored in PCAP files
and Zeek logs. For this study, we focus on the Zeek

logs. Zeek (Paxson, 1999), formerly known as Bro,
is an open-source network security monitoring tool.
Its primary purpose is to analyze network traffic
and generate high-level logs, metrics, and events
that abstract the raw data into more meaningful and
actionable insights. Zeek is widely used in network
security, monitoring, and forensic analysis. There
are conn.log, dns.log, files.log, http.log, npt.log,
and weird.log. The conn.log records connection-
level information detailing the sessions seen on the
network. A list of the columns in the conn.log is
found in Table 3. Each row in the conn.log is an-
notated with malicious or benign and the type of
malicious activity (e.g., DDoS, command and con-
trol, specific malware, and more). We discuss this
more in the Network Traffic subsection. dns.log
contains DNS request and response data. files.log
stores details about files transferred over supported
protocols, such as HTTP or FTP. http.log captures
detailed HTTP request and response information.
ntp.log contains information related to NTP trans-
actions, such as timestamp updates, server-client in-
teractions, version details, and other attributes spe-
cific to NTP communications. Finally, weird.log
logs anomalies or unusual behaviors in network
traffic. Each dataset is processed and stored as an
independent table in the database.2

Smart Building Sensors. The Smart Building
Sensor Data is a dataset derived from 255 sen-
sors strategically deployed across 51 distinct rooms
spanning four floors of a university building. The
dataset contains humidity, CO2, temperature, lumi-
nosity, and motion sensor readings. Each reading
is related to a specific room in the building. This
dataset presents a unique opportunity for empir-
ically exploring patterns associated with indoor
spaces’ physical attributes, particularly when com-
bined with network traffic in a synthetic building-
level database. Each sensor type (humidity, lu-
minosity, etc.) is stored as a unique Table in our
database, where each row represents a sensor read.
Intuitively, the goal is to have a comprehensive
database that may be used in a smart building set-
ting, containing both the raw sensor information
and meta data (network traffic) for smart devices.

3.2 Text-to-SQL Pair Annotation

The SQL queries were created using two major
approaches: programmatically using a templated

2More details on Zeek logs can be found at docs.zeek.
org/

4

docs.zeek.org/
docs.zeek.org/

Database Collection
and Creation

1) IoT-23 Zeek Logs
2) Sensor Reading Data

Text-SQL Pair Annotation

1) Templates
2) Manual Creation

SQL-Review and
Paraphrasing

Final Review

1) Reword Text
2) Remove broken or

unclear queries

Remove broken or
unclear queries

Malicious Network
Traffic Dataset

Process Zeek’s conn.log
and IoT23 annotations
to form network
train/dev/test sets.

Modeling

Train joint text-to-SQL
and malicious network
traffic detection
models

Figure 2: Text-to-SQL and malicious network traffic data collection pipeline overview.

approach similar to Wang et al. (2020b) and manu-
ally creating text-SQL pairs without templates. We
describe each of these approaches in detail below:

Templates. Following the work by Wang et al.
(2020b), we generate templates that fit two cat-
egories: retrieval queries and reasoning queries.
Retrieval queries are primarily meant to extract
specific records or data from the database. Rea-
soning queries are more complex and often involve
several logical operations and conditions. They
often require the model to comprehend intricate
relations between different parts of the question
or between multiple database tables. The distinc-
tion is helpful because different query types can be
challenging in their ways. Retrieval queries test the
model’s ability to correctly identify and fetch data,
while reasoning queries test its ability to process
and integrate multiple pieces of information.

In total, we created 27 templates containing sim-
ple and complex queries. Templates are generated
to create queries containing JOINs, HAVING state-
ments, aggregation operations (e.g., average), and
nested queries. An example template is

SELECT $AGG_OP ($AGG_COLUMN)+
FROM $TABLE WHERE ($COND_COLUMN
$COND_OP $COND_VALUE)+

In the above expression, $AGG_OP represents aggre-
gation methods (e.g., AVG(), MAX(), and MIN()),
$AGG_COLUMN represents the column to perform
the aggregation on (e.g., “duration” from conn.log),
$TABLE represents the table the column is pulled
from, $COND_COLUMN (e.g., orig_h representing the
IP address), $COND represents a conditional oper-
ator (e.g., >, <, =), and $COND_VALUE represents
the value to check (e.g., 192.168.1.1). An example
query generated from the template is

SELECT AVG(duration)
FROM CONN_LOG WHERE (orig_h

= "192.168.1.1")

where items such as $AGG_OP are replaced with
AVG().

After creating the text-SQL pairs using tem-
plates, we paraphrased (reworded) each text piece
to add diversity in the ways each question type is
asked. Six researchers manually paraphrased each
question. For instance, the automatically gener-
ated sentence, “List the distinct proto for the DNS
LOGs table with TTLs equal to 2523” would be
transformed into “Provide a list of unique DNS
proto values with a TTLs value of 2523”, where
the sentence is now more natural. All students had
expertise in databases and were data analytics ma-
jors. The text-SQL pairs were assigned randomly
to each researcher. In total, we create a total of
10,000 text-SQL pairs using templates.

Manual Creation. It is difficult to create templates
that capture complex or unique queries. Hence,
student researchers also manually created text-SQL
pairs without using template-generated pairs. In
total, 985 manually curated pairs were collected.

SQL-Review and Dataset Statistics. After cu-
rating and paraphrasing the text-SQL pairs, we
performed a multi-round review process. Each text-
SQL pair was reviewed to measure whether the text
was clear. This was done by having different an-
notators review another annotator’s text-SQL pairs
and paraphrases to ensure they could create the
same SQL statement. Each researcher would cre-
ate an SQL prompt, test the logic against a database,
and after the query is successfully executed, SQL
questions would be generated from the tables and
variables in the Iot-23 dataset. Also, there were sit-
uations where manual text-SQL pairs were either
incorrect or unrealistic; hence, these pairs were re-
moved or paraphrased before incorporating them
into the entire dataset. Overall, the entire data

5

IoT Data Description

ts Timestamp of the first packet
uid Uniqie ID of the connection
id.orig_h Originating endpoint’s IP address

(Orig)
id.orig_p Originating endpoint’s

TCP/UDP port (or ICMP
code)

id.resp_h Responding endpoint’s IP ad-
dress (Resp)

id.resp_p Responding endpoint’s
TCP/UDP port (or ICMP
code)

proto Transport layer protocol of con-
nection

service Detecting application protocol, if
any

duration Connection length
orig_bytes Orig payload bytes, from se-

quence numbers if TCP
resp_bytes Resp payload bytes; from se-

quence numbers if TCP
conn_state Connection state
local_orig is Orig in Site::local_nets?
local_resp is Resp in Site::local_nets?
missed_bytes Number of bytes missing due to

connection gaps
history Connection state history
orig_pkts Number of Orig packets
orig_ip_bytes Number of Orig IP bytes (via IP

total_length header field)
resp_pkts Number of Resp packets
resp_ip_bytes Number of Resp IP bytes (via IP

total_length header field)
tunnel_parents if tunneled, connection UID of

encapsulating parent(s)

Table 3: This table contains a description of the Zeek
Connection log columns, which are used as features
when predicting malicious activity.

collection process took 1.5 years. The final an-
notated data statistics can be seen in Table 1. The
dataset used to train the text-to-SQL models con-
sisted of 10,985 rows. Each row contained a SQL
query and a corresponding description, question,
or prompt. The SQL queries varied in complexity
but consisted primarily of arguments such as select
distinct, max, avg, having, filtering, and join. On
average, the prompts contained sixteen words, with
the shortest prompt containing five words and the
longest containing 146.

Network data The network traffic data comes
from the IoT-23 dataset, which is used to train and
evaluate our ability to detect malicious activity. We
split the data into train, validation, and test sets
based on attack type. Each session in the conn.log
is labeled with one of ten attack-related labels: At-
tack, Benign, C&C, DDoS, FileDownload, Heart-

Beat, Mirai, Okiru, Torii, and PartOfAHorizontal-
PortScan.

The appendix provides details of the columns
and features used and a summary of the data. A
sample of the data is used to train and evaluate the
performance of our ability to detect malicious ac-
tivity. We split the network traffic data into train,
validation, and test sets based on the attack type.
Each session (row) in the conn.log is labeled with
one of ten attack-related labels. An Attack label
involves the infected device exploiting a vulnera-
ble service on another system, like brute-forcing
logins. Benign connections display no malicious
intent. C&C signifies a device’s connection to a
Command and Control server, observed through
periodic communications or suspicious downloads.
DDoS denotes the device’s role in overwhelming
a target by sending excessive traffic. FileDown-
load infers a device downloading potential threats
based on connection sizes and endpoints. Heart-
Beat marks periodic, minimal exchanges with a
C&C server, ensuring active monitoring. Mirai,
Okiru, and Torii are labels pointing to specific bot-
net attack patterns, with the latter two being less
common than Mirai. Finally, PartOfAHorizontal-
PortScan identifies efforts to scan various systems
on the same port for vulnerabilities.

Recent work exploring malicious network traffic
detection has analyzed why much of the reported
results are greater than 99% F1 (Kus et al., 2022).
A major cause for these results is the training and
testing on the same attack types. When the attack
type is unknown (i.e., zero-days), performance is
not as high. Hence, we split the data into training
and test/validation datasets so that the same attack
type in the training dataset is not in the validation
and test sets. The training dataset contains network
traffic related to PartOfAHorizontalPortScan and
Okiru. The other sessions from the conn.log with
different attach types are used in other validation
and test datasets. Next, we merge all malicious
activity into a single “malicious” label. Moreover,
to avoid potential data leakage, all IP addresses
and time stamps were randomized when training
and evaluating the malicious traffic detection mod-
els. A summary of the data used for training and
evaluating the malicious network activity models
is shown in Table 2 and the columns/features are
shown in Table 3.

6

4 Method

In this section, we describe the approach we devel-
oped to address the text-to-SQL task and malicious
traffic detection tasks jointly.

Schema for text-to-SQL. The table schema must
be included with the model input to train a model
to generate SQL queries specific to our database.
The schema includes all tables and variables from
our database (IoT and sensor data). Formally, let ti
represent a table i, and let ci,j represent a column
j in table i. Each column has an attribute ai,j rep-
resenting the j-th column’s datatype in table i. For
instance, we have the table conn.log, which stores
information about connections/sessions. Two
columns within conn.log include orig_h and
orig_p. The attribute assigned to the orig_h
column is text since it contains strings (IP ad-
dresses). The attribute assigned to orig_p is
number (representing the port number). Given all
of the tables, columns, and attributes in a database,
we generate the schema represented in the form
of s = [∗, t1, c1,1, a1,1, c1,2, a1,2, t2, c2,1, a2,1, . . .].
In practice, this looks like s = [*, conn.log, orig_p,
text, . . ., weird.log, orig_p, text, . . .]. We concate-
nate the schema to each input text before being
passed to the T5 models to generate the SQL state-
ments.

Input for Malicious Traffic Detection. Instead
of passing the schema and text as input for mali-
cious traffic detection, as we do for the text-to-SQL
generation, we pass an instruction and formatted
tabular data. Let p represent the instruction and t
represent the formatted tabular data. We concate-
nate both to form the input x = [p, t]. This work
uses the instruction “Is the following network infor-
mation Malicious?”. Also, the tabular data (row)
is formatted as t1t2 · · · tn, where each tabular data
column/value is represented as a string. Moreover,
everything is concatenated using space as the de-
limiter. In practice, this looks like “192.168.1.1
80 192.161.2.2 8080 · · ·.” Note that there are no
spaces in the values available in the conn.log file,
which contains the network data used for malicious
traffic detection. If this work is expanded to other
Zeek logs, other delimiters would need to be ex-
plored.

Training. To train the model, we fine-tune the Flan-
T5-base (Chung et al., 2022) model. The model
is trained using the Adam optimizer (Kingma and
Ba, 2014) with a minibatch size 4 and a learning

rate .0001. We trained the model for a total of 15
epochs. The model was trained by simply combin-
ing the data formatted as described in Sections 4.

5 Results

In this section, we describe the evaluation metrics,
our baseline models, and the results for text-to-SQL
prediction and malicious network traffic detection.
We also provide an informative error analysis.

Evaluation Metrics. We use two primary metrics
for evaluating the text-to-SQL results: Logical Ac-
curacy and Execution Accuracy. Logical Accuracy
assesses the correctness of the logical structure and
semantics of the generated SQL with the target
SQL (i.e., measuring whether two SQL queries
are exactly the same). However, a potential pit-
fall of relying solely on Logical Accuracy is that
two queries may be correct but written differently.
On the other hand, Execution Accuracy evaluates
the results obtained when the generated SQL is
run on a database. This metric is vital because
the ultimate goal is to extract accurate information
from the database, regardless of the SQL’s struc-
ture. However, a high Execution Accuracy doesn’t
guarantee that the SQL query is optimal or seman-
tically correct. It’s possible for an inefficient or
technically incorrect query to yield the desired re-
sults that are returned by the ground-truth query.
Hence, we consider both Logical and Execution
Accuracy in our study. We use the standard clas-
sification metrics macro-precision, macro-recall,
and macro-F1 to evaluate our models’ malicious
network traffic detection performance.

Baseline models. We explore two major baselines
to evaluate the performance of detecting malicious
web traffic: Support Vector Machines (SVM) and
Random Forest. The input of the models includes
all of the features listed in Table 3 except for ts, uid,
origh_h, resp_h, and tunnel_parents (i.e., all unique
identifiers and IP addresses are removed). The mod-
els used to create the baseline include stratified, uni-
form, random forest, and support vector machines.
We also explore two random baselines: stratified
and uniform. The stratified baseline randomly pre-
dicts each class based on the class proportion in the
training dataset, and the uniform baseline randomly
predicts each class with equal probability. Finally,
we evaluate transformer models Flan-T5-base and
Flan-T5-Large where the input is formatted as de-
scribed in Section 4. Finally, we evaluate using
GPT3.5 with few-shot prompts (64 examples). For

7

Validation Test

Execution Acc Logical Acc Execution Acc Logical Acc

Methods that can only Generate SQL Statements

Fine-tuned
BART .693 .233 .400 .232
T5-base .904 .729 .827 .746
T5-large .966 .868 .928 .861

Methods that can detect Malicious Traffic and Generate SQL Statements

Prompt-based
GPT3.5 Few-Shot .813 .147 .841 .177

Fine-tuned + Malware MT Learning T5-base .927 .837 .956 .851

Table 4: Text-to-SQL generation results
Validation Test

precision recall F1 precision recall F1

Methods that can only detect Malicious Traffic

Baselines

Stratified .500 .500 .498 .502 .502 .501
Uniform .503 .503 .491 .497 .497 .485

Random Forest .879 .697 .714 .878 .694 .710
SVM .874 .693 .709 .872 .689 .704

Fine-tuned
T5-base .883 .708 .728 .882 .704 .723

T5-Large .900 .777 .804 .904 .775 .802

Methods that can detect Malicious Traffic and Generate SQL Statements

Prompt-based
GPT3.5 Zero-Shot .167 .388 .215 .183 .392 .220
GPT3.5 Few-Shot .741 .761 .711 .671 .640 .543

Fine-tuned + Malware MT Learning T5-base .810 .684 .697 .808 .680 .693

Table 5: Malicious traffic detection results.

the GPT3.5 model, the data is supplied in a json-
like format (label, value) pairs so it knows what
each value represents.

For text-to-SQL, we explore two types of fine-
tuned baselines. For the fine-tuned models for
text-to-SQL, we evaluate three models: Flan-T5-
base, BART (Lewis et al., 2020), and Flan-T5-large.
Each model is trained using the same schema de-
fined in Section 4. These models are not trained on
the network traffic data. We also evaluate GPT3.5
using in-context examples. We provide 64 in-
context examples from the training dataset to make
predictions. In general, our GPT3.5 prompt follows
the work of Gao et al. (2023), which achieved state-
of-the-art performance on the Spider dataset (Yu
et al., 2018b).

Text-to-SQL. In Table 4, we report the results on
the text-to-SQL task. We compare the baselines to
models fine-tuned only on the text-to-SQL corpus
and to a model trained on the text-to-SQL and net-
work traffic data. Overall, we find that the larger
model T5-Large outperforms the T5-base model
when fine-tuned only on text-to-SQL data. The T5-
Large model achieves a logical accuracy of .861 on
the test set and an execution accuracy of .928. How-

ever, when jointly trained on both datasets, we find
that the T5-base model can nearly match (and beat)
the performance of the larger model. Specifically,
the T5-base model achieves a logical accuracy of
.851 and an execution accuracy of .956 on the test
data with multi-task training, thus matching and
outperforming the T5-Large model trained only on
the text-to-SQL data.

Malicious Network Traffic Detection. In Table 5,
we report the results of detecting malicious net-
work traffic. We find that the Random Forest out-
performs other methods for the baseline models.
The random forest model had an F1 score of .710
and a recall score of .694. The SVM had simi-
lar results, with an F1 score of .704 and a recall
score of .689. Moreover, the GPT3.5 method per-
forms poorly on the task, with only an F1 of .543
on the test step, a light improvement over random.
We hypothesize that the validation performance is
slightly better because the LLM was able to under-
stand those attacks better than the test set attacks.
However, the transformer-based models (T5-base
and T5-large) substantially outperformed all base-
line models. The Flan-T5-Large model was the
top-performing fine-tuned model model, with an

8

F1 score of .802 and a recall score of .775. Over-
all, compared to the text-to-SQL results, we find
that training on both malicious traffic detection and
text-to-SQL reduces the performance of the net-
work traffic task. When analyzing the results, we
find that the model struggles to identify malicious
items, mostly labeling examples as Benign.

Error analysis. Why does the T5-base model
match and outperform the T5-large model when
trained on both datasets? Our analysis shows that
much of the improvement is on the conn.log-related
queries. The conn.log was the table used as in-
put when training the malicious network traffic
detection-related aspect of our model. Specifi-
cally, for logical accuracy, 142 examples in the
test dataset contained items related to the conn.log
table. The T5-base model missed 42 of them.
The jointly trained T5-base model only missed
27. Some of the errors were major, where the
T5-base model did not generate a SQL statement
at all, where the T5-large model returned the cor-
rect statement (e.g., “SELECT service FROM
IoT23_CONN_LOG GROUP BY service HAV-
ING AVG(resp_bytes) >= 829”).

We also hypothesize that while we did not
train to make inferences about other tables in the
database, by better understanding the conn.log ta-
ble, the model can better understand how it relates
more to other tables via JOIN queries. This bet-
ter understanding of table relationships potentially
results in improvements for other tables as well.

6 Conclusion

Databases hold large amounts of structured knowl-
edge across various sectors, and efficient access to
this data is essential. Our study was driven by the
goal of NLIDB, which is to simplify data access
beyond the complexities of SQL. While there have
been advancements in text-to-SQL systems, our
research emphasizes the importance of retrieving
and understanding the data. With the introduction
of the IoT-SQL dataset, we’ve provided a unique
resource with the ability to predict aspects not in
the database (i.e., malicious network activity) and
generate SQL statements based on an input text
query. Moreover, the dataset contains many tem-
poral queries that are missing or limited in prior
text-to-SQL datasets. Our findings show that mod-
els trained to query and reason about data improve
SQL generation performance.

Overall, there are two major avenues for future

work. First, we plan to explore more complex mod-
els on the dataset, particularly on more complex
training, validation, and test sets. For example,
recent work suggests that exploring different data
split methods (e.g., based on SQL length, tables, or
column names) can improve the measure of gener-
alizability (Gan et al., 2022; Tarbell et al., 2023).
Second, we will explore more sophisticated meth-
ods of detecting malicious network activity. Mali-
cious activity may be related to multiple sessions
within the Zeek Conn.log. Developing a system
that can reason over multiple rows in the database
can potentially generate substantial improvements.

7 Acknowledgements

This material is based upon work supported by the
National Security Agency under Grant / Coopera-
tive Agreement (NCAE-C Grant) Number H93230-
21-1-0172. The United States Government is autho-
rized to reproduce and distribute reprints notwith-
standing any copyright notion herein. We espe-
cially acknowledge Dr. Glenn Dietrich, a co-author
who passed away before this paper was published.
This work would not have been possible without
his support.

8 Limitations

Our study acknowledges several limitations that
warrant discussion. Firstly, while our novel IoT-
SQL dataset provides a rich collection of text-SQL
pairs and network traffic data, the specific focus on
IoT environments and network traffic may limit the
generalizability of our findings to other domains or
types of data. This specialization means that mod-
els trained on our dataset might not perform as well
when applied to databases with different structures
or content, such as healthcare or financial databases.
However, it is still a novel domain for tabular QA,
which state-of-the-art LLMs (e.g., GPT3.5) strug-
gle to understand, thus providing a new testbed for
understanding how to add new functionality to the
models. We also understand that GPT4 may per-
form better than GPT3.5, but because of the size
of the network data, the experiments are expen-
sive. GPT3.5 experiments cost nearly $600, not
including small preliminary experiments. There
are also things that could have improved the results,
e.g., finding the most similar in-context examples.
But, again, the cost was prohibitive because of our
limited research budget.

Also, our approach relies heavily on the qual-

9

ity and diversity of the SQL queries and the para-
phrased text. Despite our efforts to generate diverse
and complex queries, certain query structures or
linguistic variations may still be underrepresented.
This underrepresentation could impact the model’s
ability to generalize across unseen queries or to
handle nuanced variations in natural language.

Another significant limitation lies in the multi-
task learning approach for joint training on text-
to-SQL generation and malicious network traffic
detection. While this approach improved the text-
to-SQL performance, it did not enhance and, in
some cases, slightly reduced the accuracy of ma-
licious traffic detection. This suggests a potential
trade-off when balancing multiple tasks, and fur-
ther research is needed to optimize such multi-task
learning frameworks to ensure that improvements
in one task do not come at the expense of another.

In summary, while our contributions are signif-
icant, addressing these limitations through future
research will be crucial for advancing the state of
text-to-SQL systems and their application to di-
verse and complex datasets to really understand all
types of data beyond just generating a SQL state-
ment.

References
Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Ku-

mar Sikder, Markus Miettinen, Hidayet Aksu, Mauro
Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac.
2020. Peek-a-boo: I see your smart home activities,
even encrypted! In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, pages 207–218.

Gilbert Badaro, Mohammed Saeed, and Paolo Papotti.
2023. Transformers for tabular data representation:
A survey of models and applications. Transactions
of the Association for Computational Linguistics,
11:227–249.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019.
Representing schema structure with graph neural net-
works for text-to-sql parsing. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4560–4565.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.

2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Deborah A Dahl, Madeleine Bates, Michael K Brown,
William M Fisher, Kate Hunicke-Smith, David S
Pallett, Christine Pao, Alexander Rudnicky, and Eliz-
abeth Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. Proceedings of the workshop
on Human Language Technology, pages 43–48.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong
Yu. 2022. Turl: Table understanding through repre-
sentation learning. ACM SIGMOD Record, 51(1):33–
40.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang,
Jiang Zhang, Shi Han, and Dongmei Zhang. 2021.
Tabularnet: A neural network architecture for un-
derstanding semantic structures of tabular data. In
Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pages 322–
331.

Yujian Gan, Xinyun Chen, Qiuping Huang, and
Matthew Purver. 2022. Measuring and improving
compositional generalization in text-to-sql via com-
ponent alignment. In Findings of the Association
for Computational Linguistics: NAACL 2022, pages
831–843.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Sebastian Garcia, Agustin Parmisano, and Maria J
Erquiaga. 2021. Iot-23: A labeled dataset with mali-
cious and benign iot network traffic. 2020.

Alessandra Giordani and Alessandro Moschitti. 2013.
Automatic generation and reranking of sql-derived
answers to nl questions. In Trustworthy Eternal
Systems via Evolving Software, Data and Knowl-
edge: Second International Workshop, EternalS 2012,
Montpellier, France, August 28, 2012, Revised Se-
lected Papers 2, pages 59–76. Springer.

Dezhi Hong, Quanquan Gu, and Kamin Whitehouse.
2017. High-dimensional time series clustering via
cross-predictability. In Artificial Intelligence and
Statistics, pages 642–651. PMLR.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. Tabbie: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456.

10

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Dominik Kus, Eric Wagner, Jan Pennekamp, Konrad
Wolsing, Ina Berenice Fink, Markus Dahlmanns,
Klaus Wehrle, and Martin Henze. 2022. A false
sense of security? revisiting the state of machine
learning-based industrial intrusion detection. In Pro-
ceedings of the 8th ACM on Cyber-Physical System
Security Workshop, pages 73–84.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Isil Dillig Navid Yaghmazadeh, Yuepeng Wang and
Thomas Dillig. 2017. Sqlizer: Query synthesis from
natural language. In International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, ACM, pages 63:1–63:26.

Vern Paxson. 1999. Bro: a system for detecting network
intruders in real-time. Computer networks, 31(23-
24):2435–2463.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th interna-
tional conference on Intelligent user interfaces, pages
149–157.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of
text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabil-
ities of large language models. arXiv preprint
arXiv:2204.00498.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901.

Alvin Cheung Jayant Krishnamurthy Srinivasan Iyer,
Ioannis Konstas and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973.

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang,
Çağatay Demiralp, Chen Chen, and Wang-Chiew Tan.
2022. Annotating columns with pre-trained language
models. In Proceedings of the 2022 International
Conference on Management of Data, pages 1493–
1503.

Runxin Sun, Shizhu He, Chong Zhu, Yaohan He, Jin-
long Li, Jun Zhao, and Kang Liu. 2022. Leveraging
explicit lexico-logical alignments in text-to-sql pars-
ing. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 283–289.

Lappoon R Tang and Raymond Mooney. 2000. Auto-
mated construction of database interfaces: Intergrat-
ing statistical and relational learning for semantic
parsing. In 2000 Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and
Very Large Corpora, pages 133–141.

Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong
Du, Guoliang Li, Sam Madden, and Mourad Ouz-
zani. 2021. Rpt: relational pre-trained transformer
is almost all you need towards democratizing data
preparation. Proceedings of the VLDB Endowment,
14(8):1254–1261.

Richard Tarbell, Kim-Kwang Raymond Choo, Glenn Di-
etrich, and Anthony Rios. 2023. Towards understand-
ing the generalization of medical text-to-sql models
and datasets. arXiv e-prints, pages arXiv–2303.

Ngoc Phuoc An Vo, Octavian Popescu, Irene Manotas,
and Vadim Sheinin. 2022. Tackling temporal ques-
tions in natural language interface to databases. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing: Industry
Track, pages 179–187.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578.

Chenglong Wang, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Mao, Olek-
sandr Polozov, and Rishabh Singh. 2018. Robust
text-to-sql generation with execution-guided
decoding. arXiv preprint arXiv:1807.03100.

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and
Pedro Szekely. 2021. Retrieving complex tables with
multi-granular graph representation learning. In Pro-
ceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 1472–1482.

Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min
Yang, Bailin Wang, Binhua Li, Jian Sun, Fei Huang,
Luo Si, et al. 2022a. Proton: Probing schema linking
information from pre-trained language models for
text-to-sql parsing. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1889–1898.

Ping Wang, Tian Shi, and Chandan K Reddy. 2020b.
Text-to-sql generation for question answering on elec-
tronic medical records. In Proceedings of The Web
Conference 2020, pages 350–361.

11

Zhiruo Wang, Zhengbao Jiang, Eric Nyberg, and Gra-
ham Neubig. 2022b. Table retrieval may not necessi-
tate table-specific model design. In Proceedings of
the Workshop on Structured and Unstructured Knowl-
edge Integration (SUKI), pages 36–46.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Xiaoyu Yang and Xiaodan Zhu. 2021. Exploring de-
composition for table-based fact verification. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, pages 1045–1052.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir
Radev. 2018a. Typesql: Knowledge-based type-
aware neural text-to-sql generation. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 588–594.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. 2019. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1962–1979.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018b. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, pages 1050–1055.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

12

