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Introduction

We are excited to welcome you to TRL 2025, the Workshop on Table Representation Learning, held in
conjunction with ACL 2025. This year, the workshop takes place on July 31st, 2025, in Vienna, Austria,
and brings together researchers working on all aspects of modeling, understanding, and reasoning over
tabular data.
TRL serves as a forum for recent advances in table representation learning, spanning a wide range of to-
pics including pretraining and foundation models for tables, table-based retrieval and question answering,
table-to-text generation, semantic parsing, and applications in both textual and multimodal settings.
This year, we received 30 submissions, reflecting the growing interest in this area. Following a thorough
review process, 24 papers were accepted for presentation, including 6 selected for oral presentations. The
overall acceptance rate was 80%. The accepted papers represent both the breadth and depth of current
research, and we are excited to showcase them during the workshop.
We are honored to feature invited talks by Edward Choi, Ruoxi Sun, Tao Yu, and Jiani Zhang, whose
insights help frame the ongoing challenges and opportunities in table representation learning. We thank
them for accepting our invitation and for their generous contributions to the program.
The workshop program includes oral presentations, a poster session, and invited talks. The oral sessions
are organized thematically to highlight emerging directions and shared challenges across subfields. We
hope these discussions foster new connections and inspire future research.
We thank all authors for their contributions and all attendees for their participation. We are especially
grateful to our Program Committee for their thoughtful and timely reviews—their efforts were essential
in shaping a strong and balanced program.
Finally, we thank our sponsors, SAP and Snowflake, for their generous support in making TRL 2025
possible.
We hope you enjoy the workshop!
Madelon Hulsebos, Qian Liu, Shuaichen Chang, Wenhu Chen, Huan Sun Organizers of TRL 2025
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Abstract
Tables are a primary medium for conveying crit-
ical information in administrative domains, yet
their complexity hinders utilization by Large
Language Models (LLMs). This paper intro-
duces the Theme-Explanation Structure-based
Table Summarization (Tabular-TX) pipeline, a
novel approach designed to generate highly in-
terpretable summaries from tabular data, with a
specific focus on Korean administrative doc-
uments. Current table summarization meth-
ods often neglect the crucial aspect of human-
friendly output. Tabular-TX addresses this by
first employing a multi-step reasoning process
to ensure deep table comprehension by LLMs,
followed by a journalist persona prompting
strategy for clear sentence generation. Cru-
cially, it then structures the output into a Theme
Part (an adverbial phrase) and an Explanation
Part (a predicative clause), significantly en-
hancing readability. Our approach leverages in-
context learning, obviating the need for exten-
sive fine-tuning and associated labeled data or
computational resources. Experimental results
show that Tabular-TX effectively processes
complex table structures and metadata, offering
a robust and efficient solution for generating
human-centric table summaries, especially in
low-resource scenarios.

1 Introduction

Tables are essential for presenting core information,
especially within the administrative domain, where
critical data is frequently structured in tabular for-
mats (Musumeci et al., 2024). The ability of Large
Language Models (LLMs) to accurately summa-
rize and elucidate the contents of these tables is
becoming increasingly significant for data utiliza-
tion. An important aspect of effective table summa-
rization is the generation of human-understandable
output. This necessitates not only the LLM’s pro-
found comprehension of the input table, but also

*Both authors contributed equally to this work.
†Corresponding author.

the crafting of summaries that are both intuitive
and concise, delivering key information without
ambiguity.

Despite the critical need for human-centric sum-
maries, recent research in table-to-text generation
has often overlooked this aspect. Many existing ap-
proaches prioritize other metrics or model architec-
tures, without sufficiently addressing how the gen-
erated text will be perceived and understood (Liu
et al., 2024; Zhang et al., 2024b). Consequently,
while the output can be factually correct, they lack
the clarity, conciseness, or intuitive structure that
facilitates effortless human comprehension, partic-
ularly when dealing with specialized data such as
Korean administrative tables (NIKL, 2024).

To address this gap and emphasize the genera-
tion of human-friendly summaries, we propose the
Theme-Explanation Structure-based Table Sum-
marization (Tabular-TX) pipeline. Our approach
is meticulously designed to guide LLMs towards
producing summaries that are not only accurate
but also exceptionally interpretable. First, to en-
sure a deep understanding of the input table, we
decompose the LLM’s reasoning process into a
multi-step procedure, where each step focuses on
a specific inferential task, thereby simplifying the
complex table interpretation process. Second, we
employ a “Journalist Persona” prompting strategy
to encourage the generation of clear, objective, and
well-phrased sentences. Finally, and most critically,
we transform these generated insights into a highly
structured Theme-Explanation (TX) format, where
each summary segment consists of a thematic ad-
verbial phrase followed by a predicative explana-
tory clause, enhancing readability and directness.

The Tabular-TX pipeline offers significant ad-
vantages, particularly in resource-constrained envi-
ronments where extensive fine-tuning is unfeasible.
Our primary contributions are threefold:

• We introduce a novel pipeline that leverages

1



Data Transformation Data Recognition / Classification Sentence Generation

[
  {"row": 0, "col": 0, "value": "Category"},
  {"row": 1, "col": 0, "value": "Total"},
  {"row": 0, "col": 1, "value": "Total"},
  {"row": 1, "col": 1, "value": "Public Institutions"},
  {"row": 0, "col": 2, "value": "Public Institutions"},
  {"row": 1, "col": 2, "value": "Private Enterprises"},
  {"row": 0, "col": 4, "value": "Private Enterprises"},
  {"row": 1, "col": 4, "value": "1,000 or More"},
  {"row": 1, "col": 4, "value": "500-999"},
  {"row": 1, "col": 0, "value": "12 Years"},
  {"row": 1, "col": 1, "value": "1,674"},
  {"row": 1, "col": 2, "value": "247"},
  {"row": 1, "col": 2, "value": "677"},
  {"row": 1, "col": 5, "value": "750"}
]

Year Total Public 
Institutions

Private Enterprises

1,000 or more 500~999

2012 1674 247 677 750

2011 1547 245 610 692

The table data is preprocessed by converting it into a key-value 
dictionary format to simplify the structure and enhance 
recognition by large language models.

Analyze the Highlighted_cells in this graph.
•(If the data is monetary) analyze the units.
•(If the data is in percentage) analyze the ratios.

[0, 1]: Indicates the year of the data, the value is 
"12 years."
[1, 1]: Indicates the total number of 
workplaces, the value is "1,674."
[3, 1]: Indicates the number of private 
enterprises with 1,000 or more employees, the 
value is "677."
[4, 1]: Indicates the number of private 
enterprises with 500-999 employees, the value 
is "750."

Highlighted cells are analyzed and categorized by data types, 
such as numerical values or percentages, to determine the 
appropriate analysis methods.

Theme-Explanation structure-based sentences are generated 
by combining the table title with explanations derived from the 
relationships between the highlighted cells.

Theme

Explanation

Enumerat
ion

Increase/
Decrease

Size 
Comparis

on

According to the status of workplaces subject to 
mandatory application, as of 2012, out of the 
total 1,674 workplaces subject to mandatory 
application, 1,427 were private enterprises, 
including 677 enterprises with 1,000 or more 
employees and 750 enterprises with 500-999 
employees.

Figure 1: An overall pipeline of Theme-Explanation Structure-based Table Summarization (Tabular-TX).

multi-step reasoning and a journalist persona
to generate high-quality textual explanations
from complex tabular data.

• We propose the Theme-Explanation (TX) sen-
tence structure, a new format for table sum-
maries designed to maximize human inter-
pretability.

• Through empirical evaluation, we demon-
strate that our In-Context Learning (ICL)-
based approach enables LLMs to achieve
strong performance in table data processing
and summarization without the need for task-
specific fine-tuning.

2 Related Work

Table-to-Text Generation To enable complex
reasoning over tabular data, Wang et al. (2024)
proposed the Chain-of-Table framework as an ex-
tension of the text-based Chain-of-Thought method
(Wei et al., 2022). This approach simplifies infer-
ence by reordering, extracting, and filtering table
data, ultimately integrating relevant information
into a structured table format. While this method
excels in structured table processing and mathe-
matical reasoning, it has limitations in generating
interpretations for sections that require metadata or
background knowledge.

TableLlama (Zhang et al., 2024b) aims to gener-
alize table-based models beyond task-specific con-
straints by fine-tuning 14 datasets across 11 tasks,
including Highlighted Cells question-answering.
The model achieved performance comparable to
or surpassing task-specific models and even out-
performed GPT-4 (OpenAI, 2023) on unseen tasks.

However, despite its effectiveness, the model suf-
fers from high computational costs.

Among table-based interpretation benchmarks,
FeTaQA (Nan et al., 2022) serves as a key reference
dataset. While Chain-of-Table and TableLlama uti-
lize in-context learning (Brown et al., 2020) and
fine-tuning, respectively, they struggle to incorpo-
rate metadata into their interpretations effectively.

3 Theme-Explanation Structure

Unlike conventional approaches that treat table
summaries as isolated text generation tasks, our
method ensures structural consistency by explic-
itly organizing content into a Theme Part and an
Explanation Part.

3.1 Theme Part

The Theme Part serves as a crucial contextual an-
chor, ensuring that numerical or categorical values
in the table are interpreted correctly. It is struc-
tured as an adverbial phrase, combining the noun
phrase of the table title (table_title) with a cita-
tion or basis expression1. This structure is essential
because the table title provides the sole compre-
hensive context in table summaries. Unlike general
text summaries, table cells alone are insufficient to
provide meaningful context, making the resulting
sentence ambiguous without additional background
information.

3.2 Explanation Part

Following the Theme Part, the Explanation Part de-
livers a structured analysis of the highlighted cells,

1Comparison of summarization sentence with and without
theme part is illustrated at Figure 4.
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forming the core content of the summary. Depend-
ing on the data type, this section uses a specific
analytical technique, such as enumeration, magni-
tude comparison, or trend analysis. The choice of
method is determined based on the comparability
of the highlighted cells, ensuring that the summary
provides meaningful insights rather than just raw
cell values.

4 Tabular-TX Pipeline

Generating summaries with the theme-explanation
structure in Tabular-TX involves multiple process-
ing steps to transform tabular data into structured
natural language summaries.2

4.1 Chain-of-Thought (CoT)
After data transformation, the actual sentence gen-
eration process begins using Chain-of-Thought
(CoT) reasoning. Large Language Models (LLMs)
generally face performance degradation when han-
dling tabular data summarization, as this task si-
multaneously requires multiple capabilities such
as table recognition, mathematical reasoning, and
commonsense inference. This issue, known as the
Compositional Deficiency problem (Zhao et al.,
2024), occurs because individual data points tend
to be analyzed separately without adequately inte-
grating their relationships into a holistic interpreta-
tion. CoT mitigates this by systematically guiding
the model to tackle one reasoning step at a time,
thereby improving interpretative accuracy and con-
textual completeness.

Specifically, CoT first classifies the types of high-
lighted cells, distinguishing among monetary val-
ues, percentages, categorical data, and textual ex-
planations. This classification step prevents poten-
tial errors, such as misinterpreting percentages as
plain numbers. Then, depending on the classified
data type, the most appropriate analytical method—
such as enumeration for listing individual items,
magnitude comparison for numerical rankings, or
trend analysis for temporal changes—is selected
and applied. For instance, monetary values are con-
verted into consistent units, and percentages are
appropriately formatted for clarity.

In the context of Korean administrative table
data, these challenges are further complicated by
the language’s implicit nature, the potential gap
between administrative and everyday terminology,

2Within Tabular-TX, data is preprocessed before using
LLMs. Further details on data preprocessing are discussed in
Appendix C.1.

and morphological complexities (e.g., absent sub-
jects or ambiguous particle usage). CoT systemat-
ically decomposes these linguistic hurdles by (1)
classifying specialized terms, (2) normalizing nu-
meric expressions in line with Korean usage con-
ventions, and (3) incrementally integrating contex-
tual cues, such as clarifying administrative vocabu-
lary or disambiguating omitted referents. Through
this stepwise process, the model avoids misinter-
pretations caused by either unfamiliar terms or im-
plicit structures, ultimately generating summaries
that better align with Korean textual norms.

By addressing each reasoning subtask explic-
itly and sequentially, CoT ensures the final table
summary captures data relationships clearly and co-
herently, resulting in an accurate and contextually
meaningful summary.

4.2 Journalist Persona for Structured
Generation

In last step of pipeline we assign a journalist per-
sona to the LLM to generate Theme-Explanation
structured summaries. This persona is particularly
effective because table summaries share key char-
acteristics with straight news articles, which priori-
tize conciseness, objectivity, and fact-based clarity.
Rather than generating overly detailed or specula-
tive content, the model produces well-structured
and neutral summaries that adhere to journalistic
reporting conventions when guided by this persona.

Figure 2 demonstrates the impact of the journal-
ist persona on table summarization. With a generic
prompt, the model generates an ambiguous sum-
mary that captures core information but lacks con-
textual clarity and coherence. In contrast, apply-
ing the journalist persona produces a structured
and contextually enriched summary. This improve-
ment occurs because the journalist persona explic-
itly guides the model to state information sources,
clearly define numerical constraints, and incorpo-
rate contextual details, closely resembling news
article formats.

5 Experiment

5.1 Experimental Setup

Dataset For training and evaluation, we utilized
the Korean table interpretation benchmark (NIKL,
2024), which focuses on summarizing highlighted
table segments into coherent sentences. An exam-
ple of the dataset is shown in Figure 3. The dataset
consists of 7,170 training tables, 876 validation ta-

3



Model ROUGE-1 ROUGE-L BLEU Average

KoBART - Fine-tuned 0.37 0.28 0.35 0.33

EXAONE 3.0 7.8B - ICL 0.21 0.14 0.01 0.12
EXAONE 3.0 7.8B - LoRA 0.27 0.21 0.05 0.17
EXAONE 3.0 7.8B - Tabular-TX 0.51 0.39 0.44 0.45

llama-3-Korean-Bllossom-8B - ICL 0.33 0.25 0.27 0.28
llama-3-Korean-Bllossom-8B - Tabular-TX 0.48 0.37 0.42 0.43

Table 1: Evaluation results on the Korean Korean table interpretation benchmark for each model.

bles, and 876 test tables. Each data point contains
metadata such as the document title, table title, pub-
lication date, publishing organization, table source
URL, highlighted cell information, table data, and
a reference summary sentence describing the high-
lighted portions’ key contents.

Evaluation Metrics We employ ROUGE-1,
ROUGE-L, and BLEU to evaluate the performance
of table segment interpretation. These metrics as-
sess how effectively the summaries convey the key
content of the table while achieving high semantic
quality.

Models To evaluate the effectiveness of the
Tabular-TX pipeline, we utilize EXAONE 3.0 7.8B
(An et al., 2024) and llama-3-Korean-Bllossom-
8B3 models as base models. EXAONE 3.0 7.8B, a
successor to EXAONE-LM-v1.0, has demonstrated
state-of-the-art performance in Korean TableQA,
ranking first on the KorWikiTableQuestions (Jun
et al., 2022). Similarly, llama-3-Korean-Bllossom-
8B is the top-performing sub-10B model in a Ko-
rean multi-domain reasoning benchmark. We com-
pare the performance of these models with and
without Tabular-TX, assessing whether structured
generation enhances performance in table summa-
rization. Additionally, we analyze whether Tabular-
TX reduces reliance on extensive fine-tuning while
maintaining high-quality summaries.

5.1.1 Additional Adaptation Approaches
In-Context Learning (ICL) We begin by ap-
plying ICL to each model, providing a few table-
summarization examples without explicit fine-
tuning. This approach tests how effectively the
model can generate coherent sentences for high-
lighted table cells based solely on a small set of
demonstrations.

3https://huggingface.co/MLP-KTLim/
llama-3-Korean-Bllossom-8B

Low-Rank Adaptation (LoRA) Next, we assess
the computational efficiency and performance of
the Tabular-TX pipeline by introducing LoRA (Hu
et al., 2022). We trained the EXAONE 3.0 7.8B by
applying LoRA to see if we could maintain high-
quality table summaries with fewer resources.

Full Model Fine-Tuning Finally, we evaluate
the KoBART (Korean BART)4 model under a full
model fine-tuning setup to determine whether a
smaller-scale language model can achieve compara-
ble performance when all its parameters are trained
on the Korean table interpretation benchmark.

5.2 Experimental Results

Table 1 presents the performance of various mod-
els evaluated using ROUGE-1, ROUGE-L, BLEU,
and their average scores. The KoBART recorded
an average score of 0.33 after fine-tuning. In
contrast, EXAONE 3.0 7.8B achieved 0.12 with
the ICL method, 0.17 after fine-tuning, and 0.45
when combined with the Tabular-TX method. Sim-
ilarly, llama-3-Korean-Bllossom-8B, which was
also tested with Tabular-TX, showed a notable
improvement, reaching an average score of 0.43.
These results demonstrate that Tabular-TX consis-
tently outperforms alternative methods, achieving
the highest overall performance across different
model configurations.

The performance gap between EXAONE 3.0
7.8B and KoBART, despite both being fine-tuned
on the same dataset, can be explained through
the multiplicative joint scaling law (Zhang et al.,
2024a). This principle suggests that when the
dataset size is insufficient relative to the model size,
the performance gains from fine-tuning remain lim-
ited. Since KoBART has 124M parameters, while
EXAONE 3.0 is approximately 63 times larger, the

4https://huggingface.co/gogamza/
kobart-base-v2

4

https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B
https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B
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dataset required to achieve a comparable perfor-
mance boost must be proportionally scaled up by
a factor of 63. The inability to meet this scaling
requirement explains why the performance of the
fine-tuned KoBART plateaued, while EXAONE
3.0 7.8B demonstrated more significant gains with
the same dataset.

This study confirms that the proposed Tabular-
TX method enhances table data analysis perfor-
mance without fine-tuning. Notably, Tabular-TX
outperforms traditional fine-tuned models despite
relying on significantly smaller datasets, demon-
strating its efficacy in resource-constrained learn-
ing environments. Moreover, Tabular-TX achieved
approximately four times higher average perfor-
mance compared to standard ICL methods, further
reinforcing its role as a scalable and efficient alter-
native for structured table summarization tasks.

6 Conclusion

This study introduced the Theme-Explanation Ta-
ble Summarization (Tabular-TX) pipeline, a novel
approach to improve table summarization tasks
with low-resource requirements. Moreover, the pro-
posed pipeline effectively overcame unique chal-
lenges in Korean administrative table processing.

Experimental results signify that Tabular-TX
enhances table summarization performance. This
study contributed to the summarization of complex
table data by introducing a novel sentence genera-
tion method based on the theme-explanation struc-
ture. Furthermore, Tabular-TX achieved excellent
performance without fine-tuning, by incorporating
ICL. This indicates its potential as a significant con-
tribution to table data analysis, even in resource-
constrained environments, without requiring direct
model training.

Limitations

We acknowledge a few limitations in this study.
First, Tabular-TX was only evaluated on EXAONE
3.0 7.8B and llama-3-Korean-Bllossom-8B, leav-
ing the question of its effectiveness across a broader
range of LLMs open. Second, this study primar-
ily focused on Korean administrative table data,
and further research should investigate whether the
Theme-Explanation structure is equally effective
for diverse tabular data formats in other languages
or specialized domains. Finally, Tabular-TX cur-
rently relies on predefined structural components
(Theme and Explanation parts) to enforce inter-

pretability. Future work should explore more dy-
namic approaches that allow for adaptive sentence
structuring based on different types of tables, poten-
tially improving performance across varied tabular
structures.
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예산과목
Budget Category

용 도
Usage

운영비(210)
Operating Expenses (210)

건당 500만원이하의 경비(단, 공관금 및 위원회 참석비, 선거 관련 용품제작·인쇄
비용·우편요금, 청사임차료, 기업특별회계 당해 사업에 직접 소요되는 경비는 금액

제한 없음).
Expenses of up to 5 million KRW per case (However, there is no spending limit for embassy fees, committee

attendance fees, election-related item production/printing costs, postage fees, building rental fees, and

여비(220)
Travel Expenses (220)

전체
Entirely covered

업무추진비(240)
Business Promotion Expenses (240)

건당 500만원 이하의 경비(단, 기업특별회계의 당해 사업에 직접 소요되는 경비는
금액제한 없음)

Expenses of up to 5 million KRW per case (However, there is no spending limit for expenses directly related
to projects under the corporate special accounting).

highlighted_cells : [(0,1), (1,1)]

 Generic prompt
위의 표에서 highlighted_cells를 모두 언급하여 내용을 요약해줘

Summarize the contents of the table above by mentioning all highlighted_cells in the table above.

운영비(210)는 500만 원 이하의 경비가 기업 특별회계 사업에 직접 소요되는 경비로 사용되며, 후자의 경우 금액
제한이 없습니다.

Operating expenses (210) are expenses of 5 million won or less and are used directly for corporate special accounting projects, and in the case of the
latter, there is no limit to the amount.

Generic Prompt with Specific Instructions

위 표에서 highlighted\_cells를 모두 언급하여 정확하고 객관적 사실만 담아서 내용을 요약해줘.
Summarize the content with only accurate and objective facts, while mentioning all highlighted_cells in the table

보건복지부 관서 운영비 한도에 따르면, 운영비(210)는 건당 5백만 원 이하로 제한되나 기획특별회계 사업 직접
경비는 제한이 없고, 여비(220)는 전액 적용됩니다.

According to the Ministry of Health and Welfare's office operating expense limits, operating expenses (210) are limited to 5 million won or less per
case, but there is no limit to direct expenses for planning and special accounting projects, and travel expenses (220) are fully applied.

Journalist persona-applied prompt

너는 한 문장짜리 기사를 쓰는 신문 기자야. 이 표에서 highlighted_cells를 모두 언급하여 한 문장으로 기사를 써
줘.

You are a newspaper journalist writing a one-sentence news article. Write a single sentence mentioning all the highlighted_cells in the table.

보건복지부 관서 운영비 한도에 따르면 운영비(210)는 공관금 및 위원회 참석비, 선거 관련 용품 제작·인쇄 비용·
우편요금, 청사 임차료 등을 포함하여 건당 500만원 이하로 제한되며, 여비(220)는 전체적으로 적용된다.

According to the Ministry of Health and Welfare's office operating expense limits, operating expenses (210) are restricted to 5 million KRW per case,
including embassy fees, committee attendance fees, election-related item production and printing costs, postage fees, and building rental fees, while

travel expenses (220) are fully covered.

Table title : 보건복지부 관서 운영비 한도 Ministry of Health and Welfare's office operating expense limits

Figure 2: An example of how a persona-applied prompt generates more accurate summaries. (Gray text indicates
the English translation.)
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A Korean table interpretation benchmark

{
"id": "nikluge-gtps-2023-train",
"input": {
"metadata": {
"title": "Tax Environment Changes and Policy Issues due to the 4th Industrial Revolution",
"table_title": "Major Legislative Proposals in Taxation Related to the 4th Industrial Revolution",
"date": "2020-06-09",
"publisher": "National Assembly Budget Office",
"url": "https://www.nabo.go.kr/Sub/01/Report/01_01_Board.jsp",
"highlighted_cells": [[10, 13], [1, 14], [3, 14]]

},
"table": [
{ "value": "Special Tax Limitation Act", "is_header": true, "col": 0, "colspan": 4, "row": 0, "rowspan": 1 },
{ "value": "2009580", "is_header": false, "col": 0, "colspan": 1, "row": 1, "rowspan": 1 },
{ "value": "Special Deduction/Registration Fee", "is_header": false, "col": 1, "colspan": 1, "row": 1, "rowspan": 1 },
{ "value": "Income Tax Act Disclosure", "is_header": false, "col": 1, "colspan": 1, "row": 1, "rowspan": 1 }

]
},
"output": [
"The content of the VAT law issued on November 6, 2018, covers the electronic application scope for VAT...",
"For VAT law, the scope of electronic application includes internet ads, cloud computing services, ...",
"On November 6, 2018, the VAT law was revised to include internet ads, cloud computing services,..."

]
}

Figure 3: An example from the corpus for evaluating interpretation generation of table segments (originally in
Korean, translated into English) (NIKL, 2024).

We leverage the Korean table interpretation benchmark provided by the National Institute of Korean
Language (NIKL, 2024).

As shown in Figure 3, an objective of the dataset is to summarize the highlighted cells, which are
labeled in the metadata as highlighted_cells, into a single coherent sentence.
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B Examples of the Theme Part & Explanation Part

Summary without Table Title

Summary with Table Title and Theme-Explanation(TX) Structure

구분
Category

신청
Application

인정
Approval

계
Total

2,437 147

신청 건수는 2437건이고 인정된 건수는 147건이다.
The number of applications is 2,437, and the number of approved cases is 147.

구분
Category

신청
Application

인정
Approval

계
Total

2,437 147

국적별 난민 현황에 따르면 난민 신청 건수는 총 2437건이고 그중 인정된 건수는 
147건으로 매우 낮은 것을 알 수 있다.

According to the refugee status by nationality, the total number of refugee applications is 2,437, 
and among them, only 147 have been approved, indicating a very low approval rate.

Table title: 국적별 난민 현황 (Refugee Status by Nationality)

Figure 4: A sentence including the table title conveys the context more accurately. (Gray text indicates the English
translation.)

B.1 Theme Part

For example, in the sentence: “According to the refugee status by nationality, the total number of refugee
applications is 2,437, and among them, only 147 have been approved, indicating a very low approval rate.”
Here, the Theme Part is: “According to the refugee status by nationality,” This phrase, introduced with
the citation expression “According to”, provides essential context for the numerical values that follow.
Without this structured introduction, the reader may struggle to understand the significance of the numbers.
Figure 4 illustrates how omitting the Theme Part results in an unclear or misleading summary.

B.2 Explanation Part

For instance, in the previous example, the Explanation Part is: “the net fiscal cost increased by 9.435
trillion KRW from the previous year, reaching a total of 61.301 trillion KRW.” Here, the Explanation Part
is derived by comparing the numerical changes between the two cells. Here, a trend analysis is applied to
highlight the increase in fiscal cost.
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C Implementation Details

C.1 Data Preprocessing
The first step is preprocessing the table to simplify its structure for better LLM comprehension. Since
LLMs primarily operate on sequential text representations, directly processing raw tabular formats can
lead to misinterpretation of hierarchical relationships within the data. To address this, we convert table
data into a key-value pair dictionary format, which is commonly used in natural language processing
tasks. This transformation significantly enhances LLMs’ ability to recognize table semantics, improving
summarization accuracy (Stengel-Eskin et al., 2021).

Then, we process merged cells to clarify the table structure. Merged cells span multiple rows or columns
and are defined by ‘rowspan’ and ‘colspan.’ As shown in Figure 5, LLMs infer relationships between
data through row or column alignment. However, incorrect handling of merged cell ranges can lead to
misinterpretation. For example, in Figure 6, the cell labeled “2020” should cover columns 3 and 4, but it
appears only in column 3. To resolve this, merged cells are replicated across their ranges, allowing LLMs
to recognize cell dependencies and hierarchical structures correctly.

Finally, the transformed dictionary list retains only the highlighted and related cells, where “related
cells” refer to all header cells sharing the same row/column as the highlighted cells. This process reduces
data complexity and enhances LLMs’ recognition of table structures.

응시번호
Exam Number

필기
Written Test

합격여부
P/F Status

10003 40.31 합격
Pass

10021 39.81 합격
Pass

{ "value": "응시번호", "col": 0, "row": 0  }

{ "value": "10021",    "col": 0, "row": 2  }

{ "value": "합격여부", "col": 2, "row": 0  }

{ "value": "합격",       "col": 2, "row": 2  }

Exam Number

P/F Status

Pass

1

2

3

Figure 5: An example of inferring relationships between data sharing the same row or column. Through inference in
①, it is deduced that ‘10021’ represents the ‘Exam number.’ In②, the meaning of ‘pass’ is inferred. In③, it is
deduced that the exam with the ‘Exam number’ ‘10021’ has ‘passed.’ (Gray text indicates the English translation.)
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사업명
Project Name

2019 결산
2019 Settlement

2020

본예산
Main Budget

추경(A)
Supplementary Budget(A)

고충민원조사활동
High-Rise Civil Complaint

1,286 1,295 1,295

{ 'row': 1, 'col': 1, 'rowspan': 2, 'colspan': 1, 'value': '사업명'}
{ 'row': 1, 'col': 2, 'rowspan': 1, 'colspan': 2, 'value': '2019 결산'}
{ 'row': 1, 'col': 4, 'rowspan': 1, 'colspan': 2, 'value': '2020'}
{ 'row': 2, 'col': 2, 'rowspan': 1, 'colspan': 1, 'value': '본예산'}
{ 'row': 2, 'col': 3, 'rowspan': 1, 'colspan': 1, 'value': '추경(A)'}
{ 'row': 3, 'col': 1, 'rowspan': 1, 'colspan': 1, 'value': '고층민원조사활동'}
{ 'row': 3, 'col': 2, 'rowspan': 1, 'colspan': 1, 'value': '1,286'}
{ 'row': 3, 'col': 3, 'rowspan': 1, 'colspan': 1, 'value': '1,295'}
{ 'row': 3, 'col': 4, 'rowspan': 1, 'colspan': 1, 'value': '1,295'}

고층민원조사활동 추경(A)가 1,295,000,000 원인 해의 연도를 알려줘
Tell me the year when the supplementary budget (A) for the High-Rise Civil Complaint Investigation Activities was

1,295,000,000 KRW.

이 표는 2019년도 2020년도 고층민원조사활동을 다루고 있지만 1,295,000,000 원인 해의 연도
는 알 수 없습니다.

This table covers the High-Rise Civil Complaint Investigation Activities for 2019 and 2020, but it does not indicate the
year in which the supplementary budget of 1,295,000,000 KRW was allocated.

Figure 6: An example of how merged cells hinder table recognition. (Gray text indicates the English translation.)
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C.2 Prompt Details
Tabular-TX generates table summaries in two steps. First, the Data Recognition / Classification step
identifies key data from highlighted cells (Figure 7). Second, the Sentence Generation step forms a
summary in the Theme-Explanation format (Figure 8).

Title: {'title'}

Table Title: {'table_title'}

Table: {‘table data}

highlighted_cells: {'highlighted_cell coordinates'}

highlighted_cells are in (col, row) format and indicate the location of important data within the table.

if ’△’ in Table [{', '.join(increased_cells)}] values contain the △ symbol, which indicates an increase.
if ’monetary 

unit’ in Table [{', '.join(money_cells)}] values represent monetary amounts.

if ’percentage 
data’ in Table

[{', '.join(percent_cells)}] values represent percentages and should be displayed with a 
% symbol.

Figure 7: Summarizing key data points from the table in a single sentence for a news article. (originally in Korean,
translated into English)

You are a newspaper reporter writing an article based on the table. You 
must convey the information in a single sentence. Mention all the 
highlighted_cells in the table and write the sentence in a declarative form. 
Do not say anything other than the one sentence.

Figure 8: Writing a one-sentence summary of a table by embodying news reporter persona. (originally in Korean,
translated into English)
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Abstract

Synthetic tabular data generation has received
increasing attention in recent years, particu-
larly with the emergence of foundation models
for tabular data. The breakthrough success of
TabPFN (Hollmann et al., 2025), which lever-
ages vast quantities of synthetic tabular datasets
derived from structural causal models (SCMs),
demonstrates the critical role synthetic data
plays in developing powerful tabular founda-
tion models. However, most real-world tabular
data exists in relational formats spanning multi-
ple interconnected tables — a structure not ad-
equately addressed by current generation meth-
ods. In this work, we extend the SCM-based
approach by developing a novel framework that
generates realistic synthetic relational tabular
data including causal relationships across ta-
bles. Our experiments confirm that this frame-
work is able to construct relational datasets with
complex inter-table dependencies mimicking
real-world scenarios.

1 Introduction

The development of synthetic data generation tech-
niques has seen remarkable progress with the ad-
vent of foundation models, particularly in domains
such as images and text. However, generating real-
istic tabular data - especially relational tabular data
with properly linked entries - remains an under-
explored challenge in machine learning research.
While large language models and diffusion mod-
els have revolutionized synthetic data generation
across various domains, structured tabular data has
received comparatively less attention despite its
prevalence in real-world applications.

In this paper, we develop a novel synthetic rela-
tional data generation framework for creating ar-
bitrarily large amounts of relational datasets with
complex, realistic dependencies, suitable, e.g., for
foundation model training and benchmark cre-
ation. In order to systematically model both

intra-table correlations and inter-table relationships,
our method constructs data independently from
real-world datasets, overcoming accessibility lim-
itations. Our method is inspired by the SCM-
based approach for single tables of TabPFN (Holl-
mann et al., 2025). However, we introduce criti-
cal changes to the original SCM framework, and
extend it to generate multiple tables connected
through shared key columns. Based on these ex-
tensions, we provide an automated framework for
creating synthetic relational datasets that comprise
both statistical properties within individual tables
and structural relationships between them. This
contribution enables the creation of realistic rela-
tional tabular data that can be used for developing
models capturing inter-table relationships.

2 Related Work

Synthetic tabular data generation has evolved sig-
nificantly to address challenges like data scarcity
and privacy concerns. Earlier work (Patki et al.,
2016) presented the Synthetic Data Vault, which
builds generative models of relational databases
through recursive conditional parameter aggrega-
tion. It is the first learning-based approach for
generating relational data. Recently, (Hudovernik,
2024) proposed an approach that combines graph
neural network embeddings with diffusion models,
exploiting a graph representation of relational data
induced by foreign key constraints. The method
captures topological structure and statistical prop-
erties across multiple linked tables. These ap-
proaches require a (real-world) dataset as a basis
to extract statistical and relational patterns, which
are then used to generate new data with the same
statistical properties. However, due to the lack of
accessible real-world datasets, these methods seem
to be unsuited for producing huge amounts of rela-
tional datasets with manifold intra- and inter-table
relationships. A generation method independent of
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real-world data was proposed in (Hollmann et al.,
2025), generating synthetic datasets through SCMs
(Pearl, 2010), which naturally allow for simulating
wide-ranging causal dependencies. However, the
method is restricted to single, unrelated tables.

3 Data Generation Method

Our structured data generation approach is based
on an SCM, represented by a directed acyclic graph
(DAG) G with directed edges, connecting parent
nodes (causes) to child nodes (effects). For every
node i = 1, . . . , N , a structural assignment

xi = fi(xpa(i), εi) ∈ Rn (1)

is used to propagate the data in G, where n de-
notes the hidden dimension of the data at each
node, fi a deterministic mapping, xpa(i) the re-
alization of the parent data of node i, and εi an
independent n-dimensional noise vector. First, we
sample the structure of the model, i.e. the nodes
and the directed edges. Second, for every indepen-
dent sample, i.e. table row, we initialize the data
as multi-dimensional vectors at the root nodes and
propagate it, including random noise, through the
graph. In the final step, we readout the data by pro-
jecting the n-dimensional vectors to scalars. Thus,
we obtain a two-dimensional data scheme where
the number of rows corresponds to the number of
samples and the number of columns to the num-
ber of nodes. Subsections 3.1, 3.2 and 3.3 describe
these construction steps in more detail. Algorithm 1
provides a high-level overview.

After these steps, the data of the final tabular for-
mat could be additionally processed via bias induc-
tion, disturbance by additional noise, wrong data
incorporation or the methods mentioned in (Holl-
mann et al., 2025) in order to mimic real-world
data challenges.

3.1 Structure Sampling
To sample a directed graph, we utilize the Barabási
Albert model (Barabási and Albert, 1999). After re-
moving isolated nodes and edges (i, j) with j > i,
we obtain a DAG. The sinks of the resulting graph
represent the targets, and the remaining nodes are
considered as features for the future dataset.

The data associated with the root nodes are
initialized as n-dimensional vectors, drawn from
a range of distributions, including normal distri-
butions with random means and standard devia-
tions as well as gamma distributions with random

Algorithm 1 Generating Synthetic Datasets

Structure Sampling: ▷ cf. Subsec. 3.1
Sample DAG G
Initialize root node distributions

Define propagation fct gi (e.g. neural net)
Define pooling fct pi (e.g. norm, categorical)

Pre-Sampling: ▷ cf. Subsec. 3.2
Sample root data and propagate it by gi
for every node i do

Compute component-wise 10%- and 90%-
quantiles q0.1(i), q0.9(i)
if i categorical node

Choose number of categories K
Cluster data into K categories
Refine pi as in (4)

Main Data Sampling: ▷ cf. Subsec. 3.3
Sample root data and propagate it by fi (cf. (3))
Read out data at every node by pi

shapes and scales. This initialization data will
be propagated through the graph. For every node
i = 1, . . . , N , we define a function

gi : R| pa(i)|·n → Rn (2)

that propagates the concatenated parent data. In
contrast to (Hollmann et al., 2025), we do not in-
corporate categorical feature generation into the
set of propagation functions (2), since this restricts
the variety of states at successive nodes. In our
approach, the data is propagated through the graph
as multi-dimensional (continuous) vectors. Only
when we observe the data, it may become categori-
cal, i.e. discretized. Thus, we construct categorical
data without restricting the number of different
data vectors at the subsequent nodes to the num-
ber of categories. In principle, propagation func-
tions (2) could be arbitrarily defined. In this work,
propagation functions (2) are considered to be one-
layer fully-connected neural networks followed by
randomly chosen (non-)linear activation functions,
e.g., ReLU, logabs.

Once each node has processed the data, the in-
formation from the resulting vectors x1, . . . , xN is
stored in a tabular format. To this end, we define a
set of pooling functions pi : Rn → R, to reduce di-
mensionality, i.e., for every node i = 1, . . . , N , we
independently select a continuous pooling function
pi such as norm, mean, median or variance of the
vector, or a categorical pooling function, defined in
Subsection 3.2.
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Figure 1: Example of a DAG illustrating the SCM.
Nodes represent the structural assignments, see Equa-
tion (1), annotated with the corresponding pooling func-
tion (Euclidean norm, mean, median or categorical
projection). Edges indicate the flow of the data vectors,
with edge labels specifying the applied (non)-linear acti-
vation function. The green nodes symbolize the targets,
while the blue nodes correspond to the features.

The selection of initialization and pooling func-
tions is stored in the graph structure to assure re-
producability and allow for a detailed analysis of
parameter influence. An example of such a DAG is
presented in Fig. 1.

3.2 Pre-Sampling
Propagating the data in the DAG G according to
Equation (1) involves noise vectors εi. In order to
align the magnitude of the noise influence with the
data distribution, we conduct the data generation
process via a low-sample pre-run without noise.
We independently sample the root data according to
the pre-defined distribution and propagate the data
through the entire graph. Then, we estimate the
corresponding data distribution of each node with
the sampling data of the pre-run. More concretely,
for every node i we compute the 10%- and 90%-
quantiles component-wise, denoted by vectors q0.1
and q0.9. In the main data generation run, this
information enables us to tailor the noise level to
the distribution of the corresponding node, i.e., xi
is given by

xi = fi(xpa(i), εi)

= gi(xpa(i)) + (q0.9(i)− q0.1(i))εi. (3)

By introducing this noise scaling we ensure a bal-
anced noise integration into the data vector, such
that gi(xpa(i)) remains the primary source of in-
formation. The degree of perturbation could be
adjusted by computing different quantiles.

Moreover, the estimation of the node distribu-
tions allows for a semantically meaningful dis-
cretization of the data into categories. For every
categorical node i, we randomly select the num-
ber of categories K(i), and cluster the pre-sampled
data into these K(i) categories, for instance by
the k-means algorithm. Then, we define a cate-
gorical pooling function, assigning the continuous
n-dimensional data vectors to the categories:

pi(xi) = argminl=1,...,K(i) ∥xi − vl∥2, (4)

where v1, . . . , vK(i) denote the cluster centroids.
It is important to note that the categorization of
the data occurs only for the readout and does not
affect the subsequent propagation through the child
nodes.

With the information collected by the pre-run,
we are able to perform the main sampling run.

3.3 Main Data Sampling
During the main run, we initialize independently
data at the root nodes and propagate it through the
entire graph according to Equations (1) and (3).
Utilizing the pooling functions mentioned above,
we project the n-dimensional vector at each node
to a scalar, which yields one data sample. The
procedure is repeated for the desired sample size,
resulting in a table, where the rows correspond to
the samples and the columns to the graph nodes.

We consider the columns, represented by the
sinks of the graph (colored green in Fig. 1), as
potential targets whereas the remaining columns
(indicated blue in Fig. 1) are considered as features.
On the one hand, this allows for a complete usage
of the dataset, e.g., to train a tabular foundation
model. On the other hand, the single targets could
be used independently, e.g., for handling end-to-
end scenarios.

4 Extensions to Relational Data

This section extends the previously described
methodology to generate relational tables, sum-
marized in Algorithm 2. The objective is to create

Algorithm 2 Generating Relational Datasets
Sample DAGs Gmain and Gadd
Connect via coupling node C: Gadd → C→ Gmain
Link feature nodes of Gadd to target nodes of Gmain
Sample dataset w.r.t. Algorithm 1 for merged graph
Sample dataset w.r.t. Algorithm 1 for Gadd (incl. C)
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two tables with different sample sizes that share a
common feature, represented as a coupling node.
First, we independently sample two DAGs, denoted
by Gmain and Gadd, according to the procedure de-
scribed in Subsection 3.1. Then, we introduce a
coupling node C that is caused by a sink of Gadd
and directs to a feature of Gmain. In this way, we
establish a relationship between these graphs and
assure, that information propagates from Gadd to
Gmain.

To incorporate latent causal influence from Gadd
to Gmain, we connect feature nodes of Gadd to target
nodes of Gmain. An example of two coupled graphs
is illustrated in Fig. 2. Nodes belonging to the main
graph Gmain are labeled M1, M2, . . ., forming the
same graph as shown in Fig. 1. The nodes in the ad-
ditional graph Gadd are denoted by A1, A2, . . .. In
the same way, more than two relational tables can
be generated. The data samples are generated once
for the merged graph (including node C) and once
for graph Gadd (including node C), both with sepa-
rate sample sizes. Although we utilize the merged
graph to generate the data together with the (la-
tent) causal relationships, the main table contains
only the data corresponding to the nodes of Gmain
(including node C). The headers of the resulting
main and additional tables for the example graphs
of Fig. 2 are presented in Tables 1 and 2. The edges
representing the latent causality effectively link the
two tables. Consequently, a comprehensive under-
standing of the affected targets requires integrating
information from both tables, as demonstrated in
Section 5. Without the latent causality links, the
information propagated through node C would be
sufficient to represent the relationships in Gmain.

Figure 2: Example graph for generating relational tables.
The DAG from Fig. 1 with renamed nodes M1, M2, . . .
is extended by an additional DAG with feature nodes A1,
A2, . . .. Both graphs are linked via the connection node
C and latent relationships indicated by yellow edges.

5 Evaluation

We exemplary analyze one relational dataset con-
sisting of two coupled tables constructed as stated
in Section 4. This example dataset is based on the
DAG shown in Fig. 2. We sample the main dataset
with 100,000 rows, described and illustrated in Ap-
pendix A and Table 1. The first 90,000 rows serve
as training set, while the remaining 10,000 rows
are excluded from embedding training and serve
as a test set. The additional dataset, including the
C-column, is sampled with 500 rows, see Table 2.
In order to measure how the data in the main table
is influenced by the data in the additional table,
we perform the classical ML tasks classification
and regression, first using the main table only and
second using the data of the additional table, too.

In order to perform regression or classification
tasks for several target columns, we compute task-
independent table entry embeddings with respect to
the EmbDI procedure (Cappuzzo et al., 2020), for
a variety of embedding dimensions. First, we con-
sider the main table only. For each training row, we
compute a row embedding vector by averaging the
embeddings of all entries in this row, excluding the
target columns to be task-independent. This row
embedding procedure can be applied not only to
training rows but also to test rows, as the entries in
the test rows are drawn from the same underlying
distribution as the entries in the training rows. For
all target columns, we then perform a regression or
classification task, depending on the type of pool-
ing function (numerical as mean, median, norm, ...
or categorical). For any test row, we search for 10
nearest neighbors in the row embedding space of
the training rows. The prediction is computed as an
average of the target values of the selected 10 train-
ing rows, weighted by the inverse distance of the
test row embedding vector to the 10 nearest training

(a) Results for node M4 (b) Results for node M6

Figure 3: Quality measures as a function of the embed-
ding dimension (logarithmically scaled) when using just
the main table (red) and using the combined information
of both tables (green).
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row embedding vectors. The quality of the predic-
tion is measured by the root-mean-squared error
(RMSE) for numerical targets and by the area under
the receiver operating characteristic curve (AUC)
for categorical targets. These quality measures for
two nodes of the example dataset are shown in red
in Fig. 3 with respect to the embedding dimension.

Second, we apply the EmbDI embedding pro-
cedure to the main and additional table simultane-
ously. We use all the rows of the additional table for
training, while for the main table we reserve 10%
for testing as before. Again, regression and classi-
fication tasks are conducted for the target columns
of the main table. The results for the two selected
nodes are highlighted in green in Fig. 3. As the
merged information requires a higher embedding
dimension to be fully represented, the compari-
son of the two curves in Fig. 3 is meaningful for
sufficiently high embedding dimensions. There,
involving the additional table improves the results
for targets influenced by latent information from
the additional dataset.

Hence, we showed that our method for synthetic
relational dataset generation is able to construct re-
alistic related tables in the sense that the additional
table contains information that is not present in the
main table, but influences the target columns of the
main table. This is an essential, frequently occur-
ring property of real-world relational datasets. We
emphasize that further research should include a
more comprehensive evaluation with more datasets
and further methods for downstream tasks, see Sec-
tion 7.

6 Discussion and Conclusion

In this work, we presented an approach for gener-
ating relational datasets based on SCMs. The cor-
responding graph controls the causality between
features and targets, involving latent causal rela-
tionships to model inter-table dependencies. Our
approach serves as a scalable methodology to pro-
vide huge amount of data with various statistical
properties for robust training of a tabular founda-
tion model for relational tabular data.

The main advantage to use SCMs is the ability
to model causal relationships. Thus, we are able to
control the dependence between certain targets and
features. Additionally, by incorporating isolated
sub-graphs, we can generate data that is irrelevant
to the targets mimicking real-world redundancy.

The quality of generated data is determined by

several parameters. Choosing a large hidden dimen-
sion n and projecting the data to a one-dimensional
output may significantly increase the difficulty of
predicting a target based on the feature nodes. Fur-
thermore, the choice of the activation function of
the neural networks influences data complexity.

A key strength of our approach lies in its abil-
ity to generate relational tables that capture com-
plex causal relationships, including those mediated
by latent variables. This simulation of inter-table
dependencies, often lacking in simpler methods,
is crucial for developing robust table representa-
tion learning models that can effectively handle the
complexities of real-world data, commonly encoun-
tered in database management systems.

7 Limitations

Our approach successfully generates relational
datasets with numerical and categorical features.
However, a more detailed experimental analysis
with varying parameters, that would go beyond the
scope of this short paper, is desirable. Real-world
databases often contain multimodal elements like
images and text. Extending our framework to in-
corporate these diverse data types represents an
important research direction. Furthermore, a com-
prehensive evaluation for three or more relational
tables, including cross-connections, needs to be
conducted.
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A Example of Generated Relational
Tables

Based on the graph in Fig. 2, we sample two re-
lational tables. The hidden dimension is set to
n = 2. For the root node M0, the data follows
a gamma distribution with shape α = 2.245 and
scale θ = 1.780. The data at root node A0 is drawn
from a normal distribution with mean µ = −0.029
and standard deviation σ = 0.816, and for each
component of the data vector at root node A2, we
choose randomly with p = 0.5 if the component
is drawn from a standard normal or an exponential
distribution with scale λ = 0.584. A randomly
chosen fraction of 10% of the data is affected by
noise, where the noise standard deviation is set to
0.1. The pre-sampling run described in Subsec-
tion 3.2 is conducted with 1,000 samples. For the
categorical nodes, the following numbers of cat-
egories are chosen: M0: 6, M4: 2, M7: 6, A0: 3,
A1: 4, A2: 2. All these numbers are drawn ran-
domly from a normal distribution with mean µ = 4
and standard deviation σ = 2. For the categorical
coupling node C, the number of categories is 175,
chosen randomly from a normal distribution with
mean µ = 100 and standard deviation σ = 50,
mimicking a foreign key column.

M0 M1 M2 M3 M4 M5 M6 M7 C
4 -0.831 1.281 0.669 0 1.722 2.418 0 53
0 -0.556 1.190 0.239 0 1.630 2.204 3 46
5 -0.243 1.325 0.932 0 1.765 2.100 0 48
2 -0.627 1.276 0.927 0 1.718 2.563 0 46
3 -0.398 1.154 0.295 0 1.591 2.020 3 15

Table 1: Main Table for the DAG shown in Fig. 2, the
first 5 out of 100,000 rows are displayed.

A0 A1 A2 A3 A4 C
0 0 1 0.499 0.355 46
0 0 0 1.005 2.903 76
0 3 0 0.661 0.711 59
1 2 0 0.567 0.577 103
2 3 1 0.271 0.691 146

Table 2: Additional Table for the DAG shown in Fig. 2,
the first 5 out of 500 rows are displayed.
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Abstract

Large language models’ reasoning abilities ben-
efit from methods that organize their thought
processes, such as chain-of-thought prompt-
ing, which employs a sequential structure to
guide the reasoning process step-by-step. How-
ever, existing approaches focus primarily on
organizing the sequence of thoughts, leaving
structure in individual thought steps underex-
plored. To address this gap, we propose Table
as Thought, a framework inspired by cognitive
neuroscience theories on human thought. Ta-
ble as Thought organizes reasoning within a
tabular schema, where rows represent sequen-
tial thought steps and columns capture critical
constraints and contextual information to en-
hance reasoning. The reasoning process itera-
tively populates the table until self-verification
ensures completeness and correctness. Our ex-
periments show that Table as Thought excels in
planning tasks and demonstrates a strong poten-
tial for enhancing LLM performance in math-
ematical reasoning compared to unstructured
thought baselines. This work provides a novel
exploration of refining thought representation
within LLMs, paving the way for advancements
in reasoning and AI cognition.

1 Introduction

Recent advancements in reasoning have demon-
strated that the reasoning capabilities of large lan-
guage models (LLMs) can be enhanced by intro-
ducing structure into the reasoning process (Wei
et al., 2023; Yao et al., 2023; Besta et al., 2024). For
instance, the chain-of-thought approach organizes
textual reasoning in a step-by-step manner using a
linear chain structure (Wei et al., 2023). Building
on this, following works have shown that incor-
porating more complex organizational structures
further improves reasoning performance (Besta
et al., 2024; Yao et al., 2023). However, these
approaches structure reasoning only at the level
of connections between distinct reasoning steps

(inter-thought level) and leave the content of in-
dividual steps (thought level) unstructured. This
raises the critical question: Can LLMs’ reason-
ing abilities be further enhanced by introducing
structure within individual thoughts?

To address this question, we draw inspiration
from cognitive neuroscience theories of human
thought. Neuroscientists have found that humans
think in a structured way, with the brain’s orga-
nization facilitating sequential and goal-oriented
reasoning. Christoff and Gabrieli (2000) provided
early evidence that the prefrontal cortex supports
structured reasoning through a rostrocaudal hi-
erarchy, enabling the processing of increasingly
abstract concepts and complex goal-directed be-
havior. Later, Friston (2005)’s predictive coding
framework demonstrated how structured cognition
emerges from the brain’s ability to build hierarchi-
cal models, combining experiences with current in-
put to predict results. More recently, Jeff Hawkins
(Hawkins, 2021) argued that humans think in a
structured manner, with the neocortex organizing
knowledge in certain structures, and thinking arises
from neurons activating sequential locations in
these frames. Building on these insights, we pro-
pose investigating whether similarly structured rep-
resentations can be incorporated into LLMs to en-
hance their reasoning and planning capabilities.

In this work, we adopt a simple yet effective
structural format—a tabular schema—to approxi-
mate the structured nature of human thinking pro-
cesses. In our approach, the schema of a table
serves as a framework for organizing and navigat-
ing knowledge. Inspired by the sequential pro-
cesses described in neuroscience—where neurons
activate specific patterns step by step (Hawkins,
2021)—we model these processes as the sequen-
tial population of rows in a table, moving across
columns according to a predefined schema. A sin-
gle table can encapsulate one or more such struc-
tured thought processes, providing a coherent con-
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tainer for organizing and connecting thinking steps
and associated information. Tables not only repre-
sent step-by-step processes for achieving specific
goals but also serve as robust frameworks for plan-
ning tasks. Moreover, utilizing tables as structured
representations enables schema design that ensures
organization and data integrity, thereby facilitating
efficient verification and analysis.

The contributions of our paper are as follows:

• Motivated by insights from cognitive neuro-
science regarding the structured nature of human
thinking, we propose a novel framework, Table
as Thought, that injects structure at the thought
level. To the best of our knowledge, this is the
first exploration and demonstration of integrat-
ing structured representations directly into the
reasoning process of large language models.

• We demonstrate the advantages of Table as
Thought in tasks requiring planning, highlight-
ing its potential to enhance performance on
tasks that demand sequential and goal-oriented
thought processes.

• We provide a detailed and comprehensive anal-
ysis of Table as Thought, offering insights into
its functionality and strengths, and comparing
the benefits of structured versus unstructured
thought representations. We hope these find-
ings inspire future research into the nature and
representation of thought processes in artificial
intelligence and computational linguistics.

2 Related Work

Structures in LLM Reasoning. Recent advance-
ments in large language models (LLMs) have in-
creasingly focused on integrating structured pro-
cesses to enhance reasoning capabilities. Chain-of-
Thought prompting (Wei et al., 2023) introduces a
step-by-step framework that organizes thoughts in
a sequential manner, enabling more coherent rea-
soning. Building on this, Tree of Thoughts (Yao
et al., 2023) and Graph of Thoughts (Besta et al.,
2024) employ hierarchical and networked struc-
tures to further enhance problem-solving, leverag-
ing branching and interconnected paths. Moreover,
self-consistency (Wang et al., 2023) improves reli-
ability by sampling multiple reasoning paths and
selecting the most consistent outcome, thereby ad-
dressing variability in generated responses.

While these methods excel at organizing rea-
soning at a macro level—such as through chain-

ing, branching, or aggregating thought paths—they
do not address the internal structure of individual
thoughts. Our work is distinct in that it introduces
structure directly at the thought level, refining the
granularity of reasoning processes in LLMs. By
focusing on the internal organization of individual
reasoning steps, we provide a novel perspective
on enhancing the depth and precision of structured
reasoning in LLMs.

Representations of Tables in LLM Inference.
Tables have traditionally played a significant role
in LLMs for tasks involving the understanding
and processing of tabular data, such as knowledge
retrieval (Cong et al., 2024), question answering
over structured data (Yin et al., 2020; Zhang et al.,
2024b), and tabular reasoning (Herzig et al., 2020;
Deng et al., 2024). In these tasks, tables are lever-
aged only as input for interpretation and manipula-
tion.

The Chain-of-Table framework (Wang et al.,
2024) extends the application of tables by employ-
ing them as proxies for intermediate thoughts in rea-
soning tasks involving tabular data. In this frame-
work, LLMs iteratively update a table, forming a
dynamic reasoning chain where the table evolves
based on intermediate results. While this approach
has proven effective on tabular-specific datasets, it
remains inherently tied to tasks where tabular data
is part of the input or reasoning context.

In contrast, our work redefines the role of tables
by utilizing them as a universal framework for struc-
turing and representing the internal thought pro-
cesses of LLMs in non-table-specific tasks, such as
planning and mathematical reasoning. Unlike prior
approaches that depend on pre-existing tabular in-
puts, we employ tables as dynamic containers to or-
ganize and manipulate thoughts step by step. This
approach enables structured reasoning even in tasks
where no tabular data is initially present, bridging
the gap between unstructured text-based reasoning
and structured problem-solving paradigms. By gen-
eralizing the utility of tables beyond table-specific
reasoning tasks, our work marks a significant de-
parture from previous methods and demonstrates
the versatility of this novel framework.

3 Table as Thought

We present the design of the Table as
Thought framework, which introduces a novel
approach to reasoning in large language models by
leveraging tables as structured representations of
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Query Schema Design Structured 
Thoughts

Reasoning Table Reasoning 
Verification

{                
Participant_Name: 
Michelle,
Unavailable_Time:  
11:00 to 12:00,
...
 }

Participant Name

Unavailable Time

…

Available Time

Selected Time

Participant Unavailable … Selected 

Michelle 11:00 to 12:00 9:30 to 10:30

Steven 9:00 to 9:30, 11:30 
to 12:00, ….

9:30 to 10:30

Jerry 9:00 to 9:30, 10:00 
to 11:00, …

9:30 to 10:30

You need to 
schedule a 
meeting for 
Michelle, 
Steven and 
Jerry for 
one hour …

❌
✅

Answer

✅: The reasoning 
process is correct.

❌: Selected Time 
conflicts with Jerry’s 
unavailable time…

The meeting 
should be 
scheduled 
9:30 to 10:30

Figure 1: The Overall Pipeline for Table as Thought Reasoning. The figure illustrates how Table as Thought
structures reasoning by iteratively populating a reasoning table based on the schema, verifying consistency, and
updating the table until the final answer is achieved.

thoughts.

Table as Thought. Table as Thought employs
a table as a container to represent one or more
structured thoughts. These tables, referred to as
"reasoning tables", encapsulate thoughts and pro-
vide a transparent representation of the reasoning
process. A reasoning table T is initialized with an
original table schema S, which is defined by the
LLM for a given query Q. Structured thoughts Θ
are then generated based on S, with each thought
corresponding to a row in the reasoning table T .
The table T is subsequently populated and updated
according to these structured thoughts Θ.

The overall reasoning workflow using the reason-
ing table is illustrated in Figure 1 and formalized
in Algorithm 1.

Algorithm 1 Table as Thought

Require: Query Q
Ensure: A table T that satisfies Q

1: S ← DESIGNSCHEMA(Q) // Define table
schema

2: Initialize an empty table T with schema S.
3: while not SUFFICIENT(T , Q) do
4: Θ← REFLECT(T,Q) // Generate possible

updates
5: T ← UPDATETABLE(T,Θ) // Apply

updates if needed
6: end while
7: return T

Schema Development Module. The Schema
Development Module dynamically adapts table
schemas to accommodate various queries across
different reasoning tasks. For constraint-planning
tasks, where the primary objective is to satisfy

constraints, we prompt LLMs to identify the con-
straints explicitly before designing the schema.
This ensures that both explicit and implicit con-
straints are addressed in the reasoning process. For
mathematical reasoning tasks, the schema is tai-
lored to reflect the logical progression of the rea-
soning steps, enabling systematic organization of
critical information.

The headers in the table schemas are designed
to represent essential reasoning steps and key infor-
mation pertinent to the task. These headers act as
anchors for organizing and verifying intermediate
and final reasoning outputs.

For example, consider the travel planning query:

I plan to travel alone, and my
planned budget for the trip is
around $1,100.

In this case, a key constraint is that the total cost
should not exceed $1,400. To address this con-
straint, the schema must include a header such as
Cost, with the type Number, ensuring that the rele-
vant information is captured and evaluated against
the budgetary constraint.

For a mathematical reasoning task, such as a
question from the GSM8K dataset:

A robe takes 2 bolts of blue fiber
and half that much white fiber.
How many bolts in total does it
take?

Here, the reasoning process requires consideration
of the quantities of blue and white fibers. The
schema should therefore include keys such as Blue
Fiber and White Fiber, ensuring that all relevant
elements are systematically tracked and calculated.
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Reasoning Verification Module. Our prelimi-
nary experiments reveal that existing LLMs may
fail to generate a consistent reasoning path. There-
fore, we introduce a verification module to verify
the completeness and correctness of the reasoning
process.

For constrained reasoning tasks, such a mod-
ule verifies whether the constraints identified in
the schema development phase are satisfied. Con-
straint checking is typically performed by the LLM
through reflective reasoning. The structured nature
of thoughts in Table as Thought brings a natural
benefit: Auto-Check Constraints, which are con-
straints set that can be externally verified. In Table
as Thought, Auto-Check Constraints facilitate the
systematic validation of intermediate steps and fi-
nal outputs.

For math reasoning tasks, such a module ensures
that the table reflects an accurate and logically cor-
rect reasoning path toward solving the problem.
This involves checking whether the intermediate
and final outputs align with the expected reasoning
steps outlined in the schema.

Table Construction Module. The Table Con-
struction Module iteratively generates structured
thoughts and constructs the reasoning table by in-
corporating the schema and feedback from the rea-
soning verification module. This process involves
dynamically adding new thoughts to the table, mod-
ifying existing entries, or removing entries that do
not align with the schema or query requirements.

The iterative process terminates under one of the
following conditions:

1. The reasoning table is verified as complete and
correct by the reasoning verification module.

2. The maximum number of iterations, which we
set empirically as 10 in all our experiments, is
reached.

4 Experiments

4.1 Tasks and Language Models

For all tasks, we adopt the original evaluation meth-
ods to ensure consistency and comparability.

Constraint Planning Tasks. The goal of con-
straint planning tasks is to generate plans that sat-
isfy both explicit and implicit constraints. We eval-
uate our approach on two datasets, each presenting
different levels of complexity in the expected plans.

The TravelPlanner dataset (Xie et al., 2024) re-
quires LLMs to generate detailed travel plans that
adhere to explicit constraints provided in the query,
such as budget limitations, as well as implicit con-
straints derived from common sense. The expected
travel plans are highly complex, encompassing
multi-day agendas that include transportation, ac-
commodations, and daily attractions. Due to the
exceptionally long context required for this task,
which results in substantial token costs, we con-
duct experiments exclusively with GPT-4-o-mini.
The calendar scheduling task from the NaturalPlan
benchmark (Zheng et al., 2024) focuses on gener-
ating single-object plans. In this task, LLMs must
determine an appropriate meeting time based on
explicit constraints, such as the company’s work-
ing hours and the unavailable time slots of each
participant.

Math Reasoning Tasks. We evaluate LLMs us-
ing GSM-8K and MATH500 to assess structured
mathematical reasoning. GSM-8K (Cobbe et al.,
2021) contains 8,000 grade-school-level word prob-
lems, testing multi-step reasoning and numerical
precision. MATH500 (Lightman et al., 2023) fea-
tures 500 advanced problems from the MATH
dataset (Hendrycks et al., 2021), covering alge-
bra, calculus, and geometry. It challenges models
with tasks requiring symbolic manipulation and
deep mathematical understanding. These datasets
help evaluate our approach across diverse scenarios,
from simple arithmetic to complex problems.

Language Models. The schema design and table
construction modules in Table as Thought require
LLMs capable of generating complex, structured
outputs that conform to intricate schemas. This
capability is natively supported by OpenAI’s Struc-
tured Outputs Mode, which allows for precise align-
ment with defined schema requirements. Conse-
quently, our experiments are conducted exclusively
on OpenAI’s GPT-4-o-mini and GPT-4-o-2024-08-
06 models (OpenAI et al., 2024). Expanding the
evaluation to include open-source models with sim-
ilar capabilities remains an area for future work.

4.2 Text Thought Baselines

Direct Prompting. Direct Prompting involves
solving queries by directly generating an answer
from the input, without prompting for any interme-
diate reasoning steps.
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CoT Prompting. Chain-of-Thought (CoT)
Prompting organizes reasoning as a sequential
chain of thoughts.

Text as Thought. This approach differs from Ta-
ble as Thought only in its use of unstructured repre-
sentations for thoughts. Text as Thought employs
text as the medium for reasoning. This method
extends CoT prompting by iteratively updating the
reasoning process based on reflection. Each iter-
ation involves generating intermediate reasoning
steps, reflecting on their correctness, and refining
the reasoning path as needed. The streamlined pro-
cess is formalized in Algorithm 2.

Algorithm 2 Text as Thought

Require: Query Q
Ensure: A text T that satisfies Q

1: Initialize an empty text T .
2: while not SUFFICIENT(T , Q) do
3: Θ← REFLECT(T,Q) // Generate possible

updates
4: T ← UPDATETEXT(T,Θ) // Apply

updates if needed
5: end while
6: return T

4.3 Variations of Table as Thought

To fully explore and understand the boundaries of
Table as Thought, we introduce two variations to
the TravelPlanner task. These variations include
Table as Thought with auto check constraint, which
adds complexity to schema design, and Table as
Thought with given schema, which simplifies the
task by providing a predefined schema.

Table as Thought with Auto-Check Constraint.
This variation builds on the vanilla Table as
Thought by requiring the LLM to add additional
constraints during schema design to ensure data
integrity and reflect the constraints present in the
query. For instance, if a TravelPlanner query in-
cludes budget constraints, the LLM is expected to
design a schema with headers like Cost and en-
force a rule ensuring that the sum of the column
does not exceed the specified budget. By introduc-
ing this variation, we aim to explore the boundaries
of LLMs in designing complex reasoning structures
and handling intricate schema requirements.

Table as Thought with Given Schema. In this
variation, the LLM is provided with a predefined

schema, as shown in Table 7, rather than designing
the schema independently. The given schema is
derived from the evaluation pipeline of the Trav-
elPlanner task (Xie et al., 2024), where answers are
processed into tables following this schema before
evaluation. This variation serves as a comparative
baseline to assess the effectiveness and adaptability
of schemas designed by LLMs compared to fixed,
predefined schemas.

5 Results

5.1 Calendar Scheduling Task

Table as Thought achieves the highest performance
among all prompting methods on the Calendar
Scheduling Task, as shown in Table 2. On GPT-4o,
Table as Thought improves performance by 10.8%
over Direct Prompting and achieves a 5.4% im-
provement compared to the Text as Thought base-
line. This highlights the advantage of using tables
as structured representations for planning over un-
structured text-based representations. A similar
trend is observed with GPT-4o-mini, where Table
as Thought outperforms other methods, suggesting
the robustness of table-based reasoning for simpler
constraint reasoning tasks like calendar scheduling.

For GPT-4o, the improvement from Direct
Prompting to CoT Prompting is minimal (0.5%).
In contrast, incorporating self-verification through
Text as Thought yields a 4.9% improvement. When
transitioning from unstructured thoughts to struc-
tured tables, there is a substantial performance
boost (5.4%), underscoring the benefits of struc-
tured representations in reasoning tasks.

For GPT-4o-mini, CoT Prompting achieves a
moderate 2.2% improvement over Direct Prompt-
ing, but Text as Thought fails to provide any addi-
tional gains. In contrast, Table as Thought demon-
strates a significant 4.4% improvement over CoT
Prompting, demonstrating the effectiveness of in-
troducing structure at the thought level over chain-
like structures at the reasoning level.

5.2 TravelPlanner Task

Table 1 shows that Table as Thought with a given
schema achieves the best performance on metrics
for commonsense and hard constraint in the Trav-
elPlanner task. The results reveal an important
trend: on a challenging task like TravelPlanner,
which demands complex reasoning, introducing
increasingly sophisticated structures into the rea-
soning process can lead to performance degrada-

23



Metric Direct CoT Text as Thought Table as Thought
Vanilla w/ Auto-Check constraint w/ Given Schema

Delivery Rate (%) 100.0 100.0 100.0 100.0 99.4 100.0
Commonsense Constraint Micro Pass Rate (%) 68.3 69.0 68.3 64.4 63.8 70.1
Commonsense Constraint Macro Pass Rate (%) 2.22 2.22 0.556 0.0 0.0 3.33
Hard Constraint Micro Pass Rate (%) 7.62 6.19 3.81 3.33 1.90 5.95
Hard Constraint Macro Pass Rate (%) 4.44 4.44 2.78 1.67 0.556 5.00
Final Pass Rate (%) 0.556 0.556 0.0 0.0 0.0 1.11

Table 1: Evaluation results for different models and prompt methods on TraverPlanner Tasks on GPT4o-mini

Direct CoT Text as Thought Table as Thought

GPT-4o 64.0 64.5 69.4 74.8
GPT-4o-mini 36.2 38.4 38.4 42.3

Table 2: Performance of GPT-4o and GPT-4o-mini
models under different prompting methods for calendar
scheduling.

Direct CoT Text as Thought Table as Thought

MATH500
GPT-4o 75.0 72.2 72.6 64.2
GPT-4o-mini 65.4 65.2 63.4 47.8

GSM8K
GPT-4o 95.4 95.9 95.7 94.1
GPT-4o-mini 93.9 93.6 92.9 92.4

Table 3: Performance of GPT-4o and GPT-4o-mini mod-
els under different prompting methods for MATH500
and GSM8K.

Direct CoT Text as Thought

MATH500
GPT-4o 4.4/25.0 5.4/27.8 4.4/27.4
GPT-4o-mini 2.0/36.6 2.4/34.6 2.8/34.8

GSM8K
GPT-4o 1.59/4.62 1.29/4.09 1.60/4.33
GPT-4o-mini 1.59/6.14 2.12/6.37 2.50/7.13

Table 4: The Percentage of Questions that Table as
Thought successfully work out while other prompting
methods failed vs failed rate of other prompting meth-
ods.

tion. Specifically, methods that incorporate addi-
tional complexity—such as chain-of-thought (CoT)
prompting, self-reflection in Text as Thought, and
rule-constrained structured thoughts in Table as
Thought with Auto-Check constraint—tend to per-
form worse compared to simpler approaches. The
exception is Table as Thought with a given schema,
which avoids this degradation by relieving the LLM
of the need to design its own schema, allowing it
to focus solely on reasoning within a predefined
structure.

5.3 Math Reasoning Tasks

Table 3 highlights a general trend in the MATH500
and GSM8K tasks: introducing additional com-
plexity into the reasoning process often leads to a
performance drop, particularly for GPT-4o-mini.
For instance, on MATH500, the performance of
both GPT-4o and GPT-4o-mini decreases as the rea-
soning structures become more complicated, from
Direct Prompting to Text as Thought to Table as
Thought. This effect is especially pronounced for
GPT-4o-mini, where the performance of Table as
Thought falls to 47.8%, compared to 65.4% with
Direct Prompting. A similar trend is observed on
GSM8K, where the addition of more structured
reasoning methods results in marginal performance
degradation. These results suggest that LLMs may
already be overfitted to math reasoning tasks, as
noted in recent studies (Mirzadeh et al., 2024;
Zhang et al., 2024a).

Despite this general trend, Table as Thought
demonstrates its potential to improve performance
by successfully solving questions that text-thought-
based methods fail to address, particularly with
more capable models like GPT-4o. Table 4 pro-
vides a detailed breakdown of the percentage of
questions that Table as Thought solves, which were
missed by other methods. On MATH500, Table
as Thought resolves approximately 20% of such
questions, while on GSM8K, this figure exceeds
30%. These findings underscore the utility of struc-
tured reasoning in identifying alternative pathways
to solutions that text-based reasoning methods may
overlook.

6 Analysis

6.1 Effect of Schema Design

Schema design plays a pivotal role in structuring
the reasoning paths of Calendar Scheduling tasks.
Different schemas determine the granularity of the
reasoning process, which in turn affects model per-
formance.
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Schema Example

One Row Time Slot, Jesse Availability
Kathryn Availability, Megan Availability

All Participants Available, Earliest Availability

Multi Row Participant Name, Availability Start Time
Availability End Time, Meeting Duration

Work Hours Constraint, Schedule Constraint
Preference Constraint, Proposed Meeting Time

Table 5: Schema examples for Multi Row Thought and
One Row Thought.

GPT-4o-mini GPT-4o

One Row 45.05 72.93
Multi Row 43.46 80.28

Table 6: Performance Comparison of Multi Row and
One Row Schemas for GPT-4o-mini and GPT-4o on
Calendar Scheduling.

Table 5 shows that in the one-row schema, the
reasoning process is concise: the LLM identifies all
available time slots for participants in a single step
and selects a suitable meeting time. This schema
produces a single-row table, encapsulating the rea-
soning process in a compact form. In contrast, the
multi-row schema divides the process into finer-
grained steps. The LLM first extracts unavailable
and preferred time slots for each participant. It then
computes available time slots before aggregating
this information to finalize the meeting time. This
approach results in a table with multiple rows, each
representing an intermediate reasoning step, and
provides a more detailed reasoning path.

In Table 6, for GPT-4o, the multi-row schema
outperforms the one-row schema, achieving
80.28% accuracy compared to 72.93%. In contrast,
GPT-4o-mini performs better with the simpler one-
row schema (45.05% vs. 43.46% for the multi-row
schema). This highlights that schema complexity
impacts performance differently for the two models.

6.2 LLM Struggles to Design Effective
Schema for Complex Planning

Unlike Calendar Scheduling, which focuses on se-
lecting a single time slot, TravelPlanner involves
generating a comprehensive travel itinerary, which
is much more complex. Our findings indicate that
tasking the LLM with designing a table schema
results in a notable performance drop compared to
using direct prompting with a pre-defined schema.

Schema Example

Given Schema days, current_city, attraction,
transportation, breakfast,

lunch, dinner, accommodation

LLM Developed Schema Day, Date, Location,
Transportation Details,

Accommodation Details,
Activities/Attractions, Dining Options,

Estimated Cost, Notes/Preferences

Table 7: Given Schema and Example of GPT-4o devel-
oped Schema.

Schema Designing Resoning Verification ACC(%)

✓ ✓ 42.3
✓ × 38.5 (↓ 3.8)
× ✓ 36.2 (↓ 6.1)
× × 32.7 (↓ 9.6)

Table 8: Ablation study results for GPT-4o-mini with
schema designing and reasoning verification effects on
performance of calendar scheduling.

This suggests that the insufficient capability of
LLM in designing table schemas may hinder its
performance on complex planning tasks.

Although the provided schema is not per-
fect—omitting some critical columns, such as
"cost" for budget constraints—it is generally more
effective than most LLM-designed schemas. For
instance, as shown in Table 7, the LLM-developed
schema and the given schema are structurally simi-
lar. However, a key difference is the use of "Dining
Options" in the LLM-designed schema, as opposed
to separating dining into specific categories like
"breakfast," "lunch," and "dinner." In practice, this
simplification often leads the LLM to allocate only
a single meal per day, which contradicts common-
sense expectations for travel planning.

6.3 Ablation Study

We conducted an ablation study using GPT-4o-mini
on the Calendar Scheduling task to evaluate the in-
dividual contributions of schema design and reason-
ing verification . Table 8 shows that when reason-
ing verification is removed, accuracy drops from
42.3% to 38.5% (↓ 3.8%). This indicates that with-
out explicitly verifying constraints, the LLM may
overlook key restrictions in the query, leading to
false positives during self-checking. The absence
of schema design leads to a larger performance
drop, from 42.3% to 36.2% (↓ 6.1%), and further
to 32.7% (↓ 9.6%) when both schema design and
reasoning verification are removed. This highlights
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Column Headers

wo/ Schema Design Participant, Available Time Slots,
Selected Meeting Time

w/ Schema Design Participant Name, Participant Availability,
Meeting Duration, Meeting Day,

Proposed Meeting Time, Work Hours Start,
Work Hours End, Conflict Check,

Final Meeting Time , Notes/Comments

Table 9: Example of Column Headers of Table Thoughts
w/wo Schema Design.

the critical role of schema design in structuring
the reasoning process. Table 9 shows that with-
out a schema, the LLM tends to create tables with
fewer columns, omitting key information neces-
sary for constraint checking. While the table with-
out schema design contains basic headers such as
Participant and Selected Meeting Time, the
schema-designed table includes additional headers
like Conflict Check, Work Hours Start/End,
and Notes/Comments. These additional columns
capture critical reasoning steps and constraints, en-
abling more effective verification and selection of
a valid meeting time.

7 Conclusion

We proposed Table as Thought, a novel framework
that introduces structured reasoning at the thought
level. The framework centers on the design and uti-
lization of table schemas, where the LLM is tasked
with constructing a schema and generating struc-
tured thoughts based on it. Our results demonstrate
that Table as Thought excels in constraint planning
tasks, showcasing its ability to manage complex
constraints effectively. Moreover, the framework
exhibits significant potential for further improv-
ing performance in math reasoning tasks, partic-
ularly in addressing unsolved problems through
structured reasoning.

Additionally, we conducted detailed analyses of
the results, exploring the interplay between schema
design, reasoning complexity, and model capabil-
ities. These insights pave the way for future re-
search into the nature and representation of thought
processes, offering a promising direction for the
development of more robust reasoning frameworks
in LLMs.

Limitations

Our proposed methods are currently supported only
by models capable of generating structured data

with complex schemas. This limitation restricts our
experiments to a small set of closed-source models,
such as those provided by OpenAI. Consequently,
the generalizability of our findings to open-source
LLMs remains unexplored. Future work should in-
vestigate approaches for adapting Table as Thought
to a broader range of models, including those with
limited native support for structured data genera-
tion.

Ethical Statement

This research was conducted using publicly avail-
able datasets (e.g., GSM-8K, MATH500, Trav-
elPlanner) in compliance with their terms of use,
ensuring no personally identifiable information
(PII) was processed. While our proposed frame-
work, Table as Thought, aims to enhance structured
reasoning in LLMs, we acknowledge the potential
risks of misuse in harmful applications, such as
deceptive planning or adversarial reasoning. To
mitigate this, we advocate for responsible deploy-
ment with appropriate safeguards.
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A Completion Rate Analysis of Table as
Thought on Closed and Open Source
LLMs

We investigate the completion rate of Table as
Thought when using both closed-source and open-
source LLMs in calendar scheduling tasks. De-
spite advancements in open-source models such as
LLaMA 3.1-8B and LLaMA 3.1-70B, these mod-
els encounter significant challenges in adhering to
the tool schema required for the schema design and
table construction modules. Specifically, they fail
to generate the expected outputs due to the com-
plexity of the tool schema, leading to errors in the
intermediate pipeline.

In a set of 100 test examples, we observe that
Table as Thought fails 100% and 63% of the time
when using LLaMA 3.1-8B and LLaMA 3.1-70B,
respectively. These high failure rates make experi-
ments with open-source models infeasible because:

1. High Computational Cost: The need for re-
peated retries significantly increases computa-
tional overhead.

2. Result Bias: Retrying may introduce bias,
as incorrect reasoning processes may be ver-
ified as correct, prematurely terminating the
pipeline and artificially increasing the success
rate.

In contrast, closed-source models such as GPT-
4 variants demonstrate much higher success rates.
The results are summarized in Table 10.

Table 10: Success Rates of Table as Thought with Dif-
ferent LLMs on Calendar Scheduling Tasks.

Model Completion Rate (%)

LLaMA 3.1-8B 0
LLaMA 3.1-70B 37
GPT-4o 100
GPT-4o-mini 99
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B Example of Table as Thought on TraverPlanner Task

B.1 Table as Thought w/ Given Schema

Query: Please draw up a 3-day travel itinerary for one person, beginning in Oakland and heading
to Tucson from March 15th to March 17th, 2022, with a budget of $1,400.
Raesoning table:

1 "day1": {
2 "days": 1,
3 "current_city ": "Oakland",
4 "transportation ": "Flight Number: F4002752 , from Oakland to Tucson ,

Departure Time: 15:07, Arrival Time: 17:00" ,
5 "breakfast ": "-",
6 "attraction ": "-",
7 "lunch": "-",
8 "dinner ": "Pizza Street , Tucson",
9 "accommodation ": "Private room with private bathroom , Tucson",

10 "total_cost ": 270,
11 "id": "day1"
12 },
13 "day2": {
14 "days": 2,
15 "current_city ": "Tucson",
16 "transportation ": "-",
17 "breakfast ": "Mocha , Tucson",
18 "attraction ": "Pima Air & Space Museum , Tucson",
19 "lunch": "Pizza Street , Tucson",
20 "dinner ": "Canteen Till I Die , Tucson",
21 "accommodation ": "Room for rent shared bathroom , Tucson",
22 "total_cost ": 61,
23 "id": "day2"
24 },
25 "day3": {
26 "days": 3,
27 "current_city ": "Tucson",
28 "transportation ": "Self -driving from Tucson to Oakland , Duration: 12 hours

42 mins , Cost: $68",
29 "breakfast ": "-",
30 "attraction ": "-",
31 "lunch": "-",
32 "dinner ": "-",
33 "accommodation ": "-",
34 "total_cost ": 68,
35 "id": "day3"
36 }

B.2 Table as Thought w/ Self-designed Schema

Query: Please draw up a 3-day travel itinerary for one person, beginning in Oakland and heading
to Tucson from March 15th to March 17th, 2022, with a budget of $1,400.
Raesoning table:

1 "1": {
2 "Day": "Day 1",
3 "Date": "2022 -03 -15" ,
4 "Travel Mode": "Flight",
5 "Departure Location ": "Oakland",
6 "Destination ": "Tucson",
7 "Travel Duration ": "1 hour 53 minutes",
8 "Travel Cost": 190,
9 "Accommodation Name": "Private room with private bathroom",

10 "Accommodation Cost": 58,
11 "Room Type": "Private room",
12 "House Rules": "No smoking",
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13 "Attractions ": "Pima Air & Space Museum (Cost: $15), Reid Park Zoo (Cost:
$10)",

14 "Dining Options ": "Villa Tevere (Cost: $37), Magic Spice Wok (Cost: $31)",
15 "Total Trip Cost": 341,
16 "Budget Remaining ": 1059,
17 "id": "1",
18 "Maximum Occupancy ": "2 people"
19 },
20 "2": {
21 "Day": "Day 2",
22 "Date": "2022 -03 -16" ,
23 "Travel Mode": "Self -driving",
24 "Departure Location ": "Tucson",
25 "Destination ": "Oakland",
26 "Travel Duration ": "12 hours 40 minutes",
27 "Travel Cost": 68,
28 "Accommodation Name": "Private room with private bathroom",
29 "Accommodation Cost": 58,
30 "Room Type": "Private room",
31 "House Rules": "No smoking",
32 "Attractions ": "Tucson Botanical Gardens (Cost: $15), Old Tucson (Cost:

$20)",
33 "Dining Options ": "La Plage (Cost: $93), Ooh Lala! (Cost: $70)",
34 "Total Trip Cost": 324,
35 "Budget Remaining ": 735,
36 "id": "2",
37 "Maximum Occupancy ": "2 people"
38 },
39 "3": {
40 "Day": "Day 3",
41 "Date": "2022 -03 -17" ,
42 "Travel Mode": "Self -driving",
43 "Departure Location ": "Tucson",
44 "Destination ": "Oakland",
45 "Travel Duration ": "12 hours 42 minutes",
46 "Travel Cost": 68,
47 "Accommodation Name": "None",
48 "Accommodation Cost": 0,
49 "Room Type": "Private room",
50 "House Rules": "No smoking",
51 "Attractions ": "Arizona -Sonora Desert Museum (Cost: $15), Children ’s

Museum Tucson (Cost: $10)",
52 "Dining Options ": "Pirates of Grill (Cost: $52), Mood 4 Food (Cost: $20)",
53 "Total Trip Cost": 165,
54 "Budget Remaining ": 570,
55 "id": "3",
56 "Maximum Occupancy ": "N/A"
57 }

C Example of Table as Thought on Calendar Scheduling Task

C.1 Table as Thought w/ One Row Schema

Query: You need to schedule a meeting for Roy, Kathryn and Amy for half an hour between the
work hours of 9:00 to 17:00 on Monday.
Here are the existing schedules for everyone during the day: Roy has blocked their calendar on
Monday during 9:00 to 9:30, 10:00 to 10:30, 11:00 to 11:30, 12:30 to 13:00; Kathryn has meetings
on Monday during 9:30 to 10:00, 16:30 to 17:00; Amy has blocked their calendar on Monday
during 9:00 to 14:30, 15:00 to 16:00, 16:30 to 17:00;
Amy would rather not meet on Monday after 15:30. Find a time that works for everyone’s schedule
and constraints.
Raesoning table:
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1 "1": {
2 "Meeting Duration ": "30 minutes",
3 "Work Hours Start": "9:00" ,
4 "Work Hours End": "17:00" ,
5 "Roy ’s Unavailable Times": "9:00 -9:30 , 10:00 -10:30 , 11:00 -11:30 ,

12:30 -13:00" ,
6 "Kathryn ’s Unavailable Times": "9:30 -10:00 , 16:30 -17:00" ,
7 "Amy ’s Unavailable Times": "9:00 -14:30 , 15:00 -16:00 , 16:30 -17:00" ,
8 "Amy ’s Preference ": "Prefers not to meet after 15:30" ,
9 "Proposed Meeting Time": "14:30 -15:00"

10 }

C.2 Table as Thought w/ Multi Row Schema

Query: You need to schedule a meeting for Kathryn, Charlotte and Lauren for half an hour
between the work hours of 9:00 to 17:00 on Monday.
Here are the existing schedules for everyone during the day: Kathryn has blocked their calendar
on Monday during 9:00 to 9:30, 10:30 to 11:00, 11:30 to 12:00, 13:30 to 14:30, 16:30 to 17:00;
Charlotte has blocked their calendar on Monday during 12:00 to 12:30, 16:00 to 16:30; Lauren has
blocked their calendar on Monday during 9:00 to 10:00, 12:00 to 12:30, 13:30 to 14:30, 15:00 to
16:00, 16:30 to 17:00;
Charlotte do not want to meet on Monday after 13:30. Find a time that works for everyone’s
schedule and constraints.
Raesoning table:

1 "1": {
2 "Participant Name": "Kathryn",
3 "Unavailable Time Slots": "9:00 -9:30 , 10:30 -11:00 , 11:30 -12:00 ,

13:30 -14:30 , 16:30 -17:00" ,
4 "Preferred Meeting Time": "None",
5 "Meeting Duration ": "30 minutes",
6 "Work Hours": "9:00 -17:00" ,
7 "Available Time Slots": "9:30 -10:30 , 11:00 -11:30 , 12:00 -13:30 ,

14:30 -16:30" ,
8 "Constraints Satisfied ": true ,
9 "Proposed Meeting Time": "10:00 -10:30"

10 },
11 "2": {
12 "Participant Name": "Charlotte",
13 "Unavailable Time Slots": "12:00 -12:30 , 16:00 -16:30" ,
14 "Preferred Meeting Time": "Before 13:30" ,
15 "Meeting Duration ": "30 minutes",
16 "Work Hours": "9:00 -17:00" ,
17 "Available Time Slots": "9:00 -12:00 , 12:30 -16:00 , 16:30 -17:00" ,
18 "Constraints Satisfied ": true ,
19 "Proposed Meeting Time": "10:00 -10:30"
20 },
21 "3": {
22 "Participant Name": "Lauren",
23 "Unavailable Time Slots": "9:00 -10:00 , 12:00 -12:30 , 13:30 -14:30 ,

15:00 -16:00 , 16:30 -17:00" ,
24 "Preferred Meeting Time": "None",
25 "Meeting Duration ": "30 minutes",
26 "Work Hours": "9:00 -17:00" ,
27 "Available Time Slots": "10:00 -12:00 , 12:30 -13:30 , 14:30 -15:00" ,
28 "Constraints Satisfied ": true ,
29 "Proposed Meeting Time": "10:00 -10:30"
30 }
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D Comparison of Table as Thought and Direct Prompting on GSM-8k

D.1 Example where Direct Prompting succeceds while Table as Thought Fails

Query: Stephen placed an online order for groceries. His final bill came to $40.00. Because this
was through a delivery vendor, they tacked on a 25% fee to his final total and charged him $3.00
in delivery fees. Stephen also added a $4.00 tip. After the extra fees, what was the final price of
Stephen’s groceries?
Raesoning table:

1 "1": {
2 "Base_Price ": 40.0,
3 "Delivery_Fee_Percentage ": 0,
4 "Delivery_Fee_Amount ": 0,
5 "Tip_Amount ": 0,
6 "Total_Fee_Percentage ": 0,
7 "Total_Fee_Amount ": 0,
8 "Final_Price ": 40.0
9 }

Direct Prompting response:
To find the final price of Stephen’s groceries after all the extra fees, we need to calculate each
component and add them together.
1. Original Bill: Stephen’s original grocery bill was $40.00.
2. Vendor Fee: The vendor adds a 25% fee to the original bill. To calculate this fee:

Vendor Fee = 0.25× 40.00 = 10.00

3. Delivery Fee: The delivery fee is a flat $3.00.
4. Tip: Stephen added a $4.00 tip.
Now, we add all these amounts together to find the final price:

Final Price = Original Bill + Vendor Fee + Delivery Fee + Tip

Final Price = 40.00 + 10.00 + 3.00 + 4.00 = 57.00

Therefore, the final price of Stephen’s groceries, after all the extra fees, is $57.00.

D.2 Example where Table as Thought succeceds while Direct Prompting Fails

Query: Jamal’s phone can hold 6 times more photographs than can Brittany’s phone. The
maximum number of photographs that Brittany’s phone can hold is 50 times more than the number
of birds in Jamal’s photograph of the ducks at the zoo. If Jamal’s phone can hold 1800 photographs,
how many ducks can be seen in Jamal’s photograph of ducks at the zoo?
Raesoning table:

1 "1": {
2 "Jamal_Phone_Capacity ": 1800,
3 "Brittany_Phone_Capacity ": 300,
4 "Ducks_in_Photograph ": 6,
5 "Brittany_Phone_Additional_Capacity ": 50,
6 "Equation ": "300 = 50D",
7 "Solution_Steps ": "1. Jamal ’s phone can hold 6 times more photographs than

Brittany ’s phone. 2. Jamal ’s phone can hold 1800 photographs. 3. Let
B be the number of photographs Brittany ’s phone can hold. Then , 6B =
1800. 4. Solve for B: B = 1800 / 6 = 300. 5. Brittany ’s phone can hold
50 times more photographs than the number of ducks in Jamal ’s

photograph. 6. Let D be the number of ducks in Jamal ’s photograph. B =
50D. 7. Substitute B = 300 into the equation: 300 = 50D. 8. Solve for
D: D = 300 / 50 = 6.",
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8 "Final_Answer ": 6
9 }

Direct Prompting response:
To solve the problem, we need to determine the number of ducks in Jamal’s photograph.
First, let’s define the variables:

• Let B be the maximum number of photographs Brittany’s phone can hold.

• Let D be the number of ducks in Jamal’s photograph.

According to the problem, Jamal’s phone can hold 6 times more photographs than Brittany’s phone.
Therefore, we have the equation:

J = 6B

where J is the number of photographs Jamal’s phone can hold. We know from the problem that
J = 1800. Substituting this into the equation gives:

1800 = 6B

To find B, divide both sides by 6:

B =
1800

6
= 300

Next, the problem states that Brittany’s phone can hold 50 more photographs than the number of
ducks in Jamal’s photograph. This gives us the equation:

B = D + 50

We already found that B = 300. Substituting this into the equation gives:

300 = D + 50

To find D, subtract 50 from both sides:

D = 300− 50 = 250

Thus, the number of ducks in Jamal’s photograph is 250 .
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Abstract

Large Language Models (LLMs) have demon-
strated exceptional performance across diverse
tasks. To harness their capabilities for Text-
to-SQL, we introduce R3 (Review-Rebuttal-
Revision), a consensus-based multi-agent sys-
tem for Text-to-SQL tasks. R3 achieves the
new state-of-the-art performance of 89.9 on the
Spider test set. In the meantime, R3 achieves
61.80 on the Bird development set. R3 out-
performs existing single-LLM and multi-agent
Text-to-SQL systems by 1.3% to 8.1% on Spi-
der and Bird, respectively. Surprisingly, we find
that for Llama-3-8B, R3 outperforms chain-of-
thought prompting by over 20%, even outper-
forming GPT-3.5 on the Spider development
set. We open-source our codebase at https:
//github.com/1ring2rta/R3.

1 Introduction

Text-to-SQL, the task of converting natural lan-
guage to SQL queries, enables non-technical
users to access databases with natural language
(Deng et al., 2022; Katsogiannis-Meimarakis and
Koutrika, 2023). Recently, Large Language Mod-
els (LLMs) have made significant progress on vari-
ous tasks (Touvron et al., 2023; OpenAI, 2023).

Although various methods were proposed to en-
hance the reasoning abilities of LLMs (Wei et al.,
2022; Yao et al., 2023; Besta et al., 2024), they
are still facing challenges with Text-to-SQL tasks
(Li et al., 2023b; Hong et al., 2024). The LLM-
based multi-agent system leverages collective in-
telligence from a group of LLMs and has achieved
exceptional performance across various tasks (Park
et al., 2023; Hong et al., 2023; Xu et al., 2023),
but little work explores using them on Text-to-SQL.
The existing multi-agent Text-to-SQL system first
decomposes the task into multiple subtasks, which
are then accomplished step-by-step in a pipeline
by agents (Wang et al., 2023). While achieving re-
markable performance, such decomposition-based

Figure 1: R3 Architecture. n Reviewer agents, each
with distinct characteristics, are created to review the
generated SQL and its execution result. The process
continues until the master node (SQL-Writer agent) and
the other nodes reach a consensus, at which point the
system outputs the final SQL.

systems necessitate extensive prompt engineering
and logic design.

We propose R3, a consensus-based multi-agent
system for Text-to-SQL tasks that draws inspiration
from the peer-review mechanism. In our designed
framework, the LLM does not need to be divided
into sub-tasks such as column selection, schema
linking, and so on. Instead, it is split into an SQL
Writer and multiple Reviewers who provide feed-
back based on the execution results. Once the gen-
erated SQL query is confirmed to be executable,
the system enters a review process, where the exe-
cution results guide the SQL Writer and reviewers
to refine the SQL. Through rounds of "review,"
"negotiation or rebuttal," and "revision," the SQL
Writer and reviewers ultimately reach a consensus
and deliver a solution with collective agreement
(see Figure 1).

We test R3 on the popular Spider and Bird bench-
marks. R3 outperforms the existing single LLM
as well as the multi-agent Tex-to-SQL systems by
1.3% to 8.1% on Spider and Bird, and set new state-
of-the-art (SOTA) performance of 89.9 on Spider

34

https://github.com/1ring2rta/R3
https://github.com/1ring2rta/R3


dataset. Surprisingly, we find that for Llama-3-
8B, R3 outperforms chain-of-thought prompting
by over 20%, even outperforming GPT-3.5 on the
Spider-Dev set.

In summary, our contributions are several-fold:

1. To the best of our knowledge, R3 is the first
Text-to-SQL system to use the execution result
for SQL refinements, and the first Text-to-SQL
system to equip agents with memory sequences
to enhance SQL generation.

2. R3 offers a consensus-based multi-agent sys-
tem for Text-to-SQL tasks. Using very succinct
prompts, R3 sets the new SOTA performance
of 89.9 on the Spider dataset. In the mean-
time, R3 achieves 61.80 on the Bird-Dev dataset.
In addition, R3 effectively helps open-source
LLMs such as Llama-3-8B on SQL generation.
When using Llama-3-8B as the backbone model,
R3outperforms direct CoT prompting Llama-3-
8B by 20%, and outperforms GPT-3.5 on the
Spider-Dev set.

3. We provide a detailed error analysis of R3 on
the existing Text-to-SQL benchmarks, shedding
light on future research on the Text-to-SQL task.

2 Related Works

Traditional Methods for Text-to-SQL. The
Text-to-SQL conversion task has enjoyed a long
history dating back to 1970s (Androutsopoulos
et al., 1995), and researchers have kept working
on this problem for the past few decades (Dahl
et al., 1994; Zelle and Mooney, 1996; Popescu
et al., 2003; Zhong et al., 2017; Yu et al., 2018).
Before the advent of LLMs, systems like RATSQL
(Wang et al., 2019) and LGESQL (Cao et al., 2021)
adapt BERT (Devlin et al., 2018) architecture to
acquire better representations, and carefully design
their techniques to link schema in the database
system. Later, approaches like PICARD (Scholak
et al., 2021), RASAT (Qi et al., 2022), and RESD-
SQL (Li et al., 2023a) adapt the T5 model (Raffel
et al., 2020) to translate user questions into SQL
query in an end-to-end fashion. Additionally, re-
searchers propose a variety of task-specific strate-
gies like relation-aware self-attention (Qi et al.,
2022), schema selection (Li et al., 2023a), and con-
strained decoding (Scholak et al., 2021) to improve
the performance of the Text-to-SQL systems.

LLMs for Text-to-SQL. Recent years have
witnessed LLMs’ breakthroughs in many fields
(Ouyang et al., 2022; Touvron et al., 2023; Dubey
et al., 2024). Moreover, Brown et al. (2020); Chen
et al. (2022); Liu and Liu (2021) have observed
that these LLMs can learn in context with a few ex-
amples during their inference time. The strong rea-
soning and in-context learning capabilities of these
LLMs have brought a paradigm shift to the Text-
to-SQL community, which now focuses on lever-
aging LLMs’ ability to handle Text-to-SQL tasks.
For instance, Pourreza and Rafiei (2023) propose
DIN-SQL to few-shot prompt GPT-4; Dong et al.
(2023) introduce C3, which zero-shots GPT-3.5
with hints and checks output consistency; DAIL-
SQL (Gao et al., 2023) comprehensively evaluates
the efficiency and effectiveness of various prompt-
ing techniques.

Output Consistency. Recent works have applied
the consistency principle (Wang et al., 2022) to
enhance the reasoning ability of LLMs through in-
context learning, such as chain-of-thought (CoT)
(Wei et al., 2022) or tree-of-thoughts (ToT) (Yao
et al., 2023). In addition, Chen et al. (2023) adopt
program-of-thoughts (PoT), which uses Python
code to assist LLMs in the reasoning process and
surpasses CoT on math reasoning.

3 R3 Architecture

SQL-Writer We task SQL-Writer (SW) agents
to: (1) compose the original SQL query based on
the user question and database schema; (2) ensure
that the SQL query is executable, and correct it
when errors occur; (3) respond to reviewer agents’
feedback and revise the SQL query accordingly.
Specifically, we prompt SW agent through Prompt 1
in Appendix A.6. For task (1), we feed the Prompt
1 to SW agent directly. Given a user question x and
the database schema S , task (1) can be formalized
as:

y = SW(x,S),

where y is the generated SQL query. For steps
(2) and (3), we maintain a truncated dialogue
history, denoted as H, which is initially set to
H = [(x,S), y]. Specifically, if an error e occurs
during SQL execution, DB(y), we append e to the
history, updating H ← H + e. Subsequently, we
obtain the updated output, y′, via the following
process:

y′ = SW(H).
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GivenGivenGiven x, S
y = SW(x,S)
i = 0
while i ≤ 5 do

o = DB(y); {rk}nk=1 = RE(x, y, o,S)
ŷ = SW(x, {rk}nk=1,S)
if y = ŷ then

break
else

y ← ŷ
end
i← i+ 1

end
Algorithm 1: R3-Loop

We then concatenate y′ to the history, resulting in
the updateH ← H+ y′. Furthermore, in consider-
ation of the context window limitations of LLMs,
we truncate the dialogue historyH when the length
of the prompt exceeds the model’s context limit.

Reviewers. We generate the reviewer agent’s
(REs) professions using an LLM (see Prompt 3 in
Appendix A.6) based on the database schema and
the content of the SQL query, for instance, “Senior
Database Engineer specialized in writing various
clauses” and “Data Analyst in the automotive indus-
try”, etc. We incorporate these professions in the
system prompt for the REs to make them focus on
different aspects of the SQL query. These REs are
prompted to provide their professional comments
based on the database schema, the user’s question,
the predicted SQL, and its execution result in the
table format.

Overall Architecture. After several rounds of
“negotiation” between the SQL-writer and REs, we
decide whether there is a consensus by checking
if the SQL-writer agent generates the same SQL
query as in the previous round. When there is a
consensus, we terminate the negotiation loop and
output the final SQL query. Algorithm 1 depicts
the overall process of our system.

Appendix A.6 provides the detailed prompts we
use in R3. In addition, we incorporate:

1. Program of Thoughts (PoT) (Chen et al., 2023)
to prompt the SQL-writer agent to generate
Python code before SQL query (see Prompt 2
in Appendix A.6). Therefore, the agents may
leverage Python in their reasoning process for
better SQL query generation.

2. k-shots example selection based on similarity
of the user question embeddings. Specifically,
when our system infers the SQL query in the test

set, we select the k most similar use questions
and their corresponding SQL queries from the
training set (k-shots) and use them for in-context
learning.

4 Experimental Setup

Spider-Dev Spider-Test Bird-Dev
(Yu et al., 2018) (Li et al., 2023b)

#QA 1,034 2147 1,534
#Domain 138 - 37
#DB 200 206 95
DB Size 879.5 MB 906.5 MB 1.76 GB

Table 1: Statistics of two Text-to-SQL benchmarks we
use in our experiments. “#QA”, “#Domain” and “#DB”
refer to the number of samples, domains and databases,
respectively.

Datasets. We conduct experiments on two cross-
domain Text-to-SQL benchmarks, Spider and Bird,
detailed in Table 1.

Baselines. We conduct our experiments based on
LLMs including GPT-3.5-Turbo, GPT-4 (OpenAI,
2023) and Llama-3 (AI@Meta, 2024). As for the
compared methods, the raw performance for GPT-
3.5 (“-”) was evaluated by Li et al. (2023b); C3 em-
ploys schema linking filtering (Dong et al., 2023);
DAIL selects few-shot demonstrations based on
their skeleton similarities (Gao et al., 2023), and
“SC” represents Self-Consistency (Wang et al.,
2022); PET uses cross-consistency (Li et al., 2024);
DIN decomposes the Text-to-SQL task into smaller
subtasks (Pourreza and Rafiei, 2023); MAC, as
previously mentioned, is the first to apply a Multi-
Agent system to Text-to-SQL tasks (Wang et al.,
2023).

Metrics. We employ test-suite execution evalua-
tion1 (Zhong et al., 2020), the standard evaluation
protocol for Spider, and the official SQL execution
accuracy evaluation for Bird2.

5 Results and Analysis

5.1 General Results

Table 2 compares R3’s performance with existing
baseline methods when we use GPT-3.5-Turbo
or GPT-4 as our backbone models. Our best
performed system with GPT-4 as the backbone

1github.com/taoyds/test-suite-sql-eval
2bird-bench.github.io/
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Backbone Method
Spider Bird

Dev Test Dev

GPT-3.5
Turbo

- 72.1 - 37.22
C3 (2023) 81.8 82.3 -
MAC (2023) 80.6 75.5 50.56
R3 (ours) 81.4 81.1 52.15

GPT-4

DAIL (2023) 83.6 86.6 -
PET (2024) 82.2 87.6 -
DIN (2023) 82.8 85.3 50.72
MAC (2023) 86.8 82.8 59.39
R3 (ours) 88.1 89.9 61.80

Table 2: Execution accuracy across existing Text-to-
SQL systems. We use the GPT-3.5-Turbo in our exper-
iment. The results for plain GPT-3.5-Turbo (first row)
are taken from Li et al. (2023b).

Backbone Method
Spider

Dev Test

GPT-3.5
Turbo

Li et al. (2023b) 72.1 –
R3 81.4 81.1

Llama-3-8B
Instruct

CoT 52.1 53.5
R3 72.8 72.6

Table 3: Execution accuracy comparison when we em-
ploy open-source LLMs as the backbone models with
R3on Spider-Dev and Spider-Test. We highlight that
R3 significantly boosts the open-source LLM’s capabil-
ity on SQL generation.

achieves 88.1%, 89.9%, and 61.8% on the Spider-
Dev, Spider-Test, and Bird-Dev respectively, sur-
passing the existing multi-agent Text-to-SQL sys-
tems.

5.2 Discussions
Generalizability of R3 framework. We test our
system with open-source Llama-3 models on Spi-
der and report the results in Table 3. To our surprise,
with the help of R3, zero-shot Llama-3-8B outper-
forms GPT-3.5 performance reported by Li et al.
(2023b) on Spider-Dev set. This demonstrates the
effectiveness of our proposed R3 system.

CoT versus PoT. We conduct an ablation study
on the impact of CoT, PoT with one or three re-
viewer agents in the discussion and report the re-
sults in Table 4. The results in Table 4 show that
the n-Reviewer(s) Loop (nR-Lp) plays a major role
in performance improvement, with the 3R-Lp con-
figuration significantly outperforming the 1R-Lp
setup. The proposed R3 system achieves a 10.54%
improvement over the baseline GPT-4 + CoT. We

GPT-3.5-Turbo GPT-4

Spider Bird Spider Bird

CoT 78.2 37.22 79.7 53.30

PoT 78.5 36.96 80.0 54.61

1R-Lp + CoT 78.3 44.13 82.3 57.89

1R-Lp + PoT 79.3 46.35 85.4 58.34

R3: 3R-Lp + PoT 81.4 52.15 88.1 61.80

Table 4: Ablation Studies on Spider-Dev and Bird-Dev
(Execution Accuracy). The 1-Reviewer Loop (1R-Lp)
represents that only one reviewer agent participates in
the discussion, while the 3-Reviewers Loop (3R-Lp) rep-
resents three in the discussion, which is also the default
configuration of R3. We conduct all the experiments
here under the 5-shot setting.

provide the statistical significant test for these re-
sults in Appendix A.1. Appendix A.2 provides a
sensitivity analysis of the impacts of the k value in
k-shots.

5.3 Error Analysis

In total, GPT-4+R3 fails to generate the gold SQL
queries for 123 instances in Spider-Dev. Table 5
shows the error case distribution for our system
on Spider-Dev (more in Appendices A.3 and A.4).
Note that though we have spotted issues with the
gold SQL queries, we still adopt the original set to
calculate the performance of our system to ensure
a fair comparison.

Gold Error. We notice that though the annota-
tion quality of Spider is good, there are still cases
where the gold SQL queries are not correct. Specif-
ically, among the 151 examples, 30.5% are due to
incorrect gold SQL queries (4.5% of all the exam-
ples in Spider-Dev). To facilitate future research,
we catalog the instances with incorrect gold SQL,
correct the errors, and share the details.

Ambiguity. We observe that there are a few ques-
tions involving ambiguities, a phenomenon spot-
ted on a wide range of NLP tasks (Plank, 2022;
Deng et al., 2023). In Table 5.3, both FullName
and Maker columns hold the information for the
“name of makers”, except that FullName holds
the full names while Maker holds the name abbre-
viations. Therefore, both the gold and predicted
SQL queries should be considered correct if there is
no further clarifications. Such ambiguous requests
may be common in real-world applications as the
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Error Types Question, Gold & Prediction Explanation

Gold Error
(30.5%)

Q: What are the Asian countries which have a population larger than that of any country in Africa?
Gold: ❌ … AND population > (SELECT min(population) FROM country WHERE 
Continent = "Africa")
Pred: ✅ … AND population > (SELECT max(population)
FROM country WHERE Continent = "Africa") 

Judged as incorrect because of the 
incorrect gold SQL query.

Logic
(29.8%)

Q: How many owners temporarily do not have any dogs?
Gold: ✅ SELECT count(*) FROM Owners WHERE owner_id NOT IN (SELECT 
owner_id FROM Dogs)      
Pred: ❌ SELECT (SELECT COUNT(DISTINCT owner_id) FROM Owners) - (SELECT 
COUNT(DISTINCT owner_id) FROM Dogs WHERE date_departed IS NULL)

The predicted SQL query wrongly 
assumes that all owners have had 
dogs.

Ambiguity
(13.2%)

Q: What are the names of all makers with more than 3 models?
Gold: ✅ SELECT T1.FullName ... HAVING count(*) > 3; 
Pred: ✅ SELECT T1.Maker ... HAVING count(*) > 3; 

Both FullName  and Maker  
columns hold the information for 
“names”.

Inaccuracy
(11.3%)

Q: What are the arriving date of the dogs who have gone through a treatment?
Gold: ✅ SELECT T1. date_arrived, FROM ...
Pred: ❌ SELECT T1. date_arrived, T1.Name FROM ...

The selected Name  is not asked by 
the question.

DB Value
(10.6%)

Q: Which city and country is the Alton airport at?
Gold: ✅ SELECT ... WHERE AirportName = "Alton" ;
Pred: ❌ SELECT ... WHERE AirportName LIKE "%Alton%" ;

Our framework notices there is a 
space for Alton  in the DB, 
therefore employing a fuzzy match. 

Others (4.6%)

Table 5: Error Analysis of R3 on Spider-Dev. We make the part in the question red when it is either annotated
incorrectly in the gold SQL query (Gold) or predicted incorrectly in the predicted SQL query (Pred).

lay users may not be familiar with the database
schema. This requires future research on interac-
tive Text-to-SQL systems that can understand and
deal with such ambiguities in user questions.

Dirty Database Value. We observe that due to
the Database (DB) setup for Spider, certain DB val-
ues may deviate from what is asked in the question.
For instance, in Table 5.5, R3 notices a space for
Alton in DB, therefore employing a fuzzy match.
But this deviates the SQL query’s execution results
from the gold SQL query’s results.

Logic. In Table 5.2, we present an example of
the logic error made by R3. We notice that LLMs
may solve the problems using a more complicated
logic, which is prone to mistakes. For instance, in
Table 5.2, instead of directly counting the owners
who do not own dogs, the LLMs try to subtract
the number of dog owners from the total number
of owners. This ignores the possibility that some
owners may have never had any dogs before. This
addresses an issue with the multi-agent system that
if the system comes up with a complicated initial
SQL query, the following discussion process may
try to polish the complicated SQL query instead
of switching to an easier solution. In cases like
Table 5.2, there is no way to reach a perfect SQL
query with the subtraction logic.

Inaccuracy. We observe that the LLMs may in-
corporate more information than what is asked by
the end user. For instance, in Table 5.4, the user
does not ask for the name of the dogs, but the LLMs
present such information along with the requested
arrival date. We hypothesize that since such extra
information can potentially be helpful to the end
user, LLMs may be biased towards including it.

Our findings indicate that the existing evalua-
tion protocols for Text-to-SQL generation may not
authentically capture the capabilities of these so-
phisticated systems. Therefore, we advocate for
a reassessment and enhancement of Text-to-SQL
evaluation methods. We provide further error anal-
ysis of R3 on Bird in Appendix A.4.

6 Conclusion

In this paper, we propose R3, a consensus-based
multi-agent system for Text-to-SQL generation.
R3 sets the new SOTA performance on Spider
(89.9) and achieves 61.80 on the Bird Dev set. In
addition, we find that R3 significantly enhances
open-source LLMs such as Llama-3-8B (over 20%
improvement on Spider Dev set). Last but not least,
we conduct a comprehensive error analysis and
identify issues with the current Text-to-SQL evalu-
ation, underscoring the necessity for a more refined
evaluation protocol, as the LLMs and LLM-based
methods become more powerful than ever.
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Limitations

Due to the scope of the study, we only test a lim-
ited number of LLMs. In this paper, we study the
performance gap between 1R-Lp and 3R-Lp. We
leave further studies on the effects of the number
of reviewers to future research.

Ethical Statements

In this paper, we propose strategies to improve the
SQL generation capabilities of LLMs. To the best
of our knowledge, we do not expect our system
would have negative impacts on society.
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A Appendix

A.1 Significance Test
We divided the generated SQL by several strategies
in Table 4 into 10 equal parts and calculated the
execution accuracy for each. To test whether our
strategy can indeed improve execution accuracy,
we conduct a significance test between the “CoT”
and “3R-Lp+PoT” strategies. The null hypothesis
of the test is that the median execution accuracy
obtained by the two strategies is the same. The
Mann-Whitney U Test (Mann and Whitney, 1947)
is a non-parametric statistical method used to com-
pare whether there is a significant difference in the
medians of two independent samples. Compared
to the Analysis of Variance (ANOVA), it does not
require the data to be normally distributed, making
it suitable for small samples or data with unknown
distribution.

The p-value of the test is 0.0024, which is below
the commonly accepted significance level of 0.05.
Therefore, we have reason to reject the null hy-
pothesis, indicating that the “3R-Lp+PoT” strategy
leads to a significant performance improvement.

Effects of the number of “reviewer” agents.

A.2 Effects of k in k-shot.
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Figure 2: k-shot Sensitivity Analysis.

We test various k values on 200 random samples

from Spider-Dev. As shown in Figure 2, compared
to CoT, the performance of the R3 system remains
relatively stable regardless of the number of ex-
amples, which corroborates our previous findings
from the 0-shot experiments with Llama-3.
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A.3 Spider Error Cases

Error Type Question, Gold & Prediction Reason

DB Value Q:Q:Q: Find the last name of the students who currently live in the
state of North Carolina but have not registered in any degree
program.
Gold:Gold:Gold: SELECT ... WHERE
T2.state_province_county
= ’NorthCarolina’ EXCEPT ...

Pred:Pred:Pred: SELECT ... WHERE
T2.state_province_county
= ’North Carolina’ EXCEPT ...

The filtering condition in the
question does not match the
database value, string
“NorthCalifornia” in database
do not have a space in between.

Gold Error Q:Q:Q: What are the first names of all players, and their average
rankings?
Gold:Gold:Gold: SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2 ON
T1.player_id = T2.player_id
GROUP BY T1.first_name

Pred:Pred:Pred: SELECT avg(ranking), T1.first_name
FROM players AS T1 JOIN rankings AS T2 ON
T1.player_id = T2.player_id
GROUP BY T1.player_id

The individuals in the table can
be uniquely determined by
column player_id not
first_name, when GROUP BY.

Gold Error Q:Q:Q: Find the id and cell phone of the professionals who operate
two or more types of treatments.
Gold:Gold:Gold: SELECT T1.professional_id,
T1.cell_number FROM Professionals AS T1
JOIN Treatments AS T2 ON
T1.professional_id = T2.professional_id
GROUP BY T1.professional_id
HAVING count(*) >= 2

Pred:Pred:Pred: SELECT T1.professional_id,
T1.cell_number FROM Professionals AS T1
JOIN Treatments AS T2 ON
T1.professional_id = T2.professional_id
GROUP BY T1.professional_id HAVING
COUNT( DISTINCT T2.treatment_type_code) >=
2

The gold only finds
professionals who have two or
more records in the treatment
table does not ensure that the
records are for different types
of treatments

Ambiguity Q:Q:Q: What are the names and ids of all makers with more than 3
models?
Gold:Gold:Gold: SELECT T1.FullName , T1.Id FROM
CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON
T1.Id = T2.Maker GROUP BY T1.Id HAVING
count(*) > 3;
Pred:Pred:Pred: SELECT T1.Maker , T1.Id FROM
CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON
T1.Id = T2.Maker GROUP BY T1.Id HAVING
count(*) > 3;

Both column “Maker” and
column “FullName” can answer
the question about the “names
of makers” in the query.

Imprecise Q:Q:Q: What are the arriving date and the departing date of the dogs
who have gone through a treatment?
Gold:Gold:Gold: SELECT DISTINCT T1.date_arrived,
T1.date_departed FROM Dogs AS T1 JOIN
Treatments AS T2 ON T1.dog_id = T2.dog_id
Pred:Pred:Pred: SELECT DISTINCT T1.date_arrived,
T1.date_departed, T1.Name FROM Dogs AS T1
JOIN Treatments AS T2 ON T1.dog_id =
T2.dog_id

The question do not require
listing the specific names of the
students, but only ask to list the
students’ arrival and departure
dates. This falls under
information redundancy.

Table 6: Spider error cases.
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A.4 BIRD Error Cases

Error Type Question, Gold & Prediction Reason

DB Value Q:Q:Q: How many cards with unknown power that can’t be found in
foil is in duel deck A?
Gold:Gold:Gold: SELECT SUM(CASE WHEN power
LIKE ’%*%’ OR power IS NULL THEN 1 ELSE 0
END) FROM cards WHERE hasFoil = 0 AND
duelDeck = ’a’
Pred:Pred:Pred: SELECT COUNT(*) FROM cards WHERE
(power IS NULL OR power = ’*’ ) AND
hasFoil = 0 AND duelDeck = ’a’

Values in database cannot exact
match with the question and
evidence.

Gold Error Q:Q:Q: How many artists have designed a card with a black border
color and is available in both "arena" and "mtgo" printing type?
Gold:Gold:Gold: SELECT COUNT(CASE WHEN availability
LIKE ’%arena,mtgo%’ THEN 1 ELSE NULL END)
FROM cards
Pred:Pred:Pred: SELECT COUNT(DISTINCT artist) FROM
cards WHERE borderColor = ’black’ AND
availability LIKE ’%arena,mtgo%’

The gold missed one filtering
condition.

Ambiguity Q:Q:Q: Among black card borders, which card has full artwork?
Gold:Gold:Gold: SELECT id FROM cards WHERE
borderColor = ’black’ AND isFullArt = 1
Pred:Pred:Pred: SELECT name FROM cards WHERE
borderColor = ’black’ AND isFullArt = 1;

Both column “name” and
column “id” can answer the
question about the “the card has
full artwork” in the query.

Logic Q:Q:Q: Which cities have the top 5 lowest enrollment number for
students in grades 1 through 12?
Gold:Gold:Gold: SELECT T2.City FROM frpm AS T1 INNER
JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode GROUP BY T2.City ORDER BY
SUM(T1.‘Enrollment (K-12)‘) ASC LIMIT 5
Pred:Pred:Pred: SELECT T2.City, T1."Enrollment (K-12)"
FROM frpm AS T1 JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode ORDER BY
T1."Enrollment (K-12)" ASC LIMIT 5;

The Pred query is incorrect
because it lacks grouping and
aggregation. It directly selects
cities and their corresponding
"Enrollment (K-12)" without
summing up the enrollment
numbers across all schools
within each city. As a result, it
returns the cities of the five
schools with the lowest
enrollment numbers, which
does not accurately answer the
question seeking the top 5 cities
with the lowest total enrollment
for students in grades 1 through
12.

Table 7: Bird error cases.
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A.5 Interactive Correction Cases

Before After Reason

Q:Q:Q: What is the phone number of the school that has the highest number of test takers with an SAT score of over 1500?

Before:Before:Before:
SELECT schools.Phone
FROM satscores
JOIN schools ON
satscores.cds =
schools.CDSCode
WHERE satscores.NumGE1500
> 1500
GROUP BY schools.School
ORDER BY COUNT(*) DESC
LIMIT 1;

After:After:After:
SELECT schools.Phone
FROM satscores
JOIN schools ON
satscores.cds =
schools.CDSCode
ORDER BY
satscores.NumGE1500 DESC
LIMIT 1;

The WHERE clause is checking if the
number of test takers with an SAT score
over 1500 is greater than 1500, which is
not what the question is asking. The
question is asking for the school with
the highest number of test takers who
scored over 1500. Additionally, the
GROUP BY clause is grouping by the
school name, which may not be unique.
It would be better to group by the
school code (CDSCode) which is
unique for each school.

Q:Q:Q: List the top five schools, by descending order, from the highest to the lowest, the most number of Enrollment (Ages
5-17). Please give their NCES school identification number.

Before:Before:Before:
SELECT T1."School Name",
T2.NCESSchool
FROM frpm AS T1
JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

After:After:After:
SELECT T2.NCESSchool
FROM frpm AS T1
JOIN schools AS T2 ON
T1.CDSCode = T2.CDSCode
ORDER BY T1."Enrollment
(Ages 5-17)" DESC
LIMIT 5;

The question asks for the top five
schools with the most number of
Enrollment (Ages 5-17), and their
NCES school identification number.
However, the SQL query provided
returns the school name, which is not
required by the question.

Q:Q:Q: find the package option of the tv channel that do not have any cartoon directed by Ben Jones.

Before:Before:Before:
SELECT
TV_Channel.Package_Option
FROM TV_Channel
LEFT JOIN Cartoon ON
TV_Channel.id =
Cartoon.Channel
WHERE Cartoon.Directed_by
IS NOT ’Ben Jones’;

After:After:After:
SELECT
TV_Channel.Package_Option
FROM TV_Channel
WHERE TV_Channel.id NOT IN
(
SELECT Cartoon.Channel
FROM Cartoon
WHERE Cartoon.Directed_by
= ’Ben Jones’);

The current query is selecting all
channels where the director is not Ben
Jones, but it should exclude channels
that have any cartoons directed by Ben
Jones. This can be achieved by using a
subquery to find all channels that have
cartoons directed by Ben Jones, and
then excluding these channels in the
main query. Here is the corrected SQL:

Q:Q:Q: List the earnings of poker players in descending order.

Before:Before:Before:
SELECT * FROM poker_player
ORDER BY Earnings DESC;

After:After:After:
SELECT Earnings FROM
poker_player ORDER BY
Earnings DESC;

The question only asks for the earnings
of poker players. Therefore, we should
only select the ‘Earnings‘ column to
make the result more concise and
relevant to the question.

Q:Q:Q: How many countries speak both English and Dutch?

Before:Before:Before:
SELECT COUNT(DISTINCT
CountryCode)
FROM countrylanguage
WHERE Language = ’English’
AND CountryCode IN (
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’Dutch’)

After:After:After:
SELECT COUNT(*)
FROM (
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’English’
INTERSECT
SELECT CountryCode
FROM countrylanguage
WHERE Language = ’Dutch’)

The SQL query provided uses the ‘IN‘
clause, which selects countries that
speak either English or Dutch. However,
the question asks for countries speaking
both languages. Using IN results in a
union of sets (either English or Dutch),
not an intersection (both English and
Dutch). This could be done with two
separate queries joined by an
‘INTERSECT‘ clause.

Table 8: Interactive correction cases.
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A.6 Prompt Examples

Describe how you understand the question based on the evidence , and
help me write an SQL to answer the question.

# ## EVIDENCE : { e v i d e n c e }
# ## USER_QUESTION : { q u e s t i o n }

# ## RELATED SQL :
{related_sql}

# ## DATABASE STRUCTURE :
{schema}

Prompt 1: CoT-SQL-Writer

Write an to answer the question.

Program of Thoughts (PoT) is a variant of Chain of Thought (CoT),
pre −generating Python code to assist in the creation of SQL. Please
apply PoT (and PoT only) before generating an SQL.

In your python code , `Table %s` is stored in `db_dict['%s']`, `
db_dict ` is of type dict[pandas.DataFrame ].

# ## RELATED SQL :
{related_sqls}

# ## DATABASE STRUCTURE :
{schema}

# ## EXAMPLES :
QUESTION: What is %s in the earliest year and what year was it?
SQL:
earliest_year = db_dict [%s]['Year'].min()
year_filtered_data = step1_result[step1_result['Year'] ==
earliest_year]
result = year_filtered_data [[%s, 'Year']]
```sql
SELECT T1.%s, T2.Year FROM %s AS T1 JOIN %s AS T2 ON T1.Id = T2.Id
WHERE T2.Year = (SELECT min(YEAR) FROM %s);
```

QUESTION: Show names for all %s except for %s having a %s in year
2023.
SQL:
%s_2023 = db_dict['%s'][ db_dict['%s']['year'] == '2023']
result = db_dict [%s][~ db_dict [%s][%s].isin(% ss_2023 [%s])]
```sql
SELECT name FROM %s EXCEPT SELECT T2.name FROM %s AS T1 WHERE T1.
year = 2023
```

QUESTION: Find the %s that %s is A and B?
SQL:
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condition_a_data = db_dict [%s][ db_dict['Cartoon '][%s] == 'A']
condition_b_data = db_dict [%s][ db_dict['Cartoon '][%s] == 'B']
result = pd.merge(condition_a_data , condition_b_data , how='inner')
```sql
SELECT T1.%s FROM %s AS T1 WHERE %s = 'A'
INTERSECT
SELECT T1.%s FROM %s AS T1 WHERE %s = 'B'
```

# ## EVIDENCE : { e v i d e n c e }
# ## USER_QUESTION : { q u e s t i o n }
# ## SQL :

Prompt 2: PoT-SQL-Writer

You are the manager of a Database project. You are going to invite
{n} experts to review an SQL query.
Who would you invite?

considering:
(1) the domain of this database;
(2) the structure of this SQL.
Please write your invitation as a JSON format dictionary , Enclose
the JSON within ```json...```.

# ## DATABASE STRUCTURE :
{schema}

# ## QUESTION : { q u e s t i o n }
# ## SQL :
{pred_sql}

# ## EXAMPLES :
```json
{

"Reviewer PVsg": "Data Analyst in automotive industry",
"Reviewer 2KtR": "Senior Database Engineer specialized in writing
various clauses",

"Reviewer LmN3": "Senior Database Engineer specialized in writing
filtering conditions"

}
```
# ## INVITATION :

Prompt 3: Invitation
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Abstract

Open-weight large language models (LLMs)
have significantly advanced performance in
the Natural Language to SQL (NL2SQL) task.
However, their effectiveness diminishes when
dealing with large database schemas, as the
context length increases. To address this lim-
itation, we present SQLong, a novel and effi-
cient data augmentation framework designed
to enhance LLM performance in long-context
scenarios for the NL2SQL task. SQLong gen-
erates augmented datasets by extending exist-
ing database schemas with additional synthetic
CREATE TABLE commands and correspond-
ing data rows, sampled from diverse schemas
in the training data. This approach effectively
simulates long-context scenarios during finetun-
ing and evaluation. Through experiments on
the Spider and BIRD datasets, we demonstrate
that LLMs finetuned with SQLong-augmented
data significantly outperform those trained on
standard datasets. These imply SQLong’s prac-
tical implementation and its impact on improv-
ing NL2SQL capabilities in real-world settings
with complex database schemas.1

1 Introduction

The NL2SQL task focuses on translating natural
language questions into SQL queries, enabling non-
experts to interact with databases seamlessly (Deng
et al., 2022). Recent advances leverage LLMs, fine-
tuned on structured input prompts (e.g., task in-
structions, database schema, and natural language
question), to achieve state-of-the-art performance
(Yang et al., 2024b; Liu et al., 2024) on bench-
marks such as Spider (Yu et al., 2018) and BIRD
(Li et al., 2023). Despite significant progress, a
critical challenge persists: LLMs finetuned on ex-
isting benchmarks still struggle with large database
schemas due to limited context handling. Current
datasets primarily feature small schemas, failing

1Table Representation Learning Workshop at ACL 2025

Figure 1: Our proposed SQLong Pipeline.

to represent real-world complexities. Addition-
ally, the absence of publicly available large-schema
datasets further hinders progress. Addressing this,
we propose SQLong, a data augmentation frame-
work designed to enhance LLM performance in
long-context NL2SQL tasks by extending schemas
to meet predefined context thresholds.

SQLong constructs augmented data by sampling
CREATE TABLE commands and data rows from
diverse schemas. These datasets enable LLMs to
effectively manage large schemas and maintain
robustness in long-context scenarios. Our exper-
iments with CodeQwen1.5-7B-Chat (Bai et al.,
2023) and Llama-3.1-8B-Instruct (Dubey et al.,
2024) show SQLong consistently outperforms base-
line finetuning, achieving an average accuracy
improvement of over 2.2% on benchmarks like
Spider-dev, Spider-test, and BIRD-dev.

Moreover, SQLong enables the creation of 45
long-context test sets, with context lengths up to
128k tokens. Models finetuned with SQLong ex-
hibit significant performance gains, achieving an
11% improvement over base models and a 6%
improvement over larger-scale models within the
same family. These results highlight SQLong’s ef-
fectiveness in real-world, large-schema scenarios.

In this paper, we focus on demonstrating
that SQLong-augmented models outperform their
unaugmented counterparts across varying context
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Figure 2: Prompt template for the NL2SQL task.

lengths. While direct comparisons to retrieval-
augmented generation (RAG) schema linking are
beyond this paper’s scope, our findings suggest
combining SQLong with RAG could unlock fur-
ther gains. Our main contributions include:
• Introducing long-context NL2SQL: A chal-

lenging new task for evaluating LLM performance
on large database schemas.
• SQLong pipeline: A novel, scalable data aug-

mentation approach for generating long-context
training and test datasets.
• Empirical insights: Comprehensive experi-

ments validating SQLong’s effectiveness in enhanc-
ing LLM robustness and accuracy in long-context
scenarios.
• Resource sharing: Plans to release SQLong

datasets and code to support further research.

2 The Proposed SQLong Pipeline

The NL2SQL task aims to translate a natural-
language question about a database schema into
a corresponding SQL query. Following the stan-
dardized prompt template (Rajkumar et al., 2022),
we represent the input prompt to LLMs in the
format of (task instructions, database schema,
natural language question).2 As illustrated in

2In datasets with additional complexity, such as BIRD, the
question may be supplemented with extra information, such as
evidence. For simplicity, this additional information is omitted
in Figure 2.

Figure 2, the database schema is represented by
CREATE TABLE commands and three sample
data rows for each corresponding table.

Using supervised finetuning (SFT) (Wei et al.,
2022), LLMs can be trained on pairs of input
prompts and target SQL queries to optimize their
performance on the NL2SQL task. Specifically,
given a training set T comprising pairs of input
prompts x and corresponding target SQL queries
s, the supervised finetuning process can be formu-
lated as minimizing the log-likelihood loss (Wei
et al., 2022), as shown below:

E(x,s)∼T

[∑|s|
i=1 log pθ (si|s<i,x)

]

wherein |s| is the length of s, si is the i-th token,
s<i is the prefix of s up to the i-th position, and θ
denotes the given LLM’s parameters.

In this work, we introduce SQLong, a novel
approach for constructing long-context finetuning
and benchmark datasets, as illustrated in Figure 1.
SQLong augments database schemas to enable
large language models (LLMs) to effectively han-
dle long-context scenarios in natural language to
SQL (NL2SQL) tasks.

The SQLong pipeline has three main steps:
1. Schema Collection. We collect all

CREATE TABLE commands and three sample
data rows for each table from the training database
schemas, compiling them into a comprehensive
schema set.

2. Schema Augmentation. For each training
pair, consisting of an input prompt (task instruc-
tions, database schema, natural language question)
and its target SQL query, SQLong randomly sam-
ples items from the schema set. These sampled
items contain table names distinct from those in
the given database schema. The sampled items are
combined with the original schema, and the result-
ing schema is randomly shuffled to produce a new,
long-context database schema. This shuffling in-
troduces variability in the positions of the original
tables and columns.

3. Long-Context Prompt Generation. SQ-
Long generates an augmented input prompt in
the format of task instructions, the long-context
database schema, and the natural language ques-
tion, while keeping the target SQL query un-
changed. It ensures that the combined length of
the long-context input prompt and the target SQL
query does not exceed a predefined context length
(e.g., 32k tokens), maintaining compatibility with
the model’s tokenizer constraints.
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By systematically extending and diversifying
the context, SQLong enhances the robustness and
effectiveness of LLMs in handling long-context
NL2SQL tasks. We summarise the steps involved
in SQLong in Algorithm 1 in Appendix A.1.

3 Evaluation

We assess the effectiveness of our proposed SQ-
Long model in enhancing NL2SQL performance
in both short-context and long-context scenarios.

3.1 Experimental Setup
Datasets For the short-context evaluation, we uti-
lize widely adopted benchmark datasets, includ-
ing Spider (Yu et al., 2018), Spider-realistic (Deng
et al., 2020), Spider-syn (Gan et al., 2021), and
BIRD (Li et al., 2023). 3 It is noted that Spider-Syn
is manually created based on Spider training and
development sets using synonym substitution in the
original questions, while Spider-realistic is created
based on Spider development set by manually re-
moving the explicit mention of column names in
the original questions. The BIRD-test set is not
publicly available.

For the long-context evaluation, we extend each
of the Spider-dev, Spider-test, Spider-realistic,
Spider-syn, and BIRD-dev datasets by applying
SQLong with a pre-defined context length. Specifi-
cally, we generate augmented long-context test sets
for nine context lengths: 8k, 16k, 24k, 32k, 40k,
48k, 56k, 64k, and 128k. This process results in
a total of 45 long-context test sets, constructed in
accordance with the tokenizer of the base model.

Importantly, the long-context test sets are con-
structed with distinct database schema alignments.
To build Spider-based long-context test sets, we
use the database schemas from the BIRD training
set, whereas for the BIRD-dev long-context test
sets, we use the database schemas from the Spider
training set. This ensures a robust evaluation across
diverse schema configurations and context lengths.
The data statistics of the experimental datasets are
presented in Figure 3 and Tables 1 and 2.

Baseline Models and Evaluation Metrics We
evaluate SQLong using two powerful base models:
CodeQwen1.5-7B-Chat (Bai et al., 2023), which
supports a context length of up to 64k, and Llama-
3.1-8B-Instruct (Dubey et al., 2024), which sup-
ports a context length of up to 128k. Following Yu

3We use the latest BIRD-dev dataset, updated on June 27,
2024. The BIRD-test set is not publicly available.

Figure 3: Statistics of input prompt lengths with re-
spect to Llama-3.1-8B-Instruct’s tokenizer (left) and
CodeQwen1.5-7B-Chat’s tokenizer (right) on the origi-
nal BIRD-dev set. Similarly, the maximum input prompt
lengths for the original Spider-related sets are approx-
imately 2,000 tokens for Llama-3.1-8B-Instruct’s tok-
enizer and 2,500 tokens for CodeQwen1.5-7B-Chat’s
tokenizer.

Dataset #DB #tables #training #dev #test
Spider 200 5 ± 3 6,712 1,034 2,019
Spider-syn 200 5 ± 3 6,712 1,034 –
Spider-realistic 200 5 ± 3 6,712 508 –
BIRD 98 7 ± 3 9,428 1,534 –

Table 1: Statistics of the experimental datasets. #DB
denotes the number of databases. #tables denotes the
mean and standard deviation of numbers of tables in the
databases.

Length CodeQwen1.5-7B-Chat Llama-3.1-8B-Instruct
Spider-related BIRD-dev Spider-related BIRD-dev

8k 37 ± 4 35 ± 8 48 ± 5 48 ± 8
16k 72 ± 6 76 ± 8 94 ± 7 102 ± 9
24k 107 ± 7 118 ± 8 141 ± 8 157 ± 9
32k 142 ± 8 159 ± 9 186 ± 8 211 ± 9
40k 177 ± 8 200 ± 9 233 ± 9 269 ± 9
48k 212 ± 9 242 ± 9 279 ± 9 320 ± 10
56k 247 ± 9 283 ± 9 326 ± 9 374 ± 9
64k 283 ± 9 324 ± 9 372 ± 8 429 ± 9
128k 551 ± 4 639 ± 7 725 ± 9 843 ± 8

Table 2: Mean and standard deviation statistics of the
numbers of tables in input prompts for our augmented
long-context test sets with respect to each model’s tok-
enizer.

et al. (2018), we report execution-match accuracy
on both the original short-context test sets and the
augmented long-context test sets.

Training Protocol For each original training set,
we use SQLong to create an augmented long-
context finetuning dataset with context lengths of
up to 32k.4 The augmented dataset is combined
with the original training set to form the final

4Due to computational constraints, we limit finetuning
to context lengths of up to 32k. Specifically, for each train-
ing example, the context length is randomly sampled from a
range starting at 4,096 and increasing by 512 increments up
to 32,768.
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Model Spider-dev Spider-realistic Spider-syn Spider-test BIRD-dev Average
Qwen2-72B-Instruct 82.7 80.7 73.0 82.9 53.7 74.6
CodeQwen1.5-7B-Chat 76.4 70.1 62.7 75.1 44.3 65.7

Finetuned without SQLong 81.9 76.2 68.7 79.6 51.4 71.6
Finetuned with SQLong 83.4 79.7 71.2 81.3 53.3 73.8

Llama-3.1-70B-Instruct 80.7 78.0 73.0 83.7 61.5 75.4
Llama-3.1-8B-Instruct 71.1 63.8 61.0 65.7 40.9 60.5

Finetuned without SQLong 79.2 76.4 69.6 80.4 51.9 71.5
Finetuned with SQLong 83.2 78.0 73.1 81.8 53.3 73.9

Table 3: Execution-match accuracy results (in %) across different datasets and model configurations. Finetuning
with SQLong consistently improves performance, with the best results highlighted in bold.

dataset used for finetuning the base models.5

We experiment with two base models:
CodeQwen1.5-7B-Chat (Bai et al., 2023), which
supports a 64k context length, and Llama-
3.1-8B-Instruct (Dubey et al., 2024), which
supports a 128k context length. Finetuning
is performed with a batch size of 1, gradient
accumulation steps of 8, a learning rate chosen
from 1× 10−6, 5× 10−6, 1× 10−5, and up to 5
epochs on 8×H100 80GB GPUs.

We use Huggingface’s TRL (von Werra et al.,
2020) for supervised finetuning, employing 8-bit
AdamW (Dettmers et al., 2021), Flash Attention
v2 (Dao, 2023), and DeepSpeed ZeRO-3 Offload
(Ren et al., 2021). For a fair comparison, we also
finetune the base models on the original training
set (i.e., without SQLong) under the same settings.

Inference Protocol We utilize vLLM (Kwon
et al., 2023) for the inference process. For long-
context test sets, we employ dynamic NTK RoPE
scaling (Peng et al., 2023) to extend support up to
a 128k context length for CodeQwen1.5-7B-Chat
and its finetuned variants.

3.2 Main Results

Performance on Original Datasets Table 3 sum-
marizes the results on the original development
and test sets, comparing base models with larger
LLMs such as Llama-3.1-70B-Instruct (Dubey
et al., 2024) and Qwen2-72B-Instruct (Yang et al.,
2024a). Models finetuned using long-context aug-
mentation via SQLong consistently outperform
their counterparts finetuned on original contexts.
On average, SQLong delivers an absolute improve-
ment of over 2.2% across five benchmark datasets.
Additionally, SQLong-finetuned models achieve

5For Spider, we finetune the base models on the Spider
training set and evaluate performance on Spider-dev, Spider-
test, Spider-realistic, and Spider-syn.

performance comparable to much larger LLMs on
specific datasets, showcasing the scalability and
efficiency of the approach.

Performance on Long-Context Datasets Fig-
ure 4 illustrates the experimental results on long-
context test sets. The full details are presented in
Tables 4 and 5 in Appendix A.2. Across all datasets,
models finetuned with SQLong demonstrate supe-
rior performance compared to those trained without
SQLong. For instance, on the Spider-test datasets
with 8k and 24k context lengths, the Llama-3.1-
8B-Instruct model achieves outstanding results of
77.1% and 72.3%, reflecting absolute gains of 7.2%
and 13.3%, respectively. Notably, the SQLong-
finetuned Llama-8B model outperforms the larger
Llama-70B model on 41 out of 45 long-context
test sets, with minor exceptions on Spider-realistic
8k and BIRD-dev 8k, 16k, and 24k sets. Similar
performance trends are observed with the Qwen
models.

On average, SQLong finetuning delivers an
11% absolute improvement over models without
SQLong and a 6% advantage over 70B models
within the same model family. These results un-
derscore the efficacy of SQLong in handling long-
context scenarios and advancing the performance
of NL2SQL systems.

Positional robustness We conduct an experi-
ment wherein each original database schema is
placed at different positions within the input
prompt, assessing the models’ ability to detect it
regardless of its location.

We select a set of 124 samples from Spider-
dev, Spider-realistic, and Spider-syn, ensuring
each sample has a maximum input prompt and
target SQL query length of 384 tokens accord-
ing to CodeQwen1.5-7B-Chat’s tokenizer. Using
SQLong, we augment this set to a 64k context
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Figure 4: Execution-match accuracy (in %) for Llama-3.1 (top) and Qwen (bottom) families on Spider-test (left)
and BIRD-dev (right) long-context test sets.

Figure 5: Robust impact of fine-tuned models.

length. In each augmented set, the original database
schemas are positioned at specific offsets, starting
from 512 and incrementing by 512 up to 64k. This
results in 125 new test sets, each containing 124
samples with a 64k context length, corresponding
to a distinct schema position.

We compute the number of correctly executed
samples for each test set, as shown in Figure 5. The

results demonstrate that the long-context fine-tuned
model with SQLong is significantly more robust
compared to the model without fine-tuning.

4 Conclusion and Future Work

Handling large database schemas poses a signifi-
cant challenge for NL2SQL models. In this paper,
we introduce long-context NL2SQL generation, a
novel task that reflects real-world scenarios, and
propose SQLong, a simple yet effective augmenta-
tion approach for creating long-context finetuning
and benchmark datasets. Experiments show that
LLMs finetuned with SQLong significantly outper-
form their counterparts on benchmarks like Spider,
BIRD, and our long-context test sets (up to 128k
context length).

Future work includes leveraging a RAG-based
schema linking approach to retrieve relevant
schema elements, enabling more concise and effi-
cient inputs for SQLong-tuned models.
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A.1 The algorithm steps in SQLong
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Algorithm 1: The algorithm steps involved in the proposed SQLong.

1 Input: A training set T of pairs of input prompts and target SQL queries:
T = {((instructionsi, database_schemai, questioni), target_sqli)}Ni=1, wherein each
database_schemai is a set of CREATE TABLE commands and three data rows for each
corresponding table; a set
T = {((instructionsj , database_schemaj , questionj), target_sqlj)}Mj=1; the base model’s
tokenizer tk, a starting number s_n (default 4096), an ending number e_n (default 32768), an
increasing number i_n (default 512), and a pre-defined number p_n (default 8192).

2 Output: The augmented long-context set T ′.
3 schema_set← collect_unique_commands_and_data_rows({database_schemai}Ni=1)
4 table_names← get_table_names(schema_set)
5 item_lengths← {}
6 for item ∈ schema_set do
7 item_lengths← item_lengths ∪ {get_length(item, tk)}

8 T ′ ← {}
9 diverse_lengths← range(s_n, e_n+ 1, i_n)

10 for ((instructions, database_schema, question), target_sql) ∈ T do
11 original_length←

get_length(instructions+ database_schema+ question+ target_sql, tk)
12 certain_length← randomly_select_value(diverse_lengths) // This aims to

construct long-context fine-tuning data with T = T . Otherwise,
certain_length is set to p_n to construct long-context benchmark data.

13 local_table_names← get_table_names(database_schema)
14 augmented_schema← {}
15 for idx ∈ shuffle_list(range(0, get_size(schema_set))) do
16 if schema_set[idx] /∈ database_schema and table_names[idx] /∈

local_table_names and original_length+ item_lengths[idx] < certain_length
then

17 original_length← original_length + item_lengths[idx]
18 augmented_schema← augmented_schema ∪ {schema_set[idx]}

19 augmented_long_context_schema←
shuffle_list(augmented_schema ∪ database_schema)

20 T ′ ← T ′ ∪ {((instructions, augmented_long_context_schema, question), target_sql)}

A.2 Full execution-match accuracy results for
all long-context test sets
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Model Context Dataset Average
length Spider-dev Spider-realistic Spider-syn Spider-test BIRD-dev across 45 sets

Llama-3.1-8B-Instruct 8k 61.9 53.5 45.1 61.7 35.1
16k 58.5 47.0 38.9 54.7 31.3
24k 53.2 43.1 32.7 51.2 28.1
32k 49.6 42.9 29.9 47.0 26.2
40k 48.7 38.4 28.4 43.2 25.2 37.2
48k 46.9 35.8 24.9 43.8 23.9
56k 45.5 32.1 23.8 41.5 23.6
64k 42.6 33.1 22.5 39.0 21.6

128k 28.0 17.9 10.3 26.1 15.7
Our model fine-tuned 8k 71.7 63.4 49.3 69.9 43.2

Without SQLong 16k 66.6 54.7 39.9 62.9 37.9
24k 63.6 52.4 35.5 59.0 35.2
32k 59.4 48.0 33.1 56.2 32.6
40k 57.0 45.1 30.2 52.4 33.5 43.8
48k 55.9 43.7 28.0 51.1 30.5
56k 52.5 40.4 25.7 48.3 28.8
64k 51.4 40.9 25.3 45.7 29.3

128k 34.7 23.6 13.5 30.6 18.8
Our model fine-tuned 8k 77.4 67.1 61.7 77.1 49.3

With SQLong 16k 75.2 66.1 53.4 74.1 46.0
24k 71.8 64.2 50.0 72.3 43.8
32k 68.3 61.6 46.5 68.6 43.9
40k 67.5 62.8 44.9 66.8 42.7 54.8
48k 66.9 56.7 40.2 65.5 41.2
56k 63.3 52.6 38.4 63.5 39.7
64k 61.3 52.2 39.3 62.1 37.6

128k 43.0 33.7 21.7 41.6 24.5
Llama-3.1-70B-Instruct 8k 73.9 67.3 55.0 76.9 52.3

16k 67.7 59.4 48.9 70.2 47.1
24k 62.4 54.9 43.8 68.4 44.2
32k 60.9 49.6 41.7 63.7 40.8
40k 59.0 52.6 37.4 60.8 39.5 48.5
48k 57.6 46.9 35.0 58.3 37.1
56k 55.3 46.3 32.3 57.8 36.5
64k 55.0 43.9 31.7 54.1 34.4

128k 28.0 25.6 12.3 23.4 11.0

Table 4: Execution-match accuracy results (in %) on the augmented long-context test sets with respect to the
Llama-3.1 model family.
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Model Context Dataset Average
length Spider-dev Spider-realistic Spider-syn Spider-test BIRD-dev across 45 sets

CodeQwen1.5-7B-Chat 8k 61.7 49.6 38.1 60.6 32.4
16k 55.9 42.1 30.7 51.7 29.3
24k 51.5 37.8 27.9 47.9 25.6
32k 48.0 30.9 22.8 45.0 23.7
40k 46.7 28.9 21.0 40.6 21.1 31.7
48k 42.4 27.8 18.7 39.6 19.6
56k 36.4 24.0 17.5 34.0 17.3
64k 36.4 21.3 15.8 32.7 16.5
128k 19.2 7.9 6.4 16.1 7.1

Our model fine-tuned 8k 68.9 57.1 39.5 66.6 39.0
Without SQLong 16k 62.6 51.4 31.8 57.8 35.7

24k 57.6 49.0 29.3 55.1 30.1
32k 53.0 41.5 25.6 51.3 29.6
40k 53.7 38.4 23.5 49.3 26.0 37.8
48k 48.7 34.6 22.3 45.3 24.4
56k 44.5 33.1 20.9 42.3 23.3
64k 43.8 30.3 18.4 39.8 22.1
128k 26.1 15.6 9.2 24.1 9.4

Our model fine-tuned 8k 75.9 65.7 53.2 73.4 46.9
With SQLong 16k 72.9 62.6 46.6 68.6 42.5

24k 68.9 58.5 43.0 64.2 40.3
32k 67.5 54.3 40.0 62.9 39.2
40k 63.4 53.7 37.4 59.1 37.0 50.2
48k 63.9 52.8 35.3 58.0 33.4
56k 60.3 51.0 33.6 56.1 32.0
64k 60.6 52.4 31.0 54.1 30.8
128k 43.4 33.7 19.4 40.1 19.4

Qwen2-72B-Instruct 8k 70.6 63.4 47.2 70.9 45.9
16k 69.1 58.7 40.6 65.5 40.2
24k 60.9 53.3 34.1 56.5 37.1
32k 59.6 45.5 31.1 53.9 35.8
40k 55.8 45.7 29.5 52.7 35.4 44.2
48k 52.3 43.7 27.8 49.2 32.8
56k 50.8 39.4 27.6 45.6 32.5
64k 47.3 34.6 25.1 45.0 33.0
128k 36.8 28.3 18.6 33.3 24.9

Table 5: Execution-match accuracy results (in %) on the augmented long-context test sets with respect to the Qwen
mdoel family.
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Abstract

This paper introduces Interactive Tables (iT-
BLS), a dataset of interactive conversations that
focuses on natural-language manipulation of
tabular information sourced from academic pre-
prints on ArXiv. The iTBLS dataset consists
of three types of tabular tasks – interpretation,
modification, and generation. Interpretation fo-
cuses on tabular understanding, modification
focuses on manipulating tabular information,
and generation focuses on the addition of new
natural-language evidence. In addition, the pa-
per presents a novel framework that reformu-
lates tabular operations as question-answering,
where an appropriate question is formulated
based on the nature of interaction and the ques-
tion is answered using the user request as ev-
idence. The developed approach results in
an improvement on all tasks on a sequence-
to-sequence modeling baseline on iTBLS. In
addition, the question-answering-based refor-
mulation is applied to datasets from prior work
for the text-to-table task where textual para-
graphs are summarized into tables. The novel
approach results in up to 13% improvement in
Exact-Match accuracy and up to 16% improve-
ment in BERTScores compared to the prior
state-of-the-art.

1 Introduction

Recent research on Conversational AI has focused
on adding enhanced multi-task capabilities to large
language models (LLMs). This research includes
building systems capable of situated interactions
over structured knowledge sources such as tabular
information (Sundar and Heck, 2022). Automated
methods for tabular interpretation, manipulation,
and generation empower users by saving time and
reducing errors in managing tabular content (Kar-
das et al., 2020). Previous studies have focused
on individual aspects of tabular data management:
representation learning for interpretation tasks like

*Work done while at Georgia Tech

grounded question answering, manipulation for
data wrangling, and generation for summarizing
textual information independently (Nakamura et al.,
2022a; Sundar and Heck, 2023; Fang et al., 2024).

The development of situated conversational in-
teractions over tables necessitates a suite of ap-
proaches to unify tabular interpretation, modifica-
tion, and generation in a conversational context.
Additionally, an important yet largely unaddressed
challenge in interacting with tabular sources is the
ability to modify existing tabular content using con-
versational natural language commands.

To address these challenges, this paper intro-
duces Interactive Tables (iTBLS) 1, a dataset of
interactive conversations in English situated in tab-
ular information. iTBLS decomposes the challenge
into three distinct tasks: interpretation, which in-
volves understanding tabular content within a con-
versational framework; modification, which entails
manipulating tabular content through natural lan-
guage commands; and generation, which focuses
on integrating new natural language information
into existing tables. The tabular information in
iTBLS is sourced from scientific articles hosted
on arXiv 2, an open-access repository of academic
preprints.

Beyond factoid question-answering, iTBLS en-
compasses tasks such as comparison, determining
absolute and relative positions, and mathematical
reasoning. Previous research primarily examined
procedural command generation for spreadsheets
or the alignment of tabular data through LLMs.
iTBLS integrates these functionalities into a uni-
fied task, enabling the manipulation of existing
tables through natural-language commands. On
tabular generation, while prior work addressed the
summarization of natural language paragraphs in a
tabular format, iTBLS focuses on generating row

1https://huggingface.co/datasets/avalab/iTBLS
2https://arxiv.org
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or column data conversationally.
In addition to building iTBLS, this paper devel-

ops a novel approach to address tabular operations
by reformulating the task as conditional question
answering. Furthermore, the question-answering-
based reformulation is applied to other datasets in-
troduced in prior work (Wu et al., 2022) and results
in better performance in terms of both table-cell
accuracy and BERTScore.

The contributions of this work are as follows:

• Creating iTBLS, a dataset of tabular inter-
actions unifying interpretation, modification,
and generation.

• Extending prior tabular datasets by collecting
information from arXiv

• Broadening the scope of interactions to in-
clude mathematical reasoning, natural lan-
guage manipulation, and natural language ex-
pansion.

• Introducing a novel approach for table gen-
eration tasks through a two-stage reformula-
tion that first identifies the cells to be manip-
ulated and generates a question based on the
requested operation, then answers those ques-
tions using the user request and the input table
as evidence.

• Demonstrating up to 13% improvement in
table-cell accuracy and up to 16% improve-
ment in BERTScore using the novel approach
on the text-to-table task introduced by prior
work.

2 Related Work

A detailed survey of LLMs for tabular data is avail-
able in (Fang et al., 2024). Related work on paired
natural-language and tabular data can be broadly
classified by the nature of the interaction: tabu-
lar interpretation, tabular modification, and tabular
generation.

2.1 Tabular Interpretation
Tabular interpretation involves a dialogue turn fo-
cused on extracting information from a specific
cell in a table, such as identifying a cell satis-
fying certain criteria. Prior research on tabu-
lar interpretation focused on grounded question-
answering. An important challenge in the collec-
tion of such datasets is the availability of large-
scale tabular data. Consequently, many tabular

datasets are constructed from online resources such
as Wikipedia including WIKITABLEQUESTIONS

(Pasupat and Liang, 2015), ManyModalQA (Han-
nan et al., 2020), TABERT (Yin et al., 2020), NQ-
Tables (Herzig et al., 2021), FEVEROUS (Aly
et al., 2021), FeTaQA (Nan et al., 2022), HYBRIDI-
ALOGUE (Nakamura et al., 2022b), and HiTab
(Cheng et al., 2022). Other tabular datasets are
constructed from financial reports including TAT-
QA (Zhu et al., 2021), FINQA (Chen et al., 2021),
MULTIHIERTT (Zhao et al., 2022), or scientific
reviews (Sundar et al., 2024).

Proposed approaches to address the tabular inter-
pretation task include architectures based off of the
Transformer encoder (Yin et al., 2020; Herzig et al.,
2020; Chen et al., 2019b; Eisenschlos et al., 2020;
Liu et al., 2021; Gu et al., 2022; Yang et al., 2022),
decoder (Gong et al., 2020; Akhtar et al., 2023; Zha
et al., 2023; Jiang et al., 2023; Zhang et al., 2023;
Sui et al., 2024; Cremaschi et al., 2025), or both
(encoder-decoder) (Nakamura et al., 2022b; Deng
et al., 2022; Sundar and Heck, 2023).

2.2 Tabular Modification
Tabular modification concerns the manipulation
of the content within an existing table without al-
tering the overall structure of rows and columns.
Early work on tabular modification explored the
generation of procedural commands for spread-
sheets using synthesis algorithms (Singh and Gul-
wani, 2012; Shigarov et al., 2019). Tools utiliz-
ing programming-by-example to parse user intents
into executable commands have also been explored
(Scaffidi et al., 2009; Kandel et al., 2011; Jin et al.,
2017; Petricek et al., 2023; Chen et al., 2023; Xing
et al., 2024). More recent work has shifted focus
towards leveraging LLMs to synthesize commands
for tools (Huang et al., 2024), reformat tabular in-
formation (Dargahi Nobari and Rafiei, 2024), and
execute programming commands (Liu et al., 2024).

2.3 Tabular Generation
Tabular generation focuses on expanding an exist-
ing table by adding a new row or column. Research
on tabular generation initially employed discrimi-
native techniques, such as tree-based methods for
generating tables of contents (Branavan et al., 2007)
and SVMs to classify text across various labels Ara-
maki et al. (2009). Recent approaches have shifted
towards neural techniques including Generative Ad-
versarial Networks (GANs) (Xu and Veeramacha-
neni, 2018; Park et al., 2018; Chen et al., 2019a;
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Figure 1: Examples of interactions from the Interactive Tables (iTBLS) dataset.

Zhao et al., 2021), Autoencoders (Li et al., 2019;
Darabi and Elor, 2021), Diffusion models (Kotel-
nikov et al., 2023), and LLMs (Borisov et al., 2023;
Solatorio and Dupriez, 2023; Gulati and Roysdon,
2023; Zhao et al., 2023; Seedat et al., 2024; Deng
et al., 2024).

A similar line of research also explores the gen-
eration of tabular data from associated textual infor-
mation. Wu et al. (2022) introduced four datasets
and proposed a modification to the Transformer’s
attention mechanism to summarize textual infor-
mation in a tabular format by inverting datasets
created for the dual task of converting tables to text,
(as opposed to new conversational evidence). Other
approaches to summarize textual information in a
tabular format include the addition of learnable bias
parameters (Pietruszka et al., 2022) and structure-
aware instruction-tuning (Tang et al., 2023).

In contrast to prior work addressing a single
mode of interaction, iTBLS is a dataset unifying
tabular interpretation, modification, and generation
in a conversational format. Additionally, iTBLS
broadens the range of interactions to include math-
ematical reasoning, natural language manipulation,
and the expansion of tables using natural language.
Furthermore, by leveraging scientific articles from
arXiv as a primary source, iTBLS introduces a
novel and rich source of information that is not
present in existing datasets.

3 The iTBLS Dataset

The Interactive Tables (iTBLS) dataset features
conversational interactions situated in tabular data,
covering the three distinct types of interactions de-
scribed in Section 2: interpretation, modification,

and generation. Each example type is exemplified
in Figure 1 and described below. In addition, since
the mode of interaction is not known a priori, any
proposed approach using iTBLS must effectively
identify the interaction type, either explicitly or
implicitly. In the following sections, we provide a
detailed description of each type of interaction and
outline the dataset collection process.

3.1 Tasks

Tabular Interpretation: In iTBLS, interpretive in-
teractions are structured as question-answer pairs,
where the goal is to identify the cell referred to
by the question. The references could be absolute
(referring to a specific row or column), or relative
(referring to one cell in the context of another). Ap-
pendix A.5 details absolute and relative references
in iTBLS.

Tabular modification: We conceptualize modi-
fication in iTBLS as a series of cell swaps, positing
that any content rearrangement can ultimately be
reduced to such exchanges. This approach allows
for both explicit references, where specific row and
column numbers are cited, and implicit references,
which rely on the content or relative positions of
cells. Table 9 in Appendix A.5 showcases exam-
ples from iTBLS. As observed, there is a mix of
explicit and implicit references to the specific con-
tents to be manipulated.

Tabular generation: In iTBLS, table genera-
tion is guided by new natural language evidence.
This evidence clarifies appending a row or column,
defines the suitable header, and supplies the data
entries for the new row (or column) relative to ex-
isting columns (or rows). This process ensures
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that the added elements are contextually relevant
and accurately integrated into the table. Table 10
in Appendix A.5 provides examples of such inter-
actions, demonstrating how users can request the
incorporation of new row and column data into an
established table framework.

In iTBLS, the mode of interaction is not explic-
itly stated by the user, introducing an additional
task: interaction identification. This task involves
predicting whether the interaction is intended for
interpretation, modification, or generation based
solely on the user’s request.

3.2 Dataset Collection
To collect the dataset, first we use AXCELL (Kar-
das et al., 2020) an automatic machine learning
pipeline for extracting results from papers. AX-
CELL is used to parse tabular information from
papers on arXiv to populate online leaderboards
comparing scientific methods. Using AXCELL,
we collect 20,000 tables from academic papers in
Mathematics, Physics, and Computer Science over
a period spanning from 2007 to 2014. The tables
are processed to remove stray characters resulting
from the conversion from LATEX. Additionally, only
tables with at least three rows and three columns to
at most ten rows or ten columns are retained. The
final dataset consists of 4000 tables split between
train, development, and test sets.

For each table, we generate three sequential ed-
its corresponding to different types of interaction.
Interpretation involves generating a dialogue turn
(question-answer pair) grounded on a single cell of
the table. Modification involves manipulating two
cells of an existing table by swapping them. Finally,
generation encompasses the task of appending ei-
ther a new row or a column to an existing table
based on a natural language utterance.

To enhance the quality of the dataset and mini-
mize errors, we implement a strategic selection pro-
cess for the table components involved in each inter-
action. In interpretation, a cell is randomly selected
to ground the dialogue. For modification, two cells
are chosen and their positions are swapped to sim-
ulate a realistic table manipulation scenario. In
generation, all cells in a randomly masked row or
column are used as the basis for appending new
table data. All of the interactions are based on cells
that do not belong to row or column headers, that
is, they reside in the body of the table.

For our dataset creation, we employ two distinct
sources for generating dialogue turns based on the

type of interaction and the specific table component
involved. For tasks related to tabular interpretation
and modification, we engage crowd-workers from
Amazon Mechanical Turk (AMT). These workers
are tasked with formulating questions or commands
that pertain to the pre-identified cell(s) designated
for each interaction. We recruit workers from Aus-
tralia, Canada, Ireland, New Zealand, the United
Kingdom, and the USA. Each crowdworker is com-
pensated at a rate of $0.15 per Human Intelligence
Task (HIT), with the average completion time for
each HIT being approximately 40 seconds. De-
tailed information on the AMT interface used for
these tasks is included in Appendix A.7.

For generation, GPT-4 is prompted to write a
dialogue turn summarizing a row or column of the
table. The prompt is as follows:

The string contains information from a table
[table]. Describe the content in this [row/column]
for a visually impaired user in one line. Make
sure to include all information from the rows and
columns and appropriate headers so the user can
understand the content.

Each sample in the dataset contains the source
arXiv ID, the table that the conversation is situated
in, the index of that table within the paper (e.g.
Table X), the utterance describing the interaction,
the ground truth cell(s) involved in the interaction,
and finally the expected output. Statistics of the
datasets are provided in Table 1.

Statistic Interpret Modify Generate

# Samples 4168 4168 4168

# Per utterance
Words 10.6 13.4 31.6
Tokens 14.3 18.3 59.1

# Per table
Cells 28.1 28.1 25.31
(Cols/Rows) 5.0/5.5 5.0/5.5 4.8/5.3

Table 1: Statistics of the iTBLS dataset

4 Methods

4.1 Table operations through conditional
question answering

We also present a novel approach that reformulates
operations on tables as question answering. A pri-
mary challenge in tabular operations using LLMs
lies in ensuring the syntactic validity of the pro-
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duced tables. Every row and column in a table
must contain the same number of cells, with row
and column headers delineating relationships be-
tween cells. Failing to adhere to this constraint
invalidates the structure of the table and the infor-
mation presented. Prior work addresses this con-
straint by including additional parameters like row
and column relation embeddings (Wu et al., 2022)
or positional bias (Pietruszka et al., 2022) to get the
model to attend to header cells while generating
content. However, this results in highly specialized
architectures for a singular task. Breaking the task
down into question-answering results in a more in-
terpretable framework while ensuring validity of
the generated tables.

The first step identifies the mode of interaction
and the cell(s) the user is referring to, which is used
to formulate a question. The second step converts
the table into a pandas dataframe, parses the table
and the question generated from the previous step
to obtain a pandas command corresponding to the
task, and executes the command on the dataframe
to generate the final table. Generating a valid com-
mand ensures that the final table is syntactically
valid as well (that is, the number of columns across
all rows is consistent).

For the interpret task, the question-answer re-
formulation is trivial, since all interpretive queries
and associated responses are naturally question-
answer pairs. For the modify task, the question is
of the form To which cells is the user referring?.
A language model is then fine-tuned to generate a
response containing the cells (indexed by row and
column). Then, the LLM response is reformatted
into an appropriate pandas command. Finally, for
the generate task, the question-answering is more
nuanced. First, the user request is parsed to identify
whether a row or a column is to be appended. The
header of the corresponding row is then extracted
from the user request. Using the extracted header
and the other header cells of the table, questions are
generated for each of the empty cells to be filled in
the form What is the row value for column?. The
user request is parsed to obtain the answers to these
generated questions, forming the corresponding
row or column to be appended.

5 Results

5.1 Experimental Setup

For our experiments, we utilize Gemma models
(Team et al., 2024). We fine-tune the instruction-

Figure 2: Overview of the novel question-answering
reformulation to perform table operations

tuned base model gemma-2-9b-it using LoRA
(Hu et al., 2022). Hyperparameters for our training
setup as well as LoRA parameters are shown in
Appendix A.

5.2 Datasets

In addition to the iTBLS dataset, we also evaluate
our method on five datasets to summarize textual
paragraphs to tables (Wu et al., 2022). While iT-
BLS is a table-to-table or table-to-text task, the
datasets proposed by Wu et al. (2022) address the
dual problem of text-to-table. The datasets consist
of textual paragraphs containing some information
that is to be converted into a tabular format by de-
termining both the appropriate header cells and the
content that the table is filled with.

Wu et al. (2022) present datasets for the text-to-
table task by inverting datasets created for the dual
problem of generating textual descriptions from
tables. Each dataset consists of textual paragraphs
paired with tabular information summarizing con-
tent in the text. Dataset statistics are available in
Appendix A.3. Each dataset is described below.

E2E (Novikova et al., 2017) concerns restau-
rant descriptions, requiring summarization of in-
formation into tables with descriptors like restau-
rant name, customer rating, and location. Wik-
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iTableText (WTT) (Bao et al., 2018), sourced from
Wikipedia, consists of natural language descrip-
tions generated from tabular data across various
topics. WikiBio (Lebret et al., 2016) comprises
introductions of individuals from Wikipedia along-
side tabular summaries extracted from the same
page’s information box. In contrast to E2E, the
table headers in the WikiTableText and WikiBio
datasets vary widely across data samples.

Example textual paragraphs and associated ta-
bles from each dataset are presented in A.4.

5.3 Metrics
Exact-Match (EM): On the iTBLS dataset, we
report exact-match, that is, whether or not the gen-
erated table matches the ground-truth table exactly.

BERTScore: On the E2E, WTT, WikiBio and
RotoWire datasets, we report BERTScore (Zhang
et al., 2020) in addition to EM to be consistent with
prior work. BERTScore is a measure of semantic
similarity which computes the similarity of embed-
dings in a latent space obtained using an encoder
language model.

Consistent with prior work, all our evaluations
are order-invariant. That is, credit is given as long
as the generated cells are indexed by the correct
row and column headers, even if the headers them-
selves are in different positions between the model-
generated response and the ground-truth.

5.4 iTBLS
Results on the iTBLS dataset using a vanilla
sequence-to-sequence approach and the question-
answering-based method are presented in Table 2.
As observed in the results, the generate task is the
hardest, with performance slightly lower on the
generate task when compared to interpret and mod-
ify. This is a result of the fact that the exact-match
metric only provides credit when all cells are cor-
rect (necessitating that all cells in the output are
identical to the ground truth) and does not provide
partial credit for getting some of the cells right, and
the fact that the generate task requires getting more
cells right in comparison to the other tasks.

5.5 Text-to-table
The results on the text-to-table datasets proposed
by Wu et al. (2022) are available in Table 3. Our
method performs on par with or better than the prior
state-of-the-art method in terms of BERTScore and
is competitive with prior work in terms of Exact-
Match. The exact-match score does not reflect

Split Approach Exact-Match

Interpret
Seq2seq 88.29
iTBLS as QA 90.98

Modify
Seq2seq 74.65
iTBLS as QA 89.58

Generate
Seq2seq 48.94
iTBLS as QA 73.32

Table 2: Comparison between the question-answering
reformulation and a vanilla sequence-to-sequence mod-
eling approach on the iTBLS dataset

true performance on the WikiBio dataset since syn-
onyms are penalized under this framework. A deep-
dive into the results is presented in Section 5.6.

Dataset Approach EM BS

WTT
Wu et al. (2022) 62.71 80.74
Ours 75.96 95.52

Wikibio
Wu et al. (2022) 69.71 76.56
Ours 66.65 92.60

E2E
Wu et al. (2022) 97.94 98.57
Ours 97.64 99.35

Table 3: Comparison between our method and prior
work on the text to table task in terms of Exact-Match
and BERTScore

5.6 Analysis of Errors

An analysis of the difference in performance be-
tween the prior state of the art and our approach is
presented in Table 6. As observed, the dataset is
inconsistent in the description of individuals, with
no consistent pattern when middle and last names
are present. Furthermore, the use of quantifying
information in the header as opposed to the table
cell results in no credit using the exact-match met-
ric, though the information contained is exactly the
same between the prediction and the ground-truth.
Finally, the datasets often contain textual examples
with multiple possible tabular summarizations, all
of which are equally valid, further complicating
evaluation. In the third example in Table 6, the
model correctly generates the ‘Occupation’ as a
table header while the ground truth contains an
erroneous sample, using the phrase ‘Known for’
instead of ‘Known as’.

Examples of errors in the iTBLS dataset are pro-

61



vided in Tables 4, 5, and 13. On the interpret task,
the model incorrectly understand the user request,
and produces the cell immediately to the right in-
stead of three columns over. On the modify task
(Table 5), the model incorrectly understands the ref-
erences and swaps index (2,3) with (3,2) instead of
swapping indices (2,2) and (3,3). On the generate
task (Table 13), the model incorrectly places a tuple
and hallucinates a value instead of performing the
requested action.

Text: What is the value of the cell in row 1 that is
three cells to the right of the cell with a value of

12%?

Input Table:

row ID σµ[I0] µ[τs] σ[τs] σµ[τs]

0 13% 912.5 µs 91.9 µs 10.1%
1 12% 18335.7 µs 90.7 µs 10.0%
2 12% 903.1 µs 1832.7 µs 10.0%

Ground Truth: 10.0%

Prediction: 18335.7 µs

Table 4: Example error for iTBLS interpret task. Table
source: https://arxiv.org/pdf/1411.5458

Text: Swap row 1 in the second column with row
2 in the third column

Input Table:

row ID col 1 col 2 col 3

0 X O X
1 NaN O O
2 O X X

Ground Truth:

row ID col 1 col 2 col 3

0 X O X
1 NaN X O
2 O X O

Prediction:

row ID col 1 col 2 col 3

0 X O X
1 NaN O X
2 O O X

Table 5: Example error for iTBLS modify task. Table
source: https://arxiv.org/pdf/1411.4023

6 Conclusion

This paper introduces Interactive Tables (iTBLS),
a dataset of interactive conversations addressing
three types of tasks – interpretation, modification,
and generation. In contrast to prior tabular datasets
that are sourced from Wikipedia or financial re-
ports, iTBLS is situated in tabular data obtained
from scientific pre-prints on ArXiv. Success on the
iTBLS dataset requires understanding both ordinal
and cardinal references to cell positions, and under-
standing implicit references. Additionally, the pa-
per introduces a novel framework that reformulates
tabular operations as question-answering. Appro-
priate questions are created based on the input table
and the nature of interaction, and the user request is
used as evidence to obtain the answers. The devel-
oped approach demonstrates an improvement over
a sequence-to-sequence modeling approach on the
iTBLS dataset. In addition, the question-answering-
based reformulation is evaluated on datasets for the
text-to-table task, obtaining up to 13% improve-
ment in terms of exact-match accuracy and 16%
improvement in terms of BERTScore compared to
the prior state-of-the-art.

Limitations

While iTBLS introduces a dataset for interactive
conversations over tabular information, there are
some avenues for improvement. In this dataset,
modification is modeled as a series of swaps. A
more comprehensive sequence of manipulations
includes in-place modification of values and modi-
fying a cell’s value based on other cells using both
absolute and relative references. While sourcing
tabular information from arXiv provides a cost-
efficient approach, LLMs are often pre-trained on
LATEXsources from arXiv. This paper alleviates the
issue by sourcing natural language commands from
crowdworkers. Future work could look at collect-
ing tabular information from crowdworkers as well.
While we present a suite of baseline approaches
for iTBLS, there is still headroom between the pre-
sented approaches and perfect performance. We
identify the closure of this gap as an avenue for
future work.

Acknowledgments

This work was supported by CoCoSys, one of seven
centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

62

https://arxiv.org/pdf/1411.5458
https://arxiv.org/pdf/1411.4023


1. Text: Walter Clarence Henderson (28 February 1891 – 20 September 1968) was a progressive
conservative party member of the Canadian house of commons. He was born in Carberry, Manitoba
and became a farmer by career. He was elected at the Cariboo riding in the 1958 general election,
defeating social credit incumbent Bert Leboe.
Generated Table:

Predicted Header Prediction - iTBLS Ground Truth Header Ground Truth

Name Walter Henderson Name Walter Clarence Hender-
son

Profession Farmer Profession Farmer
Party Progressive Conservative Party Progressive Conservative

2. Text: The production of Tautona mine is 235,000 ounces in 2013.
Generated Table:

Predicted Header Prediction - iTBLS Ground Truth Header Ground Truth

Title Tautona mine Title Tautona mine
Subtitle Production Subtitle Production
Year 2013 Year 2013
Production (ounces) 235,000 Production 235,00 ounces

3. Text: Elango Nagarajah, also known as “Thaimann Elango", is a Tamil film actor, director,
producer and lyricist in the Tamil film industry. He began his career in his early ages as a producer for
the Tamil film Anbudan, starred Arun Vijay, Meena, Rambha (actress) in the main was released in the
year 2000.
Generated Table:

Predicted Header Prediction - iTBLS Ground Truth Header Ground Truth

Name Elango Nagarajah Name Elango
Occupation actor, director, producer,

lyricist
Known for Thaimann

Table 6: Difference between the tables generated by the Zero Shot (ZS) and Fine-Tuned (FT) approaches with
respect to the Ground Truth on the WikiBio and WikiTableText datasets with additions and deletions represented
using red and green.
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E Dataset: New Challenges For End-to-
End Generation. arXiv preprint. ArXiv:1706.09254
[cs].

Noseong Park, Mahmoud Mohammadi, Kshitij Gorde,
Sushil Jajodia, Hongkyu Park, and Youngmin Kim.
2018. Data synthesis based on generative adversarial
networks. Proceedings of the VLDB Endowment,
11(10):1071–1083.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Tomas Petricek, Gerrit J. J. van den Burg, Alfredo
Nazábal, Taha Ceritli, Ernesto Jiménez-Ruiz, and
Christopher K. I. Williams. 2023. Ai assistants: A
framework for semi-automated data wrangling. IEEE
Transactions on Knowledge and Data Engineering,
35(9):9295–9306.

Michał Pietruszka, Michał Turski, Łukasz Borchmann,
Tomasz Dwojak, Gabriela Pałka, Karolina Szyn-
dler, Dawid Jurkiewicz, and Łukasz Garncarek. 2022.
STable: Table Generation Framework for Encoder-
Decoder Models. arXiv preprint. ArXiv:2206.04045
[cs].

65

https://doi.org/10.1109/TVCG.2023.3329120
https://doi.org/10.1109/TVCG.2023.3329120
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.18653/v1/2020.emnlp-main.692
https://doi.org/10.18653/v1/2020.emnlp-main.692
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.1109/PRDC47002.2019.00050
https://doi.org/10.1109/PRDC47002.2019.00050
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2022.findings-acl.41
https://doi.org/10.18653/v1/2022.findings-acl.41
https://doi.org/10.18653/v1/2022.findings-acl.41
https://doi.org/10.18653/v1/2022.findings-acl.41
https://doi.org/10.18653/v1/2022.findings-acl.41
https://doi.org/10.18653/v1/2022.findings-acl.41
https://doi.org/10.1162/tacl_a_00446
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
https://doi.org/10.14778/3231751.3231757
https://doi.org/10.14778/3231751.3231757
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.1109/TKDE.2022.3222538
https://doi.org/10.1109/TKDE.2022.3222538
http://arxiv.org/abs/2206.04045
http://arxiv.org/abs/2206.04045


Christopher Scaffidi, Brad Myers, and Mary Shaw. 2009.
Intelligently creating and recommending reusable re-
formatting rules. In Proceedings of the 14th Interna-
tional Conference on Intelligent User Interfaces, IUI
’09, page 297–306, New York, NY, USA. Association
for Computing Machinery.

Nabeel Seedat, Nicolas Huynh, Boris van Breugel,
and Mihaela van der Schaar. 2024. Curated LLM:
Synergy of LLMs and Data Curation for tabular
augmentation in ultra low-data regimes. _eprint:
2312.12112.

Alexey O. Shigarov, Vasiliy V. Khristyuk, Andrey A.
Mikhailov, and Viacheslav V. Paramonov. 2019. Tab-
byxl: Rule-based spreadsheet data extraction and
transformation. In International Conference on In-
formation and Software Technologies.

Rishabh Singh and Sumit Gulwani. 2012. Learning se-
mantic string transformations from examples. arXiv
preprint arXiv:1204.6079.

Aivin V. Solatorio and Olivier Dupriez. 2023. RE-
aLTabFormer: Generating Realistic Relational and
Tabular Data using Transformers. arXiv preprint.
ArXiv:2302.02041 [cs].

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, WSDM ’24, page 645–654,
New York, NY, USA. Association for Computing
Machinery.

Anirudh Sundar and Larry Heck. 2022. Multimodal con-
versational AI: A survey of datasets and approaches.
In Proceedings of the 4th Workshop on NLP for Con-
versational AI, pages 131–147, Dublin, Ireland. As-
sociation for Computational Linguistics.

Anirudh Sundar, Jin Xu, William Gay, Christopher
Richardson, and Larry Heck. 2024. cpapers: A
dataset of situated and multimodal interactive con-
versations in scientific papers. Advances in Neural
Information Processing Systems, 37:66283–66304.

Anirudh S. Sundar and Larry Heck. 2023. cTBLS: Aug-
menting large language models with conversational
tables. In Proceedings of the 5th Workshop on NLP
for Conversational AI (NLP4ConvAI 2023), pages 59–
70, Toronto, Canada. Association for Computational
Linguistics.

Xiangru Tang, Yiming Zong, Jason Phang, Yilun Zhao,
Wangchunshu Zhou, Arman Cohan, and Mark Ger-
stein. 2023. Struc-Bench: Are Large Language Mod-
els Really Good at Generating Complex Structured
Data? arXiv preprint. ArXiv:2309.08963 [cs].

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models

based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022. Text-
to-Table: A New Way of Information Extraction.
arXiv preprint. ArXiv:2109.02707 [cs].

Junjie Xing, Yeye He, Mengyu Zhou, Haoyu Dong, Shi
Han, Dongmei Zhang, and Surajit Chaudhuri. 2024.
Table-llm-specialist: Language model specialists for
tables using iterative generator-validator fine-tuning.
arXiv preprint arXiv:2410.12164.

Lei Xu and Kalyan Veeramachaneni. 2018. Synthe-
sizing Tabular Data using Generative Adversarial
Networks. arXiv preprint. ArXiv:1811.11264 [cs,
stat].

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 528–537,
Dublin, Ireland. Association for Computational Lin-
guistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi
Huang, Saisai Yang, Jing Yuan, Changbao Su, Xiang
Li, Aofeng Su, et al. 2023. Tablegpt: Towards unify-
ing tables, nature language and commands into one
gpt. arXiv preprint arXiv:2307.08674.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2023. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206.

Tianyi Zhang, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating Text Generation with BERT. In Inter-
national Conference on Learning Representations.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6588–6600, Dublin, Ireland. Association for
Computational Linguistics.

Yilun Zhao, Yitao Long, Hongjun Liu, Linyong Nan,
Lyuhao Chen, Ryo Kamoi, Yixin Liu, Xiangru Tang,
Rui Zhang, and Arman Cohan. 2023. DocMath-
Eval: Evaluating Numerical Reasoning Capabilities
of LLMs in Understanding Long Documents with
Tabular Data. _eprint: 2311.09805.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y
Chen. 2021. Ctab-gan: Effective table data synthe-
sizing. In Asian Conference on Machine Learning,
pages 97–112. PMLR.

66

https://doi.org/10.1145/1502650.1502692
https://doi.org/10.1145/1502650.1502692
https://api.semanticscholar.org/CorpusID:203658267
https://api.semanticscholar.org/CorpusID:203658267
https://api.semanticscholar.org/CorpusID:203658267
http://arxiv.org/abs/2302.02041
http://arxiv.org/abs/2302.02041
http://arxiv.org/abs/2302.02041
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.18653/v1/2022.nlp4convai-1.12
https://doi.org/10.18653/v1/2022.nlp4convai-1.12
https://doi.org/10.18653/v1/2023.nlp4convai-1.6
https://doi.org/10.18653/v1/2023.nlp4convai-1.6
https://doi.org/10.18653/v1/2023.nlp4convai-1.6
http://arxiv.org/abs/2309.08963
http://arxiv.org/abs/2309.08963
http://arxiv.org/abs/2309.08963
http://arxiv.org/abs/2109.02707
http://arxiv.org/abs/2109.02707
http://arxiv.org/abs/1811.11264
http://arxiv.org/abs/1811.11264
http://arxiv.org/abs/1811.11264
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2022.acl-long.40
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2022.acl-long.454


Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277–3287, Online. Association for
Computational Linguistics.

A Appendix

A.1 AI Assistance Acknowledgment
We acknowledge the use of GitHub Copilot to assist
in code completion.

A.2 Compute
All fine-tuning and inference was run on Nvidia
A40 GPUs with 48GB GDDR6 memory. Fine-
tuning took 1-2 hours on 8 GPUs in parallel with
pytorch distributed data parallel (DDP).

A.3 Dataset Statistics
Statistics of the text-to-table datasets:

Dataset Train Valid Test

E2E 42.1k 4.7k 4.7k
WikiTableText 10k 1.3k 2.0k

WikiBio 582.7k 72.8k 72.7k

Table 7: Statistics of the E2E, WikiTableText, WikiBio,
and RotoWire datasets, number of samples across splits

A.4 Dataset Examples – Text to Table
This section details example textual paragraphs and
associated tables from the different datasets.

E2E:
The Eagle is a low rated coffee shop near Burger
King and the riverside that is family friendly and is
less than £20 for Japanese food.

Name The Eagle
Food Japanese

Price range Less than £20
Customer Rating Low

Area Riverside
Family friendly Yes

Near Burger King

WikiTableText:
Michelle Schimel was New York State
assemblywoman in Portuguese Heritage Society.

Title Potuguese Heritage Society
Subtitle Other activities
Name Michelle Schimel

WikiBio:
Leonard Shenoff Randle (born February 12, 1949)
is a former Major League Baseball player. He was
the first-round pick of the Washington Senators in
the secondary phase of the June 1970 Major
League Baseball draft, tenth overall.

Debut team Washington Senators
Name Lenny Randle

Birth Date 12 February 1949

A.5 Dataset Examples – iTBLS

Example

1 What is the 2nd cell value for row 4?
2 Tell me the final value in the column labeled

k
3 What is the value of the cell to the left of

the cell in the bottom right of the table.

Table 8: Example interactions in iTBLS Interpret

Example

1 The rows 1 and 4 in the Column “Cita-
tion" were accidentally switched. Please
rectify the positions of these values so
they are where they need to be.

2 Swap the contents of the second and last
cell under repetitions.

3 Two values in the MCBLp column were
put in the reverse spots. I need the values
for the FM and PCC rows flipped.

Table 9: Example interactions in iTBLS Modify
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Example

1 The row 3 of the table shows the values
for Peak as 4, X coordinate as 0.100, Y
coordinate as -0.150, A as 0.5, standard
deviation (σ) as 0.02, and Local lnZ as
-7.824.

2 The column “Method 2 (with sub-
clustering)" contains the ‘Nlike’ values
in different rows: 27,658 in the second
row, 69,094 in the third row, 579,208
in the fourth row, and 43,093,230 in the
fifth row, while the remaining rows from
six to nine contain no data (NaN).

3 The column R contains eight numerical
values in increasing order: 3.34, 3.40,
3.66, 5.06, 6.02, 6.61, 4.05, and 4.11.

Table 10: Example interactions in iTBLS Generate

A.6 Hyperparameters
Hyperparameters used during training are listed
here.

Parameter Value

Rank 2
α 2

Dropout 0.01
Target modules all-linear

Table 11: LoRA Hyperparameters

Parameter Value

Learning Rate 2e-4
Batch size 4
Warmup Schedule Constant
Warmup Ratio 0.03
Epochs 5
Optimizer paged_adamw_32bit3

Table 12: Training Hyperparameters

A.7 Mechanical Turk Interface

3https://huggingface.co/docs/bitsandbytes/
main/en/reference/optim/adamw

B Example error on the generate task of
iTBLS
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Figure 3: Amazon Mechanical Turk Interface to collect iTBLS interpretation

Figure 4: Amazon Mechanical Turk Interface to collect iTBLS modification
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Text: The column ‘Standard deviation’ contains entries which are both numbers and number sequences:
first has 0.45, 0.75, 0, 0.57, second has 0.36, 0.5, 0, 0.34, third is exactly 0, the fourth one is 0.77, fifth is

0.49, and the last one is 0.22.

Input Table:

row ID Questions Average score

0 Q. 1 (a-d) (3.6 3.93 5 4)
1 Q. 2 (a-d) 4.26
2 Q. 3 5
3 Q. 4 3.64
4 Q. 5 (4.04 4.44 5 4.86)
5 GQ 4.35

Ground Truth:

row ID Questions Average score Standard deviation

0 Q. 1 (a-d) (3.6 3.93 5 4) (0.45 0.75 0 0.57)
1 Q. 2 (a-d) 4.26 (0.36 0.5 0 0.34)
2 Q. 3 5 0
3 Q. 4 3.64 0.77
4 Q. 5 (4.04 4.44 5 4.86) 0.49
5 GQ 4.35 0.22

Prediction:

row ID Questions Average score Standard deviation

0 Q. 1 (a-d) (3.6 3.93 5 4) (0.45 0.75 0 0.57)
1 Q. 2 (a-d) 4.26 (0.36 0.5 0 0.34)
2 Q. 3 5 0
3 Q. 4 3.64 0.77
4 Q. 5 (4.04 4.44 5 4.86) (0.49 0.22)
5 GQ 4.35 0

Table 13: Example error for iTBLS generate task. Table source: https://arxiv.org/pdf/1411.4925
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Abstract

Recent table representation learning and data
discovery methods tackle table union search
(TUS) within data lakes, which involves iden-
tifying tables that can be unioned with a given
query table to enrich its content. These meth-
ods are commonly evaluated using benchmarks
that aim to assess semantic understanding in
real-world TUS tasks. However, our analysis
of prominent TUS benchmarks reveals several
limitations that allow simple baselines to per-
form surprisingly well, often outperforming
more sophisticated approaches. This suggests
that current benchmark scores are heavily in-
fluenced by dataset-specific characteristics and
fail to effectively isolate the gains from seman-
tic understanding. To address this, we propose
essential criteria for future benchmarks to en-
able a more realistic and reliable evaluation of
progress in semantic table union search.

1 Introduction

Measurement enables scientific progress. In com-
puter science and machine learning, this requires
the creation of efficient benchmarks that provide
a stable foundation for evaluation, ensuring that
observed performance scores reflect genuine capa-
bilities for real-world tasks.

Table Union Search (TUS) aims to retrieve tables
C from a corpus that are semantically unionable
with a query table Q, meaning they represent the
same information type and permit vertical concate-
nation (row appending) (Nargesian et al., 2018; Fan
et al., 2023a). As a top-k retrieval task, TUS ranks
candidate tables C by a table-level relevance score
R(Q,C). This score is typically obtained by ag-
gregating column-level semantic relevance scores
R(CQ, CC) computed for each column CQ of the
query table Q and each column CC of the candidate
table C. The aggregation often involves finding an
optimal mapping between the columns of Q and C,
for instance via maximum bipartite matching (Fan

et al., 2023b). Successful TUS facilitates data inte-
gration and dataset enrichment (Khatiwada et al.,
2023; Castelo et al., 2021).

Recent research has introduced sophisticated
TUS methods with complex representation learn-
ing (Fan et al., 2023b; Khatiwada et al., 2025; Chen
et al., 2023) designed to capture deeper semantics.
However, current benchmarks often exhibit exces-
sive schema overlap, limited semantic complexity,
and potential ground truth inconsistencies, which
raises questions about whether they provide a re-
liable environment to evaluate advanced TUS ca-
pabilities. While state-of-the-art methodologies
leverage semantic reasoning to reflect the task spe-
cific challenges, observed high performance may
be significantly attributed to model adaptation to
specific statistical and structural properties inherent
within the benchmark datasets. This phenomenon
can confound the accurate assessment and poten-
tially underestimate the isolated contribution of im-
provements specifically targeting semantics-aware
TUS.

In this paper, we examine prominent TUS bench-
marks 1, using simple baselines to assess the bench-
marks themselves. Our research questions are:

1. Do current TUS benchmarks necessitate deep se-
mantic analysis, or can simpler features achieve
competitive performance?

2. How do benchmark properties and ground truth
quality impact TUS evaluation?

3. What constitutes a more realistic and discrimi-
native TUS benchmark?

Our analysis2 reveals that simple baseline meth-
ods often achieve surprisingly strong performance
by leveraging benchmark characteristics rather than
demonstrating sophisticated semantic reasoning.

1Preprocessed benchmarks used in our evaluation are avail-
able at https://zenodo.org/records/15499092

2Our code is available at: https://github.com/
Allaa-boutaleb/fishy-tus
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Our contributions include:

• A systematic analysis identifying limitations in
current TUS benchmarks.

• Empirical evidence showing simple embedding
methods achieve competitive performance.

• An investigation of ground truth reliability issues
across multiple TUS benchmarks.

• Criteria for developing more realistic and discrim-
inative benchmarks.

2 Related Work

We review existing research on TUS methods and
the benchmarks used for their evaluation, with a
focus on how underlying assumptions about table
unionability have evolved to become increasingly
nuanced and complex.

2.1 Methods and Their Assumptions
2.1.a) Foundational Approaches: Following early
work on schema matching and structural similar-
ity (Sarma et al., 2012), Nargesian et al. (2018)
formalized TUS by assessing attribute unionability
via value overlap, ontology mappings, and natural
language embeddings. Bogatu et al. (2020) incor-
porated additional features (e.g., value formats, nu-
merical distributions) and proposed a distinct aggre-
gation method based on weighted feature distances.
Efficient implementations of these methods rely
on Locality Sensitive Hashing (LSH) indices and
techniques like LSH Ensemble (Zhu et al., 2016)
for efficient table search.

2.1.b) Incorporating Column Relationships: Be-
yond considering columns individually, Khatiwada
et al. (2023) proposed SANTOS, which evaluates
the consistency of inter-column semantic relation-
ships (derived using an existing knowledge base
like YAGO (Pellissier Tanon et al., 2020) or by
synthesizing one from the data itself) across tables
to improve TUS accuracy.

2.1.c) Deep Table Representation Learning: Re-
cent approaches use deep learning for tabular un-
derstanding. Pylon (Cong et al., 2023) and Starmie
(Fan et al., 2023b) use contrastive learning for con-
textualized column embeddings. Hu et al. (2023)
propose AutoTUS, employing multi-stage self-
supervised learning. TabSketchFM (Khatiwada
et al., 2025) uses data sketches to preserve se-
mantics while enabling scalability. Graph-based
approaches like HEARTS (Boutaleb et al., 2025)
leverage HyTrel (Chen et al., 2023), representing

tables as hypergraphs to preserve structural proper-
ties.

2.2 Benchmarks and their Characteristics

Benchmark creators make design choices at ev-
ery stage of the construction process that reflect
their understanding and assumptions about how
and when tables can and should be meaningfully
combined. We identify three primary construction
paradigms applied for building TUS benchmarks:

2.2.a) Partitioning-based: TUSSmall and TUSLarge
(Nargesian et al., 2018), as well as the SANTOS

benchmark (referring to SANTOSSmall, as SAN-
TOSLarge is not fully labeled) (Khatiwada et al.,
2023) partition seed tables horizontally or verti-
cally, labeling tables from the same original seed as
unionable with the seed table. This approach likely
introduces significant schema and value overlap,
potentially favoring methods that detect surface-
level similarity rather than deeper semantic align-
ment.

2.2.b) Corpus-derived: The PYLON benchmark
(Cong et al., 2023) curates tables from GitTables
(Hulsebos et al., 2023) on specific topics. While
this avoids systematic partitioning overlap, the fo-
cus on common topics may result in datasets with
a general vocabulary that is well-represented in
pre-trained models. This can reduce the compara-
tive advantage of specialized table representation
learning and data discovery methods.

2.2.c) LLM-generated: UGEN (Pal et al., 2024)
leverages Large Language Models (LLMs) to gen-
erate table pairs, aiming to overcome limitations
of previous methods by crafting purposefully chal-
lenging scenarios, including hard negatives. How-
ever, this strategy introduces the risk of ground
truth inconsistency, as LLMs may interpret the cri-
teria for unionability differently across generations,
affecting label reliability.

2.2.d) Hybrid approaches: LAKEBENCH (Deng
et al., 2024) uses tables from OpenData3 and
WebTable corpora4 alongside both partitioning-
based synthetic queries and real queries sampled
from the corpus. However, such hybrid approaches
can inherit the limitations of their constituent meth-
ods: partitioning still risks high overlap, candidate-
based labeling may yield incomplete ground truth,

3https://data.gov/
4https://webdatacommons.org/webtables/
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Benchmark Overall Statistics Column Type (%) Size (MB)
Files Rows Cols Avg Shape Missing% Str Int Float Other

SANTOS NQ 500 2,736,673 5,707 5473 × 11 9.96 65.39 17.00 11.46 6.15 ∼422
Q 50 1,070,085 615 21402 × 12 5.79 73.17 15.93 8.46 2.44

TUSSmall
NQ 1,401 5,293,327 13,196 3778 × 9 6.77 85.43 5.93 4.77 3.86 ∼1162
Q 125 577,900 1,610 4623 × 13 6.86 82.05 7.08 5.84 5.03

TUSLarge
NQ 4,944 8,416,415 53,133 1702 × 11 12.53 90.12 5.10 3.57 1.21 ∼1459
Q 100 213,229 1,792 2132 × 18 14.87 90.46 3.68 4.13 1.73

PYLON NQ 1,622 85,282 16,802 53 × 10 0.00 58.74 25.36 15.90 0.00 ∼22
Q 124 11,207 880 90 × 7 0.00 75.68 22.95 1.36 0.00

UGENV1
NQ 1,000 7,609 10,315 8 × 10 5.79 91.68 3.27 4.29 0.76 ∼4
Q 50 405 546 8 × 11 5.87 90.48 4.58 4.21 0.73

UGENV2
NQ 1,000 18,738 13,360 19 × 13 8.16 82.40 11.71 5.50 0.39 ∼8
Q 50 5,363 665 107 × 13 4.14 84.96 10.23 2.41 2.41

LB-OpenData NQ 4,832 351,067,113 89,757 72655 × 19 3.44 52.50 22.56 22.37 2.57 ∼80834
Q 3,138 238,576,481 61,815 76028 × 20 2.90 40.60 26.28 27.60 5.53

LB-Webtable NQ 29,686 1,039,347 387,432 35 × 13 0.01 61.07 26.28 12.64 0.01 ∼170
Q 5,488 335,187 56,174 61 × 10 0.00 40.43 43.06 16.51 0.01

Table 1: Table Union Search Benchmarks Summary. NQ = Non-query table, Q = Query table.

and the large scale of these benchmarks can intro-
duce practical evaluation challenges.

3 Methodology

As TUS methods become increasingly sophisti-
cated, the benchmarks used for their evaluation
may contain inherent characteristics that hinder the
accurate assessment of progress in semantic under-
standing. This section outlines our approach to ex-
amining prominent TUS benchmarks through anal-
ysis of their construction methods and strategic use
of simple baselines as diagnostic tools. The goal of
advanced TUS methods is to capture deep semantic
compatibility between tables, beyond simple lexi-
cal or structural similarity. Our investigation first
analyzes the various benchmark construction pro-
cesses to identify potential structural weaknesses,
then employs computationally inexpensive baseline
methods to reveal how these characteristics enable
alternative pathways to high performance, thereby
influencing evaluation outcomes.

3.1 Analyzing Benchmark Construction
We examine five prominent families of TUS bench-
marks and formulate hypotheses about their poten-
tial limitations based on their construction method-
ologies (Table 1). We identify three issues stem-
ming from these methodologies: (1) excessive
overlap, (2) semantic simplicity, and (3) ground
truth inconsistencies, which we detail below:

3.1.a) Excessive Overlap: Benchmarks like
TUSSmall, TUSLarge, SANTOS, and the synthetic
query portion of the LAKEBENCH derivatives are
created by partitioning seed tables horizontally and

vertically, with tables derived from the same orig-
inal seed designated as unionable pairs. We hy-
pothesize that this methodology inherently leads to
significant overlap in both schema (column names)
and content (data values) between query tables and
their ground truth unionable candidates.

To quantify this, we measure overlap using the
Szymkiewicz–Simpson coefficient for exact col-
umn names (Overlapc, Eq. 1) and for values of
a given data type d (Overlapv, Eq. 2) between
ground truth pairs.

Overlapc(Q,C) =
|ColsQ ∩ ColsC |

min(|ColsQ|, |ColsC |)
(1)

Overlapv(Q,C) =
|V d

Q ∩ V d
C |

min(|V d
Q|, |V d

C |)
(2)

where ColsQ and ColsC denote the sets of col-
umn names in the query table Q and candidate
table C respectively, and V d

Q, V d
C represent the

sets of unique values of data type d in each ta-
ble. The coefficient equals 1.0 when one set is
fully contained within the other. Figure 1 shows
the distribution of overlap coefficients, with val-
ues ≥ 50% indicating substantial overlap. As
expected, partitioning-based benchmarks exhibit
high overlap: over 90% of ground truth pairs share
≥ 50% of exact column names. For value over-
lap, we focus on string data types, which dominate
the benchmarks (Table 1). Here too, 45–60% of
query-candidate pairs share≥ 50% of string tokens.
LAKEBENCH derivatives (LB-OPENDATA, LB-
WEBTABLE) show similar trends. Appendix A pro-
vides a detailed breakdown by data type. This high
surface similarity favors simple lexical methods
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Figure 1: Distribution of Exact Column Name Overlap
(Top) and String Value Overlap (Bottom) Coefficients
for Ground Truth Unionable Pairs Across Benchmarks.
Colored circles represent mean values; numbers on the
right indicate total pairwise relationships considered.

and also influences advanced models by introduc-
ing repeated patterns in serialized inputs (Starmie),
data sketches (TabSketchFM), and graph structures
(HEARTS). Though designed for deeper semantics,
these models are affected by strong benchmark-
induced surface signals, making it hard to attribute
performance gains purely to nuanced reasoning.

3.1.b) Semantic Simplicity: Benchmarks derived
directly from large corpora, such as PYLON (Cong
et al., 2023) using GitTables (Hulsebos et al., 2023)
or the real query portions of LAKEBENCH deriva-
tives using diverse public datasets, avoid the sys-
tematic overlap introduced by partitioning. How-
ever, we hypothesize that this construction method
introduces other limitations since (1) it often fo-
cuses on relatively common topics with simpler se-
mantics, reducing the need for specialized domain
knowledge, and (2) it generally draws from public
data sources likely included in the pre-training cor-
pora of large foundation models. Evidence from
specific benchmarks supports this concern. PY-
LON’s construction indeed avoids high overlap (Fig-
ure 1 shows lower overlap than partitioning-based
benchmarks). For LAKEBENCH, while the dis-
tinction between real and synthetic queries was
unavailable during our analysis5, the significant
overall observed overlap suggests that synthetic,
partitioning-based queries constitute a large por-
tion of the benchmark. The semantic simplicity
evident in PYLON’s topics and the public origins

5https://github.com/RLGen/LakeBench/issues/9

of data in both PYLON and LAKEBENCH could
favor general-purpose models like BERT (Devlin
et al., 2019) or SBERT (Reimers and Gurevych,
2019), which have with a high, however unverifi-
able, probability encountered similar content dur-
ing pre-training. Consequently, the semantic chal-
lenge presented by these benchmarks might be
relatively low for models with strong general lan-
guage understanding – a contrast to documented
LLM struggles with non-public, enterprise-specific
data characteristics (Bodensohn et al., 2025), po-
tentially allowing off-the-shelf embedding models
to achieve high performance without fine-tuning.

3.1.c) Noisy Ground Truths: Ensuring accurate
and complete ground truth labels is challenging, es-
pecially with automated generation or large-scale
human labeling efforts as used in LLM-generated
benchmarks (UGEN) and large human-labeled ones
(LAKEBENCH derivatives). We hypothesize that
ground truth in these benchmarks may suffer from
reliability issues, including incorrect labels (false
positives/negatives) or incompleteness (missed true
positives). For UGEN, generating consistent, ac-
curate positive and negative pairs (especially hard
negatives) is difficult. LLMs might interpret union-
ability rules inconsistently across generations, lead-
ing to noisy labels. For large-scale human labeling
with LB-OPENDATA and LB-WEBTABLE, the pro-
cess introduces two risks: incompleteness, if the
initial retrieval misses true unionable tables; and
incorrectness, if human judgments vary or contain
errors despite validation efforts. Evaluating perfor-
mance on UGEN and LAKEBENCH derivatives thus
requires caution. Scores are affected by label noise
or incompleteness; low scores reflect ground truth
issues and are therefore not solely attributable to
benchmark difficulty, while the maximum achiev-
able recall is capped by unlabeled true positives.

3.2 Baseline Methods for Benchmark Analysis

Based on the hypothesized benchmark issues iden-
tified above, we select some simple baseline meth-
ods to test benchmark sensitivity to different in-
formation types. While the (1) overlap and (2)
general semantics limitations can be directly exam-
ined through baseline performance, (3) the ground
truth integrity issue requires separate validation of
labels, which we address in Section 5.2. Detailed
implementation choices for all baseline methods
are in Appendix B.1.
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3.2.a) Bag-of-Words Vectorizers: To test whether
the Excessive Overlap enables methods sensi-
tive to token frequency to perform well on
partitioning-based benchmarks, we employ stan-
dard lexical vectorizers (HashingVectorizer,
TfidfVectorizer, and CountVectorizer) from
scikit-learn6. These generate column embeddings
based on sampled string values, with a single ta-
ble vector obtained via max pooling across column
vectors. These baselines test whether high per-
formance can be achieved primarily by exploiting
surface signals without semantic reasoning.

3.2.b) Pre-trained Sentence Transformers: To ex-
amine whether the Semantic Simplicity allows
benchmarks from broad corpora to be effectively
processed by pre-trained language models, we use
a Sentence-BERT model (all-mpnet-base-v27)
with three column-to-text serializations: (1)
SBERT (V+C): input includes column name and
sampled values; (2) SBERT (C): input is only
the column name; and (3) SBERT (V): input is
only concatenated sampled values. Column em-
beddings are aggregated using mean pooling to
produce a single table vector. These baselines as-
sess whether general semantic embeddings, with-
out task-specific fine-tuning, suffice for high per-
formance on benchmarks with general vocabulary.

4 Experimental Setup

To evaluate our hypotheses about benchmark limi-
tations, we employ both simple baseline methods
(Section 3.2) and advanced SOTA methods in a
controlled experimental framework. This section
details the benchmark datasets used, any necessary
preprocessing, the comparative methods, and our
standardized evaluation approach.

4.1 Benchmarks
Our analysis uses the benchmarks described in Sec-
tion 2.2, with post-preprocessing statistics sum-
marized in Table 1. Most benchmarks were used
as-is, but the large-scale LAKEBENCH derivatives
(LB-OPENDATA and LB-WEBTABLE) required
additional preprocessing for feasibility and repro-
ducibility. The original datasets were too large
to process directly and included practical issues,
such as missing files, as well as characteristics that
complicated evaluation, such as many unreferenced
tables. We removed ground truth entries pointing

6Scikit-Learn Vectorizers Documentation
7all-mpnet-base-v2 on Hugging Face

to missing files (58 in LB-WEBTABLE), and ex-
cluded unreferenced tables from the retrieval cor-
pus (removing ∼5,300 and >2.7M files from LB-
OPENDATA and LB-WEBTABLE, respectively).
This latter step was done purely for computational
feasibility; as a side effect, it simplifies the bench-
mark by eliminating tables that would otherwise
be false positives if retrieved. We also ensured that
each query table was listed as a candidate for itself.
These steps substantially reduced corpus size while
preserving evaluation integrity. The LAKEBENCH

variants considered in our study are those available
as of May 20, 20258. Future updates to the origi-
nal repository may modify dataset contents, which
yield different evaluation results.

Additionally, for LB-OPENDATA, we created a
smaller variant with tables truncated to 1,000 rows,
which we use in experiments alongside the original
version (Table 2). For TUSSmall and TUSLarge, we
followed prior work (Fan et al., 2023b; Hu et al.,
2023), sampling 125 and 100 queries, respectively.
For the other benchmarks, all queries were used.

4.2 Comparative Methods

To evaluate our baseline methods (Section 3.2), we
compare them against key TUS models previously
discussed in Section 2.1, focusing on SOTA meth-
ods. For each method, we optimize implementation
using publicly available code for fairness:

• Starmie (Fan et al., 2023b): We retrained the
RoBERTa-based model for 10 epochs on each
benchmark using recommended hyperparameters
and their “Pruning” bipartite matching search
strategy for generating rankings, which achieves
optimal results according to the original paper.

• HEARTS (Boutaleb et al., 2025): We utilized
pre-trained HyTrel embeddings (Chen et al.,
2023) with a contrastively-trained checkpoint.
For each benchmark, we adopted the best-
performing search strategy from the HEARTS
repository: Cluster Search for SANTOS, PYLON,
and UGEN benchmarks, and ANN index search
with max pooling for the TUS and LAKEBENCH

benchmarks.
• TabSketchFM (Khatiwada et al., 2025): Results

for the TUSSmall and SANTOS were reported di-
rectly from the original paper, as the pretrained
checkpoint was unavailable at the time of our
experiments.

8LakeBench commit df7559d used in our study
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These methods represent significant advance-
ments in table representation learning. AutoTUS
(Hu et al., 2023) wasn’t included due to code un-
availability at the time of writing. We provide fur-
ther implementation details in Appendix B.2.

4.3 Evaluation Procedure
We use a consistent evaluation procedure for all
baseline and SOTA methods to ensure fair com-
parison. Table vectors are generated per method
(Section 3.2 for baselines; SOTA-specific proce-
dures otherwise) and L2-normalized for similarity
via inner product. For similarity search, baseline
methods use the FAISS library (Douze et al., 2024)
with an exact inner product index (IndexFlatIP);
each query ranks all candidate tables by simi-
larity. SOTA methods use FAISS or alternative
search strategies (Appendix B.2). Following prior
work (Fan et al., 2023b; Hu et al., 2023), we report
Precision@k (P@k) and Recall@k (R@k), aver-
aged across queries. Values of k follow prior works
and are shown in results tables (e.g., Table 2). We
also evaluate computational efficiency via offline
(training, vector extraction, indexing) and online
(query search) runtimes, with hardware details in
Appendix B.3.

5 Results and Discussion

Our empirical evaluation revealed significant pat-
terns across benchmarks that expose fundamental
limitations in their ability to measure progress in
semantic understanding. Tables 2 and 3 present
effectiveness and efficiency metrics respectively.

5.1 Evidence of Benchmark Limitations
The most compelling evidence for our bench-
mark limitation hypotheses emerges from the un-
expectedly strong performance of simple base-
lines. On partitioning-based benchmarks (TUSSmall,
TUSLarge, SANTOS), lexical methods achieve near-
perfect precision, matching or exceeding sophis-
ticated models at a fraction of the cost. This di-
rectly validates our overlap issue hypothesis: the
high schema and value overlap (Figure 1) creates
trivial signals that simple lexical matching can ex-
ploit. While advanced methods like Starmie or
HEARTS also achieve high scores here, the fact
that much simpler, non-semantic methods perform
nearly identically leads us to conclude that the
benchmark itself does not effectively differentiate
methods based on deep semantic understanding.
This phenomenon, where simpler approaches can

achieve comparable or even better results than more
complex counterparts, especially when computa-
tional costs are considered, has also been observed
in related data lake tasks such as table augmenta-
tion via join search (Cappuzzo et al., 2024).

For PYLON, a different pattern emerges: lexical
methods perform considerably worse due to the
much lower exact overlap, but general-purpose se-
mantic embeddings excel. SBERT variants, partic-
ularly SBERT(V+C) combining column and value
information, outperform specialized SOTA models
like Starmie. This confirms our general semantics
hypothesis that these benchmarks employ vocab-
ulary well-represented in standard pre-trained em-
beddings, diminishing the advantage of specialized
tabular architectures for the TUS task.

LB-OPENDATA and LB-WEBTABLE exhibit
both limitations despite their scale. Simple lexi-
cal methods remain surprisingly competitive, while
SBERT variants consistently outperform special-
ized models. The computational demands of so-
phisticated models create additional practical barri-
ers: Starmie requires substantial offline costs (train-
ing and inference) plus over 16 hours to process the
queries on the truncated LB-OPENDATA, and over
21 hours to evaluate the queries of LB-WEBTABLE.
HEARTS performs better computationally by lever-
aging a pre-trained checkpoint without additional
training, resulting in a shorter offline processing
time, but still under-performs SBERT variants.

5.2 Ground Truth Reliability Issues
A notable observation across UGEN and
LAKEBENCH derivatives is the significant gap
between the R@k achieved by all methods and
the IDEAL recall (Table 2). This discrepancy led
us to question the reliability of the benchmarks’
ground truth labels. We hypothesized that such
gaps might indicate not only the limitations of
the search methods or the inherent difficulty of
the benchmarks but also potential incompleteness
or inaccuracies within the ground truth itself.
Examining discrepancies at small values of k
is particularly revealing, as this scrutinizes the
highest-confidence predictions of a system. If a
high-performing method frequently disagrees with
the ground truth at these top ranks, it may signal
issues with the ground truth labels.

To investigate this, we defined two heuristic met-
rics designed to help identify potential ground truth
flaws. Let Q = {Q1, . . . , QN} be N query tables.
For Qi ∈ Q, CQi,k is the set of top-k candidates
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Method SANTOS TUS TUSLarge PYLON UGENV1 UGENV2 LB-OPENDATA1k LB-OPENDATA LB-WebTable
P@10 R@10 P@60 R@60 P@60 R@60 P@10 R@10 P@10 R@10 P@10 R@10 P@50 R@50 P@50 R@50 P@20 R@20

IDEAL 1.00 0.75 1.00 0.34 1.00 0.23 1.00 0.24 1.00 1.00 1.00 1.00 0.39 1.00 0.39 1.00 0.81 0.95
Non-specialized Embedding Methods
HASH 0.98 0.74 0.99 0.33 0.99 0.23 0.64 0.15 0.59 0.59 0.43 0.43 0.21 0.60 0.21 0.60 0.21 0.25
TFIDF 0.99 0.74 1.00 0.34 0.99 0.23 0.70 0.17 0.58 0.58 0.50 0.50 0.21 0.61 0.21 0.61 0.23 0.27
COUNT 0.99 0.74 1.00 0.34 0.99 0.23 0.68 0.17 0.58 0.58 0.50 0.50 0.21 0.60 0.21 0.60 0.23 0.27
SBERT (V+C) 0.98 0.74 1.00 0.34 0.99 0.23 0.91 0.22 0.61 0.61 0.68 0.68 0.23 0.66 0.23 0.66 0.26 0.31
SBERT (V) 0.94 0.71 1.00 0.34 0.99 0.23 0.84 0.20 0.58 0.58 0.58 0.58 0.22 0.62 0.22 0.62 0.25 0.29
SBERT (C) 0.98 0.74 1.00 0.34 0.98 0.23 0.85 0.21 0.60 0.60 0.65 0.65 0.22 0.64 0.22 0.64 0.16 0.20
Specialized Table Union Search Methods
Starmie 0.98 0.73 0.96 0.31 0.93 0.21 0.81 0.20 0.57 0.57 0.58 0.58 0.18 0.51 ‡ ‡ 0.25 0.30
HEARTS 0.98 0.74 1.00 0.34 0.99 0.23 0.65 0.16 0.56 0.56 0.37 0.37 0.19 0.61 0.19 0.60 0.23 0.28
TabSketchFM 0.92 0.69 0.97 0.32 * * * * * * * * * * * * * *

Table 2: Precision and Recall across benchmarks. Highest values in bold, second highest underlined. IDEAL
represents the maximum possible P@k and R@k achievable for each benchmark at the specified k. * : Results
unavailable as checkpoint was not publicly accessible. ‡ : Not reported due to excessive computational requirements.

Method SANTOS TUS TUSLarge PYLON UGENV1 UGENV2 LB-OPENDATA1K LB-OPENDATA LB-WebTable
Offline Online Offline Online Offline Online Offline Online Offline Online Offline Online Offline Online Offline Online Offline Online

Non-specialized Embedding Methods
HASH 0m 15s 0m 0s 0m 43s 0m 1s 1m 45s 0m 2s 0m 19s 0m 1s 0m 12s 0m 0s 0m 14s 0m 0s 7m 56s 0m 31s 12m 4s 0m 22s 6m 3s 0m 21s
TFIDF/COUNT 0m 53s 0m 0s 1m 45s 0m 1s 3m 10s 0m 2s 0m 22s 0m 1s 0m 9s 0m 0s 0m 12s 0m 0s 22m 22s 0m 31s 37m 14s 0m 21s 6m 21s 0m 22s
SBERT 1m 45s 0m 0s 3m 30s 0m 0s 9m 21s 0m 15s 3m 18s 0m 0s 1m 41s 0m 0s 2m 20s 0m 0s 27m 47s 0m 4s 82m 13s 0m 4s 30m 45s 0m 3s
Specialized Table Union Search Methods
STARMIE 19m 3s 1m 2s 4m 24s 8m 59s 14m 43s 20m 29s 7m 56s 3m 27s 2m 8s 1m 0s 2m 45s 1m 45s 131m 48s 1220m 53s – – 48m 11s 1311m 43s
HEARTS 0m 21s 0m 34s 1m 1s 0m 0s 3m 10s 0m 0s 0m 57s 0m 36s 0m 23s 0m 40s 0m 30s 0m 35s 21m 33s 0m 3s 76m 12s 0m 5s 29m 28s 0m 3s

Table 3: Computational efficiency across benchmarks. Times are averaged over 5 runs due to runtime variability.
Offline includes vector generation, indexing, and training times where applicable; Online is total query search time.

retrieved by a search method for Qi, and GQi is the
set of ground truth candidates labeled unionable
with Qi.

1. GTFP@k (Ground Truth False Positive Rate):
This measures the fraction of top-k candidates
retrieved by a search method that are not labeled
as unionable in the original ground truth. A
high GTFP@k, especially at small k, suggests
the method might be identifying valid unionable
tables missing from the ground truth, thereby
helping us pinpoint its possible incompleteness.
It is calculated as:

∑N
i=1 |CQi,k \GQi |

N · k
Here, |CQi,k \GQi | counts retrieved candidates
for Qi that are absent from its ground truth set
GQi . The denominator is the total top-k slots
considered across all queries.

2. GTFN@k (Ground Truth False Negative
Rate): This quantifies the fraction of items la-
beled as positives in the ground truth that a well-
performing search method fails to retrieve within
its top-k results (considering a capped expecta-
tion up to k items per query). It is calculated
as:

∑N
i=1(min(k, |GQi |)− |GQi ∩ CQi,k|)∑N

i=1min(k, |GQi |)
The term min(k, |GQi |) represents the capped
ideal number of ground truth items we would

expect to find in the top k for Qi. The numerator
sums the "misses" for each query: the differ-
ence between this capped ideal and the number
of ground truth items actually retrieved. The
denominator sums this capped ideal across all
queries. A high GTFN@k at small k is particu-
larly insightful when investigating ground truth
integrity. If we trust the method’s ability to dis-
cern relevance, a high GTFN@k implies that
the method correctly deprioritizes items that, de-
spite being in the ground truth, might be less
relevant or even incorrectly labeled as positive.
Thus, it can signal potential incorrectness within
the ground truth. GTFN@k is equivalent to
"1− CappedRecall@k" (Thakur et al., 2021).

These metrics assume discrepancies between a
strong search method and the ground truth may in-
dicate flaws in the latter. While not highly accurate,
they helped us identify a smaller, focused subset
of query-candidate pairs with disagreements for
deeper manual or LLM-based inspection. Results
are shown in Table 4.

Beyond heuristic metrics, we also conduct
a more direct–though still imperfect–assessment
of UGEN’s ground truth using an LLM-as-a-
judge approach. While this method may not
capture the same conflicts identified by the
cheaper GTFP/GTFN heuristics, it provides a
complementary perspective that can offer more
precise insights in certain cases. We use
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gemini-2.0-flash-thinking-exp-01-219, cho-
sen for its 1M-token context window, baked-in rea-
soning abilities, and low hallucination rate10. This
LLM-as-a-judge approach has become increasingly
common in recent works (Gu et al., 2024; Wolff
and Hulsebos, 2025). We gave the LLM both ta-
bles in each query-candidate pair, along with a de-
tailed prompt including curated unionable and non-
unionable examples from UGEN (see Appendix D)
to condition the LLM’s understanding of unionabil-
ity based on the benchmark. Each pair was evalu-
ated in 5 independent runs with temperature=0.1.
A sample of 20 LLM outputs was manually val-
idated and showed strong alignment with human
judgment. Comparison with original UGEN labels
(Table 5) revealed substantial inconsistencies. Our
manual inspection (Appendix C.1) suggested the
LLM often provided more accurate assessments, in-
dicating notable noise in the original ground truth.

Given the scale of LB-OPENDATA and LB-
WEBTABLE, full LLM adjudication was imprac-
tical. Instead, we used SBERT(V+C) as our refer-
ence search method to compute GTFP@k, focus-
ing on top-ranked pairs not labeled as unionable
in the ground truth. As shown in Table 4, such
cases were frequent even at top ranks (2 < k < 5).
To assess ground truth completeness, we manually
inspected 20 randomly sampled top-2 and top-3
disagreements. Of these, 19 were genuinely union-
able but missing from the ground truth; the remain-
ing pair was correctly non-unionable, with SBERT
likely misled by its numeric-only columns. These
results suggest non-negligible incompleteness in
the LAKEBENCH ground truth. Example cases are
shown in Appendix C.2.

In summary, our investigations, combining
heuristic metrics, LLM-based adjudication, and
manual inspection, reveal the presence of non-
negligible noise and incompleteness within the
original benchmark labels for both UGEN and
LAKEBENCH. Consequently, performance metrics
reported on these benchmarks may be influenced
by these underlying ground truth issues, potentially
misrepresenting true task difficulty or method ca-
pabilities.

5.3 Implications for Measuring Progress
Our experiments reveal several critical issues.
Benchmark scores often fail to measure true seman-
tic capabilities, as simple lexical or general embed-

9Gemini 2.0 Flash Thinking Model Card
10Vectara Hallucination Leaderboard

Benchmark (Metric) @1 @2 @3 @4 @5
UGENV1 (GTFP) 0.160 0.210 0.247 0.275 0.308
UGENV1 (GTFN) 0.160 0.210 0.247 0.275 0.308
UGENV2 (GTFP) 0.060 0.080 0.093 0.140 0.156
UGENV2 (GTFN) 0.060 0.080 0.093 0.140 0.156
LB-OPENDATA (GTFP) 0.000 0.059 0.092 0.123 0.154
LB-OPENDATA (GTFN) 0.000 0.054 0.080 0.105 0.132
LB-WEBTABLE (GTFP) 0.000 0.110 0.198 0.296 0.377
LB-WEBTABLE (GTFN) 0.000 0.110 0.197 0.295 0.376

Table 4: Disagreement rates of top-k retrieved results
between SBERT and the ground truth across different
benchmarks. For UGEN, the query table is not consid-
ered a candidate to itself, so values at @1 reflect actual
disagreement. For LAKEBENCH variants, the ground
truth is normalized to include the query table as a valid
candidate for itself. Therefore, the top-1 match is al-
ways correct by construction, yielding no disagreement
@1.

GT Label LLM Judge UGEN V1 UGEN V2
Unionable Non-unionable 24.8% 0.0%
Non-unionable Unionable 33.8% 23.6%
Non-unionable Non-unionable 16.2% 76.4%
Unionable Non-unionable 25.2% 0.0%

Table 5: Breakdown of agreement and disagreement
between ground truth labels and LLM-based judgments.

ding methods can match or outperform specialized
models by exploiting excessive domain overlap,
semantic simplicity, or ground truth inconsistency.
This suggests that current benchmarks may inad-
vertently reward adaptation to these characteristics,
making it difficult to quantify the practical benefits
of progress on sophisticated TUS methods capabil-
ities within these settings. These persistent issues
also point to a fundamental challenge, the lack of a
precise, operational definition for unionability, mir-
roring broader difficulties in dataset search (Hulse-
bos et al., 2024) and highlighting the need to ad-
dress the subjective, context-dependent nature of
table compatibility in practice.

6 Towards Better TUS Benchmarks

In industry practice, unionability judgments are in-
herently subjective, depending on analytical goals,
domain contexts, data accessibility constraints
(Martorana et al., 2025), and user preferences
(Mirzaei and Rafiei, 2023). Yet current benchmarks
impose fixed definitions, creating a disconnect with
practical utility: methods excelling on benchmarks
often falter in real-world scenarios demanding dif-
ferent compatibility thresholds. Addressing this
requires benchmark designs that embrace contex-
tual variability and provide a stable foundation for
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evaluation, lest even advanced methods fall short
in practice.

Rethinking Benchmark Design Principles:
Overcoming current benchmark limitations re-
quires a shift in design focusing on three key prin-
ciples: (1) actively reducing artifactual overlap
while introducing controlled semantic heterogene-
ity to better reflect real-world schema and value
divergence; (2) incorporating realistic domain com-
plexity beyond general vocabularies, addressing
challenges like non-descriptive schemas and pro-
prietary terms where LLMs struggle (Bodensohn
et al., 2025), thus emphasizing domain-specific
training that may require industry collaboration;
and (3) rethinking ground truth representation by
replacing brittle binary labels with richer, nuanced
formats validated through multi-stage adjudication
to improve completeness and consistency.

Exploring Implementation Pathways: Trans-
lating these principles into practice requires con-
crete strategies for benchmark design and evalu-
ation. One approach is to develop (1) scenario-
driven micro-benchmarks targeting specific chal-
lenges such as schema drift simulation or value
representation noise, enabling more granular anal-
ysis than coarse end-to-end metrics. Another is
(2) advancing controllable synthetic data genera-
tion, following LLM-based methods like UGEN

(Pal et al., 2024), to verifiably embed semantic con-
straints or domain knowledge, supporting diverse
testbeds when real data is unavailable or sensitive.
Equally important is (3) exploring adaptive, inter-
active evaluation frameworks such as human-in-
the-loop systems, which would dynamically adjust
relevance criteria based on user feedback to better
capture the subjective nature of unionability. Tools
like LakeVisage (Hu et al., 2025) further enhance
usability and trust by recommending visualizations
that help users interpret relationships among re-
turned tables, improving transparency and inter-
pretability in union search systems.Incorporating
natural language preferences is also key. The re-
cent NLCTABLES benchmark (Cui et al., 2025) ad-
vances this by introducing NL conditions for union
and join searches on column values and table size
constraints. However, its predicate-style conditions
may be better addressed via post-retrieval filtering
(e.g., translating NL to SQL predicates with an
LLM), avoiding early discard of unionable candi-
dates and unnecessary retrieval model complexity.
To drive further advancement, benchmarks should

incorporate (4) natural language conditions that
capture key aspects of unionability and joinability,
including specifications about the characteristics of
the final integrated table or conditional integration
logic. For example, a challenging predicate might
require identifying tables that can be "joined with
a query table on column A, unioned on columns
B and C, and also contain an additional column
D providing specific contextual information about
a particular attribute." Such conditions would de-
mand deeper reasoning capabilities from data inte-
gration systems and encourage the development of
more sophisticated methods for Table Union and
Join Search. Finally, moving beyond binary suc-
cess metrics, future benchmarks could adopt (5)
multi-faceted evaluation frameworks using richer
ground truth representations to assess unionability
across dimensions like schema compatibility, se-
mantic type alignment, value distribution similarity,
and task-specific relevance, offering a more holistic
evaluation than current standards.

7 Conclusion

Our analysis of TUS benchmarks highlights three
major limitations: excessive overlap in partitioning-
based datasets, semantics easily captured by pre-
trained embeddings, and non-negligible ground-
truth inconsistencies. The first two allow simple
baselines to rival sophisticated models with far
lower computational cost, showing that high perfor-
mance isn’t necessarily tied to advanced semantic
reasoning. The third undermines evaluation valid-
ity, as scores may reflect misalignment with flawed
ground truth rather than actual benchmark diffi-
culty. This gap between benchmark performance
and true semantic capability suggests current eval-
uations often reward adaptation to benchmark-
specific artifacts. To address this, we propose de-
sign principles that better reflect the complex, sub-
jective nature of real-world table union search.

Limitations: Our study examined selected
benchmarks and methods, with broader evalua-
tion potentially revealing more insight. Our in-
vestigation of ground truth issues in UGEN and
LAKEBENCH, while systematic, identifies certain
patterns without exhaustive quantification.

Future Work: Developing benchmarks aligned
with our proposed criteria represents the next step
towards ensuring that measured progress translates
to meaningful real-world utility.
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A Benchmark Overlap

As discussed in section 3.1.a), the degree of lex-
ical overlap (both in column names and values)
between query and candidate tables in benchmark
ground truths can significantly influence model per-
formance. Methods sensitive to surface-level sim-
ilarity might perform well on benchmarks with
high overlap without necessarily capturing deeper
semantic relationships. This section provides a
more detailed breakdown of overlap coefficients by
data type across the different benchmarks evaluated.
Figure 2 presents these distributions.

B Implementation and Evaluation Details

This appendix provides supplementary details re-
garding the implementation of baseline methods,
SOTA models, and the evaluation procedure used in
our experiments, complementing the core method-
ology described in Sections 3.2 and 4.3.

B.1 Lexical Baselines (Hashing, TF-IDF,
Count) Implementation Details

Vectorizers: We used implementations from
scikit-learn11. All vectorizers were configured with
lowercase=True.

• TfidfVectorizer and CountVectorizer:
Used an ngram_range=(1, 2). Their vocabu-
lary was constructed by first collecting unique
tokens from all columns across the entire corpus
(query tables included), ensuring a consistent
feature space.

• HashingVectorizer: Used
an ngram_range=(1, 1) and
alternate_sign=False.

Input Data: For each table, we randomly sam-
pled up to 1000 unique non-null cell values per
column.

Vectorization: Each column’s sampled values
were treated as a document and vectorized into a
4096-dimensional vector using the appropriately
fitted or configured vectorizer.

B.2 SOTA Method Implementation Details

B.2.a) Starmie: 12 We utilized the implemen-
tation and recommendations from the original
Starmie paper (Fan et al., 2023b).

11https://scikit-learn.org/stable/api/sklearn.
feature_extraction.html

12Starmie GitHub Repository
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Figure 2: Distribution of exact column name and tuple overlap across different benchmarks, broken down by data
type (String, Numeric, Datetime, Other). Each subplot represents a benchmark, showing the percentage of ground
truth pairs falling into different overlap ranges.

Training Setup: The provided RoBERTa-based
model was retrained for 10 epochs on each bench-
mark. Key hyperparameters included: batch size
32, projection dimension 768, learning rate 5e-5,
max sequence length 256, and fp16 precision.

Sampling and Augmentation Strategies:
Starmie employs specific strategies during con-
trastive pre-training to generate positive pairs
(views of the same column). The strategies, based
on the definitions in the original paper, are:

• TF-IDF Entity Sampling (‘tfidf_entity‘): Samples
cells in columns that have the highest average
TF-IDF scores calculated over their tokens.

• Alpha Head Sampling (‘alphaHead‘): Samples
the first N tokens sorted alphabetically.

• Column Dropping Augmentation (‘drop_col‘):
Creates augmented views by dropping a random
subset of columns from the table.

• Drop Cell Augmentation (‘drop_cell‘): Creates
augmented views by dropping random cells
within the table.

We followed the paper’s recommendations for
each benchmark, detailed in Table 6. For bench-
marks not explicitly mentioned in the original pa-
per (PYLON, UGEN, LAKEBENCH derivatives), we
applied the same strategies recommended for the
SANTOS benchmark.

Evaluation: We used the "Pruning" search strat-
egy described in the Starmie paper, also referred to
as "bounds" in the original implementation. This
involves a maximum bipartite matching approach
on a pruned set of candidate column pairs to cal-
culate table similarity, offering higher efficiency
compared to naive matching, while remaining more
precise than approximate search approaches.

Benchmark Sampling Augmentation

SANTOS tfidf_entity drop_col
TUS (Small) alphaHead drop_cell
TUSLarge tfidf_entity drop_cell
PYLON tfidf_entity drop_col
UGENV1 tfidf_entity drop_col
UGENV2 tfidf_entity drop_col
LB-OPENDATA tfidf_entity drop_col
LB-WEBTABLE tfidf_entity drop_col

Table 6: Starmie sampling and augmentation strategies
applied per benchmark.

B.2.b) HEARTS: 13

Model: Employs pre-trained HyTrel embeddings
(Chen et al., 2023), utilizing a publicly available
checkpoint trained with a contrastive learning ob-
jective14. No further finetuning was performed.

13HEARTS GitHub Repository
14https://github.com/awslabs/

hypergraph-tabular-lm/tree/main/checkpoints
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Evaluation Strategy: We adopted the best-
performing search strategy reported in the
HEARTS repository for each benchmark:
• Cluster Search (for SANTOS, PYLON,

UGENV1, UGENV2): This strategy first reduces
the dimensionality of the pre-trained HyTrel
column embeddings using UMAP (McInnes
et al., 2018) and then performs clustering using
HDBSCAN (McInnes et al., 2017). Default
parameters provided in the HEARTS repository
were used for both UMAP and HDBSCAN
within this search method. Table similarity is
derived based on cluster assignments.

• FAISS + Max Pooling (for TUSSmall, TUSLarge,
LB-OPENDATA, LB-WEBTABLE): This strat-
egy uses FAISS (Douze et al., 2024) for efficient
similarity search. Table vectors are computed by
max-pooling the embeddings of their constituent
columns before indexing and searching.

B.3 Hardware

Our experiments were conducted using the follow-
ing setup:
• CPU: Intel Xeon Gold 6330: 4 cores / 8 threads

@ 2.00 GHz.
• GPU: 40GB MIG partition of NVIDIA A100

(used for SBERT embedding generation and
SOTA models training/inference).

• 64 Go DDR4 RAM.

C Inconsistent Ground Truth Examples

This section provides illustrative examples of the
ground truth inconsistencies identified in the UGEN

and LAKEBENCH benchmarks during our analy-
sis (Section 5.2). We categorize these into False
Positives (pairs incorrectly labeled as unionable)
and False Negatives (pairs incorrectly labeled as
non-unionable or missed).

C.1 UGEN Benchmark Inconsistencies

Figures 3 and 4 showcase examples from UGEN

variants.

C.2 Lakebench Benchmark Inconsistencies

This subsection presents examples of GTFPs from
the LAKEBENCH benchmarks, where semantically
and structurally compatible tables were not labeled
as unionable in the ground truth but were correctly
retrieved by search methods. Figures 5 and 6 show
such cases from the WebTable and OpenData sub-
sets, respectively.

Query: Anthropology_FGTNBDWF.csv
Candidate: Anthropology_N30U114M.csv

Age Culture Arena Domain Meaning Origin Activity

1 Neo. Arch. Past Prim. Africa Hunt.
2 Islam. Artif. Hist. Cplx. Asia Farm.

Artifact Language Technology Education Society

1 English GPS Political Communal
2 Latin Smartphone Scientific Global

(a) UGENV1 Example: Tables discussing structurally and se-
mantically distinct aspects of Anthropology (historical cul-
tures vs. social technology), originally labeled unionable
despite conceptual incompatibility.

Query: Anthropology_N7BS08I4.csv
Candidate: Anthropology_VS4SJ2VH.csv

Site Name Location Period Culture

Olduvai Gorge Tanzania, Africa Pliocene Hominin
Teotihuacan Central Mexico Early Classic Teotihuacanos

Age Group Clothing Food Housing

Children (0-12) Tunics, hides Porridge, roots Huts (branch)
Teenagers (13-19) Garments, beads Grains, stews Huts (woven)

(b) UGENV2 Example: Tables about archaeological sites ver-
sus demographic lifestyles, representing fundamentally differ-
ent entity types despite the shared Anthropology topic.

Figure 3: Examples of UGEN where pairs labeled
unionable in the original ground truth exhibit signif-
icant semantic/structural divergence suggesting non-
unionability.

D LLM Adjudicator

D.1 Prompt Details

To systematically re-evaluate potential ground truth
inconsistencies in the UGEN benchmarks, we em-
ployed an LLM-based adjudicator. This process tar-
geted disagreements identified during our analysis,
specifically Ground Truth False Positives (GTFPs,
pairs retrieved as potentially unionable within a
rank threshold k′ but not labeled as unionable in
the ground truth, k′ < k) and Ground Truth False
Negatives (GTFNs, pairs labeled as unionable in
the ground truth but retrieved within a rank thresh-
old k′, k′ > k, or not retrieved at all).

For each query-candidate pair under review,
we provided the LLM with the full content
of both tables. The table data was se-
rialized into a Markdown format using the
MarkdownRawTableSerializer recipe from the
Table Serialization Kitchen library15(Gomm and
Hulsebos, 2025). This serialized data was in-
serted into specific placeholders (‘<Query Table
Data>‘, ‘<Candidate Table Data>‘) within

15Table Serialization Kitchen Github Repository
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Query: Archeology_2LWSQ5A2.csv
Candidate: Archeology_3ML53C0M.csv

Discovery Item Artifact Date Culture Region

Giza Pyramid Scroll Diamond ~2500 BC Anc. Egypt N. Africa
Tut. Tomb Knife Stone Tab. 1323 BC Anc. Egypt N. Africa

Item Discovery Artifact Date Culture Region

Scroll Giza Pyramid Diamond ~2500 BC Anc. Egypt N. Africa
Knife Tut. Tomb Stone Tab. 1323 BC Anc. Egypt N. Africa

(a) UGENV1 Example: Two archaeology tables with identical
information and permuted but perfectly alignable columns,
incorrectly labeled non-unionable despite clear semantic com-
patibility.

Query: Veterinary-Science_YP1NJGLN.csv
Candidate: Veterinary-Medicine_GVNM098Q.csv
Animal Type Breed Age Health Status Symptoms Diagnosis

Dog Labrador Retr. 3 years Healthy No symptoms Routine check-up
Cat Domestic SH 5 years Overweight Lethargy... Obesity

Animal Type Breed Age Gender Symptoms Diagnosis

Dog Labrador 3 years Male Aggression... Rabies
Cat Siamese 8 years Female Limping... Arthritis

(b) UGENV2 Example: Two veterinary case tables with highly
alignable core columns (Animal Type, Breed, Age, Symptoms,
Diagnosis) representing the same fundamental entity type
(animal patients).

Figure 4: Examples of UGEN Pairs explicitly labeled
as non-unionable in the original ground truth exhibiting
strong compatibility suggesting unionability.

Query: csvData10212811.csv
Candidate: csvData1066748.csv

Player Team POS G AB H HR ... OPS

B Dean GL 1B 96 350 83 7 ... 0.657
Y Arbelo SB 1B 134 461 114 31 ... 0.877

Player Team POS G AB H HR ... OPS

J Colina WS 2B 59 216 66 3 ... 0.832
B Friday LYN SS 85 341 98 2 ... 0.752

(a) WebTable Example 1: Baseball player statistics tables with
identical, rich schemas (including Player, Team, POS, G, AB,
H, HR, OPS, etc.). These tables represent the same entity type
(player season stats) and are highly unionable, but were not
labeled as such in the ground truth.

Query: csvData10025189.csv
Candidate: csvData20099586.csv

Player Team POS AVG G AB R ... OPS

A Ramirez MIL 3B 0.285 133 494 47 ... 0.757
E Chavez ARI 3B 0.246 44 69 6 ... 0.795

Player Team POS AVG G AB R ... OPS

L Castillo NYM 2B 0.245 87 298 46 ... 0.660
R Durham MIL 2B 0.289 128 370 64 ... 0.813

(b) WebTable Example 2: More baseball player statistics tables
with identical schemas, clearly unionable but not labeled as
such.

Figure 5: Examples of LB-WEBTABLE Ground Truth
Incompleteness.

Source: OpenData (Canada)
Query: CAN_CSV0000000000000659.csv
Candidate: CAN_CSV0000000000000562.csv
REF_DATE GEO Age group Sex ... VALUE

2003 Canada Total, 12 years and over Both sexes ... 20723896.0
2003 Canada Total, 12 years and over Both sexes ... 20632799.0

REF_DATE GEO Age group Sex ... VALUE

2003 Canada Total, 12 years and over Both sexes ... 26567928.0
2003 Canada Total, 12 years and over Both sexes ... 26567928.0

(a) OpenData Example 1: Canadian health survey tables shar-
ing key demographic columns (REF_DATE, GEO, Age group,
Sex) for the same population. This pair represents unionable
statistics about that population but was not labeled as union-
able in the ground truth.

Source: OpenData (Canada)
Query: CAN_CSV0000000000000686.csv
Candidate: CAN_CSV0000000000005304.csv
Sex Type of work Hourly wages UOM UOM_ID ... VALUE

Both Both full- and
part...

Total employees,
all wages

Persons 249 ... 10921.0

Males Both full- and
part...

Total employees,
all wages

Persons 249 ... 5645.4

Sex Type of work Weekly wages UOM UOM_ID ... VALUE

Both Both full- and
part...

Total employees,
all wages

Persons 249 ... 11364.5

Males Both full- and
part...

Total employees,
all wages

Persons 249 ... 5954.5

(b) OpenData Example 2: Canadian employment statistics.
The query table (data related to ’Hourly wages’) and candidate
table (data related to ’Weekly wages’) share key dimensions
like Sex, Type of work, and UOM. The cell values within their
respective ’Hourly wages’/’Weekly wages’ columns (e.g., ’To-
tal employees, all wages’) describe similar employee groups.
This pair, differing mainly in wage aggregation period (hourly
vs. weekly) and slightly in REF_DATE format (YYYY vs
YYYY-MM), is potentially unionable for comprehensive wage
analysis but was not labeled as such in the ground truth.

Figure 6: Examples of LB-OPENDATA Ground Truth
Incompleteness.

the prompt detailed below. Crucially, the original
table names were not included in the prompt. This
decision was made to avoid potentially biasing the
LLM by providing explicit hints about the table’s
topic beforehand, thereby ensuring the adjudica-
tion relies solely on the semantic and structural
information present in the table content itself.

The prompt utilizes few-shot learning, incorpo-
rating hand-selected positive and negative exam-
ples of unionability from the UGEN benchmarks
themselves to guide the LLM’s judgment (these
examples are represented by a placeholder in the
verbatim prompt below for brevity). The prompt
defines the LLM’s role, outlines core principles for
assessing conceptual coherence and semantic col-
umn alignment, and specifies the required output
format.

The complete prompt structure provided to the
LLM adjudicator is shown below:
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You are an experienced data curator evaluating
if two database tables can be meaningfully
combined vertically (unioned). The goal of
unioning is to create a single, larger
dataset containing the same kind of
information or describing the same type of
entity/event.

Your task is to determine if TABLE 1 and TABLE
2 are conceptually compatible enough for a
union operation.

CORE PRINCIPLES FOR UNIONABILITY:

1. Conceptual Coherence: Do both tables
fundamentally describe the same type of
entity (e.g., customers, products, logs) or
record the same type of event (e.g., sales,
website visits)? Appending rows from one
table to the other should result in a
dataset that makes logical sense.

2. Meaningful Column Alignment: There must be a
reasonable set of columns across the two
tables that represent the same underlying
attributes or concepts.
* These columns can have DIFFERENT NAMES

(e.g., "Cust_ID" vs.
"ClientIdentifier").

* They can have DIFFERENT FORMATS (e.g.,
"2023-01-15" vs. "1/15/2023").

* They may have LITTLE TO NO OVERLAP in
actual data values.

* Focus on the semantic meaning of the
columns in the context of their
respective tables.

3. Sufficient Column Matching: The alignment
shouldn't rely on just one incidental or
minor column. There should be enough
matching among key columns to confidently
conclude that the tables represent the same
underlying information. More aligned
columns representing core attributes
increase confidence.

4. Distinction from Joins: We are NOT looking
for keys to join tables horizontally. We
are assessing if they can be stacked
vertically.

[EXAMPLES OF UNIONABILITY/NON-UNIONABILTY:]
(Hand-selected positive/negative examples from

\textsc{Ugen} benchmark were inserted here
in the actual prompt)

YOUR TASK:

Examine the following two tables based on the
principles and examples above:

TABLE 1:
<Query Table Data (Serialized)>

TABLE 2:
<Candidate Table Data (Serialized)>

PROVIDE YOUR ANSWER IN THE FOLLOWING FORMAT:

1. First line: `UNIONABLE: Yes` or `UNIONABLE:

No`
2. Second line: `EXPLANATION:` followed by a

brief justification focusing on the
conceptual coherence and the sufficiency of
semantic column alignment. Explain why they
are or are not the same kind of data.

D.2 Example LLM Outputs
Below are illustrative examples of the outputs gen-
erated by the LLM adjudicator based on the prompt
above for some table pairs showcased in Appendix
C.1.

Example 1: Archeology_2LWSQ5A2.csv vs.
Archeology_3ML53C0M.csv (UGEN-V1)
UNIONABLE: Yes
EXPLANATION: Both tables describe archeological

artifacts and their attributes (discovery
location, item type, date, culture,
material, etc.). They represent the same
kind of data - records of archeological
findings. Unioning them would create a
consolidated dataset of such findings.
There is strong semantic alignment across
almost all columns, even though the column
order differs.

Example 2: Anthropology_FGTNBDWF.csv vs.
Anthropology_N30U114M.csv (UGEN-V1)
UNIONABLE: No
EXPLANATION: TABLE 1 categorizes

anthropological concepts based on
dimensions like 'Age', 'Culture', 'Arena',
'Domain', 'Meaning', 'Origin', and
'Activity'. TABLE 2, on the other hand,
lists categories such as 'Artifact',
'Language', 'Technology', 'Education', and
'Society' as columns. While both tables are
related to Anthropology, they represent
different perspectives and categorizations
within the field. There is insufficient
semantic overlap in the columns to suggest
they describe the same type of entity or
event. Unioning them would likely result in
a table that is not conceptually coherent,
as the rows from each table represent
different kinds of anthropological
classifications.
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Abstract
Tables can be represented either as text or as
images. Previous works on table question an-
swering (TQA) typically rely on only one rep-
resentation, neglecting the potential benefits
of combining both. In this work, we explore
integrating textual and visual table representa-
tions using multi-modal large language mod-
els (MLLMs) for TQA. Specifically, we pro-
pose RITT, a retrieval-assisted framework that
first identifies the most relevant part of a table
for a given question, then dynamically selects
the optimal table representations based on the
question type. Experiments demonstrate that
our framework significantly outperforms the
baseline MLLMs by an average of 13 Exact
Match and surpasses two text-only state-of-the-
art TQA methods on four TQA benchmarks,
highlighting the benefits of leveraging both tex-
tual and visual table representations.

1 Introduction

Previous approaches in table question answering
(TQA) represent tables as either textual sequences
(Herzig et al., 2020; Jiang et al., 2022; Zhang et al.,
2023a) or as images (Zheng et al., 2024; Deng et al.,
2024a), and process them by large language mod-
els (LLMs) or multi-modal large language models
(MLLMs) accordingly. However, in real-life sce-
narios, tables often exist in both forms (e.g., HTML
tables), or one form can be easily converted to the
other via optical character recognition (OCR) or
HTML rendering. This leads to increased interest
in approaches that leverage both visual and textual
table representations (Deng et al., 2024b; Liu et al.,
2025; Zhou et al., 2025).

Current approaches using both representations
either fine-tune an existing MLLM using prefer-
ence data collected by prompting MLLMs with dif-
ferent table representations of a TQA problem (Liu
et al., 2025), or leverage instance-level features
(e.g., table size) to determine the best representa-
tion for an MLLM to process (Zhou et al., 2025).

Name | Type | Abilities 
   Bulbasaur | Grass | Overgrow
   Charmander | Fire | Blaze
   Squirtle | Water | Rain Dish 

MLLM

LLM

image-only

text-only

image+text

Figure 1: Three current approaches for representing and
processing tables. Our framework RITT uses both table
images and texts.

The former requires careful data collection and
training (Feng et al., 2024), while the latter strug-
gles to effectively handle large tables due to the
inherent limitations of current MLLMs (Li et al.,
2023; Zhou et al., 2025).

This work builds upon the latter approach, fo-
cusing on designing a training-free framework that
can be easily applied across different datasets. We
adopt the core idea proposed in FRES (Zhou et al.,
2025) to select the most suitable table representa-
tion of a TQA problem based on its question type.
Questions are classified as either retrieval ques-
tions, which only require locating information to
be solved, or reasoning questions, which require
both retrieval and reasoning.

However, unlike FRES, we introduce a novel a
sub-table retriever that selects the most relevant
part of a table to reduce input size. The module pro-
duces relevant table texts and images, which can
be combined with the original full table and passed
to an MLLM for reasoning. To determine the op-
timal representation combinations for an MLLM,
we extend the analysis from Zhou et al. (2025) to
explore combinatorial scenarios, such as pairing
retrieved table images with original textual rep-
resentations and vice versa. Our results indicate

86



that combining textual and visual representations
yields the best performance for reasoning questions,
while textual representation alone is sufficient for
retrieval questions.

Based on these findings, we propose RITT, a
training-free Retrieval-assisted framework lever-
aging Image and Text representations of Tables.
It comprises four modules: a sub-table retriever,
a question classifier, a table reformatter, and an
MLLM reasoner. Experimental results show that
RITT outperforms baseline MLLMs by an average
of 13 exact match (EM) points, and surpasses two
state-of-the-art text-only TQA systems, demonstrat-
ing the clear benefits of leveraging both table rep-
resentations. Lastly, we provide an ablation study
highlighting the contribution of each component.

2 Related Work

Sub-table Retrieval. Both LLMs and MLLMs
have been shown to struggle with large tables (Lin
et al., 2023; Wang et al., 2024a). To address this
issue, prior work either fine-tunes smaller retriever
models using annotated gold sub-tables (Lin et al.,
2023; Lee et al., 2024), or utilizes LLMs as retriev-
ers via in-context learning (Chen et al., 2024; Li
et al., 2024b; Ye et al., 2023). In this work, we
propose an LLM-based sub-table retriever. Unlike
existing approaches that rely solely on semantic
matching between headers and cells (Chen et al.,
2024; Li et al., 2024b), our method further narrows
down relevant cells by explicitly formulating and
executing filtering logic. In contrast to methods
that directly output relevant row indices using an
LLM (Ye et al., 2023), our retriever ensures faith-
ful generation using code execution for relevant
content filtering.

Table Representations for TQA. Most prior
work processes tables as texts (Zhang et al., 2023a;
Wang et al., 2024c) or as images (Zheng et al.,
2024). Liu et al. (2025) fine-tune an existing
MLLM using preference data collected by prompt-
ing an MLLM with different table representations.
Zhou et al. (2025) propose a rule-based framework
FRES to select the best table representation for an
MLLM. They obtain the rules by comparing dif-
ferent representations under varying scenarios con-
trolled by table size and question type. Their find-
ings indicate that different representations perform
differently under varying conditions. For instance,
passing large tables in textual format to LLMs can
lead to better performance than passing large tables

in images to MLLMs. Though the textual format is
more robust than the visual format when handling
larger tables, it still faces challenges with large ta-
bles. In this work, we propose a sub-table retriever
to mitigate the impact of table size on representa-
tion selection. Moreover, we extend existing anal-
yses to cover combinatorial cases where retrieved
sub-tables are combined with original tables.

3 Framework

Figure 2 shows an overview of our proposed system
RITT. It contains four parts: a sub-table retriever
that filters for the most relevant cells, a question
classifier to determine a question type, a table re-
formatter to reformat a retrieved sub-table based
on question type, and a table reasoner MLLM to
output an answer to a given TQA problem.

3.1 Sub-table Retrieval

We define a table T as a set of headers H ,
values V , and a schema function S that maps
values to their corresponding headers. H can
be further represented as {∅, {ht1, . . . , htm}} ∪
{∅, {hl1, . . . , hln}}, where ht and hl stands for
top and left headers, respectively, and m and n
represent the number of columns and rows, respec-
tively. We use ∅ to denote the absence of a header.
For instance, the table in Figure 2 features only
top headers. As a result, H can be represented as
{“Country”, “Result”, “Year”, “Score”}. The task
of sub-table retrieval involves locating relevant top
headers, htr, relevant left headers hlr, and a set of
cell values Vr indexed by those headers. As shown
in the yellow box in Figure 2, an LLM takes in a
TQA problem and can perform two tasks: header
prediction and question parsing. Header prediction
requires an LLM to predict the most relevant head-
ers given a problem. Prompts for header prediction
are shown in Figure 4. For a table that features both
ht and hl, we directly aggregate cells indexed by
predicted headers as a sub-table.

However, when either ht or hl is missing,1 sim-
ply filtering based on available headers may still
yield overly large sub-tables. To address this is-
sue, we additionally ask the LLM to parse a ques-
tion into filtering conditions in natural language (A
prompt is shown in Figure 5). The same LLM then
translates these conditions into executable Python
code (A prompt is shown in Figure 6), which is run

1It is more common to have missing hl, e.g., relational
tables, than missing ht.
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Q: How many countries 
won after Spain when
it scored 33 ?

Table Reasoner (MLLM)reasoning Q

Country Result Year Score

Spain win 1988 33

France loss 1992 16

Germany win 1993 42

… … …

Country Result Year Score

Germany win 1993 42

… … … …

Find the row that Spain 
scored 33 and filter for rows 
below it with winning results

def filter 
…parse Q

+ heuristic headers: 

[“Country”, “Score”]

Sub-table retriever

coding

predict headersLLM
[“Score”, 
“Result”]

merge headers

[“Score”, “Result”, 
“Country”]

LLM

exec

+ heuristic rows:
Spain win 1988 33

select column

Country Result Score
Spain win 33

Germany win 42
… … …

Question Classifier

+Answer in table?
Require comparison?

Table Reformatter

T→(img, txt) if reasoning Q
T→ txt if retrieval Q

AnswerLLM

Figure 2: Given a table and question pair, a sub-table retriever outputs relevant cells. A question classifier is applied
to distinguish retrieval and reasoning questions. Based on the question type, a table reformatter prepares an input
table for a table reasoner, which outputs a final answer based on relevant cells and a question.

via a Python interpreter to further filter a table. If
the code execution fails, we revert to the original ta-
ble. Finally, we filter a retrieved sub-table based on
relevant headers predicted by the LLM previously
to produce a final sub-table.

To ensure the retrieved sub-table preserves es-
sential information to solve a question, we also
apply a heuristic: we include rows and columns
that contain tokens in the question (referred to as
heuristic rows/columns). For example, as shown
in Figure 2, the heuristic headers “Country” and
“Score” and heuristic rows mentioning “Spain” and
“33” are added back to the final sub-table.

3.2 Question Classifier & Table Reformatter
Given a retrieved sub-table in textual format, the
next step is to determine which table representa-
tions to pass to the table reasoner. Motivated by
previous findings that MLLMs with table images
manifest stronger reasoning abilities (Zhou et al.,
2025), we consider determining table representa-
tions based on question type. Following Zhou et al.
(2025), we classify questions into two categories:
retrieval and reasoning. Retrieval questions are
those whose answers can be directly located verba-
tim in the table cells, whereas reasoning questions
require additional inference, involving numerical,
temporal, or commonsense reasoning.

To investigate the effectiveness of table repre-
sentations with different question types, we use
the dataset provided by Zhou et al. (2025), which
contains 1,600 instances from six common TQA
datasets: WTQ (Pasupat and Liang, 2015), TabFact
(Chen et al., 2020), HiTab (Cheng et al., 2022),
CRT (Zhang et al., 2023b), TabMWP (Lu et al.,
2022), and TempTabTQA (Gupta et al., 2023), with
800 instances for each question type. We examine
multiple methods of passing retrieved sub-tables to
the table reasoner: rc: passing only relevant head-
ers in a prompt. rt: passing only relevant cells in

40

50

60

70

Retrieve

E
M

20

25

30

Reasoning

rc ri rt ri+t rt+i rt+ri

Figure 3: Comparing the effectiveness of different meth-
ods under varying question types. rc stands for passing
relevant headers in a prompt. ri and rt represent passing
only relevant table images and texts, respectively. ri+t
stands for passing relevant cells as images and a full
table as text. rt+i refers to passing relevant cells as texts
and passing the original table as images. Lastly, rt+ti
refers to passing both relevant cells as texts and images.
We employ the Exact Match (EM) metric.

a prompt. ri: passing relevant cells converted into
image format. rt+ri: passing relevant cells in both
text and image formats. Since providing only rele-
vant cells may result in information loss, we also
explore combining relevant cells with the original
table: ri+t: passing relevant cells as images and the
original table as text. rt+i: passing relevant cells
as text and the original table as an image.

We evaluate these methods using six open-
weight MLLMs as in Zhou et al. (2025): Qwen-2-
VL-7b (Wang et al., 2024b), Pixtral-12b (Agrawal
et al., 2024), Phi-3.5-vision-instruct-4b (Abdin
et al., 2024), LLaVA-Next-7b (Li et al., 2024a),
GLM-4v-9b (Zeng et al., 2024), and InternVL2-
8b.2 Exact Match is used for evaluation, which
checks if a predicted answer and a ground truth are
the same. To obtain relevant cells, we apply the
method proposed in Section 3.1 on the evaluation
dataset, with Qwen-2-72b as the backbone LLM.

2https://internvl.github.io/blog/
2024-07-02-InternVL-2.0/
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As Figure 3 shows, different question types ben-
efit from different representations. For reasoning
questions, passing relevant cells simultaneously as
texts and images (rt+ri) to MLLMs achieves the
best performance. In contrast, table text represen-
tation suffices when a question is of type retrieval.
The observations align with findings in (Zhou et al.,
2025). We do not observe a clear advantage from
combining relevant table information with the orig-
inal table information. We suspect this might be
because adding the original table information back
increases the input size. Detailed results for each
MLLM are reported in Appendix A.3. Based on
these observations, our table reformatter encodes
sub-tables as both images and texts when a ques-
tion is of type reasoning. Otherwise, only table
texts are passed to the final reasoner. We adopt
the question type classifier proposed by Zhou et al.
(2024), which combines rule-based heuristics and
an LLM. Details are represented in Appendix A.2.

4 Experiments

Datasets. We evaluate RITT with the test sets
of three aforementioned TQA benchmarks used
during our analysis in Section 3.2: WTQ, TabFact
(small test), and HiTab. We also include one addi-
tional dataset, WikiSQL (Zhong et al., 2017), that
has not been used in our analysis to test the gener-
alizability of our method.

Models and Baselines. Our framework con-
tains an MLLM table reasoner and an LLM re-
triever/classifier.3 For MLLMs, we choose the
best performing MLLM from our previous anal-
ysis: Pixtral-12b (see A.3 for individual model’s
performance) as well as a fine-tuned MLLM for
TQA: TableLlaVA-7b (Zheng et al., 2024). We
use Qwen-2-72b as the LLM backbone in our
framework. As baselines, we choose the backbone
MLLM without applying RITT. In addition, we
compare RITT with two SoTA frameworks that use
only table text representations: TableRAG (Chen
et al., 2024) and GraphOTTER (Li et al., 2024b).
Both frameworks involve relevant cell retrieval
and are inference-based methods utilizing LLMs.
For fair comparisons, we replace the LLM back-
bones used in previous work and this work with an

3The retriever/classifier can be replaced by the MLLM
reasoner. We do not find big performance differences between
an LLM and an MLLM of the same size and series.

Systems WTQ TabFact HiTab WiKiSQL

Pixtral-12b 52.5 75.9 62.2 60.1
+RITT 54.4 (+1.9) 76.8 (+0.9) 68.0 (+5.8) 62.7 (+2.6)
TableLlaVA-7b 17.2 60.9 16.3 29.5
+RITT 39.7(+22.5) 64.5 (+3.6) 61.8 (+45.5) 52.0 (+22.5)

Qwen2-VL-72b 62.6 86.7 73.4 77.6
+RITT 63.4 86.0 76.4 78.0
TableRAG 60.8 79.3 65.3 77.9
GraphOTTER 59.4 81.8 71.6 75.6

Table 1: Model performances on four TQA benchmarks.
The first four rows show the results of direct inference
with MLLMs and applying our framework. The last
four rows compare the performance of our framework
with two SoTA systems using the same model.

MLLM (Qwen-2-VL-72b).4 As a result, all com-
pared frameworks use the same backbone model.

5 Results and Discussions

Results. Table 1 shows the results averaged
across three runs. The top section of the table com-
pares direct inference using the backbone MLLMs
against the same models enhanced by RITT. The
bottom section compares our method to two state-
of-the-art frameworks (TableRAG and GraphOT-
TER) using the same underlying backbone model.
Applying RITT consistently improves performance,
with notable gains on the HiTab dataset, achieving
increases of 5.8 and 45.5 EM points for Pixtral-
12b and TableLLaVA-7b, respectively. Differences
in improvement can be attributed to the capabili-
ties of the base models: Pixtral-12b generally ex-
hibits stronger multi-modal reasoning capabilities
than TableLlaVA and can handle longer inputs,
resulting in smaller performance improvements.
Moreover, our framework consistently outperforms
both TableRAG and GraphOTTER across all four
datasets. When using a larger MLLM model
(Qwen-2-72b), we still observe improvements in
three out of four datasets, though these improve-
ments are relatively smaller compared to those ob-
served with smaller models. We hypothesize this
is because larger models inherently have stronger
capabilities in handling longer and more complex
table-question instances, leaving less room for im-
provement from additional retrieval steps.

Ablation. We conduct an ablation study to an-
alyze the contribution of each component. We
present results categorized by table size to under-
stand how each component performs on tables of

4We do not find a significant performance difference when
switching from a text-only model to a multi-modal model.
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System 0-50 50-100 100-200 >200
#Instances 187 413 466 518

MLLM 74.3 63.7 61.6 57.3
+ st +4.1 +1.6 +2.9 +7.5

+ st+tr +3.8 +2.9 +4.3 +10.3
+ st+tr (oracle) +4.3 +3.1 +5.1 +11.7

Table 2: Ablation study of our framework on HiTab
using Pixtral-12b. st stands for sub-table retriever, and tr
stands for table reformatter. tr (oracle) refers to passing
the oracle question type obtained from the dataset.

varying sizes. When ablating the table reformat-
ter, retrieved sub-tables are passed to an MLLM as
both images and texts. We pass the oracle question
types obtained from the dataset annotation to in-
vestigate the effectiveness of the question classifier.
Table 2 shows results on the HiTab dataset, chosen
as it exhibits the largest performance gains using
RITT. We observe that both the sub-table retriever
and table reformatter contribute to the overall per-
formance. The sub-table retriever demonstrates
greater performance enhancement compared to the
table reformatter. Additionally, we note that overall
system performance tends to decline as the table
size increases, aligning with previous findings (Lin
et al., 2023). Interestingly, the benefit provided by
the sub-table retriever becomes more pronounced
on larger tables, highlighting its effectiveness in
handling large tables.

Effectiveness of Sub-table Retriever. We com-
pare our proposed sub-table retriever with two cur-
rent state-of-the-art LLM-based retrievers (intro-
duced in Section 4) on 800 instances from the
HiTab evaluation subset described in Section 3.2.
We chose this dataset as it provides manual annota-
tions of relevant table cells required to answer each
question. The results are shown in Table 3. Our
proposed sub-table retriever achieves the highest
F1 score among the three methods, demonstrating
its effectiveness in accurately identifying relevant
table cells. Nevertheless, the high recall and rela-
tively large average number of cells (8.65 compared
to the gold standard of 5.34) indicate that our sub-
table retriever identified irrelevant cells with regard
to answering a question.

Error Analysis. We randomly sample 100 in-
stances on which applying RITT with Pixtral-12b
fails, with each investigated dataset 25 instances,
and perform an error analysis. For each instance,
we manually check (1) whether a retrieved sub-

Methods Precision Recall F1 # Cells

GraphOTTER 47.4 51.1 46.8 4.56
TableRAG 17.6 40.3 22.7 13.8

RITT 41.0 92.6 51.2 8.65

Table 3: Comparing our sub-table retriever with two
state-of-the-art sub-table retrievers.#Cells shows the av-
erage number of identified relevant cells. For gold rele-
vant cells, the number is 5.34.

table contains the relevant information needed to
answer a question, and (2) whether the question
type is predicted correctly. We find that for ap-
proximately 23% of instances, the retrieved sub-
tables do not contain the information needed to
answer questions, leading to information loss. In
contrast, only 7% of instances are predicted with
wrong question types, suggesting the task is rel-
atively easy. We observe that in the majority of
cases, the relevant information is present in the
retrieved sub-tables, and the question type is cor-
rectly identified. However, Pixtral-12b still fails to
provide the correct answer. This might be because
the retrieved sub-tables are still large, due to code
execution errors during row filtering. The failure af-
fects instances with reasoning questions more than
retrieval questions, given that both table images
and table texts are passed when a question is of
type reasoning. An example is provided in Figure
7. Our analysis suggests that future work should fo-
cus on developing methods that reduce table sizes
effectively without losing necessary information.

6 Conclusions

In this paper, we explored leveraging both tex-
tual and visual table representations using MLLMs
for TQA. To handle the challenges of large table
inputs and representation selection, we proposed
RITT, a retrieval-assisted framework that retrieves
the most relevant sub-table, classifies the question
type, and dynamically determines the optimal rep-
resentations to an MLLM reasoner based on the
question type. Extensive experiments on four TQA
benchmarks demonstrated the advantages of our
framework over baseline MLLMs as well as frame-
works utilizing only textual representations. Abla-
tion studies further confirmed the effectiveness of
each proposed component. Our findings highlight
the benefits and promising potential of integrating
both table representations for TQA.
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Limitation

We explore utilizing both textual and visual table
representations. Nevertheless, the underlying as-
sumption that table images and table texts both ex-
ist and can be easily converted might not hold for
every case. For instance, converting large table im-
ages to texts using OCR tools can suffer from infor-
mation loss. We leave these for further exploration.
Secondly, due to a limited number of existing large
MLLMs, we specifically focus on evaluating and
designing methods for small MLLMs. Last but
not least, RITT is a pipeline method, consisting of
several components. As a result, it requires longer
inference time than end-to-end systems.
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A Appendix

A.1 Prompts

We present prompts used in sub-table retriever in
Figure 4, 5 and 6.

A.2 Datasets

Question Type Classification. We use the ques-
tion type classifier proposed in Zhou et al. (2024):
a rule-based method is applied first. If an answer is
not in a table, a question is classified as a reasoning
question. If a question contains comparative terms
(detected using NLTK), the question is classified
into a reasoning question. Next, an LLM takes in
a question and table and returns a predicted ques-
tion type. We replace the LlaMA-2-13b used in
the original paper with Qwen-2-72b for its better
general capabilities but keep the prompt the same.

Dataset Licenses WTQ (Pasupat and Liang,
2015), TabFact (Chen et al., 2020), HiTab (Cheng
et al., 2022) and WikiSQL (Zhong et al., 2017),
they are under the license of CC-BY-SA-4.05,
MIT, BSD-3 CLAUSE6 and C-UDA7 respectively.

5https://creativecommons.org/licenses/by-sa/4.
0/

6https://opensource.org/license/bsd-3-clause
7https://github.com/microsoft/HiTab?tab=

License-1-ov-file

A.3 MLLMs
Table 4 shows performances of individual MLLMs
on the evaluation set. We find that Pixtral 12b per-
forms the best among all evaluated small models.
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Header prediction prompt for hierarchical tables:
Your task is to find out the relevant headers based on the question. 
Return the answer in json format: {'top_header':[(relevant top header tuple),...], 'left_header':[(relevant 
left header tuple),...]}
Below is an example:
top header: [('club',),('season',),('league','division'),('league','apps'),('league', 'goals'), ('total','apps'), 
('total','goals')]
left header: [('Gillingham',),('Stevenage',),('Bristol City',)]
question: How many goals did this player score in total for Bristol City and Stevenage in League One?
answer: {'top_header':[('club,'), ('league', 'division'), ('league','goals'), ('total', 'goals')], 
'left_header':[('Stevenage',),('Bristol City',)]}
now find out the relevant headers for the following instance:
top header: {top_header} 
left header: {left_header} 
question: {question}
answer:

 
Header prediction prompt for flat tables:
Your task is to find out the relevant headers to answer the question. 
Return the answer in list format: ["relevant_header_a", "relevant_header_b",...] and nothing else.
Below is an example:
table: | country | result | year | score |
Example Row 1: | Spain | win | 2000 | 33 |
Example Row 2: | Germany | win | 2001 | 17 |
question: What is the next country to win after Germany?
Answer: ["country", "result", "year"]
now find the relevant headers for the following instance: 
table: {table} 
question: {question}

Figure 4: Prompts for header selection.

Model QT rc rt+i rt ri+t ri rt+ri

Qwen2 7b Retrieve 50.7 57.2 81.2 79.8 75.9 79.7
Reasoning 24.4 29.1 37.0 35.8 38.2 42.0

Pixtral 12b Retrieve 57.1 77.9 76.5 71.4 68.4 72.7
Reasoning 32.2 40.1 39.7 41.1 39.9 41.6

Phi-3.5 4b Retrieve 52.8 71.9 77.4 74.9 69.8 76.1
Reasoning 17.4 28.3 28.2 27.3 24.7 30.9

LlaVA 7b Retrieve 10.8 48.3 68.5 51.9 49.3 67.7
Reasoning 3.85 12.0 20.4 12.9 9.9 23.2

GLM-4 9b Retrieve 22.8 26.8 33.0 22.1 22.3 23.5
Reasoning 10.5 12.2 12.6 11.1 13.3 13.9

Intern-8b Retrieve 29.8 71.1 72.4 73.2 63.1 68.9
Reasoning 18.3 37.7 40.2 34.7 34.1 39.5

Average Retrieve 37.3 58.8 68.1 62.2 58.1 64.7
Reasoning 17.7 26.5 29.6 27.2 26.6 31.8

Table 4: Exact Match of different MLLMs. QT stands for question type. rc refer to passing relevant column names
in a prompt. ri and rt represent passing only relevant table images and texts, respectively. ri+t stands for passing
relevant cells as images and full table as texts. rt+i refers to passing relevant cells as texts and passing original table
as images. rt+ti refers to passing both relevant cells as texts and images. We employ the Exact Match (EM) metric.
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Prompt for generating filtering conditions:

You are skilled at translating questions into filtering conditions and adhering to instructions. Your task is 
to convert a question into a dictionary containing filtering conditions and relevant columns. The 
dictionary should be structured as: {"general filtering statement: specific instructions for filtering":[list 
of relevant headers]}. Adhere strictly to this format. Use only words from the table's header when listing 
relevant columns. Only a portion of the table is shown for data type reference. Do not provide an answer 
to the question. Examples are provided below for clarity:

Example 1:
Table Header: | country | result | year |
Example Row 1: | Spain | win | 2000 |
Example Row 2: | Germany | win | 2001 |
Question: How many times did Spain win after 2001?
Answer: The question requires filtering for occurrences where Spain won after 2001. This involves 
checking rows where "country" is "Spain", "result" is "win", and "year" is after 2001. Relevant columns 
are ["country", "result", "year"]. Hence, the dictionary is: {"filter for rows where Spain won after 2001: 
find rows where country is Spain, result is win, and year is after 2001":["country", "result", "year"]}

Example 2:
Table Header: | country | result | year |
Example Row 1: | Spain | win | 2000 |
Example Row 2: | Germany | win | 2001 |
Question: What is the next country to win after Germany?
Answer: This question seeks the next winning country after Germany. It requires identifying when 
Germany won, then filtering for rows where "year" is greater than that year and "result" is "win". Relevant 
columns are ["country", "result", "year"]. The dictionary is: {"filter for rows where a win occurred after 
Germany: first identify the year Germany won, then find rows where year is later and result is 
win":["country", "result", "year"]}

Example 3:
Table Header: | team | scores |
Example Row 1: | Navi | 3 |
Example Row 2: | Spirit | 5 |
Question: What is the total score for Navis and G2?
Answer: This question asks for the total score of Navi and G2, requiring filters for rows where the team is 
either 'Navi' or 'G2'. Relevant column is ["team"]. The dictionary is: {"filter for rows where team is either 
Navis or G2: find rows where team is either Navi or G2":["team"]}

Now, based on the given table and question, compose the filtering conditions:
Table: {table}
Question: {question}
Answer: 

Figure 5: Prompts for generating filtering conditions.
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Prompt for code parsing:

Your task is to write a function 'filtering' to filter out irrelevant rows from a dataframe object, based on a 
given condition.
The given condition might not match the values or datatype in the dataframe. Therefore, you will 
have to translate the given condition into the dataframe operatable Python code or converting the data 
(type) in the dataframe. Return the filtered df in the variable 'df_filtered'
Below is an example:

df = pd.DataFrame.from_dict({{'country':['Spain', 'Germany', 'France', 'Norway'], 'year':['2000', '2001', 
'2002','1998']}})
condition = 'filter for rows that won after Germany: first find the year Germany won. Then filter for rows 
where year is later than the year Germany won’

answer: The condition selects rows where the 'year' should be larger than (after) the year when Germany 
won. We have to first find out when Germany won, and then filtering for rows that satisfy the condition. 
The corresponding Python code is:

```
def filtering(df):
# convert data type
  df['year'].astype('int64')

# find out the year when Germany won
  germany_won_year = df[df['country']=='Germany]['year'].tolist()[0]

# filter the table for rows that won after Germany won year 
  df_filtered = df[df['year']>germany_won_year]

return df_filtered
```

Now please think carefully and write Python code to select relevant rows for the following dataframe 
based on the condition.
df = pd.DataFrame.from_dict({df_dict})
condition = {cond}
answer:

Figure 6: Prompts for code generation.
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Question: What is the value Others% when the value Others# is greater than 147 and the value
Kerry% is 39.6%?

Question type: reasoning

County Kerry% Kerry# Bush% Bush# Others% Others#

Adams 52.1% 5,447 46.8% 4,890 1.1% 119

…remaining 32 rows not shown…

Sheboygan 44.1% 27,608 55.0% 34,458 0.9% 559

Kerry% Kerry# Others% Others#

52.1% 5,447 1.1% 119

…remaining 32 rows not shown…

44.1% 27,608 0.9% 559

Original table

Sub-table

Pixtral (12b)
image + text

Predicted answer: 1.3% 

Gold answer: 1.1%

Figure 7: An error case of large sub-tables.
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Abstract
Human evaluation in NLP has high cost and
expertise requirements, and instruction-tuned
LLMs are increasingly seen as a viable al-
ternative. Reported correlations with human
judgements vary across evaluation contexts and
prompt types, and it is hard currently to predict
if an LLM-as-judge metric will work equally
well for new evaluation contexts and prompts,
unless human evaluations are also carried out
for comparison. Addressing two main factors
contributing to this uncertainty, model suitabil-
ity and prompt engineering, in the work re-
ported in this focused contribution, we test
four LLMs and different ways of combining
them, in conjunction with a standard approach
to prompt formulation, namely using written-
for-human instructions verbatim. We meta-
evaluate performance against human evalua-
tions on two data-to-text tasks, and eight eval-
uation measures, also comparing against more
conventional LLM prompt formulations. We
find that the best LLM (combination)s are ex-
cellent predictors of mean human judgements,
and are particularly good at content-related
evaluation (in contrast to form-related criteria
such as Fluency). Moreover, the best LLMs
correlate far more strongly with human evalua-
tions than individual human judges across all
scenarios.

1 Introduction
Human evaluation remains the most reliable
method for system evaluation in NLP (van Mil-
tenburg et al., 2023b), but its high cost, required
expertise, and methodological inconsistencies limit
its scalability and reliability (Thomson et al., 2024).
The emergence of large language models (Tou-
vron et al., 2023; Chaplot, 2023; Cohere, 2024;
Yang et al., 2025) has caused a paradigm shift in
text generation and understanding across many do-
mains (Ouyang et al., 2022; Kojima et al., 2022).
LLMs are exhibiting state-of-the-art performance
in problem-solving and reasoning tasks (Mizrahi

et al., 2024; Zhang et al., 2024b). LLMs also hold
out the appealing vision of cheaper human-like
evaluation, demonstrating adaptability and general-
isation capabilities (Li et al., 2024). While individ-
ual human judges are subject to inter-rater variabil-
ity and require multiple annotators for reliability,
LLMs may provide more consistent judgements
when resources are constrained. ‘LLM-as-Judge’
approaches do address some of the issues with hu-
man evaluation, such as cost and evaluator inconsis-
tency, but their reliability when applied to new tasks
needs to be demonstrated via correlation tests with
human judgements. In the experiments presented
in this paper, we investigate the alignment between
human and LLM judgements across a range of cri-
teria for two NLP data-to-text tasks. To standardise
prompt formulation, we use the same instructions
as those provided in human evaluations, and com-
pare them with more conventional LLM prompts,
in conjunction with single models and model com-
binations of both varying and comparable sizes.

2 Related work
LLM-as-judge has been shown to be an effective
approach for assessing a wide range of individual
tasks (Liusie et al., 2024). Like other automatic
evaluation methods, LLM-as-judge approaches are
typically meta-evaluated against human judgement
scores, and increasingly on emerging benchmarks,
such as HumEval (Chen et al., 2021), SummEval
(Fabbri et al., 2021), and MQM (Freitag et al.,
2021), used in conjunction with specific evaluation
frameworks (Fu et al., 2023; Liu et al., 2023; Liusie
et al., 2024, inter alia), or simply with prompts and
instructions tailored to the task (Zhang et al., 2024a;
Jain et al., 2023; Lin and Chen, 2023; Murugadoss
et al., 2025).

In contrast to previous work, we conduct our
LLM-as-judge experiments using verbatim human
evaluation instructions as a way of standardising
prompt formulation. Furthermore, we investigate
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LLM-as-judge performance in this setting, compar-
ing with more standard LLM prompt formulations,
in meta-evaluation against human judgements on
data-to-text tasks.

3 Datasets and Quality Criteria
3.1 WebNLG 2020

WebNLG 2020 is a data-to-text dataset that aligns
sets of RDF triples (subject, predicate, object) with
text. The English dataset has 1,779 input triple sets
in the test set. For the human evaluation, 10% of the
test dataset (178 items) was sampled and evaluated
on outputs from each team’s primary submission
(14 submission systems + 3 baseline systems). We
use the verbatim criteria from Castro Ferreira et
al. (2020) which were rated on a scale of 0–100:

Data Coverage: Does the output text include
descriptions of all predicates presented in the data?

Relevance: Does the output text describe only
such predicates (with related subjects and objects),
which are found in the data?

Correctness: When describing predicates which
are found in the data, does the text mention correct
the objects and adequately introduces the subject
for this specific predicate?

Text Structure: Is the text grammatical, well-
structured, written in acceptable English?

Fluency: Is it possible to say that the text pro-
gresses naturally, forms a coherent whole and it is
easy to understand the text?

3.2 ROTOWIRE
ROTOWIRE (Wiseman et al., 2017) is a widely
used data-to-text benchmark which contains NBA
basketball game statistics and textual summaries
for them (∼ 5k instances). The ReproNLP 2023
shared task (Belz and Thomson, 2023) carried out
two reproductions (Arvan and Parde, 2023; van
Miltenburg et al., 2023a) of the human evaluation
in Puduppully and Lapata (2021) which uses this
dataset. In the human evaluation, five systems were
evaluated on 200 instances per criterion. There are
three ratings per item and the participants rank the
summaries as either an ‘A’ or a ‘B’. Here too we
use the original definitions of the three criteria:

Grammaticality: Is the summary written in
well-formed English?

Coherence: Is the summary well structured and
well organized and does it have a natural ordering
of the facts?

Repetition: Does the summary avoid unneces-
sary repetition including whole sentences, facts or

phrases?

4 LLM-as-Judge Meta-evaluations
4.1 WebNLG’20 LLM-as-judge experiments
In the original WebNLG 2020 evaluation, each
paired RDF triple set and system output was evalu-
ated by three human evaluators. We obtain individ-
ual scores with each of the following three LLMs,
then compute the mean of the three scores from
different model and prompt combinations:

• JH : LLM judgements using as the prompt the
verbatim instructions from the original human
evaluation in WebNLG 2020.

• JC+D: LLM judgements using as the prompt
conventional minimal zero-shot LLM prompts
also incorporating the verbatim evaluation cri-
terion definitions.

• JC−D: Same as JC+D minus the definitions.
• H: For comparison, we also test single human

judgements from WebNLG’20 as predictors.

We use the following models (details Appendix C):

• Llama3-8B-Instruct (Touvron et al., 2023)

• Mistral-7B-Instruct-v0.2 (Chaplot, 2023)

• C4AI Command R+ (Cohere, 2024)

4.2 Rotowire LLM-as-judge experiments
In the original ROTOWIRE evaluation, system sum-
maries were evaluated by three human evaluators.
We obtain individual ratings with each of our three
LLMs, then compute the majority vote of the three
ratings. In this context, we use just the for-human
instructions as in the original human evaluation.
We test the correlations between the following
LLM (combination)s and human judgements:

• H1 and H2: Two sets of human judgements
obtained from two reproductions of Pudup-
pully and Lapata (2021).

• JHV
: Majority vote of LLM judgements by

models of varying sizes (7B, 8B, 104B) and
using the same human instructions (same mod-
els as in the WebNLG 2020 tests).

• JHC
: Majority vote of LLM judgements on

models of comparable sizes (two 7Bs and one
8B) and using the same human instructions.
These are Llama3-8B-Instruct, Mistral-7B-
Instruct-v0.2 and Qwen2.5-7B-Instruct-1M.

We use the same models as for WebNLG in the
JHV

tests, and replace the Cohere model with
Qwen2.5-7B-Instruct-1M. (Yang et al., 2025)
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Correctness Data Coverage Fluency Relevance Text Structure
H JH JC+D JC−D H JH JC+D JC−D H JH JC+D JC−D H JH JC+D JC−D H JH JC+D JC−D

AAI 93.53 97.62 97.04 95.16 94.39 96.29 97.37 91.21 90.29 95.58 94.59 90.67 95.20 99.57 97.69 92.89 92.95 97.19 95.40 88.47
F17 90.14 97.13 97.88 94.54 92.07 94.67 97.72 90.56 80.94 95.11 94.70 90.29 92.59 99.62 98.25 92.15 85.74 97.14 95.41 87.45
F20 92.31 97.78 97.99 95.47 93.42 96.32 97.96 91.49 82.6 95.76 95.09 91.19 94.31 99.97 98.28 93.19 87.89 97.31 95.58 88.53
bt5 93.58 96.57 95.71 94.33 93.84 95.54 96.23 90.69 88.69 94.66 93.75 90.23 95.22 99.68 97.29 92.26 91.91 97.29 95.04 87.73
cuni 91.59 95.63 95.30 95.06 93.29 94.71 96.19 91.51 87.64 94.18 92.94 90.84 94.56 99.67 96.92 93.03 90.75 97.2 94.42 88.48
CGT 89.85 94.56 96.17 94.35 91.23 93.86 97.02 90.63 84.82 92.83 93.21 90.07 93.37 99.40 98.27 92.28 87.88 96.98 94.91 87.48
D-SGU 92.49 96.12 95.44 93.66 95.32 95.08 96.27 90.05 78.59 93.31 90.92 88.61 94.86 99.8 97.28 91.46 83.50 96.52 92.38 86.33
FB-AI 92.70 97.35 97.31 95.18 93.17 96.30 97.50 91.25 90.84 95.87 94.98 90.86 93.9 99.88 98.06 92.90 93.09 97.51 95.67 88.48
H_Lab 80.76 85.82 88.54 90.48 84.74 86.93 92.52 88.24 75.21 82.78 83.92 85.24 85.27 96.11 94.55 88.59 80.22 92.16 88.16 82.86
NILC 76.70 77.64 81.75 88.34 81.61 79.28 86.64 84.58 74.85 77.17 78.93 82.82 83.52 91.87 90.56 84.74 80.46 88.62 86.88 80.98
NUIG 92.05 96.06 95.49 95.02 92.06 95.18 96.53 91.41 88.90 94.68 93.83 90.61 94.06 99.14 97.31 92.85 91.59 97.35 95.06 88.23
O-NLG 74.98 74.29 77.35 85.00 79.96 77.68 82.68 83.94 75.68 73.12 74.83 79.90 79.89 88.03 86.74 81.65 80.46 85.14 84.43 78.71
OSU 93.41 96.57 95.78 95.16 95.12 95.48 96.67 91.14 90.07 95.50 93.83 90.72 94.62 99.31 97.38 93.04 92.44 97.41 95.10 88.65
RALI 92.13 97.54 96.52 94.56 95.20 96.20 96.69 90.82 77.76 94.86 92.53 89.83 94.81 99.74 97.52 92.48 81.84 97.07 94.12 87.46
TGEN 88.63 95.64 95.02 96.29 88.18 94.62 95.55 92.64 86.16 94.43 92.83 91.28 92.64 99.46 96.99 94.14 89.04 97.31 94.42 89.01
UPC 74.37 79.59 83.86 89.27 75.85 81.59 89.06 87.61 72.28 77.63 79.57 84.00 82.05 94.66 93.68 87.68 78.50 88.82 86.46 81.77
W-REF 94.15 97.59 97.64 95.01 95.44 95.99 97.71 91.02 89.85 95.54 95.38 90.67 94.39 99.80 98.35 92.96 92.11 97.28 95.83 88.16
Avg 88.43 92.56 93.22 93.35 90.29 92.10 94.72 89.93 83.25 90.77 90.34 88.7 91.49 97.98 96.18 91.08 87.08 95.19 92.90 86.4

Table 1: System-level average scores for each quality criterion by WebNLG’20 human judges (H), average
over Llama3-8B-Instruct/Mistral-7B-Instruct-v0.2/Command R+ prompted with full human instructions (JH );
conventional zero-shot prompt with (JC+D) and without definitions (JC−D). System names (rows) with length > 4
letters are shortened by concatenating the first letter or first two letters with the last two/three letters.

Single
Human
Judges
Avg

Human Instructions as prompt
mean of 3 scores by:

Zero-shot + original definitions
mean of 3 scores by:

Zero-shot - original definitions
mean of 3 scores by:

Mistral Llama CRplus
Mistral+
Llama+
CRplus

Mistral Llama CRplus
Mistral+
Llama+
CRplus

Mistral Llama CRplus
Mistral+
Llama+
CRplus

Correctness 0.69 0.93 0.94 0.99 0.97 0.72 0.93 0.98 0.95 0.90 0.25 0.98 0.92
Data Coverage 0.68 0.89 0.86 0.96 0.93 0.62 0.84 0.96 0.88 0.77 0.21 0.93 0.79
Fluency 0.68 0.67 0.75 0.81 0.78 0.48 0.84 0.81 0.80 0.74 0.68 0.79 0.79
Relevance 0.69 0.85 0.90 0.98 0.94 0.67 0.93 0.96 0.91 0.93 0.66 0.96 0.93
Text Structure 0.69 0.49 0.70 0.79 0.76 0.16 0.79 0.87 0.83 0.79 0.74 0.79 0.82

Table 2: Pearson’s correlations with the aggregated WebNLG’20 human scores, achieved by single human judges
and different LLMs.

4.3 Common details

We execute the above prompts as zero-shot infer-
ence prompts on the above LLMs. Moreover, we
run the experiments with three different seeds (42;
1738; 1,234), meaning each score in tables below
is the average of the outputs from the different seed
runs. All experiments use English data.

5 Results and Analysis

5.1 Mean scores

Table 1 presents the system-level average scores
per evaluation criterion for WebNLG. We observe
that human evaluators and LLM judges generally
agree with each other, with AAI, F17, F20, OSU,
and W-REF often emerging as top performers and,
O-NLG and UPC consistently rated lower by both
human and LLM judges across multiple criteria.

Moreover, the averages of system-level scores
(last row) by LLMs are higher than those by hu-
mans in all cases except three averages produced by
the zero-shot prompt without definitions (JC−D).

Table 3 presents the system-level average scores
per evaluation criterion for the two Rotowire hu-
man evaluations (H1, H2), and the two types of
majority vote, one with a much larger model in
the mix (JHV

), and one with similar sized mod-
els (JHC

). Human and LLM judges agree on the
high performance of the Gold system, although H1

uniquely favours the Template system. Addition-
ally, while JHV

and JHC
yield similar evaluations

for top-performing systems, JHC
tends to assign

slightly higher scores for lower-performing sys-
tems (e.g., Template) in Coherence and Repetition.

5.2 Correlations with human judgements

Table 2 reports the correlations with the original
WebNLG’20 human judgements achieved by: (i)
individual human judges on average, (ii) each of
the LLM model (combination)s. Strikingly, indi-
vidual human judges have far lower agreement with
the mean of the other judges (on the same outputs)
than the LLMs. Another clear result is that the
different models are affected very differently by
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Coherence Repetition Grammaticality
H1 H2 JHV JHC H1 H2 JHV JHC H1 H2 JHV JHC

Gold 49.79 56.25 70.00 70.00 49.16 52.92 70.83 73.75 54.62 57.08 70.83 64.58
Template 62.76 40.00 18.75 24.58 72.15 47.08 22.92 26.25 58.58 38.33 32.08 42.08
ED+CC 42.50 46.25 42.08 41.67 36.97 47.50 44.17 41.67 40.17 45.83 37.50 40.42
Hier 44.77 54.58 60.42 56.67 42.62 50.42 56.25 51.67 45.19 54.58 52.92 49.17
Macro 50.21 52.92 58.75 57.08 49.15 52.08 55.83 56.67 51.48 54.17 56.67 53.75

Table 3: System-level average scores for each quality criterion by two sets of Rotowire human judges (H1, H2),
average majority vote by varying-size models Llama3-8B-Instruct/Mistral-7B-Instruct-v0.2/Command R+ (JHV

),
and average majority vote by Llama3-8B-Instruct/Mistral-7B-Instruct-v0.2/Qwen2.5-7B-Instruct-1M (JHC

).

H1 H2 JHV JHC

Coherence
H1 1.000 -0.585 -0.626 -0.548
H2 -0.585 1.000 0.992 0.982
JHV -0.626 0.992 1.000 0.993
JHC -0.548 0.982 0.993 1.000

Grammaticality
H1 1.000 -0.185 0.134 0.358
H2 -0.185 1.000 0.931 0.814
JHV 0.134 0.931 1.000 0.969
JHC 0.358 0.814 0.969 1.000

Repetition
H1 1.000 -0.279 -0.620 -0.482
H2 -0.279 1.000 0.899 0.936
JHV -0.620 0.899 1.000 0.981
JHC -0.482 0.936 0.981 1.000

Table 4: Pearson’s correlation matrix for Rotowire /
Coherence, Grammaticality & Repetition.

differences in prompts: all perform broadly simi-
larly with the verbatim human instructions; Mis-
tral scores collapse when human instructions are
removed and definitions are retained, but recover
when the definitions are also removed; and Llama
scores are unaffected by the removal of human in-
structions, but collapse when the definitions are
also removed. The Command R+ models does best
with the human instructions, but largely retains its
performance under the other two conditions.

Table 4 shows the complete correlation matrices
between the two sets of Rotowire human judges and
the two majority-voting combinations of LLMs, for
each of the three evaluation criteria. Here, the most
striking result is the stark discrepancy between the
two sets of human judges: H1 has a medium strong
negative correlation with both H2 and the LLMs for
Coherence, weak or no correlation for Grammat-
icality, and weak or medium negative correlation
for Repetition. In contrast H2 and LLM combina-
tions all agree strongly with each other. H1 and H2

also produced different reproducibility assessments
compared to the original evaluation by Puduppully
and Lapata (2021), as reported in the ReproNLP

2023 shared task report (Belz and Thomson, 2023).
In this situation, where one set of human eval-

uations disagrees with another, we have no basis
for deciding which of the two gives a truer picture:
either H2 is right or H1 is right, but they can’t both
be right. In this situation, a new role emerges for
LLMs: as sanity checkers when human evaluations
disagree. We discuss this further in the next sec-
tion, and in a forthcoming paper (Huidrom and
Belz, 2025).

6 Discussion and Conclusion

We have presented results for experiments with
LLM-as-judge approaches for two types of data-
to-text tasks and eight evaluation methods, using
as a way of standardised prompt formulations the
verbatim human instructions from previous evalua-
tions. These were shown to work better than more
conventional prompt formulations in all scenarios,
irrespective of task or the length of input/output.

An unexpected discovery was that LLMs can
serve as sanity checkers for human evaluations.
The ReproNLP shared task organisers had no basis
for deciding which of two reproductions of Pudup-
pully and Lapata (2021) they reported was right:
either Repro 1 (H2 in this paper) was right and
the work had excellent reproducibility, or Repro 2
(H1) was right and it had terrible reproducibility.
Because both of our LLM majority votes strongly
agreed with Repro 1 and strongly disagreed with
Repro 2, the indication is that Repro 1 (H2) gave
the better results out of the two reproductions.

Overall, we have found our best LLMs to be
highly reliable predictors of human evaluations,
and to benefit from human-type detailed evalua-
tion instructions. The result that individual hu-
man judges correlate far less well with overall hu-
man judgements than LLMs do, implies that if the
choice is between a small number of human judges
and an LLM you are better off using the LLM.
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Limitations
The experiments conducted showed promising
alignment between human and LLM evaluations.
Our evaluation covered only a limited set of models
and tasks, so our findings are confined to those.

Ethics Statement
As a paper that meta-evaluates existing human eval-
uation tasks using the same and custom instruc-
tions, the risk associated with this study was mini-
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A WebNLG 2020 Dataset

The WebNLG+ 2020 Challenge focused on (i) map-
ping RDF triples to generate English or Russian
texts (generation) and (ii) converting English or
Russian texts into RDF triples (semantic parsing).
Our work addresses the generation task for En-
glish. The English WebNLG 2020 dataset (version
3.0) comprises 13,211/1,667/1,779 triple sets in the
train, dev, and test splits, respectively, with triple
sizes ranging from one to seven and 19 DBpedia
categories, three of which are unseen in the training
set. The challenge involved 15 teams submitting
48 system runs, with 14 teams focusing on English
data and six on Russian data.

For the human evaluation, 10% of the test dataset
was sampled (178 samples) and evaluated on each
team’s primary system submission. (Castro Fer-
reira et al., 2020) recruited 109 annotators via Ama-
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zon Mechanical Turk, providing them with instruc-
tions (criteria on a 0–100 slider scale), RDF triples,
and system outputs. Each sample received three
annotations.

B ROTOWIRE Dataset

The ReproHum initiative (Belz et al., 2021, 2022,
2023; Balloccu et al., 2024) curated two reproduc-
tions (Arvan and Parde, 2023; van Miltenburg et al.,
2023a), of the human evaluation in Puduppully and
Lapata (2021) which uses the ROTOWIRE dataset.
Five systems were evaluated over three criteria on
200 instances per criteria. In total, there are 600
instances across all criteria. There are three rat-
ings per item and the participants can only respond
using the characters ‘A’ or ‘B’ to indicate their
preference over the summaries. There were a total
of 216 participants in the first reproductions and
262 participants in the second reproductions. The
original study does not provide raw human evalua-
tion scores, which is why we used the reproduced
scores for comparison in our work.

C Models Used

Below are the models we used in our experi-
ments; they were selected for being open-source,
instruction-tuned LLMs with high ratings on Hug-
ging Face.

• Llama3-8B-Instruct:1 Meta’s Llama 3 series
model in the smaller 8B parameter size is pre-
trained, instruction-tuned, but also optimised
for dialogue-based applications.

• Mistral-7B-Instruct-v0.2:2 Mistral-7B-
Instruct is a language model designed
to follow instructions, generate creative
text, and handle requests, fine-tuned from
Mistral-7B-v0.2 using a diverse range of
public conversation datasets.

• C4AI Command R+:3 Cohere’s open-weights
research release of a 104B parameter model; a
multilingual model evaluated in 10 languages
for performance, and optimised for a variety
of tasks including reasoning, summarization,
and question answering.

1https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

2https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

3https://huggingface.co/CohereForAI/
c4ai-command-r-plus-4bit

• Qwen2.5-7B-Instruct-1M:4 Alibaba’s Qwen
series model in the smaller 7B parameter
size is fine-tuned, instruction-tuned and is op-
timised to handle long-context tasks while
maintaining its capability in short tasks.

D Experiment Setup

We briefly outline the experimental setup used in
all of our experiments in this section. We use three
large language models for our experiments: Meta-
Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.2 and
c4ai-command-r-plus-4bit. For hyperparameters,
we set temperature to 0.001, maximum length to
1024 for WebNLG’20 & 128 for ROTOWIRE and
top p to 1. The choice of our hyperparameters is to
produce near-deterministic outputs while preserv-
ing subtle probabilistic distinctions in the model’s
token preferences. We quantise the models to 4-bit
and use one rtxa6000/a100 GPU for the execution
of our experiments. The cumulative GPU time re-
quired for our experiments was a little over 150
GPU hours.

E Experimental Grid

For WebNLG 2020: {English}x{Llama3-8B-
Instruct, Mistral-7B-Instruct-v0.2, command-
r-plus-4bit}x{zero-shot}x{seeds: 42, 1738,
1234}x{Evaluator(s) set-up: one LLM as one
evaluator on (a) same instructions as the human
evaluation, (b) custom minimal zero-shot prompt
with original definitions included, (c) custom
minimal zero-shot prompt without original
definitions included}.
For ROTOWIRE: {English}x{Llama3-8B-Instruct,
Mistral-7B-Instruct-v0.2, command-r-plus-4bit,
Qwen2.5-7B-Instruct-1M}x{zero-shot}x{seeds:
42, 1738, 1234}x{Evaluator(s) set-up: one LLM
as one evaluator on same instructions as the human
evaluation across (a) models of varying sizes, (b)
models of comparable sizes}.

F Prompts

We present the prompt used in our experiments in
this section. In particular, we outline the general in-
struction used for all LLMs, we present the prompt
template for each LLM. All of this can be found in
Tables 5–7.

4https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct-1M
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G Use of AI Assistants for Writing

We use AI Assistants to sanity check our writing.
Grammarly was used for grammar checking, Quill-
Bot (mostly) and ChatGPT (sometimes) were used
for rephrasing.
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Common Template for All Prompts for JH

{task_desc} Please (i) follow the instructions, (ii) be honest and fair in your judgements, (iii) try to be as
correct as possible in your conclusions. For example, the text would generally get a score higher
than 0 for Correctness if at least some objects in it are introduced correctly. Similarly, the text
would not be rated with 100 for Correctness if at least one object is not introduced correctly.

{task_instr} Task Instructions: You are given a piece of data and a text that describes data. Below you will
find statements that relate to the text. Please rate each of these statements by moving the slider
along the scale where 0 stands for ’I do not agree’, and 100 stands for ’I fully agree’.

{data} DATA:
{desc} DESCRIPTION:
{statement} How well do you agree with the following statements?
{datacoverage_criteria} Data Coverage: The text contains all predicates from the data and does not miss any predicates

shown in the data.
{relevance_criteria} Relevance: The text contains only known/relevant predicates, which are found in the data. The

text does not contain any unknown/irrelevant/unrecognizable predicates.
{correctness_criteria} Correctness: When describing information about relevant predicates (those which are in both data

and text), the text depicts them with correct/proper objects. Also, the text correctly introduces
the subject.

{textstr_criteria} Text Structure: The text is written in good English, i.e., it is free from grammatical errors and
well-structured.

{fluency_criteria Fluency: The text sounds logically correct and forms a coherent whole. There are no parts of the
text you would change to make it sound better. The text forms a nice narrative.

{feedback} Write your feedback in the field below if you have any (not necessary):
Llama3-8B-Instruct Prompt

Special tokens {llama3_bos}: ⟨|begin_of_text|⟩ ; {llama3_eos}: ⟨|end_of_text|⟩ ; {llama3_sot}: {{;
{llama3_eot}: }}

Template {llama3_bos}
{llama3_sot}{task_description}{task_instruction}{data}{triples}
{description}{verb}
{statement}{datacoverage}{relevance}{correctness}
{textstructure}{fluency}{feedback}
{llama3_eot}{llama3_eos}
Data Coverage:
Relevance:
Correctness:
Text Structure:
Fluency:

Mistral-7B-Instruct-v0.2 Prompt
Special tokens {mistral_bos}: ⟨s⟩ ; {mistral_eos}: ⟨/s⟩ ; {mistral_sot}: [INST] ; {mistral_eot}: [/INST]
Template {mistral_bos}{mistral_sot}

{task_description}{task_instruction}{data}{triples}
{description}{verb}
{statement}{datacoverage}{relevance}{correctness}
{textstructure}{fluency}{feedback}{mistral_eot}{mistral_eos}
Data Coverage:
Relevance:
Correctness:
Text Structure:
Fluency:

Command-r-plus-4bit Prompt
Special tokens {commandrplus_instruction}: ## Instructions\n; {commandrplus_input}: ## Input\n;

{commandrplus_output}: ## Output\n; {commandrplus_criterion}: ## Criterion\n
Template {commandrplus_instruction}{task_description}

{task_instruction}{commandrplus_input}{data}{triples}
{commandrplus_output}{description}{verb}{commandrplus_criterion}
{statement}{datacoverage}{relevance}{correctness}
{textstructure}{fluency}{feedback}Output:
Data Coverage:
Relevance:
Correctness:
Text Structure:
Fluency:

Table 5: Human Evaluation Guidelines from WebNLG 2020 given to the LLMs.
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Common Template for All Prompts for JC+D & JC−D

{our_task_desc} You are an evaluator. Please read the instructions carefully and provide your judgements honestly
and accurately.

{zs_minimal} Rate the following input triple(s) and text that describes the input triple(s) on a scale from 0 to
100 based on the following criteria:

{input_triples} Input Triple(s):
{text} Text:
{datacoverage_criteria} Data Coverage: The text contains all predicates from the data and does not miss any predicates

shown in the data.
{relevance_criteria} Relevance: The text contains only known/relevant predicates, which are found in the data. The

text does not contain any unknown/irrelevant/unrecognizable predicates.
{correctness_criteria} Correctness: When describing information about relevant predicates (those which are in both data

and text), the text depicts them with correct/proper objects. Also, the text correctly introduces
the subject.

{textstr_criteria} Text Structure: The text is written in good English, i.e., it is free from grammatical errors and
well-structured.

{fluency_criteria Fluency: The text sounds logically correct and forms a coherent whole. There are no parts of the
text you would change to make it sound better. The text forms a nice narrative.

Llama3-8B-Instruct Prompt
Special tokens {llama3_bos}: ⟨|begin_of_text|⟩ ; {llama3_eos}: ⟨|end_of_text|⟩ ; {llama3_sot}: {{;

{llama3_eot}: }}
Template {llama3_bos}

{llama3_sot}{our_task_desc}{zs_minimal}
{datacoverage}{relevance}{correctness}{textstructure}{fluency}
{input_triples}{triples}
{text}{verb}{llama3_eot}{llama3_eos}
Output:
Data Coverage:
Relevance:
Correctness:
Text Structure:
Fluency:

Mistral-7B-Instruct-v0.2 Prompt
Special tokens {mistral_bos}: ⟨s⟩ ; {mistral_eos}: ⟨/s⟩ ; {mistral_sot}: [INST] ; {mistral_eot}: [/INST]
Template {mistral_bos}{mistral_sot}{our_task_desc}{zs_minimal}

{datacoverage}{relevance}{correctness}{textstructure}{fluency}
{input_triples}{triples}
{text}{verb}{mistral_eot}{mistral_eos}
Output:
Data Coverage:
Relevance:
Correctness:
Text Structure:
Fluency:

Command-r-plus-4bit Prompt
Special tokens {commandrplus_instruction}: ## Instructions\n; {commandrplus_criterion}: ##

Criterion\n {commandrplus_input}: ## Input\n; {commandrplus_output}: ## Output\n
Template {commandrplus_instruction}{our_task_desc}{zs_minimal}

{commandrplus_criterion}{datacoverage}{relevance}{correctness}{textstructure}
{fluency}
{commandrplus_input}{input_triples}{triples}
{commandrplus_output}{text}{verb}
Output:
Data Coverage:
Relevance:
Correctness:
Text Structure:
Fluency:

Table 6: Custom zero-shot instructions given to the LLMs.
{datacoverage}{relevance}{correctness}{textstructure}{fluency} is used only for instructions with definitions.
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Common Template for All Prompts for JHV & JHC

{summaries} Summaries
{sys_summaries} System Summaries
{A} A:
{B} B:
{rank_criteria} Ranking Criteria
{Criteria} Coherence or Grammaticality or Repetition
{answer} Answers
{best} Best:
{worst} Worst:
{analysis} Analysis

System-level Prompt
{gen_instr_rotowire} You are a native speaker of English or a near-native speaker who can comfortably comprehend

summary of NBA basketball games written in English.
{task_head_rotowire} Evaluate Sports Summaries of (NBA) basketball games.
{task_instr_rotowire} Your task is to read two short texts which have been produced by different automatic systems.

These systems typically take a large table as input which contains statistics of a basketball game
and produce a document which summarizes the table in natural langauge (e.g., talks about what
happened in the game, who scored, who won and so on). Please read the two summaries carefully
and judge how good each is according to the following criterion:

{task_desc_rotowire} This task contains validation instances (for which answers are known) that will be used for an
automatic quality assessment of submissions. Therefore, please read the summaries carefully.

System Prompt: {gen_instr_rotowire}
{task_head_rotowire}
{task_instr_rotowire}
{task_desc_rotowire}

Llama3-8B-Instruct Prompt
Special tokens {llama3_bos}: ⟨|begin_of_text|⟩ ; {llama3_eos}: ⟨|end_of_text|⟩ ; {llama3_sot}: {{;

{llama3_eot}: }}
Template {llama3_bos}{llama3_sot}{summaries}{sys_summaries}{A}{a}

{B}{b}
{rank_criteria}{Criteria}{answer}{best}
{worst}
{analysis}{llama3_eot}{llama3_eos}

Mistral-7B-Instruct-v0.2 Prompt
Special tokens {mistral_bos}: ⟨s⟩ ; {mistral_eos}: ⟨/s⟩ ; {mistral_sot}: [INST] ; {mistral_eot}: [/INST]
Template {mistral_bos}{summaries}{sys_summaries}{A}{a}

{B}{b}
{rank_criteria}{Criteria}{answer}{best}
{worst}
{analysis}{mistral_eot}{mistral_eos}

Command-r-plus-4bit Prompt
Special tokens {commandrplus_instruction}: ## Instructions\n; {commandrplus_criterion}: ##

Criterion\n {commandrplus_input}: ## Input\n; {commandrplus_output}: ## Output\n
Template {commandrplus_instruction}{summaries}{sys_summaries}

{commandrplus_input}{A}{a}
{B}{b}
{commandrplus_criterion}{rank_criteria}{Criteria}
{commandrplus_output}{answer}{best}
{worst}
{analysis}
Output:
Best:
Worst:

Qwen2.5-7B-Instruct-1M Prompt
Special tokens -
Template {summaries}{sys_summaries}{A}{a}

{B}{b}
{rank_criteria}{Criteria}{answer}{best}
{worst}
{analysis}
Output:
Best:
Worst:

Table 7: Human Evaluation Guidelines from Puduppully and Lapata (2021) given to the LLMs.

108



Proceedings of the 4th Table Representation Learning Workshop, pages 109–142
July 31, 2025 ©2025 Association for Computational Linguistics

Table Understanding and (Multimodal) LLMs:
A Cross-Domain Case Study on Scientific vs. Non-Scientific Data

Ekaterina Borisova1,2, Fabio Barth1, Nils Feldhus1,2,3,
Raia Abu Ahmad1,2, Malte Ostendorff4, Pedro Ortiz Suarez5,

Georg Rehm1,6, Sebastian Möller1,2

1Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI),
2Technische Universität Berlin, 3BIFOLD, 4Deutsche Telekom,
5Common Crawl Foundation, 6Humboldt-Universität zu Berlin

Corresponding author: ekaterina.borisova@dfki.de

Abstract

Tables are among the most widely used tools
for representing structured data in research,
business, medicine, and education. Although
LLMs demonstrate strong performance in
downstream tasks, their efficiency in process-
ing tabular data remains underexplored. In
this paper, we investigate the effectiveness of
both text-based and multimodal LLMs on ta-
ble understanding tasks through a cross-domain
and cross-modality evaluation. Specifically, we
compare their performance on tables from sci-
entific vs. non-scientific contexts and examine
their robustness on tables represented as im-
ages vs. text. Additionally, we conduct an in-
terpretability analysis to measure context usage
and input relevance. We also introduce the
TableEval benchmark, comprising 3017 tables
from scholarly publications, Wikipedia, and fi-
nancial reports, where each table is provided
in five different formats: Image, Dictionary,
HTML, XML, and LATEX. Our findings indicate
that while LLMs maintain robustness across ta-
ble modalities, they face significant challenges
when processing scientific tables.

1 Introduction

Tables are one of the most ubiquitous tools for pre-
senting data in a structured or semi-structured man-
ner. They are commonly represented in a variety of
textual (e. g., HTML, LATEX, XML) or image for-
mats (e. g., PNG, JPEG) and used across domains
such as finance, medicine, and business, as well as
in research and education.

In recent years, there has been a growing interest
in table understanding (TU) techniques (Zhang and
Balog, 2020; Gorishniy et al., 2021; Sahakyan et al.,
2021; Borisov et al., 2022; Sui et al., 2024; Deng
et al., 2024), aiming to extract and interpret infor-
mation and knowledge contained in tables for tasks
such as question answering (QA) and table-to-text

generation (T2T) (Nan et al., 2022; Cheng et al.,
2022; Osés Grijalba et al., 2024; Zheng et al., 2024).
While large language models (LLMs) demonstrate
strong performance in a wide range of applications
(Chang et al., 2024; Raiaan et al., 2024; Caffagni
et al., 2024; Zhang et al., 2024a; Team et al., 2024;
OpenAI et al., 2024), their ability to understand
(semi-)structured data remains under-researched
(Sui et al., 2024; Fang et al., 2024) – especially for
tables from scientific sources such as peer-reviewed
articles, conference proceedings, and pre-prints.1

There is also limited research on the impact of the
representation modality of structured data (i. e., im-
age vs. text) on model performance (Deng et al.,
2024; Zhang et al., 2024d), and to the best of our
knowledge, there are no approaches yet that specif-
ically address scientific tables. In particular, most
TU studies primarily focus on tables from non-
scientific contexts such as Wikipedia (Parikh et al.,
2020; Chen et al., 2021; Marzocchi et al., 2022;
Wu et al., 2024b; Pang et al., 2024). However, com-
pared to these domains, scientific tables often in-
clude technical terminology, complex concepts, ab-
breviations, and dense numerical values, requiring
domain-specific knowledge and strong arithmetic
reasoning skills (Ho et al., 2024; Moosavi et al.,
2021). Recent works (Yang et al., 2025; Wu et al.,
2024a) indicate that scientific tables present chal-
lenges to multimodal LLMs (MLLMs) and incorpo-
rating such (semi-)structured data into pretraining
improves performance. As the number of published
articles continues to increase rapidly (Fortunato
et al., 2018; Bornmann et al., 2021; Hong et al.,
2021), TU for scientific contexts, e. g., for schol-
arly document processing including information
extraction and research knowledge graph construc-
tion, is becoming even more relevant. Finally, we

1Throughout this paper, we refer to such tables as scientific
and to tables from other sources as non-scientific.
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Figure 1: Schematic representation of the main phases in our experiments: 1. Develop TableEval dataset, 2.
Evaluate each (M)LLM on individual data subsets from TableEval using various table representations (Image, LATEX,
XML, HTML, Dict), 3. Apply interpretability tools to the output yielding post-hoc feature attributions (e. g., using
gradient-based saliency) which signify the importance of each token with respect to the model’s output.

notice that interpretability analysis (Ferrando et al.,
2024) for TU has received little attention and re-
mains underexplored (Fang et al., 2024).

In this paper, we address the aforementioned
gaps by examining the efficiency of both LLMs
and MLLMs on a set of TU tasks. Specifically, we
compare their ability to handle (semi-)structured
data from scientific and non-scientific sources and
explore the effects of image vs. diverse text-based
table representations on model performance. We
also conduct feature importance analyses to inter-
pret the use of context information in LLMs. Fig-
ure 1 illustrates the main phases of our experiments.

Our contributions can be summarised as follows:

• We introduce TableEval, a cross-domain
benchmark containing 3017 tables from schol-
arly publications, Wikipedia, and financial
reports, available in image and four text
formats (Dictionary, HTML, XML, and
LATEX). The dataset is publicly available on
Hugging Face: https://huggingface.co/
datasets/katebor/TableEval

• We conduct an extensive evaluation revealing
that, although current (M)LLMs remain ro-
bust across table modalities, their performance
significantly declines on scientific tables com-
pared to non-scientific ones.

• We examine the applicability of gradient-
based explanations for LLMs (Sarti et al.,
2023) to TU to learn about the relevance of
table content in prompts.

2 TableEval benchmark

Since no existing dataset covers both scientific and
non-scientific tables across text and image modali-
ties, we construct a benchmark tailored to our evalu-
ation. This section outlines the collection processes
of data (§2.1) and diverse table formats (§2.2).

2.1 Source data
To study the cross-domain performance of
(M)LLMs, we developed the TableEval benchmark
by leveraging pre-existing datasets of scientific and
non-scientific tables. We collected relevant datasets
based on the following criteria: 1. data is open-ac-
cess; 2. test set with the gold labels is available;
3. metadata includes references to the sources of ta-
bles, such as DOIs for scholarly papers or URLs for
Wikipedia pages; 4. target tasks (e. g., QA, T2T) are
identical or very similar across datasets to maintain
consistency and ensure comparability; 5. tables can
be converted to the pre-defined formats (see §2.2).
The following five datasets were selected (see Ta-
ble 1): (a) ComTQA (Zhao et al., 2024), a vi-
sual QA (VQA) benchmark containing tables from
PubTables-1M (Smock et al., 2022) and FinTab-
Net (Zheng et al., 2020), originating from PubMed
Central2 (PMC) papers and annual earnings reports,
respectively. The annotations are generated using
Gemini Pro (Team et al., 2024) and include ques-
tions requiring multiple answers, calculations, and
logical reasoning. (b) numericNLG (Suadaa et al.,
2021), a dataset focusing on the T2T generation
task with numerical reasoning based on tables and

2https://pubmed.ncbi.nlm.nih.gov
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Dataset Task Source Image Dict LATEX HTML XML

Scientific tables

ComTQA (PubTables-1M) VQA PubMed Central  3 3 3 <
numericNLG T2T ACL Anthology <  3  3
SciGen T2T arXiv and ACL Anthology <  < 3 3

Non-scientific tables

ComTQA (FinTabNet) VQA Earnings reports of S&P 500 companies < 3 3 3 3
LogicNLG T2T Wikipedia 3  3 < 3
Logic2Text T2T Wikipedia 3  3 < 3

Table 1: Overview on the formats and collection methods for each dataset. Symbol  indicates formats already
available in the given corpus, while < and 3 denote formats extracted from the table source files (e. g., article PDF,
Wikipedia page) and generated from other formats in this study, respectively.

their textual descriptions extracted from ACL An-
thology3 articles and annotated by experts in the
Computer Science field. (c) SciGen (Moosavi et al.,
2021), a corpus designed for reasoning-aware T2T
generation, comprising tables from arXiv4 papers
across fields such as Computation and Language,
Machine Learning, Computer Science, Computa-
tional Geometry, etc. Its test set contains expert-an-
notated data. (d) LogicNLG (Chen et al., 2020a), a
T2T dataset of open-domain tables from Wikipedia
and associated with manually annotated natural lan-
guage statements that can be logically entailed by
the given data. (e) Logic2Text (Chen et al., 2020c),
features open-domain Wikipedia tables manually
annotated with descriptions of common logic types
and their underlying logical forms for the T2T task.
As shown in Table 1, the final TableEval corpus
contains six data subsets, covering two downstream
tasks (QA and T2T), and comprising 3017 tables
and 11312 instances in total (for the detailed statis-
tics see Table 4 in Appendix A). All annotations
are taken from the source datasets. Examples from
each dataset are provided in Appendix B.

2.2 Table formats

We represent tables from each TableEval subset as
PNG images and in structured or semi-structured
textual formats including HTML, XML, LATEX, and
Python Dictionary (Dict) to analyse LLMs’ per-
formance across different modalities. HTML is
chosen as it is the original format of Wikipedia ta-
bles, XML for its use in encoding tables from PMC
articles, LATEX as it is the primary format for scien-
tific tables, and Dict since it is readily available in
most source datasets. Instances of tables in various

3https://aclanthology.org
4https://arxiv.org

representation formats were obtained using one of
the following methods (see Table 1): 1. extraction
from the original dataset; 2. extraction from the
table source (e. g., article PDF); 3. generation from
other formats (e. g., HTML ⇔ XML). Note that
for the latter two, we manually validate the final
results for each format and data subset by check-
ing a random sample of about 100 instances. In
what follows, the way we assembled each table for-
mat in the TableEval corpus is described in detail.
Additional information is provided in Appendix C.

Image. Since the PubTables-1M subset of
ComTQA already includes JPGs of tables, we
simply convert them to PNGs. In contrast, other
datasets provide only textual representations of
tables. Thus, for numericNLG and SciGen, we
first collect PDF files of the arXiv and ACL pa-
pers, and then use the PDFFigure2.0 (Clark and
Divvala, 2016) tool to extract images of tables.5

Whenever PDFFigure2.0 fails to produce an image,
we utilise the MinerU tool (Wang et al., 2024) as
an alternative. Note that SciGen instances asso-
ciated with papers that are no longer open-access
or do not contain tables are excluded. In case of
FinTabNet, images of tables are extracted from the
corresponding PDF pages of financial reports us-
ing the gold annotations of the bounding boxes.
Finally, images of the Wikipedia tables in Logic-
NLG and Logic2Text are generated by converting
their HTML representations into PNG files with
the imgkit Python wrapper6. Distribution of image
aspect rations across data subsets is provided in
Figure 12 in Appendix D.

XML and HTML. PubTables-1M is the only
dataset where the original XML sources of tables

5In SciGen, some PDFs are taken from the ACL Anthology
as they are no longer available on arXiv.

6https://pypi.org/project/imgkit/
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can be obtained. To achieve this, we retrieve the
source papers based on their PMC ID using the
E-utilities API7 and extract the tables with the Ele-
mentTree parser8. When it comes to HTML, we are
unable to retrieve the original format since system-
atic downloading of article batches from the PMC
website is prohibited9. This is why we generate
HTML from XML using a custom Python script
instead. Similarly, for numericNLG, we convert
already available HTML into XML with a Python
script. For SciGen, we download the source LATEX
code of each paper from arXiv, use the LATEXML
tool10 to produce both XML and HTML, and ex-
tract tables from the resulting files. In contrast,
we construct HTML for FinTabNet tables by lever-
aging gold annotations of HTML structure which
provide tags and associated cell values. Afterwards,
the HTML code is converted to XML in the same
way as described for numericNLG. Finally, HTML
in LogicNLG and Logic2Text are collected from
the respective Wikipedia pages, while the XML
format is obtained using the same approach applied
to numericNLG and FinTabNet.

LATEX. For SciGen, we obtain the LATEX code
directly from the source files of the papers. In
contrast to arXiv data, no LATEX code is available
for PMC and ACL papers. Thus, we generate LATEX
for numericNLG and PubTables-1M tables from
their HTML representations. To ensure the validity
of the output, we compile the code and resolve any
errors encountered. The same approach is used to
obtain LATEX for Wikipedia and financial tables.

Dictionary. All datasets except ComTQA al-
ready include linearised tables represented as lists
of column headers and cell values, although the en-
coding conventions slightly vary across them (see
Appendix C). To align with these datasets, we col-
lect column headers, subheaders, and cell values for
the PMC subset in ComTQA by parsing the table
XML code with ElementTree. In case of FinTab-
Net, we extract these elements from a dataframe
representation of each table obtained during the
HTML collection phase. For the experiments, the
linearised tables are represented as a Dict contain-
ing lists of column headers, lists of subheaders (if
extracted), lists of rows, as well as title, caption,

7https://www.ncbi.nlm.nih.gov/home/develop/
api/

8https://docs.python.org/3/library/xml.etree.
elementtree.html#

9https://pmc.ncbi.nlm.nih.gov/about/copyright/
10https://math.nist.gov/~BMiller/LaTeXML/

and footnote (if available).

3 Experiments

We benchmark various (M)LLMs using individ-
ual data subsets and representations of tables from
TableEval. This is followed by an interpretability
analysis applied to the output yielding attributions
from a gradient-based method. In the following, we
first describe the experimental set up (§3.1), then
report and analyse the results (§3.2).

3.1 Experimental setup
Models. We evaluate both smaller and larger
models in terms of parameter size (3-14 billion),
see Table 2.11 We primarily focus on open-source
instruction-tuned (M)LLMs published on Hug-
ging Face12 (HF). The only closed-source model
we use is Gemini-2.0-Flash (Team et al., 2024),
which serves as our baseline, since Gemini is cur-
rently considered among the state-of-the-art. For
MLLMs, we select LLaVa-NeXT (Li et al., 2024),
Qwen2.5-VL (Bai et al., 2025), and Idefics3 (Lau-
rençon et al., 2024). As for text-based LLMs,
we evaluate Llama-3 (Grattafiori et al., 2024),
Qwen2.5 (Qwen et al., 2025), and Mistral-Nemo13.

Model HF checkpoint Size (B) Vision

Gemini-2.0-Flash – – Ë
LLaVa-NeXT llama3-llava-next-8b-hf 8 Ë

Qwen2.5-VL Qwen2.5-VL-3B-Instruct 3 Ë
Qwen2.5-VL-7B-Instruct 7 Ë

Idefics3 Idefics3-8B-Llama3 8 Ë
Llama-3 Llama-3.2-3B-Instruct 3 é

Qwen2.5 Qwen2.5-3B-Instruct 3 é
Qwen2.5-14B-Instruct 14 é

Mistral-Nemo Mistral-Nemo-Instruct-2407 12 é

Table 2: (M)LLMs used in the experiments (“Size” in-
dicates the number of parameters in billions).

Prompts and data. We run experiments on every
data subset from the TableEval corpus and develop
prompt templates that are customised to each task,
applying them uniformly across all models to en-
sure consistency during the evaluation. To study
the models’ true capability to understand various ta-
ble representations, we exclude explicit document
type indicators (e. g., HTML/XML headers) and
do not specify the format in the prompt. Addition-
ally, given the diversity of the (M)LLMs and the
fact that they may not always adhere to a specific

11Due to limited computational resources, we restricted the
evaluation to (M)LLMs with up to 14 billion parameters.

12https://huggingface.co
13https://mistral.ai/news/mistral-nemo
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Figure 2: BertScore.F1, MoverScore, ROUGE-L.F1, and METEOR for the table formats averaged over data subsets
and models (left), and for scientific vs. non-scientific domain averaged over data subsets, models, and formats
(right). Error bars indicate standard deviation.

output structure (which can hinder proper parsing
of the answer), we do not enforce a particular re-
sponse format. The prompt templates are provided
in Appendix E.

Evaluation metrics. We follow the scores re-
ported in the original papers for each data sub-
set. Thus, we compute BLEU-N (Papineni et al.,
2002), SacreBLEU (Post, 2018), METEOR (Baner-
jee and Lavie, 2005), ROUGE-N, ROUGE-L (Lin,
2004), MoverScore (Zhao et al., 2019), BertScore
(Zhang* et al., 2020), and BLEURT (Sellam et al.,
2020). Given the extensive set of metrics, we report
only BertScore.F1, MoverScore, ROUGE-L.F1,
and METEOR in the main text, while providing all
raw score values in Appendix F.

Interpretability analysis. Inseq (Sarti et al.,
2023) applies feature attribution methods to gener-
ative LLMs to highlight how important each token
in the input is for generating the next token with
the help of a heatmap. In our experimental setup,
we perform post-hoc analyses using the model out-
puts as custom attribution targets on an instance
level. Input x Gradient (Simonyan et al., 2014),
provided by Inseq, is selected as it is both com-
putationally efficient and more faithful than, e. g.,
attention weights. The saliency is averaged to pro-
duce a one-dimensional vector of token attributions,
which we visualise as a heatmap.

Implementation details. All experiments are
conducted in a zero-shot setting using the
(M)LLMs’ default hyperparameters with the seed
value set to 42. We choose the batch size equal
to 1 for all open-source (M)LLMs and to the size
of the given subset for Gemini-2.0-Flash. We use

Nvidia A100 (40GB, 80GB), H100 (80GB), H200
(141GB), and L40S (48GB) GPUs for the open-
source models depending on the given LLM and
TableEval subset size. The Gemini-2.0-Flash re-
sults are evaluated using the Batch API through the
LiteLLM framework14. We developed an end-to-
end evaluation pipeline15 for the experiments and
use HF transformers or LiteLLM and the datasets li-
brary to load the models and datasets, respectively.

3.2 Results and analysis

Image vs. text. Averaged score values across
models and data subsets for each table format are
given in Figure 2 (left), whereas raw results are
shown in Table 5 in Appendix F. The use of images
outperforms the use of text across all metrics by
approximately 1-13%. In particular, for ComTQA
and LogicNLG, image achieves the best results,
while for other data subsets the outcomes are ei-
ther similar or the text modality prevails (by about
1-10%), as shown in Figure 3 a) and Tables 6–11
in Appendix F. This aligns with previous studies
(Deng et al., 2024) reporting comparable or signifi-
cantly better performance of models on the vision
modality. Unlike prior works (Sui et al., 2024;
Singha et al., 2023; Deng et al., 2024), we do not
observe a large variation in results across LLMs
and the four text formats, with the maximum gap
equal to about 4%. Further analysis of the metrics
for individual models and formats also indicates
similar accuracy across the LLMs, see Figure 3 b)
and Tables 12–16 in Appendix F. Hence, our find-

14https://www.litellm.ai
15https://github.com/esborisova/

TableEval-Study

113

https://www.litellm.ai
https://github.com/esborisova/TableEval-Study
https://github.com/esborisova/TableEval-Study


Image XML HTML Dict LaTeX0.0

0.2

0.4

0.6

0.8

ComTQA (Fin)

Image XML HTML Dict LaTeX0.0

0.2

0.4

0.6

0.8

ComTQA (PMC)

Image LaTeX XML HTML Dict0.0

0.2

0.4

0.6

0.8

Logic2Text

Image LaTeX XML HTML Dict0.0

0.2

0.4

0.6

0.8

LogicNLG

LaTeX XML HTML Image Dict0.0

0.2

0.4

0.6

0.8
numericNLG

Dict Image HTML LaTeX XML0.0

0.2

0.4

0.6

0.8
SciGen

LaTeX Dict XML HTML0.0

0.2

0.4

0.6

0.8

Mistral-Nemo

Dict XML LaTeX HTML0.0

0.2

0.4

0.6

0.8

Qwen2.5-3B

Dict HTML XML LaTeX0.0

0.2

0.4

0.6

0.8
Qwen2.5-14B

Dict XML LaTeX HTML0.0

0.2

0.4

0.6

0.8
Llama-3.2-3B

Dict XML HTML LaTeX0.0

0.2

0.4

0.6

0.8

Gemini-2.0-Flash_llm

Format

Sc
or

e

a)

b)

BertScore.F1 MoverScore ROUGE-L.F1 METEOR

Figure 3: Values of BertScore.F1, MoverScore, ROUGE-L.F1, and METEOR a) for individual data subsets and
all formats averaged over models, and b) for individual models and text formats averaged over data subsets. Error
bars indicate standard deviation. Here “Fin” stands for FinTabNet, “PMC” denotes PubTables-1M, while “_llm”
indicates text input for Gemini-2.0-Flash.

ings suggest that current models are less sensitive
to diverse text representations of tables. Such out-
comes may be attributed to LLMs’ exposure to data
encoded in the given formats during pretraining.

Scientific vs. non-scientific. The results for each
domain are shown in Figure 2 (right) and Table 17
in Appendix F. The findings indicate that LLMs are
more efficient on TU tasks from the non-scientific
split, achieving a score boost of up to 34%. The
best score values are obtained for LogicNLG fol-
lowed by Logic2Text, see Figure 4 (left) and Ta-
ble 18 in Appendix F.

We hypothesise that this difference could arise
from (a) the complexity level of the given data
and the target task; (b) lack or sparsity of the data

from scientific contexts in the pre-training corpus
of (M)LLMs. In numericNLG and SciGen, the goal
is to generate a coherent paragraph or a collection
of paragraphs summarising the table’s content. In
contrast, both LogicNLG and Logic2Text involve
producing a single statement, filling in masked en-
tities in a sentence and generating text based on
a logical form, respectively. Furthermore, accord-
ing to Moosavi et al. (2021), SciGen is charac-
terised by a higher level of complexity than Log-
icNLG. This is because each gold description in
SciGen summarises the entire table content and
involves multiple types of reasoning, whereas, in
LogicNLG each statement often focuses on a sub-
set of table rows and is associated with a single type
of reasoning. Similar to LogicNLG, Logic2Text
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Figure 4: BertScore.F1, MoverScore, ROUGE-L.F1, and METEOR for each data subset averaged over table formats
and models (left), and for individual models averaged over data subsets and formats (right). Error bars indicate
standard deviation. Here “Fin” stands for FinTabNet, “PMC” denotes PubTables-1M, while “_llm” and “_mm” are
used to distinguish between text and image input for Gemini-2.0-Flash, respectively.

descriptions involve only one type of logic. No-
tably, comparable performance is achieved across
models for both subsets in ComTQA, with the gap
in scores equal to about 1-3% (except for a 17%
higher BLEURT score for PubTables-1M). Given
that ComTQA was also proposed as a more chal-
lenging benchmark compared to existing datasets,
comprising questions with multiple answers, nu-
merical, and logical reasoning, the lower perfor-
mance of (M)LLMs could lie in the complexity of
the data as well. Finally, reasoning over scientific
tables requires in-domain knowledge, the absence
of which likely contributes to a decline in accuracy
for the respective TableEval subsets.

Comparison of (M)LLMs. Figure 4 (right) and
Table 19 in Appendix F outline results for individ-
ual models. Among MLLMs, Gemini-2.0-Flash
and Idefics3 perform best, with the former out-
performing the latter on BLEU-N, BLEURT, ME-
TEOR, ROUGE-3, and ROUGE-4 (by 1-4%). Next
in the ranking are Qwen2.5-VL models and LLaVa-
NeXT. For LLMs, Gemini-2.0-Flash obtains the
highest score values, followed by Mistral-Nemo.
Qwen2.5 models rank next with the 3B version
achieving either similar or slightly better results
than its 14B counterpart. On the contrary, Llama-3
consistently shows the weakest performance. We
observe that on average, Idefics3 tends to generate
concise responses with the shortest outputs pro-
duced for QA task (e. g., just a numeric value),
whereas other models provide longer outputs. A
similar trend is observed for LLMs, with Gemini-
2.0-Flash providing shorter predictions compared
to other models. Table 3 outlines the statistics on

prediction lengths for each (M)LLM. Additionally,
Figure 15 (Appendix F) illustrates the mean lengths
for each model and data subset, while Figure 16
(Appendix G) demonstrates prediction examples.
Since we do not postprocess the models’ outputs,
such difference in response length can contribute to
the discrepancy across (M)LLMs in BLEU-N and
ROUGE-N, which rely on n-gram overlap. Overall,
our evaluation indicates that open-source models
still remain behind the closed-source Gemini-2.0-
Flash. On another note, we could not observe any
correlation between model size and accuracy.

Model Mean Min Max

Idefics3-8B-Llama3 139 0 4416
Qwen2.5-VL-3B-Instruct 360 2 4170
Qwen2.5-VL-7B-Instruct 292 4 3464
llama3-llava-next-8b-hf 311 24 6336
Gemini-2.0-Flash_mm 207 2 3097
Gemini-2.0-Flash_llm 259 0 10282
Llama-3.2-3B-Instruct 464 22 5626
Mistral-Nemo-Instruct-2407 303 21 2941
Qwen2.5-14B-Instruct 481 29 4154
Qwen2.5-3B-Instruct 465 26 4535

Table 3: Statistics on the mean, minimum, and maxi-
mum prediction lengths (in characters) for each model
across TableEval subsets. Blue and pink colours
highlight the lowest and highest values in each column,
respectively. Here “_llm” and “_mm” are used to dis-
tinguish between text and image input for Gemini-2.0-
Flash, respectively.

Interpretability. We choose instance-level anal-
ysis because dataset-level statistics tend to flatten
important nuances, especially in generative settings
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Mistral-Nemo-Instruct-2407

Refer  to  the  provided  table  and  answer  the  question
.  Question :  What  was  the  change  in  Rout ing  from  
2 0 1 3  to  2 0 1 4 ?.  Table :  \{" table \_headers ":  [' ',
 '',  '',  '',  '',  '',  '',  ' '],  " table \_rows ":  [ [' Years  End ed
 December  3 1 ,',  ' nan ',  ' 2 0 1 4 ',  ' 2 0 1 3 ',  ' nan ',
 ' nan ',  ' nan ',  ' nan '],  [' 2 0 1 2 ',  ' 2 0 1 4  vs .  2 0 1
3 ',  ' 2 0 1 3  vs .  2 0 1 2 ',  ' nan ',  ' nan ',  ' nan ',  ' nan
',  '$  Change '],  [' \%  Change ',  '$  Change ',  '\%
 Change ',  ' Routing ',  '$ 2 , 2 2 3 . 9 ',  '$ 2 , 3 1 8 . 0 ',
 '$ 2 , 0 3 7 . 6 ',  ' $( 9 4 . 1 ) '],  [' ( 4 )\% ',  '$ 2 8 0 . 4 ',  '
1 4 \%',  ' Switch ing ',  ' 7 2 1 . 2 ',  ' 6 3 8 . 0 ',  ' 5 5 4 . 8
',  ' 8 3 . 2 '],  [' 1 3 \%',  ' 8 3 . 2 ',  ' 1 5 \%',  ' Security ',  '
4 6 3 . 6 ',  ' 5 6 3 . 9 ',  ' 6 6 9 . 7 ',  '( 1 0 0 . 3 ) '],  [' ( 1 8
)\% ',  '( 1 0 5 . 8 )',  '( 1 6 )\% ',  ' Total  Product ',  ' 3 4 0 8
. 7 ',  ' 3 5 1 9 . 9 ',  ' 3 2 6 2 . 1 ',  '( 1 1 1 . 2 ) '],  [' ( 3 )\%
',  ' 2 5 7 . 8 ',  ' 8 \%',  ' Percentage  of  net  revenues ',  '
7 3 . 7 \%',  ' 7 5 . 4 \%',  ' 7 4 . 7 \%',  ' nan '],  [' nan ',  '
nan ',  ' nan ',  ' Total  Service ',  ' 1 2 1 8 . 4 ',  ' 1 1 4 9 . 2
',  ' 1 1 0 3 . 3 ',  ' 6 9 . 2 '],  [' 6 \%',  ' 4 5 . 9 ',  ' 4 \%',  '
Percentage  of  net  revenues ',  ' 2 6 . 3 \%',  ' 2 4 . 6 \%',
 ' 2 5 . 3 \%',  ' nan '],  [' nan ',  ' nan ',  ' nan ',  ' Total  net
 revenues ',  '$ 4 , 6 2 7 . 1 ',  '$ 4 , 6 6 9 . 1 ',  '$ 4 , 3 6 5 .
4 ',  ' $( 4 2 . 0 ) '] ]\}.

Llama-3.2-3B-Instruct

Refer  to  the  provided  table  and  answer  the  question
.  Question :  What  was  the  change  in  Routing  from  
201 3  to  201 4 ?.  Table :  \{" table \_headers ":  ['',  '',
 '',  '',  '',  '',  '',  ' '],  " table \_rows ":  [[' Years  Ended
 December  31 ,',  ' nan ',  ' 201 4 ',  ' 201 3 ',  ' nan ',  '
nan ',  ' nan ',  ' nan '],  [' 201 2 ',  ' 201 4  vs .  201 3 ',  '
201 3  vs .  201 2 ',  ' nan ',  ' nan ',  ' nan ',  ' nan ',  '$
 Change '],  [' \%  Change ',  '$  Change ',  '\%  Change ',  '
Routing ',  '$ 2 , 223 . 9 ',  '$ 2 , 318 . 0 ',  '$ 2 , 037 . 6 ',
 '$ ( 94 . 1 ) '],  [' ( 4 )\% ',  '$ 280 . 4 ',  ' 14 \%',  ' Switch
ing ',  ' 721 . 2 ',  ' 638 . 0 ',  ' 554 . 8 ',  ' 83 . 2 '],  [' 13
\%',  ' 83 . 2 ',  ' 15 \%',  ' Security ',  ' 463 . 6 ',  ' 563 . 9 ',
 ' 669 . 7 ',  '( 100 . 3 ) '],  [' ( 18 )\% ',  '( 105 . 8 )',  '( 16
)\% ',  ' Total  Product ',  ' 340 8 . 7 ',  ' 351 9 . 9 ',  ' 326 2
. 1 ',  '( 111 . 2 ) '],  [' ( 3 )\% ',  ' 257 . 8 ',  ' 8 \%',  '
Percentage  of  net  revenues ',  ' 73 . 7 \%',  ' 75 . 4 \%',  '
74 . 7 \%',  ' nan '],  [' nan ',  ' nan ',  ' nan ',  ' Total
 Service ',  ' 121 8 . 4 ',  ' 114 9 . 2 ',  ' 110 3 . 3 ',  ' 69 . 2
'],  [' 6 \%',  ' 45 . 9 ',  ' 4 \%',  ' Percentage  of  net
 revenues ',  ' 26 . 3 \%',  ' 24 . 6 \%',  ' 25 . 3 \%',  ' nan '],
 [' nan ',  ' nan ',  ' nan ',  ' Total  net  revenues ',  '$ 4 ,
627 . 1 ',  '$ 4 , 669 . 1 ',  '$ 4 , 365 . 4 ',  '$ ( 42 . 0 ) ']] \}.

Refer  to  the  provided  table  and  answer  the  question
.  Question :  What  was  the  change  in  Rout ing  from  
2 0 1 3  to  2 0 1 4 ?.  Table :  \{" table \_headers ":  [' ',
 '',  '',  '',  '',  '',  '',  ' '],  " table \_rows ":  [ [' Years  End ed
 December  3 1 ,',  ' nan ',  ' 2 0 1 4 ',  ' 2 0 1 3 ',  ' nan ',
 ' nan ',  ' nan ',  ' nan '],  [' 2 0 1 2 ',  ' 2 0 1 4  vs .  2 0 1
3 ',  ' 2 0 1 3  vs .  2 0 1 2 ',  ' nan ',  ' nan ',  ' nan ',  ' nan
',  '$  Change '],  [' \%  Change ',  '$  Change ',  '\%
 Change ',  ' Routing ',  '$ 2 , 2 2 3 . 9 ',  '$ 2 , 3 1 8 . 0 ',
 '$ 2 , 0 3 7 . 6 ',  ' $( 9 4 . 1 ) '],  [' ( 4 )\% ',  '$ 2 8 0 . 4 ',  '
1 4 \%',  ' Switch ing ',  ' 7 2 1 . 2 ',  ' 6 3 8 . 0 ',  ' 5 5 4 . 8
',  ' 8 3 . 2 '],  [' 1 3 \%',  ' 8 3 . 2 ',  ' 1 5 \%',  ' Security ',  '
4 6 3 . 6 ',  ' 5 6 3 . 9 ',  ' 6 6 9 . 7 ',  '( 1 0 0 . 3 ) '],  [' ( 1 8
)\% ',  '( 1 0 5 . 8 )',  '( 1 6 )\% ',  ' Total  Product ',  ' 3 4 0 8
. 7 ',  ' 3 5 1 9 . 9 ',  ' 3 2 6 2 . 1 ',  '( 1 1 1 . 2 ) '],  [' ( 3 )\%
',  ' 2 5 7 . 8 ',  ' 8 \%',  ' Percentage  of  net  revenues ',  '
7 3 . 7 \%',  ' 7 5 . 4 \%',  ' 7 4 . 7 \%',  ' nan '],  [' nan ',  '
nan ',  ' nan ',  ' Total  Service ',  ' 1 2 1 8 . 4 ',  ' 1 1 4 9 . 2
',  ' 1 1 0 3 . 3 ',  ' 6 9 . 2 '],  [' 6 \%',  ' 4 5 . 9 ',  ' 4 \%',  '
Percentage  of  net  revenues ',  ' 2 6 . 3 \%',  ' 2 4 . 6 \%',
 ' 2 5 . 3 \%',  ' nan '],  [' nan ',  ' nan ',  ' nan ',  ' Total  net
 revenues ',  '$ 4 , 6 2 7 . 1 ',  '$ 4 , 6 6 9 . 1 ',  '$ 4 , 3 6 5 .
4 ',  ' $( 4 2 . 0 ) '] ]\}.

Refer  to  the  provided  table  and  answer  the  question
.  Question :  What  was  the  change  in  Routing  from  
201 3  to  201 4 ?.  Table :  \{" table \_headers ":  ['',  '',
 '',  '',  '',  '',  '',  ' '],  " table \_rows ":  [[' Years  Ended
 December  31 ,',  ' nan ',  ' 201 4 ',  ' 201 3 ',  ' nan ',  '
nan ',  ' nan ',  ' nan '],  [' 201 2 ',  ' 201 4  vs .  201 3 ',  '
201 3  vs .  201 2 ',  ' nan ',  ' nan ',  ' nan ',  ' nan ',  '$
 Change '],  [' \%  Change ',  '$  Change ',  '\%  Change ',  '
Routing ',  '$ 2 , 223 . 9 ',  '$ 2 , 318 . 0 ',  '$ 2 , 037 . 6 ',
 '$ ( 94 . 1 ) '],  [' ( 4 )\% ',  '$ 280 . 4 ',  ' 14 \%',  ' Switch
ing ',  ' 721 . 2 ',  ' 638 . 0 ',  ' 554 . 8 ',  ' 83 . 2 '],  [' 13
\%',  ' 83 . 2 ',  ' 15 \%',  ' Security ',  ' 463 . 6 ',  ' 563 . 9 ',
 ' 669 . 7 ',  '( 100 . 3 ) '],  [' ( 18 )\% ',  '( 105 . 8 )',  '( 16
)\% ',  ' Total  Product ',  ' 340 8 . 7 ',  ' 351 9 . 9 ',  ' 326 2
. 1 ',  '( 111 . 2 ) '],  [' ( 3 )\% ',  ' 257 . 8 ',  ' 8 \%',  '
Percentage  of  net  revenues ',  ' 73 . 7 \%',  ' 75 . 4 \%',  '
74 . 7 \%',  ' nan '],  [' nan ',  ' nan ',  ' nan ',  ' Total
 Service ',  ' 121 8 . 4 ',  ' 114 9 . 2 ',  ' 110 3 . 3 ',  ' 69 . 2
'],  [' 6 \%',  ' 45 . 9 ',  ' 4 \%',  ' Percentage  of  net
 revenues ',  ' 26 . 3 \%',  ' 24 . 6 \%',  ' 25 . 3 \%',  ' nan '],
 [' nan ',  ' nan ',  ' nan ',  ' Total  net  revenues ',  '$ 4 ,
627 . 1 ',  '$ 4 , 669 . 1 ',  '$ 4 , 365 . 4 ',  '$ ( 42 . 0 ) ']] \}.
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s Based  on  the  provided  table ,  the
 change  in  Rout ing  from  2 0 1 3  to
 2 0 1 4  was  a  decrease  of  $ 9 4 .
1  million .  This  is  indicated  in  the
 row  with  the  label  " Routing "  under
 the  column  "$  Change ".

According  to  the  table ,  the  change  in
 Routing  from  201 3  to  201 4  was
 a  decrease  of  $( 42 . 0 ).

Figure 5: Interpretability analysis using Input x Gradient on Mistral-Nemo (correct prediction) and Llama3 (incorrect
prediction) for a ComTQA (FinTabNet) instance with the Dict format. The gold answer to the given question is

“decrease of $94.1”. Redder highlights correspond to higher importance. The prompts are abbreviated in the middle,
indicated with the dashed line. In addition, for the output, we visualise the log-probabilities representing the model’s
confidence (dark green = very confident).

without a finite number of classes (Rönnqvist et al.,
2022). Due to computational and visualisation con-
straints, we selected four ComTQA and two Log-
icNLG instances. The former was chosen for its
shorter reference and prediction lengths compared
to other subsets, while the latter was selected for
achieving the highest scores across LLMs. We com-
pare the best (Mistral-Nemo) and worst (Llama3)
performing open-source LLMs.16

Figure 5 shows saliency maps as determined by
the Input x Gradient explainer and log-probabilities
for the generation (see §3.1). In this ComTQA
(FinTabNet) example, with the table represented as
a Dict in the input, we first notice that positive at-
tributions are generally sparse due to the saturation
problem (Shrikumar et al., 2017) and potentially
the long context. Llama3 puts most attribution to-
wards start and end of the prompt and the row value
mentioned in the question (“Routing”). Mistral-
Nemo, on the other hand, focuses much more on
the year columns that are relevant to answering
the question correctly. A key difference also lies
in the tokenisation: While Mistral-Nemo splits all
numbers into single digits, Llama3 often uses three-

16Saliency maps for these examples, along with additional
instances, are available also in our GitHub repository.

digit tokens where the fourth digit of a year is cut
off. We assume that this makes it harder for Llama3
to process the marginal differences correctly.

The log-probabilities for the generated tokens
are a proxy for the model’s confidence. Here, we
observe high uncertainty in Llama3 generating the
core of the answer, the number token “42”, which
is incorrect. Mistral-Nemo, on the contrary, cor-
rectly answers the question and we can see that it is
certain about it from the high log-probabilities. Ad-
ditionally, the model shows high confidence in the
row “Routing” and column “Change” as the loca-
tion of the answer, which indeed corresponds to the
true position of the value (see also Figure 22 in Ap-
pendix H). At the same time, it is uncertain about
optional, meaning-preserving generations such as
the token “provided” as a qualifier for “table” and
the beginning of the second sentence following the
answer which serves as a rationale for the model’s
decision-making (Lu et al., 2024).

Appendix H shows five more examples for
ComTQA and LogicNLG instances. We also ob-
serve a repeating pattern of the start and end of
a prompt being attributed the most. While these
observations are based on a small set of instances,
our pipeline enables computing saliency maps for

116



any combination of prompt, input format, model,
and dataset in future experiments.

4 Related work

Earlier TU studies leverage LLMs by represent-
ing tables as sequential text, either through naïve
linearisation or by incorporating delimiters and spe-
cial tokens (Fang et al., 2024). Some works focus
on fine-tuning LLMs to enhance TU (Zhang et al.,
2024c,b; Herzig et al., 2020; Yin et al., 2020; Gong
et al., 2020; Iida et al., 2021), while others explore
LLMs’ table reasoning abilities through prompt
engineering (Zhao et al., 2023; Chen, 2023; Sui
et al., 2024). However, compared to natural lan-
guage, tables present unique challenges to LLMs
due to their varying layout structures, feature het-
erogeneity, and a large number of components lead-
ing to excessively long sequences (Borisov et al.,
2022). The latter is particularly problematic, as
most LLMs become inefficient due to the quadratic
complexity of self-attention (Vaswani et al., 2017).
With recent advances in vision and multimodal-
ity research, using MLLMs for TU has gained in-
creasing attention with models like GPT-4 (OpenAI
et al., 2024) and Gemini (Team et al., 2024), be-
ing widely adopted. Although, similar to LLMs,
MLLMs also struggle with understanding struc-
tured data (Zheng et al., 2024).

Several studies examine the impact of the ta-
ble representation on models’ efficiency, indicating
that different table formats suit specific TU tasks
and LLMs at hand (Deng et al., 2024; Sui et al.,
2024; Zhang et al., 2024d; Singha et al., 2023). For
instance, Sui et al. (2024) find HTML and XML
being better understood by GPT models than Mark-
down, JSON, and natural language with separators
encoding. In contrast, Singha et al. (2023) observe
that using HTML leads to lower performance for
the fact-finding and transformation tasks compared
to dataframe-based and JSON formats. Meanwhile,
Deng et al. (2024) analyse how models’ reasoning
abilities vary when tables are represented as text
vs. images showing that Gemini Pro and GPT-4
perform similarly across both modalities.

While these studies offer insights into the ef-
fectiveness of (M)LLMs in interpreting structured
data across formats, they focus primarily on non-
scientific contexts like Wikipedia and finance. This
is likely due to the abundance of established, large-
scale datasets based on tables from these sources,
including WikiTables (Bhagavatula et al., 2015),

ToTTo (Parikh et al., 2020), and TabFact, (Chen
et al., 2020b), to name a few. Furthermore, inter-
pretability for TU tasks remains under-researched,
as related works mainly consider unstructured
text and are disconnected from downstream ap-
plications (Ferrando et al., 2024; Tenney et al.,
2024), rarely focusing on other long-form tasks like
retrieval-augmented generation (Qi et al., 2024) or
QA (Enouen et al., 2024). Nguyen et al. (2025)
use attributions to make tabular QA explainable
but they are constrained to the text-to-SQL setup.
Unlike prior studies, this paper focuses on cross-
domain and cross-modality evaluation, comparing
the performance and explanations of (M)LLMs on
both scientific and non-scientific tables, covering
image and diverse text representations of tables.

5 Conclusion

We conducted an evaluation study to explore the
robustness of diverse (M)LLMs on scientific vs.
non-scientific tables across image and four text for-
mats. The findings reveal that current models ob-
tain decent performance across both vision and text
modalities but significantly struggle with scientific
tabular data. Additionally, we explored the appli-
cability of interpretability methods to TU tasks to
get insights into the decision-making of LLMs. We
found feature attributions to be a useful tool for
revealing model uncertainty, its attention to table
structure and relevant content, and tokenisation dif-
ferences which might potentially affect predictions.

Limitations

Although this study provides insights into the
strengths and limitations of (M)LLMs in under-
standing tables, it has several limitations. First, we
use the same prompts across (M)LLMs and do not
postprocess the predictions which may contribute
to lower score values. Experimenting with model-
specific prompts and structured outputs using tools
such as Jsonformer17 could lead to better results.
Second, we rely on automatic metrics, the draw-
backs of which have been well-documented previ-
ously (Schmidtova et al., 2024; Gehrmann et al.,
2023). Third, we focus only on interpretability
for the text input, while methods like CC-SHAP
(Parcalabescu and Frank, 2025) remain the next
step to measure the importance of each modality
in MLLM decision-making. Fourth, annotating
all subsets in TableEval for a common task and

17https://github.com/1rgs/jsonformer
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evaluating (M)LLMs on the entire corpus could be
beneficial and we leave it for future work. Finally,
the dataset is limited to the English language and
thus does not allow for the assessment of multilin-
gual TU.

Ethics statement

The data used in this study is based on publicly
available datasets. We adhere to their respective
licenses and conditions of use in our experiments.
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A Dataset statistics

Dataset
Image Dict LATEX HTML XML

Instances Tables Instances Tables Instances Tables Instances Tables Instances Tables

Scientific tables

ComTQA (PubTables-1M) 6232 932 6232 932 6232 932 6232 932 6232 932
numericNLG 135 135 135 135 135 135 135 135 135 135
SciGen 1035 1035 1035 1035 928 928 985 985 961 961
Total 7402 2102 7402 2102 7295 1995 7352 2052 7328 2028

Non-scientific tables

ComTQA (FinTabNet) 2838 659 2838 659 2838 659 2838 659 2838 659
LogicNLG 917 184 917 184 917 184 917 184 917 184
Logic2Text 155 72 155 72 155 72 155 72 155 72
Total 3910 915 3910 915 3910 915 3910 915 3910 915

Table 4: Data distribution in the TableEval corpus for each format and subset.

B Dataset examples

QA task: ComTQA (PubTables-1M)

BMC Developmental Biology 2005, 5:8 http://www.biomedcentral.com/1471-213X/5/8

Page 8 of 15
(page number not for citation purposes)

hours. We find that all three alleles of kin-29 are similar in
length at the L1 stage to N2 animals. This is also what we
observe for sma-6(wk7) which suggests that kin-29 delays
growth post-embryonically, as do Sma/Mab pathway
components (Fig. 6). The Sma body size of kin-29 is there-
fore due to a delay in development in later larval stages.

In addition, we find that kin-29 grows more slowly than
N2 and Sma/Mab pathway mutants do. Animals hatched
and grown at 20°C were scored based on their develop-
mental stage after 72 hours. We find that 99% of wild-type
animals are adults at this time point, while only 2% of kin-
29(wk61) animals are adults (Table 4). Lanjuin and col-
leagues report a similar observation; 98% of wild-type
animals hatched and grown at 25°C for 3 days were adults
in comparison to approximately 24% of kin-29(oy38) ani-
mals [19]. We asked if lon-1(lf) could suppress the devel-

opmental delay characteristic of kin-29(wk61) animals
(Table 4). lon-1(wk50) mutants on their own show a slight
delay in development, but which is distinguishable from
the Sma/Mab mutants. In the double mutant lon-
1(wk50);kin-29(wk61), we find that the developmental
defect of kin-29(wk61) can be partially suppressed by lon-
1(wk50). This result is consistent with our conclusion that
lon-1 is genetically downstream of kin-29.

We observed that Sma/Mab pathway mutants have a
reduced brood size. In addition to the developmental
defects, kin-29(wk61) also has a reduced brood size (Table
5). Like sma-6(lf) and lon-1(lf), kin-29(wk61) shows a
brood size approximately 30% the size of that seen in
wild-type animals. We find that sma-6(wk7) and lon-
1(wk50) along with kin-29(oy38) and kin-29(oy39) have a
reduction in brood size as well. Although brood size is
affected, embryonic survival rate appears to be normal.

kin-29 affects dauer pathway signaling
Several components of the Sma/Mab pathway have been
shown to genetically interact with members of the dauer
pathway [9,14]. The dauer-constitutive (Daf-c) phenotype
of the type I receptor daf-1 is enhanced by mutations in
sma-6. At 15°C, daf-1 mutant strains exhibit a very weak
dauer-constitutive phenotype. However, sma-6(wk7); daf-
1(m40) mutants show a 50% increase in the number of

The small body size phenotype of kin-29animals is a result of defects in postembryonic developmentFigure 6
The small body size phenotype of kin-29animals is a 
result of defects in postembryonic development. N2, 
sma-6(wk7), kin-29(wk61), kin-29(oy38) and kin-29(oy39) were 
hatched and synchronized as L1 animals. L1 animals were 
measured at time zero and then at 24-hour time points span-
ning a 96 hour period. kin-29 animals are developmentally 
delayed and over time, kin-29(lf) animals never reach a wild-
type body size. Perimeter measurements for at least 22 ani-
mals were averaged at each time point. Error bars represent 
standard deviation values. Values for N2 and kin-29 mutants 
are significantly different (p < 0.001).

Table 4: lon-1 partially suppresses the developmental defect of 
kin-29(wk61)

% Adult animals % Adults 4 animals

Genotype 20°C 20°C

N2 99 (185) 99 (185)
lon-1(wk50) 64 (245) 80 (245)
kin-29(wk61) 2 (475) 43 (475)
lon-1(wk50);kin-29(wk61) 40 (202) 63 (202)

Number of animals scored is shown in parentheses.

Table 5: Brood size analysis of kin-29 alleles

Genotype % of wild-type brood size

N2 100 (270)
sma-6(wk7) 64 (172)
lon-1(wk50) 81 (219)
kin-29(wk61) 32 (86)
kin-29(oy38) 81 (218)
kin-29(oy39) 80 (217)

Number of eggs scored for each genotype is shown in parentheses.

Question: What is the title of the table?

Answer: Brood size analysis of kin-29 alleles

Figure 6: An example from ComTQA (PubTables-1M), illustrating a table, a corresponding question, and a gold
answer.
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Dividends 
 
From time to time, as determined by its Board of Directors, PPL 
Electric pays dividends on its common stock to its parent, PPL. 
 
As discussed in Note 8 to the Financial Statements, PPL Electric 
may not pay dividends on its common stock, except in certain 
circumstances, unless full dividends have been paid on the 
6.25% Series Preference Stock for the then-current dividend 
period.  Additionally, PPL Electric's 2001 Senior Secured Bond 
Indenture restricts dividend payments on its common stock in 
the event that PPL Electric fails to meet an interest coverage 
ratio or fails to comply with certain requirements included in its 
Articles of Incorporation and Bylaws to maintain its 
separateness from PPL and PPL's other subsidiaries.  PPL 
Electric does not, at this time, expect that any of such limitations 
would significantly impact its ability to declare dividends. 
 
PPL Electric expects to continue to pay quarterly dividends on 
its outstanding preferred securities, if and as declared by its 
Board of Directors. 
 
Credit Ratings
 
Moody's, S&P and Fitch periodically review the credit ratings 
on the debt and preferred securities of PPL Electric.  Based on 
their respective independent reviews, the rating agencies may 
make certain ratings revisions or ratings affirmations. 
 
A credit rating reflects an assessment by the rating agency of the 
creditworthiness associated with an issuer and particular 
securities that it issues.  The credit ratings of PPL Electric are 
based on information provided by PPL Electric and other 
sources.  The ratings of Moody's, S&P and Fitch are not a 
recommendation to buy, sell or hold any securities of PPL 
Electric.  Such ratings may be subject to revisions or withdrawal 
by the agencies at any time and should be evaluated 
independently of each other and any other rating that may be 
assigned to the securities.  A downgrade in PPL Electric's credit 
ratings could result in higher borrowing costs and reduced 
access to capital markets. 
 
The following table summarizes the credit ratings of PPL 
Electric at December 31, 2008. 
 

  Moody's   S&P Fitch (a) 
PPL Electric (b)      

Senior Unsecured/Issuer 
Rating  Baa1 

 
A- BBB 

First Mortgage Bonds  A3  A- A- 
Senior Secured Bonds  A3  A- A- 
Commercial Paper  P-2  A-2 F2 
Preferred Stock  Baa3  BBB BBB 
Preference Stock  Baa3  BBB BBB 
Outlook  STABLE  STABLE STABLE 

 
(a)  Issuer Rating for Fitch is an "Issuer Default Rating." 
(b)  Excludes Pollution Control Revenue Bonds issued by the LCIDA and the 

PEDFA on behalf of PPL Electric, of which the LCIDA bonds are insured and 
may be rated on the basis of relevant factors, including the insurer's ratings. 

 
Moody's and S&P did not take any actions related to PPL 
Electric during 2008.  In March 2008, Fitch completed a review 

of its credit ratings for PPL Electric and affirmed all the ratings 
for PPL Electric, with the exception that it lowered the preferred 
stock rating to BBB from BBB+.  Fitch stated in the related 
press release that the lower preferred stock rating reflects its 
junior position in the capital structure and does not reflect any 
change in credit quality. 
 
In January 2009, S&P completed a review of PPL Electric, upon 
which it revised its outlook to negative from stable and affirmed 
the A- issuer rating of PPL Electric.  S&P stated in its press 
release that the revision in its outlook reflects the linkage with 
PPL, whose outlook was also revised to negative from stable, 
along with their expectation that PPL Electric's financial metrics 
could weaken beginning in 2010. 
 
Off-Balance Sheet Arrangements
 
PPL Electric has entered into certain guarantee agreements that 
are within the scope of FIN 45.  See Note 15 to the Financial 
Statements for a discussion of guarantees. 

Risk Management
 
Market Risk
 
Commodity Price Risk - PLR Contracts through 2009 
 
PPL Electric and PPL EnergyPlus have power supply 
agreements under which PPL EnergyPlus sells to PPL Electric 
(under a predetermined pricing arrangement) energy and 
capacity to fulfill PPL Electric's PLR obligation through 2009.  
As a result, PPL Electric has shifted any electric price risk 
relating to its PLR obligation to PPL EnergyPlus through 2009.  
See Note 16 to the Financial Statements for information 
regarding credit risk associated with the PLR contracts with PPL 
EnergyPlus. 
 
Commodity Price Risk - PLR Contracts Subsequent to 2009 
 
In order to mitigate the risk that PPL Electric will not be able to 
obtain adequate energy supply subsequent to 2009, when the 
full requirements of energy supply agreements with PPL 
EnergyPlus expire, PPL Electric has entered into power 
purchase agreements that include fixed prices.  PPL Electric's 
future financial performance will be affected by its ability to 
enter into other new supply contracts, the duration and pricing 
of such contracts relative to prevailing market conditions, the 
regulatory treatment for such contracts and the associated 
recovery of its supply costs.  Depending on these factors, PPL 
Electric's financial results may be materially adversely affected.  
See "Overview" for information on the PUC-approved 
procurement plan and other ongoing Pennsylvania regulatory 
and legislative activities. 
 
Interest Rate Risk 

PPL Electric has issued debt to finance its operations, which 
exposes it to interest rate risk.  At December 31, 2008 and 2007, 
PPL Electric's potential annual exposure to increased interest 
expense, based on a 10% increase in interest rates, was not 

Question: What is the rating of commercial paper?

Answer: P-2 A-2 F2

Figure 7: An example from ComTQA (FinTabNet), illustrating a table, a corresponding question, and a gold answer.

T2T task: numericNLG

Genre Sentences Length Yield Precision
News* 100 19.3 142 78.9
News 100 19.3 144 70.8
Wiki 100 21.4 178 61.8
Web 100 19.2 165 49.1
Total 300 20.0 487 60.2

Table 1: Corpus size (length in token) and system performance

by genre. News* used gold trees and is not included in total.

(OLLIE) on datasets of similar genre. The reported
yield per sentence is higher for ClausIE (4.2), OL-
LIE (2.6) and WOE (2.1), but smaller for Reverb
(1.4). However, we note that in their evaluation, they
configured all systems to output only two-argument-
extractions. For example, from a sentence such as

The principal opposition parties boycotted
the polls after accusations of vote-rigging.

OLLIE can either make two binary extractions

boycotted ( the principal opposition parties ;
the polls )
boycotted the polls after ( the principal oppo-
sition parties ; accusations of vote-rigging )

or just a single extraction with three arguments.
PropS always extracts the combined tuple

boycotted ( the principal opposition parties ,
the polls , after accusations of vote-rigging ),

which is in line with the default configuration of
more recent Open IE systems.

For the sake of comparability, we conjecture that
the yield of our system would increase if we broke
down higher-arity tuples in a similar fashion: As-
suming that every extraction with n arguments, n >
2, can be split into n � 1 separate extractions, our
system’s yield would increase from 1.6 to 3.0. That
is in line with the numbers reported above for the
binary configuration for English. Overall, this in-
dicates a reasonable performance of our straightfor-
ward porting of PropS to German.

Extractions were most frequently labeled as in-
correct due to false relation labels (32%), overspeci-
fied arguments (21%) and wrong word order in argu-
ments (19%). Analyzing our system’s performance
on the treebank, we can see that the usage of gold de-
pendencies increases the precision by 8 percentage
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Figure 2: Extraction precision at increasing yield by genre.

points, making parsing errors responsible for about
28% of the incorrect extractions. Since the mate-
tools parser is trained on the full TIGER treebank,
including our experimental data, its error contribu-
tion on unseen data might be even higher.

6 Conclusion

Using PropS and German as examples, we showed
that a rule-based Open IE system for English can be
ported to another language in a reasonable amount
of time. As a result, we presented the first Open
IE system for German. In the future, studies tar-
geting less similar languages could further evaluate
the portability of PropS. Directions for future work
on PropsDE are extensions of the rule set to better
cover complex coordination constructions, nested
sentences and nominal predicates.
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Description: Results. From the whole corpus of 300 sentences, PropsDE extracted
487 tuples, yielding on average 1.6 per sentence with 2.9 arguments. 60% of
them were labeled as correct. Table 1 shows that most extractions are made
from Wikipedia articles, whereas the highest precision can be observed for
newswire text. According to our expectations, web pages are most challenging,
presumably due to noisier language. These differences between the genres can
also be seen in the precision-yield curve (Figure 2).

Figure 8: An example from numericNLG, illustrating a table and its corresponding gold description.
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T2T task: SciGen

fine-tune the ELMo LSTM weights along with the
CNN weights on the downstream CNN task. As in
Section 3, we check performance with and without
the final projection into the rule-regularized space.
We present our results in Table 2.

Switching to ELMo word embeddings improves
performance by 2.9 percentage points on an aver-
age, corresponding to about 53 test sentences. Of
these, about 32 sentences (60% of the improve-
ment) correspond to A-but-B and negation style
sentences, which is substantial when considering
that only 24.5% of test sentences include these dis-
course relations (Table 1). As further evidence that
ELMo helps on these specific constructions, the
non-ELMo baseline model (no-project, no-distill)
gets 255 sentences wrong in the test corpus on av-
erage, only 89 (34.8%) of which are A-but-B style
or negations.

Statistical Significance: Using a two-sided
Kolmogorov-Smirnov statistic (Massey Jr, 1951)
with ↵ = 0.001 for the results in Table 2, we find
that ELMo and projection each yield statistically
significant improvements, but distillation does not.
Also, with ELMo, projection is not significant.
Specific comparisons have been added in the Ap-
pendix, in Table A3.

KL Divergence Analysis: We observe no sig-
nificant gains by projecting a trained ELMo model
into an A-but-B rule-regularized space, unlike the
other models. We confirm that ELMo’s predic-
tions are much closer to the A-but-B rule’s man-
ifold than those of the other models by computing
KL(q✓||p✓) where p✓ and q✓ are the original and
projected distributions: Averaged across all A-but-
B sentences and 100 seeds, this gives 0.27, 0.26
and 0.13 for the Kim (2014), Hu et al. (2016)
with distillation and ELMo systems respectively.

Intra-sentence Similarity: To understand the
information captured by ELMo embeddings for
A-but-B sentences, we measure the cosine simi-
larity between the word vectors of every pair of
words within the A-but-B sentence (Peters et al.,
2018b). We compare the intra-sentence similar-
ity for fine-tuned word2vec embeddings (base-
line), ELMo embeddings without fine-tuning and
finally fine-tuned ELMo embeddings in Figure 3.
In the fine-tuned ELMo embeddings, we notice
the words within the A and within the B part of
the A-but-B sentence share the same part of the
vector space. This pattern is less visible in the

Model Test but but or neg

no-distill no-project 85.98 78.69 80.13
no-distill project 86.54 83.40 -

distill 7 no-project 86.11 79.04 -
distill project 86.62 83.32 -

ELMo no-project 88.89 86.51 87.24
ELMo project 88.96 87.20 -

Table 2: Average performance (across 100 seeds) of ELMo
on the SST2 task. We show performance on A-but-B sen-
tences (“but”), negations (“neg”).

ELMo embeddings without fine-tuning and absent
in the word2vec embeddings. This observation
is indicative of ELMo’s ability to learn specific
rules for A-but-B sentences in sentiment classifica-
tion. More intra-sentence similarity heatmaps for
A-but-B sentences are in Figure A1.

5 Crowdsourced Experiments

We conduct a crowdsourced analysis that reveals
that SST2 data has significant levels of ambiguity
even for human labelers. We discover that ELMo’s
performance improvements over the baseline are
robust across varying levels of ambiguity, whereas
the advantage of Hu et al. (2016) is reversed in
sentences of low ambiguity (restricting to A-but-B
style sentences).

Our crowdsourced experiment was conducted
on Figure Eight.8 Nine workers scored the senti-
ment of each A-but-B and negation sentence in the
test SST2 split as 0 (negative), 0.5 (neutral) or 1
(positive). (SST originally had three crowdwork-
ers choose a sentiment rating from 1 to 25 for ev-
ery phrase.) More details regarding the crowd ex-
periment’s parameters have been provided in Ap-
pendix A.

We average the scores across all users for each
sentence. Sentences with a score in the range
(x, 1] are marked as positive (where x 2 [0.5, 1)),
sentences in [0, 1 � x) marked as negative, and
sentences in [1 � x, x] are marked as neutral.
For instance, “flat , but with a revelatory perfor-
mance by michelle williams” (score=0.56) is neu-
tral when x = 0.6.9 We present statistics of
our dataset10 in Table 3. Inter-annotator agree-

7Trained on sentences and not phrase-level labels for a fair
comparison with baseline and ELMo, unlike Section 3.2.

8 https://www.figure-eight.com/
9More examples of neutral sentences have been provided

in the Appendix in Table A1, as well as a few “flipped” sen-
tences receiving an average score opposite to their SST2 label
(Table A2).

10The dataset along with source code can be found in

Description: Switching to ELMo word embeddings improves performance by 2.9
percentage points on an average, corresponding to about 53 test sentences.
Of these, about 32 sentences (60% of the improvement) correspond to A-but-B
and negation style sentences, [CONTINUE] As further evidence that ELMo helps
on these specific constructions, the non-ELMo baseline model (no-project,
no-distill) gets 255 sentences wrong in the test corpus on average, only 89
(34.8%) of which are A-but-B style or negations.

Figure 9: An example from SciGen, illustrating a table and its corresponding gold description.

T2T task: LogicNLGFilename / Topic /
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2-18424778-6.html.csv
>

black ice
(album)

0.9884512617683945

['country' 'date' 'label' 'format'
'catalogue no']

[['europe', '17 october 2008',
'columbia', 'cd , double lp',

'88697392232'], ['australia', '18
october 2008', 'sony music', 'cd',

'88697392382'], ['united
kingdom', '20 october 2008',
'columbia', 'cd , double lp',
'88697392232'], ['united

kingdom', '1 december 2008',
'columbia', 'cd (limited edition
steel - box)', '88697417452'],

['united states', '20 october 2008',
'columbia', 'cd', '88697338292'],
['japan', '22 october 2008', 'sony

music', 'cd', 'sicp - 2055'],
['germany', '5 december 2008',
'columbia', 'cd (limited edition
steel - box)', '886974174523'],

['global ( itunes )', '19 november
2012', 'columbia', 'digital

download', '88697338292']]

Country Date Label Format Catalogue No.

Europe 17 October 2008[160] Columbia CD, Double LP #88697392232

Australia 18 October 2008[39] Sony
Music CD #88697392382

United Kingdom
20 October 2008[161]

[162] Columbia
CD, Double LP #88697392232

1 December 2008[38] CD (limited edition steel-box) #88697417452

United States 20 October 2008 Columbia CD #88697338292

Japan 22 October 2008[163] Sony
Music CD SICP-2055

Germany 5 December 2008[164] Columbia CD (limited edition steel-box) #886974174523

Global (iTunes) 19 November 2012[49] Columbia Digital download #88697338292

2-12164751-7.html.csv
>

forbes' list of
the most
valuable

football clubs

0.95827083273531

['team' 'country' 'value (m)'
'debt as %of value' '% change

on year' 'revenue (m)'
'operating income (m)']

[['manchester united', 'england',
'1453', '84', '6', '310', '92'], ['real
madrid', 'spain', '1036', '10', '2',
'374', '83'], ['arsenal', 'england',

'915', '53', '9', '246', '20'], ['bayern
munich', 'germany', '838', '0', '9',
'262', '62'], ['milan', 'italy', '824',
'0', '- 10', '305', '46'], ['juventus',

'italy', '567', '17', '- 18', '321', '45'],
['internazionale', 'italy', '555', 'n /

a', '10', '264', '26'], ['chelsea',
'england', '537', '28', '6', '283', '-
37'], ['barcelona', 'spain', '535',
'12', '22', '331', '12'], ['schalke',
'germany', '471', '53', '45', '157',

'37'], ['liverpool', 'england', '454',
'18', '28', '225', '37'], ['lyon',

'france', '343', 'n / a', '65', '163',
'10'], ['newcastle united', 'england',

'260', '46', '- 14', '159', '11'],
['tottenham hotspur', 'england',
'243', '0', '27', '137', '9'], ['roma',
'italy', '224', '0', '- 15', '162', '53'],

['hamburg', 'germany', '221', 'n / a',
'n / a', '130', '31'], ['manchester
city', 'england', '208', '83', '- 6',
'114', '9'], ['borussia dortmund',

'germany', '199', '126', '61', '114',
'1'], ['ajax', 'netherlands', '196', '0',
'13', '95', '9'], ['celtic', 'scotland',

'185', '14', '18', '106', '- 8'],
['everton', 'england', '165', '32',
'34', '107', '- 15'], ['marseille',

'france', '157', 'n / a', 'n / a', '105',
'6'], ['west ham united', 'england',

'156', '27', 'n / a', '111', '6'],
['rangers', 'scotland', '147', '7', '32',
'113', '12'], ['aston villa', 'england',

'140', '16', '16', '91', '- 21']]

# Team Country Value ($M)[6] Debt as
%of value[15]

% change
on year Revenue ($M)

Operating
income($m)[16]

1 Manchester United  England 1,453 84 6 310 92

2 Real Madrid  Spain 1,036 10 2 000 83

3 Arsenal  England 915 53 9 246 20

4 Bayern Munich  Germany 838 0 9 262 62

5 A.C. Milan  Italy 824 0 -10 305 46

6 Juventus  Italy 567 17 -18 321 45

7 Inter Milan  Italy 555 n/a 10 264 26

8 Chelsea  England 537 28 6 283 -37

9 Barcelona  Spain 535 12 22 331 12

10 Schalke  Germany 471 53 45 157 37

11 Liverpool  England 454 18 28 225 37

12 Lyon  France 343 n/a 65 163 10

13 Newcastle United  England 260 46 -14 159 11

14 Tottenham Hotspur  England 243 0 27 137 9

15 Roma  Italy 224 0 -15 162 53

16 Hamburg  Germany 221 n/a n/a 130 31

17 Manchester City  England 208 83 -6 114 9

18 Borussia Dortmund  Germany 199 126 61 114 1

19 Ajax  Netherlands 196 0 13 95 9

20 Celtic  Scotland 185 14 18 106 -8

21 Everton  England 165 32 34 107 -15

22 Marseille  France 157 n/a n/a 105 6

23 West Ham United  England 156 27 n/a 111 6

24 Rangers  Scotland 147 7 32 113 12

25 Aston Villa  England 140 16 16 91 -21

2-15715109-9.html.csv
>

list of united
states national

ice hockey
team rosters

0.9915524904986525

['name' 'height (cm)' 'weight
(kg)' 'birthdate' 'birthplace'

'19631964 team']
[['david brooks', '175', '68', '27
december 1939', '| saint paul ,

minnesota', 'rochester mustangs (
ushl )'], ['herb brooks', '186', '98',

'5 august 1937', '| saint paul ,
minnesota', 'rochester mustangs (
ushl )'], ['roger christian', '175',

'68', '1 december 1935', '| warroad
, minnesota', 'warroad lakers'],
['bill christian', '176', '80', '29

january 1938', '| warroad ,
minnesota', 'warroad lakers'],

['paul coppo', '180', '80', '2
november 1938', 'hancock ,

michigan', 'green bay bobcats (
ushl )'], ['daniel dilworth', '172',

'77', '23 february 1942',
'international falls , minnesota', 'st

paul saints ( ihl )'], ['dates
fryberger', '177', '73', '5 may
1940', 'duluth , minnesota',
'middlebury college'], ['paul
johnson', '183', '82', '18 may

1937', 'west st paul , minnesota',
'waterloo black hawks ( ushl )'],
['red martin', '183', '86', '5 july
1938', 'boston , massachusetts',

'none'], ['jim mccoy', '177', '82', '2
january 1942', 'minneapolis ,

minnesota', 'blind river hockey
club'], ['wayne meredith', '175',

'80', '4 october 1939', 'south bend ,
indiana', 'st paul saints ( ihl )'],
['william reichart', '170', '71', '3

july 1935', 'winnipeg , manitoba',
'rochester mustangs ( ushl )'],
['donald ross', '180', '83', '11

october 1942', 'roseau ,
minnesota', 'university of north

dakota ( ncaa )'], ['pat rupp', '175',
'81', '12 august 1942', 'detroit ,

michigan', 'flin flon bombers ( sjhl
)'], ['gary schmaltzbauer', '175',

'73', '27 january 1940', 'saint paul ,
minnesota', 'rochester mustangs (

ushl )'], ['james westby', '183', '82',
'5 february 1937', 'minneapolis ,

minnesota', 'fort frances
canadians'], ['thomas yurkovich',

'180', '82', '29 october 1935',
'eveleth , minnesota', 'rochester

mustangs ( ushl )']]

Name Height (cm) Weight (kg) Birthdate Birthplace 1963–1964 team

David Brooks 175 68 December 27, 1939 |Saint Paul, Minnesota Rochester Mustangs (USHL)

Herb Brooks 186 98 August 5, 1937 |Saint Paul, Minnesota Rochester Mustangs (USHL)

Roger Christian 175 68 December 1, 1935 |Warroad, Minnesota Warroad Lakers

Bill Christian 176 80 January 29, 1938 |Warroad, Minnesota Warroad Lakers

Paul Coppo 180 80 November 2, 1938 Hancock, Michigan Green Bay Bobcats (USHL)

Daniel Dilworth 172 77 February 23, 1942 International Falls, Minnesota St. Paul Saints (IHL)

Dates Fryberger 177 73 May 5, 1940 Duluth, Minnesota Middlebury College

Paul Johnson 183 82 May 18, 1937 West St. Paul, Minnesota Waterloo Black Hawks (USHL)

Red Martin 183 86 July 5, 1938 Boston, Massachusetts None

Jim McCoy 177 82 January 2, 1942 Minneapolis, Minnesota Blind River Hockey Club

Wayne Meredith 175 80 October 4, 1939 South Bend, Indiana St. Paul Saints (IHL)

William Reichart 170 71 July 3, 1935 Winnipeg, Manitoba, Canada Rochester Mustangs (USHL)

Donald Ross 180 83 October 11, 1942 Roseau, Minnesota University of North Dakota (NCAA)

Pat Rupp 175 81 August 12, 1942 Detroit, Michigan Flin Flon Bombers (SJHL)

Gary Schmalzbauer 175 73 January 27, 1940 Saint Paul, Minnesota Rochester Mustangs (USHL)

James Westby 183 82 February 5, 1937 Minneapolis, Minnesota Fort Frances Canadians

Thomas Yurkovich 180 82 October 29, 1935 Eveleth, Minnesota Rochester Mustangs (USHL)

2-17245565-6.html.csv
>

1971 u.s. open
(golf)

0.9809810454669666

['place' 'player' 'country' 'score'
'to par']

[['1', 'jim simons (a)', 'united
states', '71 + 71 + 65 = 207', '- 3'],
['2', 'jack nicklaus', 'united states',

'69 + 72 + 68 = 209', '- 1'], ['3',
'bobby nichols', 'united states', '69

+ 72 + 69 = 210', 'e'], ['t4', 'lee
trevino', 'united states', '70 + 72 +

69 = 211', '+ 1'], ['t4', 'george
archer', 'united states', '71 + 70 +

70 = 211', '+ 1'], ['t4', 'jim colbert',
'united states', '69 + 69 + 73 =
211', '+ 1'], ['t4', 'bob erickson',
'united states', '71 + 67 + 73 =

211', '+ 1'], ['t8', 'ken still', 'united
states', '71 + 72 + 69 = 212', '+ 2'],
['t8', 'larry hinson', 'united states',
'71 + 71 + 70 = 212', '+ 2'], ['t8',

'bruce devlin', 'australia', '72 + 69
+ 71 = 212', '+ 2']]

Place Player Country Score To par
1 Jim Simons (a)  United States 71-71-65=207 −3

2 Jack Nicklaus  United States 69-72-68=209 −1

3 Bobby Nichols  United States 69-72-69=210 E

T4

Lee Trevino  United States 70-72-69=211

+1
George Archer  United States 71-70-70=211

Jim Colbert  United States 69-69-73=211

Bob Erickson  United States 71-67-73=211

T8

Ken Still  United States 71-72-69=212

+2Larry Hinson  United States 71-71-70=212

Bruce Devlin  Australia 72-69-71=212

2-10790804-
13.html.csv

>

1936 vfl season

0.9775349460532063

['home team' 'home team score'
'away team' 'away team score'

'venue' 'crowd' 'date']
[['geelong', '17.20 (122)', 'north
melbourne', '12.8 (80)', 'corio
oval', '8000', '1 august 1936'],

['fitzroy', '13.13 (91)', 'melbourne',
'12.13 (85)', 'brunswick street
oval', '11000', '1 august 1936'],

['south melbourne', '14.19 (103)',
'st kilda', '13.11 (89)', 'lake oval',

'16000', '1 august 1936'],
['hawthorn', '13.13 (91)',

'footscray', '8.21 (69)', 'glenferrie
oval', '10000', '1 august 1936'],

['richmond', '11.14 (80)',
'collingwood', '14.12 (96)', 'punt

road oval', '26000', '1 august
1936'], ['essendon', '8.11 (59)',

'carlton', '17.16 (118)', 'windy hill',
'13000', '1 august 1936']]

Home team Home team score Away team Away team score Venue Crowd Date

Geelong 17.20 (122) North Melbourne 12.8 (80) Corio Oval 8,000 1 August 1936

Fitzroy 13.13 (91) Melbourne 12.13 (85) Brunswick Street Oval 11,000 1 August 1936

South Melbourne 14.19 (103) St Kilda 13.11 (89) Lake Oval 16,000 1 August 1936

Hawthorn 13.13 (91) Footscray 8.21 (69) Glenferrie Oval 10,000 1 August 1936

Richmond 11.14 (80) Collingwood 14.12 (96) Punt Road Oval 26,000 1 August 1936

Essendon 8.11 (59) Carlton 17.16 (118) Windy Hill 13,000 1 August 1936

2-1123314-1.html.csv
>

1997
luxembourg
grand prix

0.9664821366007995

['driver' 'constructor' 'laps'
'time / retired' 'grid']

[['jacques villeneuve', 'williams -
renault', '67', '1:31:27.843', '2'],
['jean alesi', 'benetton - renault',
'67', '+ 11.770', '10'], ['heinz -
harald frentzen', 'williams -
renault', '67', '+ 13.480', '3'],
['gerhard berger', 'benetton -
renault', '67', '+ 16.416', '7'],

['pedro diniz', 'arrows - yamaha',
'67', '+ 43.147', '15'], ['olivier

panis', 'prost - mugen - honda',
'67', '+ 43.750', '11'], ['johnny

herbert', 'sauber - petronas', '67', '+
44.354', '16'], ['damon hill',

'arrows - yamaha', '67', '+ 44.777',
'13'], ['gianni morbidelli', 'sauber -

petronas', '66', '+ 1 lap', '19'],
['mika salo', 'tyrrell - ford', '66', '+

1 lap', '20'], ['jos verstappen',
'tyrrell - ford', '50', 'spun off', '21'],

['mika hã¤kkinen', 'mclaren -
mercedes', '43', 'engine', '1'],

['rubens barrichello', 'stewart -
ford', '43', 'gearbox', '9'], ['david
coulthard', 'mclaren - mercedes',

'42', 'engine', '6'], ['jan
magnussen', 'stewart - ford', '40',
'halfshaft', '12'], ['eddie irvine',

'ferrari', '22', 'engine', '14'], ['shinji
nakano', 'prost - mugen - honda',

'16', 'engine', '17'], ['michael
schumacher', 'ferrari', '2',

'suspension', '5'], ['tarso marques',
'minardi - hart', '1', 'engine', '18'],
['ukyo katayama', 'minardi - hart',

'1', 'collision', '22'], ['giancarlo
fisichella', 'jordan - peugeot', '0',

'collision', '4'], ['ralf schumacher',
'jordan - peugeot', '0', 'collision',

'8']]

Pos No Driver Constructor Laps Time/Retired Grid Points

1 3  Jacques Villeneuve Williams-Renault 67 1:31:27.843 2 10

2 7  Jean Alesi Benetton-Renault 67 + 11.770 10 6

3 4  Heinz-Harald Frentzen Williams-Renault 67 + 13.480 3 4

4 8  Gerhard Berger Benetton-Renault 67 + 16.416 7 3

5 2  Pedro Diniz Arrows-Yamaha 67 + 43.147 15 2

6 14  Olivier Panis Prost-Mugen-Honda 67 + 43.750 11 1

7 16  Johnny Herbert Sauber-Petronas 67 + 44.354 16  

8 1  Damon Hill Arrows-Yamaha 67 + 44.777 13  

9 17  Gianni Morbidelli Sauber-Petronas 66 + 1 Lap 19  

10 19  Mika Salo Tyrrell-Ford 66 + 1 Lap 20  

Ret 18  Jos Verstappen Tyrrell-Ford 50 Spun Off 21  

Ret 9  Mika Häkkinen McLaren-Mercedes 43 Engine 1  

Ret 22  Rubens Barrichello Stewart-Ford 43 Gearbox 9  

Ret 10  David Coulthard McLaren-Mercedes 42 Engine 6  

Ret 23  Jan Magnussen Stewart-Ford 40 Halfshaft 12  

Ret 6  Eddie Irvine Ferrari 22 Engine 14  

Ret 15  Shinji Nakano Prost-Mugen-Honda 16 Engine 17  

Ret 5  Michael Schumacher Ferrari 2 Suspension 5  

Ret 21  Tarso Marques Minardi-Hart 1 Engine 18  

Ret 20  Ukyo Katayama Minardi-Hart 1 Collision 22  

Ret 12  Giancarlo Fisichella Jordan-Peugeot 0 Collision 4  

Ret 11  Ralf Schumacher Jordan-Peugeot 0 Collision 8  

Source:[3]

2-17814838-6.html.csv
>

2008 - 09 fa
cup

0.9336251367899973

['tie no' 'home team' 'score'
'away team' 'attendance']

[['1', 'liverpool', '1 - 1', 'everton',
'43524'], ['replay', 'everton', '1 - 0',

'liverpool', '37918'], ['2',
'manchester united', '2 - 1',

'tottenham hotspur', '75014'], ['3',
'hull city', '2 - 0', 'millwall',

'18639'], ['4', 'sunderland', '0 - 0',
'blackburn rovers', '22634'],

['replay', 'blackburn rovers', '2 - 1',
'sunderland', '10112'], ['5',

'hartlepool united', '0 - 2', 'west
ham united', '6849'], ['6', 'sheffield
united', '2 - 1', 'charlton athletic',
'15957'], ['7', 'cardiff city', '0 - 0',

'arsenal', '20079'], ['replay',
'arsenal', '4 - 0', 'cardiff city',

'57237'], ['8', 'portsmouth', '0 - 2',
'swansea city', '17357'], ['9',

'chelsea', '3 - 1', 'ipswich town',
'41137'], ['10', 'doncaster rovers',

'0 - 0', 'aston villa', '13517'],
['replay', 'aston villa', '3 - 1',

'doncaster rovers', '24203'], ['11',
'west bromwich albion', '2 - 2',

'burnley', '18294'], ['replay',
'burnley', '3 - 1', 'west bromwich

albion', '6635'], ['12', 'torquay
united', '0 - 1', 'coventry city',

'6018'], ['13', 'kettering town', '2 -
4', 'fulham', '5406'], ['14',

'watford', '4 - 3', 'crystal palace',
'10006'], ['15', 'derby county', '1 -
1', 'nottingham forest', '32035'],
['replay', 'nottingham forest', '2 -
3', 'derby county', '29001'], ['16',
'wolverhampton wanderers', '1 -

2', 'middlesbrough', '18013']]

Tie no Home team Score Away team Attendance
1 Liverpool 1 – 1 Everton 43,524

replay Everton 1 – 0† Liverpool 37,918

2 Manchester United 2 – 1 Tottenham Hotspur 75,014

3 Hull City 2 – 0 Millwall 18,639

4 Sunderland 0 – 0 Blackburn Rovers 22,634

replay Blackburn Rovers 2 – 1† Sunderland 10,112

5 Hartlepool United 0 – 2 West Ham United 6,849

6 Sheffield United 2 – 1 Charlton Athletic 15,957

7 Cardiff City 0 – 0 Arsenal 20,079

replay Arsenal 4 – 0 Cardiff City 57,237

8 Portsmouth 0 – 2 Swansea City 17,357

9 Chelsea 3 – 1 Ipswich Town 41,137

10 Doncaster Rovers 0 – 0 Aston Villa 13,517

replay Aston Villa 3 – 1 Doncaster Rovers 24,203

11 West Bromwich Albion 2 – 2 Burnley 18,294

replay Burnley 3 – 1 West Bromwich Albion 6,635

12 Torquay United 0 – 1 Coventry City 6,018

13 Kettering Town 2 – 4 Fulham 5,406

14 Watford 4 – 3 Crystal Palace 10,006

15 Derby County 1 – 1 Nottingham Forest 32,035

replay Nottingham Forest 2 – 3 Derby County 29,001

16 Wolverhampton Wanderers 1 – 2 Middlesbrough 18,013

2-18379129-5.html.csv
>

international
festival of

ancient greek
drama ,
cyprus

0.9593165735503003

['play' 'author' 'company' 'base'
'country']

[['electra', 'euripides', 'radu stanca
national theatre', 'sibiu',

'romania'], ['plutus', 'aristophanes',
'cyprus theatre organisation',

'nicosia', 'cyprus'], ['the birds',
'aristophanes', 'theatro technis

karolos koun', 'athens', 'greece'],
['medea', 'euripides', 'teatro

instabile', 'aosta', 'italy'], ['the
persians', 'aeschylus',

'astrã\xa0gali teatro', 'lecce',
'italy'], ['medea', 'euripides',

'semeio theatre', 'athens', 'greece'],
['ajax', 'sophocles', 'attis theatre',

'athens', 'greece'], ['antigone',
'sophocles', 'habima theatre', 'tel

aviv', 'istrael']]

play author company base country
Electra Euripides Radu Stanca National Theatre Sibiu Romania

Plutus Aristophanes Cyprus Theatre Organisation Nicosia Cyprus

The Birds Aristophanes Theatro Technis Karolos Koun Athens Greece

Medea Euripides Teatro Instabile Aosta Italy

The Persians Aeschylus Astràgali Teatro Lecce Italy

Medea Euripides Semeio Theatre Athens Greece

Ajax Sophocles Attis Theatre Athens Greece

Antigone Sophocles Habima Theatre Tel Aviv Israel

2-18662679-7.html.csv
>

rowing at the
2008 summer

olympics -
men 's

quadruple
sculls

0.9229582069908976

['rank' 'rowers' 'country' 'time'
'notes']

[['1', 'wasielewski , kolbowicz ,
jelinski , korol', 'poland', '5:51.29',
'fa'], ['2', 'morgan , mcrae , long ,
noonan', 'australia', '5:52.93', 'fa'],
['3', 'krã¼ger , bertram , gruhne ,
schreiber', 'germany', '5:53.56',

'fa'], ['4', 'vitasek , dolecek , hanak
, jirka', 'czech republic', '5:56.38',
'fb'], ['5', 'morgachev , fedorovtsev
, salov , spinev', 'russia', '5:59.56',
'fb'], ['6', 'lemiashkevich , novikau

, shurmei , radzevich', 'belarus',
'6:06.80', 'fb']]

Rank Rowers Country Time Notes
1 Wasielewski, Kolbowicz, Jelinski, Korol  Poland 5:51.29 FA

2 Morgan, McRae, Long, Noonan  Australia 5:52.93 FA

3 Krüger, Bertram, Gruhne, Schreiber  Germany 5:53.56 FA

4 Vitasek, Dolecek, Hanak, Jirka  Czech Republic 5:56.38 FB

5 Morgachyov, Fedorovtsev, Salov, Spinyov  Russia 5:59.56 FB

6 Lemiashkevich, Novikau, Shurmei, Radzevich  Belarus 6:06.80 FB

2-18842947-2.html.csv
>

1976 detroit
lions season

0.9739364387701951

['week' 'date' 'opponent' 'result'
'attendance']

[['1', 'september 12 , 1976',
'chicago bears', 'l 10 - 3', '54125'],
['2', 'september 19 , 1976', 'atlanta
falcons', 'w 24 - 10', '50840'], ['3',
'september 26 , 1976', 'minnesota
vikings', 'l 10 - 9', '77292'], ['4',

'october 3 , 1976', 'green bay
packers', 'l 24 - 14', '55041'], ['5',
'october 10 , 1976', 'new england
patriots', 'w 30 - 10', '60174'], ['6',
'october 17 , 1976', 'washington
redskins', 'l 20 - 7', '45908'], ['7',

'october 24 , 1976', 'seattle
seahawks', 'w 41 - 14', '61280'],

['8', 'october 31 , 1976', 'green bay
packers', 'w 27 - 6', '74992'], ['9',
'november 7 , 1976', 'minnesota

vikings', 'l 31 - 23', '46735'], ['10',
'november 14 , 1976', 'new orleans

saints', 'l 17 - 16', '42048'], ['11',
'november 21 , 1976', 'chicago

bears', 'w 14 - 10', '78042'], ['12',
'november 25 , 1976', 'buffalo

bills', 'w 27 - 14', '66875'], ['13',
'december 5 , 1976', 'new york

giants', 'l 24 - 10', '66069'], ['14',
'december 11 , 1976', 'los angeles

rams', 'l 20 - 17', '73470']]

Week Date Opponent Result Attendance
1 September 12, 1976 at Chicago Bears L 10–3 54,125

2 September 19, 1976 Atlanta Falcons W 24–10 50,840

3 September 26, 1976 Minnesota Vikings L 10–9 77,292

4 October 3, 1976 at Green Bay Packers L 24–14 55,041

5 October 10, 1976 New England Patriots W 30–10 60,174

6 October 17, 1976 at Washington Redskins L 20–7 45,908

7 October 24, 1976 at Seattle Seahawks W 41–14 61,280

8 October 31, 1976 Green Bay Packers W 27–6 74,992

9 November 7, 1976 at Minnesota Vikings L 31–23 46,735

10 November 14, 1976 at New Orleans Saints L 17–16 42,048

11 November 21, 1976 Chicago Bears W 14–10 78,042

12 November 25, 1976 Buffalo Bills W 27–14 66,875

13 December 5, 1976 at New York Giants L 24–10 66,069

14 December 11, 1976 Los Angeles Rams L 20–17 73,470

2-1219456-1.html.csv
>

llanelli a.f.c

0.9892777357610039

['season' 'competition' 'round'
'opponents' 'home leg' 'away

leg' 'aggregate']
[['2006 - 07', 'uefa cup', 'q1', 'gefle
if', '0 - 0', '2 - 1', '2 - 1'], ['2006 -

07', 'uefa cup', 'q2', 'ob odense', '1
- 5', '0 - 1', '1 - 6'], ['2007', 'uefa
intertoto cup', 'q1', 'fk vetra', '5 -

3', '1 - 3', '6 - 6'], ['2008 - 09', 'uefa
champions league', 'q1', 'fk

ventspils', '1 - 0', '0 - 4', '1 - 4'],
['2009 - 10', 'uefa europa league',
'q1', 'motherwell', '0 - 3', '1 - 0', '1

- 3'], ['2010 - 11', 'uefa europa
league', 'q1', 'tauras', '2 - 2', '2 - 3',
'4 - 5'], ['2011 - 12', 'uefa europa
league', 'q2', 'dinamo tbilisi', '2 -

1', '0 - 5', '2 - 6'], ['2012 - 13', 'uefa
europa league', 'q1', 'kups', '1 - 1',

'1 - 2', '2 - 3']]

Season Competition Round Opponents Home leg Away leg Aggregate

2006–07 UEFA Cup
Q1  Gefle IF 0–0 2–1 2–1

Q2  OB Odense 1–5 0–1 1–6

2007 UEFA Intertoto Cup Q1  FK Vetra 5–3 1–3 6–6

2008–09 UEFA Champions League Q1  FK Ventspils 1–0 0–4 1–4

2009–10 UEFA Europa League Q1  Motherwell 0–3 1–0 1–3

2010–11 UEFA Europa League Q1  Tauras 2–2 2–3 4–5

2011–12 UEFA Europa League Q2  Dinamo Tbilisi 2–1 0–5 2–6

2012–13 UEFA Europa League Q1  KuPS 1–1 1–2 2–3

1-2897457-3.html.csv
>

1989 nhl entry
draft

0.9504267308328127

['pick' 'player' 'position'
'nationality' 'nhl team' 'college /

junior / club team']
[['43', 'stephane morin', 'center',

'canada', 'quebec nordiques',
'chicoutimi sagueneens (qmjhl)'],

['44', 'jason zent', 'left wing',
'united states', 'new york

islanders', 'nichols school (ushs -
nt)'], ['45', 'rob zamuner', 'left

wing', 'canada', 'new york rangers',
'guelph platers (ohl)'], ['46', 'jason

cirone', 'centre', 'canada',
'winnipeg jets', 'cornwall royals
(ohl)'], ['47', 'scott pellerin', 'left

wing', 'canada', 'new jersey devils',
'university of maine (ncaa)'], ['48',

'bob kellogg', 'defence', 'united
states', 'chicago blackhawks',

'springfield olympics (ejhl)'], ['49',
'louie debrusk', 'left wing',

'canada', 'new york rangers',
'london knights (ohl)'], ['50', 'veli -

pekka kautonen', 'defence',
'finland', 'calgary flames', 'ifk

helsinki (finland)'], ['51', 'pierre
sevigny', 'left wing', 'canada',
'montreal canadiens', 'verdun

junior canadiens (qmjhl)'], ['52',
'blair atcheynum', 'right wing',

'canada', 'hartford whalers', 'moose
jaw warriors (whl)'], ['53', 'nicklas

lidstrom', 'defence', 'sweden',
'detroit red wings', 'vã¤steras ik
(sweden)'], ['54', 'john tanner',
'goaltender', 'canada', 'quebec

nordiques', 'peterborough petes
(ohl)'], ['55', 'denny felsner', 'left

wing', 'united states', 'st louis
blues', 'university of michigan

(ncaa)'], ['56', 'scott thomas', 'right
wing', 'united states', 'buffalo
sabres', 'nichols school (ushs -
ny)'], ['57', 'wes walz', 'centre',

'canada', 'boston bruins',
'lethbridge hurricanes (whl)'],

['58', 'john brill', 'left / right wing',
'united states', 'pittsburgh

penguins', 'grand rapids (uss)'],
['59', 'jim mathieson', 'defence',
'canada', 'washington capitals',

'regina pats (whl)'], ['60', 'murray
garbutt', 'centre', 'canada',

'minnesota north stars', 'medicine
hat tigers (whl)'], ['61', 'jason
woolley', 'defence', 'canada',

'washington capitals', 'michigan
state university (ncaa)'], ['62', 'kris

draper', 'defence', 'canada',
'winnipeg jets', 'canadian national
team'], ['63', 'corey lyons', 'right
wing', 'canada', 'calgary flames',
'lethbridge hurricanes (whl)']]

Pick # Player Position Nationality NHL team College/junior/club team
43 Stephane Morin Center  Canada Quebec Nordiques Chicoutimi Sagueneens (QMJHL)

44 Jason Zent Left Wing  United States New York Islanders Nichols School (USHS–NY)

45 Rob Zamuner Left Wing  Canada New York Rangers Guelph Platers (OHL)

46 Jason Cirone Center  Canada Winnipeg Jets Cornwall Royals (OHL)

47 Scott Pellerin Left Wing  Canada New Jersey Devils University of Maine (Hockey East)

48 Bob Kellogg Defense  United States Chicago Blackhawks Springfield Olympics (EJHL)

49 Louie DeBrusk Left Wing  Canada New York Rangers London Knights (OHL)

50 Veli-Pekka Kautonen Defense  Finland Calgary Flames HIFK (Finland)

51 Pierre Sevigny Left Wing  Canada Montreal Canadiens Verdun Junior Canadiens (QMJHL)

52 Blair Atcheynum Right Wing  Canada Hartford Whalers Moose Jaw Warriors (WHL)

53 Nicklas Lidstrom Defense  Sweden Detroit Red Wings VIK Vasteras IK (Sweden)

54 John Tanner Goaltender  Canada Quebec Nordiques Peterborough Petes (OHL)

55 Denny Felsner Left Wing  United States St. Louis Blues University of Michigan (CCHA)

56 Scott Thomas Right Wing  United States Buffalo Sabres Nichols School (USHS–NY)

57 Wes Walz Center  Canada Boston Bruins Lethbridge Hurricanes (WHL)

58 John Brill Left/Right
Wing  United States Pittsburgh Penguins Grand Rapids High School (USHS–MN)

59 Jim Mathieson Defense  Canada Washington Capitals Regina Pats (WHL)

60 Murray Garbutt Center  Canada Minnesota North Stars Medicine Hat Tigers (WHL)

61 Jason Woolley Defense  Canada Washington Capitals Michigan State University (CCHA)

62 Kris Draper Defense  Canada Winnipeg Jets Canadian National team

63 Corey Lyons Right Wing  Canada Calgary Flames Lethbridge Hurricanes (WHL)
Reference:

2-13649804-1.html.csv
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pga assistant
professional

championship

0.9878713703318368

['year' 'champion' 'venue'
'location' 'score']

[['2013', 'frank bensel', 'pga golf
club , wanamaker course', 'port st
lucie , florida', '278'], ['2012', 'jake
scott', 'pga golf club , wanamaker

course', 'port st lucie , florida',
'271'], ['2011', 'frank bensel', 'pga

golf club , wanamaker course',
'port st lucie , florida', '283'],

['2010', 'frank bensel', 'pga golf
club , wanamaker course', 'port st
lucie , florida', '277'], ['2009', 'tim

thelen', 'pga golf club ,
wanamaker course', 'port st lucie ,

florida', '265'], ['2008', 'kyle
voska', 'pga golf club , wanamaker

course', 'port st lucie , florida',
'279'], ['2007', 'chris moody', 'pga

golf club , wanamaker course',
'port st lucie , florida', '277'],

['2006', 'brad lardon', 'pga golf
club , ryder course', 'port st lucie ,

florida', '274'], ['2005', 'kyle
flinton', 'pga golf club ,

wanamaker course', 'port st lucie ,
florida', '282'], ['2004', 'kirk
satterfield', 'pga golf club ,

wanamaker course', 'port st lucie ,
florida', '278'], ['2003', 'kyle
flinton', 'pga golf club , dye

course', 'port st lucie , florida',
'270'], ['2002', 'kyle flinton', 'pga
golf club , wanamaker course',
'port st lucie , florida', '271'],

['2001', 'frank dobbs', 'pga golf
club , wanamaker course', 'port st
lucie , florida', '281'], ['2000', 'alan

schulte', 'pga golf club , south
course', 'port st lucie , florida',

'282'], ['1999', 'randall mccracken',
'pga golf club , wanamaker

course', 'port st lucie , florida',
'211'], ['1998', 'rick gehr', 'pga golf
club , ryder course', 'port st lucie ,

florida', '280'], ['1997', 'jim
schuman', 'pga golf club , ryder
course', 'port st lucie , florida',

'280 po'], ['1996', 'jim schuman',
'pga golf club , wanamaker

course', 'port st lucie , florida',
'276'], ['1995', 'bruce zabriski',
'pga national golf club , haig &
champion courses', 'palm beach
gardens , florida', '282'], ['1994',
'wes short , jr', 'pga west , jack

nicklaus private course', 'la quinta
, california', '283'], ['1993', 'steve
brady', 'pga west , jack nicklaus

private course', 'la quinta ,
california', '284'], ['1992', 'bill

loeffler', 'pga west , jack nicklaus
private course', 'la quinta ,

california', '283'], ['1991', 'kim
thompson', 'pga west , jack

nicklaus private course', 'la quinta
, california', '278'], ['1990', 'steve
gotsche', 'thorny lea golf club',

'brockton , massachusetts', '205'],
['1989', 'mike west', 'thorny lea

golf club', 'brockton ,
massachusetts', '210'], ['1988',
'webb heintzelman', 'thorny lea

golf club', 'brockton ,
massachusetts', '205'], ['1987',

'darrell kestner', 'thorny lea golf
club', 'brockton , massachusetts',

'210 po'], ['1986', 'robert
thompson', 'thorny lea golf club',
'brockton , massachusetts', '209'],
['1985', 'john fiedler', 'thorny lea

golf club', 'brockton ,
massachusetts', '211'], ['1984',

'fred funk', 'thorny lea golf club',
'brockton , massachusetts', '206'],
['1983', 'victor tortorici', 'thorny

lea golf club', 'brockton ,
massachusetts', '214'], ['1982',

'darrell kestner', 'thorny lea golf
club', 'brockton , massachusetts',
'213 po'], ['1981', "ted o'rourke",
'thorny lea golf club', 'brockton ,
massachusetts', '210'], ['1980',
'john jackson', 'thorny lea golf

club', 'brockton , massachusetts',
'205'], ['1979', 'loren roberts',

'thorny lea golf club', 'brockton ,
massachusetts', '212'], ['1978',
'larry griffin', 'thorny lea golf

club', 'brockton , massachusetts',
'209'], ['1977', 'mike zack', 'thorny

lea golf club', 'brockton ,
massachusetts', '209']]

Year Champion Venue Location Score
2023 Preston Cole PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 275

2022 Domenico Geminiani PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 282

2021 Jin Chung PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 274

2020 Gunner Wiebe PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 278

2019 Alex Beach PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 280

2018 Kenny Pigman PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 273

2017 Ryan Zylstra PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 277

2016 Ben Polland PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 281

2015 Andy Mickelson PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 272

2014 Grant Sturgeon PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 275

2013 Frank Bensel PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 278

2012 Jake Scott PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 271

2011 Frank Bensel PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 283

2010 Frank Bensel PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 277

2009 Tim Thelen PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 265

2008 Kyle Voska PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 279

2007 Chris Moody PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 277

2006 Brad Lardon PGA Golf Club, Ryder Course Port St. Lucie, Florida 274

2005 Kyle Flinton PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 282

2004 Kirk Satterfield PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 278

2003 Kyle Flinton PGA Golf Club, Dye Course Port St. Lucie, Florida 270

2002 Kyle Flinton PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 271

2001 Frank Dobbs PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 281

2000 Alan Schulte PGA Golf Club, South Course Port St. Lucie, Florida 282

1999 Randall McCracken PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 211

1998 Rick Gehr PGA Golf Club, Ryder Course Port St. Lucie, Florida 280

1997 Jim Schuman PGA Golf Club, Ryder Course Port St. Lucie, Florida 280 PO

1996 Jim Schuman PGA Golf Club, Wanamaker Course Port St. Lucie, Florida 276

1995 Bruce Zabriski PGA National Golf Club, Haig & Champion Courses Palm Beach Gardens, Florida 282

1994 Wes Short Jr. PGA West, Jack Nicklaus Private Course La Quinta, California 283

1993 Steve Brady PGA West, Jack Nicklaus Private Course La Quinta, California 284

1992 Bill Loeffler PGA West, Jack Nicklaus Private Course La Quinta, California 283

1991 Kim Thompson PGA West, Jack Nicklaus Private Course La Quinta, California 278

1990 Steve Gotsche Thorny Lea Golf Club Brockton, Massachusetts 205

1989 Mike West Thorny Lea Golf Club Brockton, Massachusetts 210

1988 Webb Heintzelman Thorny Lea Golf Club Brockton, Massachusetts 205

1987 Darrell Kestner Thorny Lea Golf Club Brockton, Massachusetts 210 PO

1986 Robert Thompson Thorny Lea Golf Club Brockton, Massachusetts 209

1985 John Fiedler Thorny Lea Golf Club Brockton, Massachusetts 211

1984 Fred Funk Thorny Lea Golf Club Brockton, Massachusetts 206

1983 Victor Tortorici Thorny Lea Golf Club Brockton, Massachusetts 214

1982 Darrell Kestner Thorny Lea Golf Club Brockton, Massachusetts 213 PO

1981 Ted O'Rourke Thorny Lea Golf Club Brockton, Massachusetts 210

1980 John Jackson Thorny Lea Golf Club Brockton, Massachusetts 205

1979 Loren Roberts Thorny Lea Golf Club Brockton, Massachusetts 212

1978 Larry Griffin Thorny Lea Golf Club Brockton, Massachusetts 209

1977 Mike Zack Thorny Lea Golf Club Brockton, Massachusetts 209

2-16023753-2.html.csv
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1983 miami
dolphins
season

0.9705980746140466

['week' 'date' 'opponent' 'result'
'attendance']

[['1', 'september 4 , 1983', 'buffalo
bills', 'w 12 - 0', '78715'], ['2',
'september 11 , 1983', 'new

england patriots', 'w 34 - 24',
'59343'], ['3', 'september 19 ,

1983', 'los angeles raiders', 'l 27 -
14', '57796'], ['4', 'september 25 ,
1983', 'kansas city chiefs', 'w 14 -
6', '50785'], ['5', 'october 2 , 1983',

'new orleans saints', 'l 17 - 7',
'66489'], ['6', 'october 9 , 1983',

'buffalo bills', 'l 38 - 35', '59948'],
['7', 'october 16 , 1983', 'new york

jets', 'w 32 - 14', '58615'], ['8',
'october 23 , 1983', 'baltimore
colts', 'w 21 - 7', '32343'], ['9',

'october 30 , 1983', 'los angeles
rams', 'w 30 - 14', '72175'], ['10',

'november 6 , 1983', 'san francisco
49ers', 'w 20 - 17', '57832'], ['11',

'november 13 , 1983', 'new
england patriots', 'l 17 - 6',

'60771'], ['12', 'november 20 ,
1983', 'baltimore colts', 'w 37 - 0',

'54482'], ['13', 'november 28 ,
1983', 'cincinnati bengals', 'w 38 -
14', '74506'], ['14', 'december 4 ,

1983', 'houston oilers', 'w 24 - 17',
'39434'], ['15', 'december 10 ,

1983', 'atlanta falcons', 'w 31 - 24',
'56725'], ['16', 'december 16 ,

1983', 'new york jets', 'w 34 - 14',
'59975']]

Week Date Opponent Result Attendance
1 September 4, 1983 at Buffalo Bills W 12–0 78,715

2 September 11, 1983 New England Patriots W 34–24 59,343

3 September 19, 1983 at Los Angeles Raiders L 27–14 57,796

4 September 25, 1983 Kansas City Chiefs W 14–6 50,785

5 October 2, 1983 at New Orleans Saints L 17–7 66,489

6 October 9, 1983 Buffalo Bills L 38–35 59,948

7 October 16, 1983 at New York Jets W 32–14 58,615

8 October 23, 1983 at Baltimore Colts W 21–7 32,343

9 October 30, 1983 Los Angeles Rams W 30–14 72,175

10 November 6, 1983 at San Francisco 49ers W 20–17 57,832

11 November 13, 1983 at New England Patriots L 17–6 60,771

12 November 20, 1983 Baltimore Colts W 37–0 54,482

13 November 28, 1983 Cincinnati Bengals W 38–14 74,506

14 December 4, 1983 at Houston Oilers W 24–17 39,434

15 December 10, 1983 Atlanta Falcons W 31–24 56,725

16 December 16, 1983 New York Jets W 34–14 59,975

2-13962594-1.html.csv
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1973 new york
jets season

0.9271470888722949

['week' 'date' 'opponent' 'result'
'game site' 'attendance']

[['1', '1973 - 09 - 17', 'green bay
packers', 'l 23 - 7', 'milwaukee
county stadium', '47124'], ['2',

'1973 - 09 - 23', 'baltimore colts',
'w 34 - 10', 'memorial stadium',
'55942'], ['3', '1973 - 09 - 30',

'buffalo bills', 'l 9 - 7', 'rich
stadium', '77425'], ['4', '1973 - 10 -

07', 'miami dolphins', 'l 31 - 3',
'miami orange bowl', '63850'], ['5',

'1973 - 10 - 14', 'new england
patriots', 'w 9 - 7', 'schafer

stadium', '58659'], ['6', '1973 - 10 -
21', 'pittsburgh steelers', 'l 26 - 14',

'three rivers stadium', '48682'],
['7', '1973 - 10 - 28', 'denver

broncos', 'l 40 - 28', 'shea stadium',
'55108'], ['8', '1973 - 11 - 04',

'miami dolphins', 'l 24 - 14', 'shea
stadium', '57791'], ['9', '1973 - 11 -
11', 'new england patriots', 'w 33 -
13', 'shea stadium', '51034'], ['10',

'1973 - 11 - 18', 'cincinnati
bengals', 'l 20 - 14', 'riverfront

stadium', '55745'], ['11', '1973 - 11
- 25', 'atlanta falcons', 'l 28 - 20',

'shea stadium', '47283'], ['12',
'1973 - 12 - 02', 'baltimore colts',

'w 20 - 17', 'shea stadium',
'51167'], ['13', '1973 - 12 - 09',
'philadelphia eagles', 'l 24 - 23',

'veterans stadium', '34621'], ['14',
'1973 - 12 - 16', 'buffalo bills', 'l
34 - 14', 'shea stadium', '47740']]

Week Date Opponent Result Game site Attendance
1 September 17, 1973 at Green Bay Packers L 23–7 Milwaukee County Stadium 47,124

2 September 23, 1973 at Baltimore Colts W 34–10 Memorial Stadium 55,942

3 September 30, 1973 at Buffalo Bills L 9–7 Rich Stadium 77,425

4 October 7, 1973 at Miami Dolphins L 31–3 Miami Orange Bowl 63,850

5 October 14, 1973 at New England Patriots W 9–7 Schaefer Stadium 58,659

6 October 21, 1973 at Pittsburgh Steelers L 26–14 Three Rivers Stadium 48,682

7 October 28, 1973 Denver Broncos L 40–28 Shea Stadium 55,108

8 November 4, 1973 Miami Dolphins L 24–14 Shea Stadium 57,791

9 November 11, 1973 New England Patriots W 33–13 Shea Stadium 51,034

10 November 18, 1973 at Cincinnati Bengals L 20–14 Riverfront Stadium 55,745

11 November 25, 1973 Atlanta Falcons L 28–20 Shea Stadium 47,283

12 December 2, 1973 Baltimore Colts W 20–17 Shea Stadium 51,167

13 December 9, 1973 at Philadelphia Eagles L 24–23 Veterans Stadium 34,621

14 December 16, 1973 Buffalo Bills L 34–14 Shea Stadium 47,740

2-14611590-3.html.csv
>

1995 pga tour

0.9214426752509269

['rank' 'player' 'country'
'earnings' 'events' 'wins']

[['1', 'greg norman', 'australia',
'1654959', '16', '3'], ['2', 'billy

mayfair', 'united states', '1543192',
'28', '2'], ['3', 'lee janzen', 'united
states', '1378966', '28', '3'], ['4',

'corey pavin', 'united states',
'1340079', '22', '2'], ['5', 'steve

elkington', 'australia', '1254352',
'21', '2']]

Rank Player Country Earnings ($) Events Wins
1 Greg Norman  Australia 1,654,959 16 3

2 Billy Mayfair  United States 1,543,192 28 2

3 Lee Janzen  United States 1,378,966 28 3

4 Corey Pavin  United States 1,340,079 22 2

5 Steve Elkington  Australia 1,254,352 21 2

2-1204658-17.html.csv
>

1908 vfl season

0.9913207589050183

['home team' 'home team score'
'away team' 'away team score'

'venue' 'date']
[['university', '13.18 (96)',

'geelong', '6.8 (44)', 'emcg', '15
august 1908'], ['st kilda', '4.7 (31)',
'fitzroy', '3.4 (22)', 'junction oval',

'15 august 1908'], ['south
melbourne', '5.8 (38)', 'essendon',
'3.14 (32)', 'lake oval', '15 august
1908'], ['melbourne', '4.8 (32)',

'collingwood', '6.9 (45)', 'mcg', '15
august 1908'], ['richmond', '4.17
(41)', 'carlton', '6.12 (48)', 'punt
road oval', '15 august 1908']]

Home team Home team score Away team Away team score Venue Date

University 13.18 (96) Geelong 6.8 (44) EMCG 15 August 1908

St Kilda 4.7 (31) Fitzroy 3.4 (22) Junction Oval 15 August 1908

South Melbourne 5.8 (38) Essendon 3.14 (32) Lake Oval 15 August 1908

Melbourne 4.8 (32) Collingwood 6.9 (45) MCG 15 August 1908

Richmond 4.17 (41) Carlton 6.12 (48) Punt Road Oval 15 August 1908

2-10808681-
18.html.csv

>

1967 vfl season

0.9726223714984885

['home team' 'home team score'
'away team' 'away team score'

'venue' 'crowd' 'date']
[['geelong', '15.15 (105)',

'richmond', '18.9 (117)', 'kardinya
park', '34616', '26 august 1967'],

['footscray', '7.11 (53)', 'north
melbourne', '8.7 (55)', 'western

oval', '10669', '26 august 1967'],
['carlton', '10.22 (82)', 'south

melbourne', '7.7 (49)', 'princes
park', '15609', '26 august 1967'],
['hawthorn', '13.13 (91)', 'fitzroy',

'10.14 (74)', 'glenferrie oval',
'13846', '26 august 1967'],
['melbourne', '8.12 (60)',

'essendon', '7.14 (56)', 'mcg',
'24282', '26 august 1967'], ['st

kilda', '14.16 (100)', 'collingwood',
'8.5 (53)', 'moorabbin oval',
'28862', '26 august 1967']]

Home team Home team score Away team Away team score Venue Crowd Date

Geelong 15.15 (105) Richmond 18.9 (117) Kardinia Park 34,616 26 August 1967

Footscray 7.11 (53) North Melbourne 8.7 (55) Western Oval 10,669 26 August 1967

Carlton 10.22 (82) South Melbourne 7.7 (49) Princes Park 15,609 26 August 1967

Hawthorn 13.13 (91) Fitzroy 10.14 (74) Glenferrie Oval 13,846 26 August 1967

Melbourne 8.12 (60) Essendon 7.14 (56) MCG 24,282 26 August 1967

St Kilda 14.16 (100) Collingwood 8.5 (53) Moorabbin Oval 28,862 26 August 1967

2-10776330-
14.html.csv

>

1961 vfl season

0.9783980572678217

['home team' 'home team score'
'away team' 'away team score'

'venue' 'crowd' 'date']
[['geelong', '11.7 (73)', 'st kilda',

'10.8 (68)', 'kardinia park', '25723',
'29 july 1961'], ['fitzroy', '12.15
(87)', 'hawthorn', '13.16 (94)',

'brunswick street oval', '23012',
'29 july 1961'], ['south melbourne',

'16.9 (105)', 'richmond', '9.14
(68)', 'lake oval', '14350', '29 july
1961'], ['melbourne', '10.18 (78)',

'essendon', '13.9 (87)', 'mcg',
'31455', '29 july 1961'], ['north

melbourne', '9.13 (67)',
'collingwood', '9.10 (64)', 'arden

street oval', '15000', '29 july
1961'], ['footscray', '12.11 (83)',

'carlton', '7.9 (51)', 'western oval',
'21639', '29 july 1961']]

Home team Home team score Away team Away team score Venue Crowd Date

Geelong 11.7 (73) St Kilda 10.8 (68) Kardinia Park 25,723 29 July 1961

Fitzroy 12.15 (87) Hawthorn 13.16 (94) Brunswick Street Oval 23,012 29 July 1961

South Melbourne 16.9 (105) Richmond 9.14 (68) Lake Oval 14,350 29 July 1961

Melbourne 10.18 (78) Essendon 13.9 (87) MCG 31,455 29 July 1961

North Melbourne 9.13 (67) Collingwood 9.10 (64) Arden Street Oval 15,000 29 July 1961

Footscray 12.11 (83) Carlton 7.9 (51) Western Oval 21,639 29 July 1961

2-10747009-9.html.csv
>

1927 vfl season

0.970622243118763

['home team' 'home team score'
'away team' 'away team score'

'venue' 'crowd' 'date']
[['hawthorn', '9.6 (60)', 'richmond',

'9.20 (74)', 'glenferrie oval',
'10000', '25 june 1927'],

['essendon', '12.12 (84)', 'south
melbourne', '15.9 (99)', 'windy

hill', '17000', '25 june 1927'], ['st
kilda', '15.7 (97)', 'north

melbourne', '13.10 (88)', 'junction
oval', '13000', '25 june 1927'],

['melbourne', '10.13 (73)',
'footscray', '7.9 (51)', 'mcg',

'15171', '25 june 1927'], ['geelong',
'12.15 (87)', 'fitzroy', '12.8 (80)',

'corio oval', '13500', '25 june
1927'], ['collingwood', '13.5 (83)',

'carlton', '14.11 (95)', 'victoria
park', '33000', '25 june 1927']]

Home team Home team score Away team Away team score Venue Crowd Date

Hawthorn 9.6 (60) Richmond 9.20 (74) Glenferrie Oval 10,000 25 June 1927

Essendon 12.12 (84) South Melbourne 15.9 (99) Windy Hill 17,000 25 June 1927

St Kilda 15.7 (97) North Melbourne 13.10 (88) Junction Oval 13,000 25 June 1927

Melbourne 10.13 (73) Footscray 7.9 (51) MCG 15,171 25 June 1927

Geelong 12.15 (87) Fitzroy 12.8 (80) Corio Oval 13,500 25 June 1927

Collingwood 13.5 (83) Carlton 14.11 (95) Victoria Park 33,000 25 June 1927

2-12913985-5.html.csv
>

1986 masters
tournament

0.9409289963653122

['place' 'player' 'country' 'score'
'to par']

[['1', 'seve ballesteros', 'spain', '71
+ 68 = 139', '- 5'], ['2', 'billy

kratzert', 'united states', '68 + 72 =
140', '- 4'], ['3', 'tsuneyuki

nakajima', 'japan', '70 + 71 = 139',
'- 3'], ['t4', 'ben crenshaw', 'united
states', '71 + 71 = 142', '- 2'], ['t4',
'david edwards', 'united states', '71

+ 71 = 142', '- 2'], ['t4', 'greg
norman', 'australia', '70 + 72 =

142', '- 2'], ['t4', 'bernhard langer',
'west germany', '74 + 68 = 142', '-

2'], ['t8', 'gary koch', 'united
states', '69 + 74 = 143', '- 1'], ['t8',
'mark mccumber', 'united states',
'76 + 67 = 143', '- 1'], ['t8', 'corey
pavin', 'united states', '71 + 72 =

143', '- 1'], ['t8', 'bob tway', 'united
states', '70 + 73 = 143', '- 1']]

Place Player Country Score To par

1 Seve Ballesteros  Spain 71-68=139 −5

2 Billy Kratzert  United States 68-72=140 −4

3 Tsuneyuki Nakajima  Japan 70-71=141 −3

T4

Chen Tze-chung  Taiwan 69-73=142

−2

Ben Crenshaw  United States 71-71=142

Danny Edwards  United States 71-71=142

Greg Norman  Australia 70-72=142

Bernhard Langer  West Germany 74-68=142

T9

Gary Koch  United States 69-74=143

−1
Mark McCumber  United States 76-67=143

Corey Pavin  United States 71-72=143

Bob Tway  United States 70-73=143

2-15780049-
10.html.csv

>

2001 - 02
toronto

raptors season

0.908295106229248

['game' 'date' 'team' 'score'
'high points' 'high rebounds'

'high assists' 'location
attendance' 'record']

[['1', 'april 21', 'detroit', 'l 63 - 85
(ot)', 'antonio davis (15)', 'antonio

davis (14)', 'alvin williams (6)',
'the palace of auburn hills 22076',
'0 - 1'], ['2', 'april 24', 'detroit', 'l 91

- 96 (ot)', 'chris childs (22)',
'antonio davis (14)', 'chris childs
(14)', 'the palace of auburn hills

22076', '0 - 2'], ['3', 'april 27',
'detroit', 'w 94 - 84 (ot)', 'antonio
davis (30)', 'antonio davis (8)',
'chris childs (10)', 'air canada

centre 20138', '1 - 2'], ['4', 'april
29', 'detroit', 'w 89 - 83 (ot)',

'morris peterson (20)', 'keon clark
(16)', 'alvin williams (9)', 'air

canada centre 20112', '2 - 2'], ['5',
'may 2', 'detroit', 'l 82 - 85 (ot)',
'dell curry (17)', 'antonio davis

(12)', 'chris childs , alvin williams
(6)', 'the palace of auburn hills

22076', '2 - 3']]

Game Date Team Score High points High rebounds High assists Location
Attendance Record

1 April 21 @ Detroit L 63–85 Antonio Davis (15) Antonio Davis (14) Alvin Williams (6) The Palace of Auburn Hills
22,076 0–1

2 April 24 @ Detroit L 91–96 Chris Childs (22) Antonio Davis (14) Chris Childs (14) The Palace of Auburn Hills
22,076 0–2

3 April 27 Detroit W 94–84 Antonio Davis (30) Antonio Davis (8) Chris Childs (10) Air Canada Centre
20,138 1–2

4 April 29 Detroit W 89–83 Morris Peterson (20) Keon Clark (16) Alvin Williams (9) Air Canada Centre
20,112 2–2

5 May 2 @ Detroit L 82–85 Dell Curry (17) Antonio Davis (12) Chris Childs, Alvin Williams (6) The Palace of Auburn Hills
22,076 2–3

2-15828727-6.html.csv
>

2003 - 04 fa
cup

0.9331075260506762

['tie no' 'home team' 'score'
'away team' 'attendance']

[['1', 'liverpool', '1 - 1',
'portsmouth', '34669'], ['replay',
'portsmouth', '1 - 0', 'liverpool',

'19529'], ['2', 'sunderland', '1 - 1',
'birmingham city', '24966'],

['replay', 'birmingham city', '0 - 2',
'sunderland', '25645'], ['3',
'sheffield united', '1 - 0',

'colchester united', '17074'], ['4',
'tranmere rovers', '2 - 1', 'swansea
city', '12215'], ['5', 'fulham', '0 - 0',

'west ham united', '14705'],
['replay', 'west ham united', '0 - 3',
'fulham', '27934'], ['6', 'manchester

united', '4 - 2', 'manchester city',
'67228'], ['7', 'millwall', '1 - 0',

'burnley', '10420'], ['8', 'arsenal', '2
- 1', 'chelsea', '38136']]

Tie no Home team Score Away team Attendance
1 Liverpool 1–1 Portsmouth 34,669

replay Portsmouth 1–0 Liverpool 19,529

2 Sunderland 1–1 Birmingham City 24,966

replay Birmingham City 0–2 Sunderland 25,645

3 Sheffield United 1–0 Colchester United 17,074

4 Tranmere Rovers 2–1 Swansea City 12,215

5 Fulham 0–0 West Ham United 14,705

replay West Ham United 0–3 Fulham 27,934

6 Manchester United 4–2 Manchester City 67,228

7 Millwall 1–0 Burnley 10,420

8 Arsenal 2–1 Chelsea 38,136

2-1172877-1.html.csv
>

tripoli grand
prix

0.9947844405856647

['year' 'driver' 'constructor'
'location' 'report']

[['1940', 'giuseppe farina', 'alfa
romeo', 'mellaha', 'report'], ['1939',
'hermann lang', 'mercedes - benz',

'mellaha', 'report'], ['1938',
'hermann lang', 'mercedes - benz',

'mellaha', 'report'], ['1937',
'hermann lang', 'mercedes - benz',
'mellaha', 'report'], ['1936', 'achille

varzi', 'auto union', 'mellaha',
'report'], ['1935', 'rudolf

caracciola', 'mercedes - benz',
'mellaha', 'report'], ['1934', 'achille

varzi', 'alfa romeo', 'mellaha',
'report'], ['1933', 'achille varzi',

'bugatti', 'mellaha', 'report'],
['1930', 'baconin borzacchini',

'maserati', 'tripoli', 'report'],
['1929', 'gastone brilli - peri',

'talbot', 'tripoli', 'report'], ['1928',
'tazio nuvolari', 'bugatti', 'tripoli',

'report'], ['1927', 'emilio
materassi', 'bugatti', 'tripoli',
'report'], ['1926', 'franã§ois

eysermann', 'bugatti', 'tripoli',
'report'], ['1925', 'renato

balestrero', 'om', 'tripoli', 'report']]

Year Driver Constructor Location Report

1940  Giuseppe Farina Alfa Romeo Mellaha Report

1939  Hermann Lang Mercedes-Benz Mellaha Report

1938  Hermann Lang Mercedes-Benz Mellaha Report

1937  Hermann Lang Mercedes-Benz Mellaha Report

1936  Achille Varzi Auto Union Mellaha Report

1935  Rudolf Caracciola Mercedes-Benz Mellaha Report

1934  Achille Varzi Alfa Romeo Mellaha Report

1933  Achille Varzi Bugatti Mellaha Report

1930  Baconin Borzacchini Maserati Tripoli Report

1929  Gastone Brilli-Peri Talbot Tripoli Report

1928  Tazio Nuvolari Bugatti Tripoli Report

1927  Emilio Materassi Bugatti Tripoli Report

1926  François Eysermann Bugatti Tripoli Report

1925  Renato Balestrero OM Tripoli Report

2-12586672-1.html.csv
>

1937 masters
tournament

0.9824348967559546

['place' 'player' 'country' 'score'
'to par' 'money']

[['1', 'byron nelson', 'united states',
'66 + 72 + 75 + 70 = 283', '- 5',

'1500'], ['2', 'ralph guldahl', 'united
states', '69 + 72 + 68 + 76 = 285',

'- 3', '800'], ['3', 'ed dudley', 'united
states', '70 + 71 + 71 + 74 = 286',

'- 2', '600'], ['4', 'harry cooper',
'united states', '73 + 69 + 71 + 74

= 287', '- 1', '500'], ['5', 'ky
laffoon', 'united states', '73 + 70 +
74 + 73 = 290', '+ 2', '400'], ['6',

'jimmy thomson', 'scotland united
states', '71 + 73 + 74 + 73 = 291',

'+ 3', '300'], ['7', 'al watrous',
'united states', '74 + 72 + 71 + 75
= 292', '+ 4', '250'], ['t8', 'tommy

armour', 'scotland', '73 + 75 + 73 +
72 = 293', '+ 5', '175'], ['t8', 'vic

ghezzi', 'united states', '72 + 72 +
72 + 77 = 293', '+ 5', '175'], ['t10',
'leonard dodson', 'united states',
'71 + 75 + 71 + 77 = 294', '+ 6',

'100'], ['t10', 'jimmy hines', 'united
states', '77 + 72 + 68 + 77 = 294',

'+ 6', '100']]

Place Player Country Score To par Money ($)
1 Byron Nelson  United States 66-72-75-70=283 −5 1,500

2 Ralph Guldahl  United States 69-72-68-76=285 −3 800

3 Ed Dudley  United States 70-71-71-74=286 −2 600

4 Harry Cooper  England
 United States 73-69-71-74=287 −1 500

5 Ky Laffoon  United States 73-70-74-73=290 +2 400

6 Jimmy Thomson  Scotland
 United States 71-73-74-73=291 +3 300

7 Al Watrous  United States 74-72-71-75=292 +4 250

T8
Tommy Armour  Scotland

 United States 73-75-73-72=293
+5 175

Vic Ghezzi  United States 72-72-72-77=293

T10
Leonard Dodson  United States 71-75-71-77=294

+6 100
Jimmy Hines  United States 77-72-68-77=294

2-11965402-8.html.csv
>

['date' 'visitor' 'score' 'home'
'leading scorer' 'attendance'

'record']
[['april 2 , 2008', 'clippers', '102 -

84', 'supersonics', 'al thornton
(21)', '10392', '23 - 52'], ['april 3 ,
2008', 'clippers', '98 - 100', 'kings',
'corey maggette (28)', '12707', '23
- 53'], ['april 6 , 2008', 'rockets',
'105 - 79', 'clippers', 'josh powell

# Date Visitor Score Home OT Leading scorer Attendance Record
75 April 2, 2008 Clippers 102–84 SuperSonics NA Al Thornton (21) 10,392 23–52

76 April 3, 2008 Clippers 98–100 Kings NA Corey Maggette (28) 12,707 23–53

Country Date Label Format CatalogueNo.

Europe 17October2008_601 ColumbiaCD,DoubleLP #88697392232
Australia 18October20081391 SonyMusicCD #88697392382

UnitedKingdom
20October2008116111621

1December2008L381
Columbia

CD,DoubleLP #88697392232

CD(limitededitionsteel-box)#88697417452
UnitedStates 20October2008 Columbia CD #88697338292

Japan 22October200811631 SonyMusicCD SICP-2055

Germany 5December20081641 Columbia CD(limitededitionsteel-box)#886974174523

Global(iTunes) 19November2012/491 Columbia Digitaldownload #88697338292

PosNo Driver Constructor LapsTime/RetiredGridPoints
3 I*IJacquesVilleneuve Williams-Renault 67 1:31:27.843 2 10

2 7 •JeanAlesi Benetton-Renault 67 +11.770 10 6

3 4 Heinz-HaraldFrentzenWilliams-Renault 67 +13.480 3 4

4 -GerhardBerger Benetton-Renault 67 +16.416 7 3

5 2 •PedroDiniz Arrows-Yamaha 67 +43.147 15 2

6 14 •OlivierPanis Prost-Mugen-Honda67 +43.750 11 1

7 16 aJohnnyHerbert Sauber-Petronas 67 +44.354 16
8 1 ESDamonHill Arrows-Yamaha 67 +44.777 13
9 17 •IGianniMorbidelli Sauber-Petronas 66 +1Lap 19
10 19 +-MikaSalo Tyrrell-Ford 66 +1Lap 20
Ret18 •JosVerstappen Tyrrell-Ford 50 SpunOff 21
Ret9 +-MikaHäkkinen McLaren-Mercedes 43 Engine
Ret22 OlRubensBarrichello Stewart-Ford 43 Gearbox
Ret10 2SDavidCoulthard McLaren-Mercedes 42 Engine 6
Ret23 JanMagnussen Stewart-Ford 40 Halfshaft 12
Ret6 SEEddieIrvine Ferrari 22 Engine 14
Ret15 ShinjiNakano Prost-Mugen-Honda 16 Engine 17

Ret5 MichaelSchumacher Ferrari Suspension 5
Ret 21 2TarsoMarques Minardi-Hart Engine 18
Ret20 UkyoKatayama Minardi-Hart Collision 22
Ret 12 GiancarloFisichella Jordan-Peugeot 0 Collision 4
Ret11 RalfSchumacher Jordan-Peugeot Collision 8

Source:131

Title: black ice (album)

Template: the album [ENT] was first released in [ENT]

Statement: the album Black Ice was first released in Europe.

Figure 10: An example from LogicNLG, illustrating a table, a statement with masked entities, and a corresponding
gold statement.
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T2T task: Logic2Text

Title: 1998 cfl draft

Logical form: and { only { filter_eq { filter_eq { all_rows ; college ;
saskatchewan } ; position ; k } } ; eq { hop { filter_eq { filter_eq { all_rows
; college ; saskatchewan } ; position ; k } ; player } ; matt kellett } } =
true

Statement: the only kicker drafted by saskatchewan college in the 1998 cfl
draft was matt kellett .

Figure 11: An example from Logic2Text, illustrating a table, a logical form, and a corresponding gold statement.
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C Table formats collection

In what follows, we provide additional details on
the collection process of the table formats.

XML and HTML. As was mentioned in §2.2,
XML and XML/HTML for the PubTables-1M sub-
set of ComTQA and SciGen, respectively, are ex-
tracted from the source papers. For the former, the
target tables are identified based on their titles and
the highest cosine similarity with table content an-
notations available in PubTables-1M. For Scigen
we use the fuzzy match score with a threshold of
0.8 to identify the relevant tables based on their cap-
tions. Note that not all instances have these formats
(see Table 4) due to LATEXML conversion errors,
low fuzzy match score, discrepancies between cap-
tions in the gold data and LATEX files or a scholarly
paper not being available on arXiv anymore. We
also exclude cases with multiple tables sharing the
same caption but annotated separately, as it is chal-
lenging to accurately link the corresponding HTM-
L/XML code for each table. HTML in LogicNLG
and Logic2Text are retrieved from the Wikipedia
pages. However, due to the lack of metadata on the
data collection timestamps, we choose a time inter-
val close to the year of publication of these datasets
for our search in the Wikipedia archive. To extract
the relevant tables, we employ a cosine similarity
comparison against the gold tables, using a thresh-
old of 0.9. Since Wikipedia is constantly updated,
we further manually check the results and filter out
cases where the mismatch affects the ground truth,
e. g., cell values being out of date or the removal/ad-
dition of both rows and columns. Note that for all
subsets except SciGen, we follow the PMC table
formatting rules19 to obtain XML. Additionally, all
generated HTML underwent automatic validation
using the PyTidyLib20 package.

LATEX. Similar to HTML/XML, we obtain
LATEX from the source scholarly papers in SciGen
(see §2.2) and extract the target tables based on
their captions using the fuzzy match. Some in-
stances are excluded due to low similarity scores
(below 0.8), parsing errors or lack of LATEX source
code (tables from ACL papers). For numericNLG
and PubTables-1M tables, LATEX is generated from
HTML. This process involves preprocessing the
HTML code to replace symbols, such as Greek let-
ters and mathematical operators, with their LATEX

19https://www.ncbi.nlm.nih.gov/pmc/pmcdoc/
tagging-guidelines/article/dobs.html#dob-tables

20https://countergram.github.io/pytidylib/

equivalents. The resulting HTML is then converted
to a dataframe and subsequently to LATEX using
pandas.

Dict. The conventions of already available lin-
earised tables in SciGen, numericNLG, LogicNLG,
and Logic2Text are slightly diverse. In particular,
the distinction between column and row heads ex-
ists only in numericNLG. Furthermore, compared
to LogicNLG and Logic2Text, header hierarchy is
preserved in numericNLG and SciGen by merging
headers and subheaders into a single string.
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Figure 12: Distribution of image aspect ratios (width/height) across subsets in the TableEval benchmark. Each box
represents the interquartile range (IQR), with the central orange line indicating the median. Circles denote outliers,
while whiskers (set to 1.5 × IQR by default) extend to the minimum and maximum non-outlier values. Here “Fin”
stands for FinTabNet, while “PMC” denotes PubTables-1M.
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E Prompts

ComTQA (FinTabNet):

Refer to the provided table and answer the question. Question: {question}

ComTQA (PubTables-1M):

Refer to the provided table and answer the question. Question: {question}.
Table caption: {caption}. Table footnote: {footnote}.

SciGen:

Describe the given table focusing on the most important findings reported by
reasoning over its content. The summary must be factual, coherent, and
well-written. Do not introduce new information or speculate. Table caption:
{caption}

numericNLG:

Describe the given table focusing on the insights and trends revealed by the
results. The summary must be factual, coherent, and well-written. Do not
introduce new information or speculate. Table caption: {caption}

Logic2Text:

Generate a one sentence statement based on the table and logical form. Logical
form: {logical_form}. Table title: {title}

LogicNLG:

Based on a given table, fill in the entities masked by [ENT] in the following
sentence: {sentence}. Output the sentence with filled in masked entities.
Table title: {title}

Figure 13: Prompts used for experiments based on images of tables.
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ComTQA (FinTabNet):

Refer to the provided table and answer the question. Question: {question}.
Table: {table}.

ComTQA (PubTables-1M):

Refer to the provided table and answer the question. Question: {question}.
Table: {table}.

SciGen:

Describe the given table focusing on the most important findings reported by
reasoning over its content. The summary must be factual, coherent, and
well-written. Do not introduce new information or speculate. Table: {table}.

numericNLG:

Describe the given table focusing on the insights and trends revealed by the
results. The summary must be factual, coherent, and well-written. Do not
introduce new information or speculate. Table: {table}.

Logic2Text:

Generate a one sentence statement based on the table and logical form. Logical
form: {logical_form}. Table title: {title}. Table: {table}.

LogicNLG:

Based on a given table, fill in the entities masked by [ENT] in the following
sentence: {sentence}. Output the sentence with filled in masked entities.
Table title: {title}. Table: {table}.

Figure 14: Prompts used for experiments based on textual representations of tables.
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F Experimental results

Metric Dict HTML Image LATEX XML

BertScore.F1 0.85 0.84 0.86 0.84 0.85
BLEU-1 0.16 0.15 0.19 0.16 0.16
BLEU-2 0.09 0.09 0.12 0.09 0.09
BLEU-3 0.06 0.06 0.09 0.06 0.07
BLEU-4 0.04 0.04 0.06 0.05 0.05
BLEURT −0.51 −0.55 −0.42 −0.54 −0.53
METEOR 0.24 0.24 0.25 0.24 0.24
MoverScore 0.54 0.53 0.56 0.54 0.54
ROUGE-1.F1 0.30 0.29 0.38 0.29 0.29
ROUGE-2.F1 0.15 0.14 0.20 0.15 0.15
ROUGE-3.F1 0.09 0.09 0.12 0.09 0.09
ROUGE-4.F1 0.06 0.06 0.08 0.07 0.06
ROUGE-L.F1 0.24 0.23 0.32 0.24 0.24
SacreBLEU 0.04 0.04 0.08 0.05 0.05

Table 5: Values across evaluation metrics for table for-
mats averaged over data subsets and models.

Metric Dict HTML Image LATEX XML

BertScore.F1 0.83 0.84 0.86 0.83 0.84
BLEU-1 0.02 0.02 0.05 0.02 0.02
BLEU-2 0.01 0.01 0.03 0.01 0.01
BLEU-3 0.01 0.01 0.02 0.01 0.01
BLEU-4 0.01 0.01 0.02 0.01 0.01
BLEURT −0.58 −0.55 −0.39 −0.59 −0.54
METEOR 0.06 0.07 0.08 0.06 0.07
MoverScore 0.50 0.50 0.53 0.49 0.50
ROUGE-1.F1 0.14 0.14 0.27 0.14 0.15
ROUGE-2.F1 0.08 0.08 0.17 0.08 0.09
ROUGE-3.F1 0.03 0.03 0.05 0.03 0.03
ROUGE-4.F1 0.01 0.01 0.02 0.01 0.01
ROUGE-L.F1 0.13 0.14 0.27 0.14 0.15
SacreBLEU 0.01 0.02 0.04 0.01 0.02

Table 6: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for ComTQA (FinTab-
Net) subset for individual formats averaged over models.

Metric Dict HTML Image LATEX XML

BertScore.F1 0.82 0.82 0.85 0.82 0.82
BLEU-1 0.03 0.03 0.05 0.03 0.03
BLEU-2 0.02 0.02 0.03 0.02 0.02
BLEU-3 0.01 0.02 0.02 0.01 0.02
BLEU-4 0.01 0.01 0.02 0.01 0.01
BLEURT −0.73 −0.72 −0.59 −0.73 −0.72
METEOR 0.09 0.10 0.09 0.09 0.10
MoverScore 0.48 0.48 0.51 0.48 0.48
ROUGE-1.F1 0.12 0.12 0.22 0.12 0.12
ROUGE-2.F1 0.06 0.06 0.11 0.06 0.06
ROUGE-3.F1 0.03 0.03 0.04 0.03 0.03
ROUGE-4.F1 0.02 0.02 0.03 0.02 0.02
ROUGE-L.F1 0.12 0.12 0.22 0.11 0.12
SacreBLEU 0.01 0.01 0.04 0.01 0.01

Table 7: Raw values of BertScore.F1, BLEU-
N.F1, BLEURT, METEOR, MoverScore, ROUGE-
N.F1, ROUGE-L.F1, and SacreBLEU for ComTQA
(PubTables-1M) subset for individual formats averaged
over models.

Metric Dict HTML Image LATEX XML

BertScore.F1 0.88 0.88 0.89 0.88 0.88
BLEU-1 0.24 0.24 0.22 0.24 0.24
BLEU-2 0.13 0.13 0.12 0.13 0.13
BLEU-3 0.07 0.07 0.07 0.07 0.08
BLEU-4 0.04 0.04 0.04 0.04 0.05
BLEURT −0.14 −0.11 −0.19 −0.09 −0.09
METEOR 0.35 0.37 0.33 0.37 0.38
MoverScore 0.59 0.60 0.60 0.60 0.60
ROUGE-1.F1 0.48 0.49 0.49 0.49 0.49
ROUGE-2.F1 0.23 0.24 0.24 0.25 0.24
ROUGE-3.F1 0.12 0.13 0.12 0.14 0.13
ROUGE-4.F1 0.06 0.07 0.07 0.08 0.07
ROUGE-L.F1 0.37 0.39 0.39 0.38 0.38
SacreBLEU 0.05 0.05 0.05 0.05 0.05

Table 8: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for Logic2Text subset
for individual formats averaged over models.
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Metric Dict HTML Image LATEX XML

BertScore.F1 0.87 0.88 0.91 0.89 0.88
BLEU-1 0.32 0.33 0.51 0.36 0.36
BLEU-2 0.26 0.27 0.43 0.30 0.29
BLEU-3 0.21 0.23 0.35 0.25 0.24
BLEU-4 0.17 0.18 0.28 0.20 0.20
BLEURT −0.46 −0.47 −0.13 −0.40 −0.41
METEOR 0.52 0.53 0.63 0.55 0.55
MoverScore 0.60 0.59 0.64 0.61 0.60
ROUGE-1.F1 0.48 0.48 0.69 0.52 0.51
ROUGE-2.F1 0.38 0.38 0.55 0.41 0.40
ROUGE-3.F1 0.31 0.30 0.45 0.34 0.33
ROUGE-4.F1 0.25 0.25 0.37 0.28 0.27
ROUGE-L.F1 0.46 0.47 0.67 0.51 0.49
SacreBLEU 0.13 0.15 0.28 0.16 0.16

Table 9: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for LogicNLG subset
for individual formats averaged over models.

Metric Dict HTML Image LATEX XML

BertScore.F1 0.83 0.84 0.83 0.84 0.84
BLEU-1 0.16 0.18 0.16 0.18 0.18
BLEU-2 0.06 0.07 0.07 0.07 0.07
BLEU-3 0.03 0.03 0.03 0.03 0.03
BLEU-4 0.01 0.02 0.01 0.02 0.02
BLEURT −0.58 −0.54 −0.60 −0.54 −0.53
METEOR 0.19 0.21 0.19 0.21 0.21
MoverScore 0.52 0.53 0.53 0.53 0.53
ROUGE-1.F1 0.28 0.31 0.30 0.32 0.32
ROUGE-2.F1 0.06 0.08 0.07 0.08 0.08
ROUGE-3.F1 0.02 0.02 0.02 0.02 0.03
ROUGE-4.F1 0.01 0.01 0.01 0.01 0.01
ROUGE-L.F1 0.16 0.17 0.17 0.17 0.17
SacreBLEU 0.03 0.03 0.03 0.03 0.03

Table 10: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for numericNLG subset
for individual formats averaged over models.

Metric Dict HTML Image LATEX XML

BertScore.F1 0.84 0.81 0.84 0.81 0.81
BLEU-1 0.16 0.11 0.15 0.11 0.11
BLEU-2 0.07 0.03 0.07 0.03 0.03
BLEU-3 0.03 0.01 0.03 0.01 0.01
BLEU-4 0.02 0.00 0.02 0.00 0.00
BLEURT −0.59 −0.90 −0.64 −0.91 −0.90
METEOR 0.20 0.13 0.19 0.13 0.13
MoverScore 0.53 0.50 0.53 0.50 0.50
ROUGE-1.F1 0.30 0.18 0.29 0.18 0.18
ROUGE-2.F1 0.07 0.02 0.07 0.02 0.02
ROUGE-3.F1 0.02 0.00 0.03 0.00 0.00
ROUGE-4.F1 0.01 0.00 0.01 0.00 0.00
ROUGE-L.F1 0.17 0.11 0.17 0.11 0.11
SacreBLEU 0.03 0.01 0.03 0.01 0.01

Table 11: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for SciGen subset for
individual formats averaged over models.

Metric Dict HTML LATEX XML

BertScore.F1 0.83 0.83 0.83 0.83
BLEU-1 0.12 0.12 0.11 0.11
BLEU-2 0.06 0.06 0.06 0.06
BLEU-3 0.03 0.04 0.04 0.04
BLEU-4 0.02 0.02 0.02 0.02
BLEURT −0.64 −0.67 −0.67 −0.66
METEOR 0.20 0.21 0.20 0.21
MoverScore 0.52 0.52 0.52 0.52
ROUGE-1.F1 0.23 0.23 0.23 0.23
ROUGE-2.F1 0.09 0.10 0.10 0.10
ROUGE-3.F1 0.05 0.05 0.05 0.05
ROUGE-4.F1 0.03 0.03 0.03 0.03
ROUGE-L.F1 0.17 0.18 0.18 0.18
SacreBLEU 0.02 0.02 0.02 0.02

Table 12: Raw values of BertScore.F1, BLEU-
N.F1, BLEURT, METEOR, MoverScore, ROUGE-
N.F1, ROUGE-L.F1, and SacreBLEU for Llama-3.2-
3B-Instruct and individual text formats averaged over
data subsets.

Metric Dict HTML LATEX XML

BertScore.F1 0.85 0.85 0.85 0.85
BLEU-1 0.17 0.15 0.18 0.17
BLEU-2 0.10 0.09 0.11 0.10
BLEU-3 0.06 0.06 0.07 0.07
BLEU-4 0.04 0.04 0.05 0.05
BLEURT −0.48 −0.54 −0.48 −0.49
METEOR 0.25 0.24 0.25 0.25
MoverScore 0.54 0.54 0.54 0.54
ROUGE-1.F1 0.33 0.31 0.34 0.33
ROUGE-2.F1 0.17 0.16 0.18 0.18
ROUGE-3.F1 0.11 0.10 0.11 0.11
ROUGE-4.F1 0.07 0.07 0.08 0.08
ROUGE-L.F1 0.27 0.26 0.28 0.28
SacreBLEU 0.04 0.04 0.05 0.05

Table 13: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for Mistral-Nemo-
Instruct-2407 and individual text formats averaged over
data subsets.
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Metric Dict HTML LATEX XML

BertScore.F1 0.84 0.84 0.84 0.84
BLEU-1 0.13 0.13 0.13 0.13
BLEU-2 0.07 0.07 0.07 0.07
BLEU-3 0.04 0.05 0.05 0.05
BLEU-4 0.03 0.03 0.03 0.03
BLEURT −0.54 −0.55 −0.57 −0.56
METEOR 0.23 0.24 0.23 0.24
MoverScore 0.53 0.53 0.53 0.53
ROUGE-1.F1 0.26 0.26 0.26 0.26
ROUGE-2.F1 0.12 0.13 0.12 0.13
ROUGE-3.F1 0.07 0.07 0.07 0.07
ROUGE-4.F1 0.05 0.05 0.05 0.05
ROUGE-L.F1 0.20 0.21 0.20 0.20
SacreBLEU 0.03 0.03 0.03 0.03

Table 14: Raw values of BertScore.F1, BLEU-
N.F1, BLEURT, METEOR, MoverScore, ROUGE-
N.F1, ROUGE-L.F1, and SacreBLEU for Qwen2.5-
14B-Instruct and individual text formats averaged over
data subsets.

Metric Dict HTML LATEX XML

BertScore.F1 0.84 0.84 0.84 0.84
BLEU-1 0.16 0.15 0.16 0.15
BLEU-2 0.09 0.08 0.09 0.09
BLEU-3 0.06 0.06 0.07 0.06
BLEU-4 0.04 0.04 0.05 0.05
BLEURT −0.54 −0.59 −0.57 −0.57
METEOR 0.24 0.23 0.24 0.23
MoverScore 0.53 0.53 0.53 0.53
ROUGE-1.F1 0.28 0.27 0.28 0.28
ROUGE-2.F1 0.13 0.13 0.14 0.13
ROUGE-3.F1 0.08 0.08 0.09 0.08
ROUGE-4.F1 0.06 0.05 0.06 0.06
ROUGE-L.F1 0.22 0.21 0.23 0.22
SacreBLEU 0.03 0.03 0.04 0.03

Table 15: Raw values of BertScore.F1, BLEU-
N.F1, BLEURT, METEOR, MoverScore, ROUGE-
N.F1, ROUGE-L.F1, and SacreBLEU for Qwen2.5-3B-
Instruct and individual text formats averaged over data
subsets.

Metric Dict HTML LATEX XML

BertScore.F1 0.86 0.86 0.86 0.86
BLEU-1 0.21 0.22 0.21 0.22
BLEU-2 0.13 0.14 0.14 0.15
BLEU-3 0.10 0.11 0.10 0.11
BLEU-4 0.08 0.09 0.08 0.09
BLEURT −0.37 −0.39 −0.41 −0.38
METEOR 0.26 0.27 0.26 0.27
MoverScore 0.56 0.56 0.55 0.56
ROUGE-1.F1 0.38 0.37 0.36 0.37
ROUGE-2.F1 0.21 0.21 0.20 0.21
ROUGE-3.F1 0.13 0.14 0.13 0.14
ROUGE-4.F1 0.10 0.10 0.10 0.10
ROUGE-L.F1 0.32 0.31 0.30 0.31
SacreBLEU 0.09 0.10 0.10 0.11

Table 16: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for Gemini-2.0-Flash
and individual text formats averaged over data subsets.

Metric Non-Scientific Scientific

BertScore.F1 0.87 0.83
BLEU-1 0.21 0.11
BLEU-2 0.15 0.04
BLEU-3 0.11 0.02
BLEU-4 0.09 0.01
BLEURT −0.34 −0.68
METEOR 0.33 0.15
MoverScore 0.57 0.51
ROUGE-1.F1 0.40 0.22
ROUGE-2.F1 0.25 0.06
ROUGE-3.F1 0.17 0.02
ROUGE-4.F1 0.12 0.01
ROUGE-L.F1 0.36 0.15
SacreBLEU 0.08 0.02

Table 17: Values across evaluation metrics for scientific
and non-scientific domains averaged over data subsets,
models, and table formats.
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Metric ComTQA
(FinTabNet)

ComTQA
(PubTables-1M) Logic2Text LogicNLG numericNLG SciGen

BertScore.F1 0.84 0.83 0.88 0.89 0.83 0.82
BLEU-1 0.03 0.04 0.23 0.38 0.17 0.13
BLEU-2 0.02 0.02 0.13 0.31 0.07 0.04
BLEU-3 0.01 0.02 0.07 0.26 0.03 0.02
BLEU-4 0.01 0.01 0.04 0.20 0.01 0.01
BLEURT −0.53 −0.70 −0.13 −0.37 −0.56 −0.79
METEOR 0.07 0.09 0.36 0.56 0.20 0.16
MoverScore 0.50 0.49 0.60 0.61 0.53 0.51
ROUGE-1.F1 0.17 0.14 0.49 0.54 0.31 0.23
ROUGE-2.F1 0.10 0.07 0.24 0.42 0.07 0.04
ROUGE-3.F1 0.03 0.03 0.13 0.34 0.02 0.01
ROUGE-4.F1 0.01 0.02 0.07 0.28 0.01 0.00
ROUGE-L.F1 0.17 0.14 0.38 0.52 0.17 0.13
SacreBLEU 0.02 0.02 0.05 0.18 0.03 0.02

Table 18: Values across evaluation metrics for each data subset averaged over models and table formats.

Model Bert-
Score.F1

BLEU-
1

BLEU-
2

BLEU-
3

BLEU-
4 BLEURT METEOR Mover-

Score
ROUGE-

1.F1
ROUGE-

2.F1
ROUGE-

3.F1
ROUGE-

4.F1
ROUGE-

L.F1
Sacre-
BLEU

Baseline

Gemini-2.0-Flash_mm 0.87 0.22 0.14 0.11 0.08 −0.35 0.27 0.56 0.40 0.22 0.14 0.10 0.33 0.11
Gemini-2.0-Flash_llm 0.86 0.21 0.14 0.11 0.08 −0.39 0.26 0.56 0.37 0.20 0.14 0.10 0.31 0.10

MLLMs

Idefics3-8B-Llama3 0.88 0.19 0.12 0.09 0.07 −0.36 0.23 0.59 0.47 0.27 0.13 0.09 0.42 0.11
Qwen2.5-VL-3B-Instruct 0.85 0.18 0.12 0.09 0.07 −0.51 0.25 0.55 0.34 0.18 0.11 0.08 0.28 0.07
Qwen2.5-VL-7B-Instruct 0.86 0.19 0.12 0.08 0.06 −0.39 0.27 0.55 0.36 0.19 0.12 0.09 0.30 0.07
llama3-llava-next-8b-hf 0.85 0.16 0.10 0.06 0.04 −0.50 0.24 0.54 0.31 0.15 0.09 0.06 0.25 0.04

LLMs

Mistral-Nemo-Instruct-2407 0.85 0.17 0.10 0.07 0.05 −0.50 0.25 0.54 0.33 0.17 0.11 0.07 0.27 0.04
Qwen2.5-3B-Instruct 0.84 0.15 0.09 0.06 0.04 −0.57 0.24 0.53 0.28 0.13 0.08 0.06 0.22 0.03
Qwen2.5-14B-Instruct 0.84 0.13 0.07 0.05 0.03 −0.56 0.24 0.53 0.26 0.12 0.07 0.05 0.20 0.03
Llama-3.2-3B-Instruct 0.83 0.12 0.06 0.04 0.02 −0.66 0.20 0.52 0.23 0.10 0.05 0.03 0.18 0.02

Table 19: Values across evaluation metrics for individual models averaged over data subsets and table formats.
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ComTQA (Fin) ComTQA (PMC) Logic2Text LogicNLG numericNLG SciGen
Dataset
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Gemini-2.0-Flash_llm
Gemini-2.0-Flash_mm
Idefics3-8B
Llama-3.2-3B
Mistral-Nemo
Qwen2.5-14B
Qwen2.5-3B
Qwen2.5-VL-3B
Qwen2.5-VL-7B
llava-next-8b

Figure 15: Mean prediction lengths (in characters) for each model and data subset. Here “_llm” and “_mm” are
used to distinguish between text and image input for Gemini-2.0-Flash, respectively.
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G Case Study

Refer to the provided table and answer the question. 
Question: What is the incidence of dysplasia in the group 
treated with AOM/DSS and 0.05% Befibrate?. Table caption: 
{caption}. Table footnote: {footnote}.

80%.The incidence of total dysplasia in 
the group treated with AOM/DSS and 
0.05% Bezafibrate is 80%.

The incidence of dysplasia in the 
group treated with AOM/DSS and 
0.05% Befibrate is 80%.

Figure 16: An example illustrating differences in prediction length across Idefics3, Gemini-2.0-Flash, and Qwen2.0-
VL (7B) models on a sample from the ComTQA (PubTables-1M) subset.
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H Additional interpretability analyses

Mistral-Nemo vs. Llama3. The following fig-
ures show further examples of feature attribution
and log-probability analysis comparing Mistral-
Nemo with Llama3.

In Figure 17 (ComTQA FinTabNet), Mistral-
Nemo correctly predicts the answer, while Llama3
fails. We find a key difference in the attribution
pattern around the columns “2014” and “2013”,
where Mistral-Nemo assigns a slightly higher score
(lighter blue) than Llama3. In the log-probability
analysis, we see high uncertainty in Llama3 gen-
erating the final answer starting with “1”. On the
contrary, Mistral-Nemo shows a high level of con-
fidence in the predicted value.

In Figure 18 (ComTQA PubTables-1M), both
models generate incorrect answers. For Mistral-
Nemo, one can barely see any attribution in the
decisive row of the table. For Llama3, there is a
slightly higher attribution for “Beer” in “Lung-
Beer”. We also observe that the tokeniser splits the
number into “496” and “6”. A plausible explana-
tion for the failure is that when it processes “Lung
Stanford” with 918 genes, it likely finds it to be
higher than 496 (ignoring the fourth digit “6”). Re-
garding the log-probabilities, the decision of which
feature to name after “the most number of genes is”
is controversial for both models, judged by the low
confidence in the following token.

In Figure 19 (ComTQA PubTables-1M), Mistral-
Nemo solves the task correctly, whereas Llama3
fails to distinguish “VRP-HA” from “VRP-neu”
and is not confident in the predicted value (10).
Mistral-Nemo focuses on the “VRP-HA” row in
the table more than the similar alternative “VRP-
neu” and generally finds the relevant feature name
in the question to be more important, judging by
the attribution patterns. When we compare this to
the log-probabilities, the model is very confident
about its decision (“VRP-HA”) throughout the gen-
eration.

Dict vs. LATEX input format. The following
figures show examples of feature attribution and
log-probability analysis. We compare predictions
across Dict vs. LATEX representations of tables for
Mistral-Nemo and Llama3 based on instances from
the LogicNLG subset.

In Figure 20, Mistral-Nemo correctly predicts
the missing entities with a high level of confidence.
We notice high similarity between the input attribu-
tion patterns across two formats. In both cases, one

of the most relevant tokens (month “August”) is
correctly identified to produce the right answer ac-
cording to the ground truth and hence receives high
attribution. The model focuses on the tokens rele-
vant to the task and does not pay much attention to
LATEX formatting tags, since the respective tokens
generally remain barely considered throughout the
generation. However, we can see some decreases
in model confidence at the end of the generation
(“games before”).

In Figure 21, Llama3 generates the wrong re-
sponses in both cases. However, the Dict variant
also makes the model focus on bracketing, separa-
tors, and punctuation quite often. Only for LATEX,
there is a noticeably lower confidence about gen-
erating “Electra” as the play of choice. For both
representations of the table, however, Llama3 is not
certain about the last two entities (“Cyprus and Ro-
mania”, “Cyprus and Greece”), which are either
fully or partially incorrect according to the ground
truth (“Greece and Italy”).
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Mistral-Nemo-Instruct-2407

Refer  to  the  provided  table  and  answer  the  question
.  Question :  How  much  was  the  income  from
 continuing  operations  in  the  U .S .  in  2 0 1 3 ?.  Table
:  \{" table \_headers ":  [' ( In  millions )',  ' 2 0 1 4 ',  ' 2 0
1 3 ',  ' 2 0 1 2 '],  " table \_rows ":  [ [' U .S .',  '$ 1 , 1 5 3 .
3 ',  '$ 9 1 4 . 9 ',  '$ 9 0 8 . 5 '],  [' Non -U .S .',  ' 9 3 3 . 9 ',
 ' 4 0 4 . 6 ',  ' 3 6 0 . 9 '],  [' Income  from  Continu ing
 Operations ',  '$ 2 , 0 8 7 . 2 ',  '$ 1 , 3 1 9 . 5 ',  '$ 1 , 2 6
9 . 4 '] ]\}.

Llama-3.2-3B-Instruct

Refer  to  the  provided  table  and  answer  the  question
.  Question :  How  much  was  the  income  from
 continuing  operations  in  the  U .S .  in  201 3 ?.  Table :
 \{" table \_headers ":  [' ( In  millions )',  ' 201 4 ',  ' 201 3
',  ' 201 2 '],  " table \_rows ":  [[' U .S .',  '$ 1 , 153 . 3 ',  '$
914 . 9 ',  '$ 908 . 5 '],  [' Non -U .S .',  ' 933 . 9 ',  ' 404 . 6
',  ' 360 . 9 '],  [' Income  from  Continuing  Operations ',
 '$ 2 , 087 . 2 ',  '$ 1 , 319 . 5 ',  '$ 1 , 269 . 4 ']] \}.

The  income  from  continuing  operations
 in  the  U .S .  in  2 0 1 3  was  $ 9
1 4 . 9  million .

According  to  the  table ,  the  income
 from  continuing  operations  in  the  U .S
.  in  201 3  was  $ 1 , 153 . 3  million
.

Figure 17: Interpretability analysis for the ComTQA (FinTabNet) instance with a table represented in a Dict format.
The ground truth is “$914.9 million”. The visualisation follows the same procedure as Figure 5.
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Mistral-Nemo-Instruct-2407

Refer  to  the  provided  table  and  answer  the  question
.  Question :  Which  dataset  has  the  most  number  of
 genes ?.  Table :  \{" table \_title ":  Table  5 ,  " table
\_cap tion ":  Random  data  simulations  of  real  data
 sets .  This  table  compares  the  results  found  from
 the  real  data  ( Real  column )  to  two  different  types
 of  random  data .  The  Random  column  contains  the
 experimentally  determined  largest  number  of  pairs
 found  from  1 0  simulation  runs  using  a  random
 data  matrix  ( d rawn  from  a  uniform  distribution )
 where  the  number  of  genes  and  class  sizes  is  the
 same  as  the  indicated  for  the  real  data .  The  Label
 Sh uff led  column  contains  the  experimentally
 determined  largest  number  of  pairs  found  from  3 0
 simulation  runs  where  the  class  labels  were
 randomly  shuffled .  In  the  samples  column ,  the
 number  in  parent hesis  is  the  number  of  positive
 samples .  The  numbers  after  the  slash  are  the
 number  of  single  genes  found .  Label  shuff ling
 leads  to  more  pairs  found  " by  chance "  only  for
 the  smaller  data  sets .  The  small  data  sets  have
 large  numbers  of  pairs  expected  " by  chance " .,  "
table \_headers ":  [' Data  set ',  ' Samples ',  ' Gen es ',  '
Real ',  ' Random ',  ' Label  Sh uff led '],  " table \_sub
headers ":  [],  " table \_rows ":  [ [' G IST ',  ' 1 9 ( 6 )',  ' 1
9 8 7 ',  ' 1 3 7 9 8 1 / 7 4 ',  ' 2 7 0 6 / 0 ',  ' 4 6 2 2 / 2 '],
 [' Bre ast BR CA (b rc a 1  vs  br ca 2 )',  ' 1 5 ( 7 )',  ' 3 2 2
6 ',  ' 1 4 3 5 7 4 / 1 8 ',  ' 2 0 5 6 3 / 2 ',  ' 5 3 9 0 0 / 1 1 '],
 [' Bre ast BR CA (b rc a 1  \&  br ca 2  vs  Spor adic )',  ' 2
2 ( 7 )',  ' 3 2 2 6 ',  ' 2 1 1 4 / 0 ',  ' 1 2 8 6 / 1 ',  ' 0 / 0 '],
 [' Cut aneous ',  ' 3 8 ( 7 )',  ' 3 6 1 3 ',  ' 5 9 6 / 0 ',  ' 6 2 /
0 ',  ' 2 4 / 0 '],  [' L ung Stan ford ',  ' 5 2 ( 1 3 )',  ' 9 1 8 ',
 ' 4 8 6 / 2 ',  ' 0 / 0 ',  ' 0 / 0 '],  [' L ung Be er ',  ' 9 6 ( 1 0
)',  ' 4 9 6 6 ',  ' 2 2 1 0 2 / 5 ',  ' 0 / 0 ',  ' 0 / 0 '],  [' Pro
state ',  ' 3 4 ( 9 )',  ' 3 9 5 8 ',  ' 2 4 9 6 6 2 / 5 2 ',  ' 5 7 / 0
',  ' 1 3 / 0 '] ],  " table \_ foot note ":  None \}.

Llama-3.2-3B-Instruct

Refer  to  the  provided  table  and  answer  the  question
.  Question :  Which  dataset  has  the  most  number  of
 genes ?.  Table :  \{" table \_title ":  Table  5 ,  " table
\_caption ":  Random  data  simulations  of  real  data
 sets .  This  table  compares  the  results  found  from
 the  real  data  ( Real  column )  to  two  different  types
 of  random  data .  The  Random  column  contains  the
 experiment ally  determined  largest  number  of  pairs
 found  from  10  simulation  runs  using  a  random  data
 matrix  ( draw n  from  a  uniform  distribution )  where
 the  number  of  genes  and  class  sizes  is  the  same
 as  the  indicated  for  the  real  data .  The  Label  Sh
uffled  column  contains  the  experiment ally
 determined  largest  number  of  pairs  found  from  30
 simulation  runs  where  the  class  labels  were
 randomly  shuffled .  In  the  samples  column ,  the
 number  in  parenthesis  is  the  number  of  positive
 samples .  The  numbers  after  the  slash  are  the
 number  of  single  genes  found .  Label  sh uffling
 leads  to  more  pairs  found  " by  chance "  only  for
 the  smaller  data  sets .  The  small  data  sets  have
 large  numbers  of  pairs  expected  " by  chance " .,  "
table \_headers ":  [' Data  set ',  ' Samples ',  ' Gen es ',  '
Real ',  ' Random ',  ' Label  Sh uffled '],  " table \_sub
headers ":  [],  " table \_rows ":  [[' G IST ',  ' 19 ( 6 )',  '
198 7 ',  ' 137 981 / 74 ',  ' 270 6 / 0 ',  ' 462 2 / 2 '],  [' Bre
ast BR CA (br ca 1  vs  br ca 2 )',  ' 15 ( 7 )',  ' 322 6 ',  '
143 574 / 18 ',  ' 205 63 / 2 ',  ' 539 00 / 11 '],  [' Bre ast
BR CA (br ca 1  \&  br ca 2  vs  Spor adic )',  ' 22 ( 7 )',  '
322 6 ',  ' 211 4 / 0 ',  ' 128 6 / 1 ',  ' 0 / 0 '],  [' Cut aneous
',  ' 38 ( 7 )',  ' 361 3 ',  ' 596 / 0 ',  ' 62 / 0 ',  ' 24 / 0 '],  [' L
ung Stan ford ',  ' 52 ( 13 )',  ' 918 ',  ' 486 / 2 ',  ' 0 / 0 ',  '
0 / 0 '],  [' L ung Beer ',  ' 96 ( 10 )',  ' 496 6 ',  ' 221 02 / 5
',  ' 0 / 0 ',  ' 0 / 0 '],  [' Pro state ',  ' 34 ( 9 )',  ' 395 8 ',  '
249 662 / 52 ',  ' 57 / 0 ',  ' 13 / 0 ']],  " table \_foot note ":
 None \}.

Based  on  the  provided  table ,  the
 dataset  with  the  most  number  of
 genes  is  " Pro state "  with  3 9 5 8
 genes .

Based  on  the  table ,  the  dataset  with
 the  most  number  of  genes  is  ' L ung
Stan ford '  with  918  genes .

Figure 18: Interpretability analysis for the ComTQA (PubTables-1M) instance with a table represented in a Dict
format. The ground truth is “LungBeer”. The visualisation follows the same procedure as Figure 5.
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Mistral-Nemo-Instruct-2407

Refer  to  the  provided  table  and  answer  the  question
.  Question :  What  is  the  is otype  control  for  V RP -H A
?.  Table :  \{" table \_title ":  Table  2 ,  " table \_cap tion
":  Int racellular  interferon -  analysis  of  CD 8 +  T
 cells  after  vaccination  three  times  with  virus -like
 replic on  particles  ( V RP )- ne u  or  V RP - hem ag glut
inin  ( HA ),  " table \_headers ":  [' V acc ination ',  ' Is
otype  control  (\%) ',  ' Inter fer on - +/ CD 8 +  (\%) '],  "
table \_sub headers ":  [],  " table \_rows ":  [ [' V RP -ne u
',  ' 0 . 1 0 ',  ' 2 . 8 0 '],  [' V RP -H A ',  ' 0 . 1 4 ',  ' 0 . 2 7
'],  [' Na ï ve ',  ' 0 . 0 3 ',  ' 0 . 3 9 '] ],  " table \_ foot note
":  None \}.

Llama-3.2-3B-Instruct

Refer  to  the  provided  table  and  answer  the  question
.  Question :  What  is  the  is otype  control  for  VR P -H A
?.  Table :  \{" table \_title ":  Table  2 ,  " table \_caption
":  Intr acellular  interfer on -  analysis  of  CD 8 +  T
 cells  after  vaccination  three  times  with  virus -like
 replic on  particles  ( VR P )- ne u  or  VR P -h em ag gl ut
inin  ( HA ),  " table \_headers ":  [' V acc ination ',  ' Is
otype  control  (\%) ',  ' Inter fer on - +/ CD 8 +  (\%) '],
 " table \_sub headers ":  [],  " table \_rows ":  [[' VR P -ne
u ',  ' 0 . 10 ',  ' 2 . 80 '],  [' VR P -H A ',  ' 0 . 14 ',  ' 0 . 27 '],
 [' Na ï ve ',  ' 0 . 03 ',  ' 0 . 39 ']],  " table \_foot note ":
 None \}.

The  is otype  control  for  V RP -H A  is
 0 . 1 4 \%.

To  find  the  is otype  control  for  VR P
-H A ,  we  need  to  look  at  the  " Is
otype  control  (\% )"  column  in  the
 table .  The  is otype  control  is  the
 percentage  of  is otype  controls ,  which
 is  0 . 10 \%.

Figure 19: Interpretability analysis for ComTQA (PubTables-1M) instance with the Dict format. The ground truth
is “0.14%”. The visualisation follows the same procedure as Figure 5.
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Mistral-Nemo-Instruct-2407 (Dict)

Based  on  a  given  table ,  fill  in  the  entities  masked
 by  [ ENT ]  in  the  following  sentence :  all  game  in
 the  table  for  the  [ ENT ]  were  played  on  [ ENT ]
 with  no  game  after  or  before .  Output  the  sentence
 with  filled  in  masked  entities .  Table :  \{" title ":  1 9
0 8  v fl  season ,  " table \_column \_names ":  [' home
 team ',  ' home  team  score ',  ' away  team ',  ' away
 team  score ',  ' venue ',  ' date '],  " table \_content
\_values ":  [ [' un iversity ',  ' 1 3 . 1 8  ( 9 6 )',  ' ge elong
',  ' 6 . 8  ( 4 4 )',  ' em c g ',  ' 1 5  august  1 9 0 8 '],  [' st
 k ilda ',  ' 4 . 7  ( 3 1 )',  ' f itz roy ',  ' 3 . 4  ( 2 2 )',  ' j
unction  oval ',  ' 1 5  august  1 9 0 8 '],  [' south  mel
bourne ',  ' 5 . 8  ( 3 8 )',  ' ess endon ',  ' 3 . 1 4  ( 3 2 )',  '
lake  oval ',  ' 1 5  august  1 9 0 8 '],  [' mel bourne ',  ' 4 .
8  ( 3 2 )',  ' coll ing wood ',  ' 6 . 9  ( 4 5 )',  ' mc g ',  ' 1 5
 august  1 9 0 8 '],  [' rich mond ',  ' 4 . 1 7  ( 4 1 )',  ' c arl
ton ',  ' 6 . 1 2  ( 4 8 )',  ' punt  road  oval ',  ' 1 5  august  
1 9 0 8 '] ]\}

Mistral-Nemo-Instruct-2407 (LATEX)

Based  on  a  given  table ,  fill  in  the  entities  masked
 by  [ ENT ]  in  the  following  sentence :  all  game  in
 the  table  for  the  [ ENT ]  were  played  on  [ ENT ]
 with  no  game  after  or  before .  Output  the  sentence
 with  filled  in  masked  entities .  Table  title :  1 9 0 8  v
fl  season .  Table :  \\ begin \{table \}[ ht ] \\ centering \\
c apt ions et up \{ just ification = ra gged right ,  single
line check =false \}  \\ caption \{ 1 9 0 8  v fl  season \}
\\begin \{tabular \}\{ ll ll ll \} \\ top rule  \&   \&   \&   \&
  \&   \\\\ \\mid rule Home  team  \&  Home  team  score
 \&  Away  team  \&  Away  team  score  \&  Venue  \&
 Date  \\\\ University  \&  1 3 . 1 8  ( 9 6 )  \&  Ge elong  \&
 6 . 8  ( 4 4 )  \&  E MC G  \&  1 5  August  1 9 0 8  \\\\ St
 K ilda  \&  4 . 7  ( 3 1 )  \&  Fitz roy  \&  3 . 4  ( 2 2 )  \&
 Junction  Oval  \&  1 5  August  1 9 0 8  \\\\ South
 Melbourne  \&  5 . 8  ( 3 8 )  \&  Ess endon  \&  3 . 1 4  (
3 2 )  \&  Lake  Oval  \&  1 5  August  1 9 0 8  \\\\ Mel
bourne  \&  4 . 8  ( 3 2 )  \&  Coll ing wood  \&  6 . 9  ( 4 5
)  \&  MC G  \&  1 5  August  1 9 0 8  \\\\ Rich mond  \&  4
. 1 7  ( 4 1 )  \&  Carlton  \&  6 . 1 2  ( 4 8 )  \&  P unt
 Road  Oval  \&  1 5  August  1 9 0 8  \\\\ \\ bottom rule
\\end \{tabular \} \\end \{table \}

All  games  in  the  table  for  the  ** 1 9
0 8  V FL  season **  were  played  on
 ** 1 5  August  1 9 0 8 **  with  no
 game  after  or  before .

All  games  in  the  table  for  the  1 9
0 8  V FL  season  were  played  on  1
5  August  1 9 0 8  with  no  games
 before  or  after .

Figure 20: Interpretability analysis the LogicNLG instance comparing the Dict (left) with the LATEX (right) input
format of the table. The ground truth is “all game in the table for the 1908 Vfl Season were played on 15 August
1908 with no game after or before”. The visualisation follows the same procedure as Figure 5.
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Llama-3.2-3B-Instruct (Dict)

Based  on  a  given  table ,  fill  in  the  entities  masked
 by  [ ENT ]  in  the  following  sentence :  the  play  [ ENT
]  was  performed  in  [ ENT ]  and  [ ENT ].  Output  the
 sentence  with  filled  in  masked  entities .  Table :  \{"
title ":  international  festival  of  ancient  g reek  drama  ,
 cy prus ,  " table \_column \_names ":  [' play ',  ' author ',
 ' company ',  ' base ',  ' country '],  " table \_content
\_values ":  [[' elect ra ',  ' eur ip ides ',  ' radu  stan ca
 national  theatre ',  ' s ib iu ',  ' rom ania '],  [' pl ut us ',  '
ar ist oph anes ',  ' cy prus  theatre  organisation ',  ' nicos
ia ',  ' cy prus '],  [' the  birds ',  ' ar ist oph anes ',  ' the
atro  techn is  kar ol os  k oun ',  ' ath ens ',  ' gree ce '],  ['
med ea ',  ' eur ip ides ',  ' te atro  inst abile ',  ' a osta ',  '
ital y '],  [' the  pers ians ',  ' a esch yl us ',  ' astr ã \\xa 0
g ali  te atro ',  ' lec ce ',  ' ital y '],  [' med ea ',  ' eur ip
ides ',  ' se me io  theatre ',  ' ath ens ',  ' gree ce '],  ['
ajax ',  ' s oph oc les ',  ' att is  theatre ',  ' ath ens ',  '
gree ce '],  [' ant ig one ',  ' s oph oc les ',  ' hab ima
 theatre ',  ' tel  av iv ',  ' ist rael '] ]\}

Llama-3.2-3B-Instruct (LATEX)

Based  on  a  given  table ,  fill  in  the  entities  masked
 by  [ ENT ]  in  the  following  sentence :  the  play  [ ENT
]  was  performed  in  [ ENT ]  and  [ ENT ].  Output  the
 sentence  with  filled  in  masked  entities .  Table  title :
 international  festival  of  ancient  g reek  drama  ,  cy
prus .  Table :  \\ begin \{ table \}[ ht ] \\ center ing \\
caption setup \{ just ification = rag ged right ,  single line
check =false \}  \\ caption \{ international  festival  of
 ancient  g reek  drama  ,  cy prus \} \\ begin \{ tab ular
\}\{ llll l \} \\ top rule play  \&  author  \&  company  \&
 base  \&  country  \\\\ \\ mid rule Elect ra  \&  Eur ip ides
 \&  Rad u  Stan ca  National  Theatre  \&  S ib iu  \&
 Romania  \\\\ Pl ut us  \&  Arist oph anes  \&  Cyprus
 Theatre  Organisation  \&  N icos ia  \&  Cyprus  \\\\ The
 Birds  \&  Arist oph anes  \&  The atro  Techn is  Kar ol os
 K oun  \&  Athens  \&  Greece  \\\\ Med ea  \&  Eur ip ides
 \&  Te atro  Inst abile  \&  A osta  \&  Italy  \\\\ The  Pers
ians  \&  A esch yl us  \&  Astr à g ali  Te atro  \&  L ec ce
 \&  Italy  \\\\ Med ea  \&  Eur ip ides  \&  S eme io  Theatre
 \&  Athens  \&  Greece  \\\\ Ajax  \&  Soph oc les  \&  Att is
 Theatre  \&  Athens  \&  Greece  \\\\ Ant ig one  \&  Soph
oc les  \&  Hab ima  Theatre  \&  Tel  Aviv  \&  Israel  \\\\ \\
bottom rule \\ end \{ tab ular \} \\ end \{ table \}

Based  on  the  provided  table ,  the
 sentence  with  the  masked  entities  filled
 in  is : the  play  Elect ra  was
 performed  in  Cyprus  and  Romania .

Based  on  the  given  table ,  the
 sentence  with  the  masked  entities  filled
 in  is : the  play  Elect ra  was
 performed  in  Cyprus  and  Greece .

Figure 21: Interpretability analysis for the LogicNLG instance comparing the Dict (left) with the LATEX (right) input
format of the table. The ground truth is “the play Medea was performed in Greece and Italy”. The visualisation
follows the same procedure as Figure 5.
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Recent Accounting Pronouncements  
   
See Note 2, Significant Accounting Policies , in Notes to the Consolidated Financial Statements in Item 8 of Part II of this Report, for a full 
description of recent accounting pronouncements, including the expected dates of adoption and estimated effects on financial condition and 
results of operations, which is incorporated herein by reference.  
 
Results of Operations  
 
The following table presents product and service net revenues (in millions, except percentages):  

 
2014 Compared to 2013  
 
Routing product net revenues decreased in 2014, compared to 2013, as a result of weaker demand for core routing, partially offset by strong 
growth of our PTX series products. Edge routing net revenues increased as a result of strong demand for our MX series products, partly offset by 
older edge routing platforms. The year-over year decline was driven by weakness from large US carriers, partially offset by strength from Cloud 
Providers.  
 
Switching product net revenues increased in 2014, compared to 2013, reflecting growth from both our QFabric system and our EX series 
products. During the year we saw strong adoption of QFabric data center switches by a growing number of customers, with especially strong 
demand from Cloud Providers in the Americas.  
 
Security product net revenues decreased in 2014, compared to 2013, primarily due to a continuing decline in our legacy Screen OS products and 
the divestiture of our Junos Pulse product lines. Sales of our SRX platform declined slightly year-over-year, due to lower demand from U.S. 
Carrier customers.  
 
The increase in service revenue in 2014, compared to 2013, was primarily driven by new service contracts and strong contract renewals. Service 
revenues are largely correlated with product revenues, therefore if product net revenues decline, it can have an impact on future service revenues. 
 

41  

•  Loss Contingencies.  We use significant judgment and assumptions to estimate the likelihood of loss or impairment of an asset, or the 
incurrence of a liability, in determining loss contingencies. An estimated loss contingency is accrued when it is probable that an asset 
has been impaired or a liability has been incurred and the amount of loss can be reasonably estimated. We record a charge equal to the 
minimum estimated liability for litigation costs or a loss contingency only when both of the following conditions are met: 
(i) information available prior to issuance of our consolidated financial statements indicates that it is probable that an asset had been 
impaired or a liability had been incurred at the date of the financial statements and (ii) the range of loss can be reasonably estimated. 
We regularly evaluate current information available to us to determine whether such accruals should be adjusted and whether new 
accruals are required.  

   Years Ended December 31,  

   2014    2013    2012    2014 vs. 2013    2013 vs. 2012  

                  $ Change    % Change    $ Change    % Change  

Routing  $ 2,223.9    $ 2,318.0    $ 2,037.6    $ (94.1 )   (4 )%   $ 280.4    14%  

Switching  721.2    638.0    554.8    83.2    13  %   83.2    15%  

Security  463.6    563.9    669.7    (100.3 )   (18 )%   (105.8 )   (16)%  

Total Product  3,408.7    3,519.9    3,262.1    (111.2 )   (3 )%   257.8    8%  

Percentage of net revenues  73.7 %    75.4 %    74.7 %                      

                            

Total Service  1,218.4    1,149.2    1,103.3    69.2    6  %   45.9    4%  

Percentage of net revenues  26.3 %    24.6 %    25.3 %                      

Total net revenues  $ 4,627.1    $ 4,669.1    $ 4,365.4    $ (42.0 )   (1 )%   $ 303.7    7%  

Figure 22: Table image corresponding to the ComTQA (FinTabNet) example in Figure 5.
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Abstract

There has been limited exploration of how
domain knowledge can be effectively inte-
grated into machine learning for medical tab-
ular data. Traditional approaches often rely
on non-generalizable processes tailored to spe-
cific datasets. In contrast, recent advances in
deep learning for language and tabular data are
leading the way toward more generalizable and
scalable methods of domain knowledge inclu-
sion. In this paper, we first explore the need
for domain knowledge in medical tabular data,
categorize types of medical domain knowledge,
and discuss how each can be leveraged in tabu-
lar machine learning. We then outline strategies
for integrating this knowledge at various stages
of the machine learning pipeline. Finally, build-
ing on recent advances in tabular deep learning,
we propose future research directions to sup-
port the integration of domain knowledge.

1 Introduction

Tabular data plays a fundamental role in the medi-
cal field, capturing patient-specific details such as
demographics, medical history, biomarkers, and
diagnostic codes (Mao et al., 2024). Many clinical
machine learning models rely on this data for tasks
such as disease diagnosis (Ahsan et al., 2022) and
adverse events prediction (Tomašev et al., 2021).

However, developing these models poses unique
challenges. For instance, models can often learn
shortcuts when modeling the data, leading to po-
tentially harmful decisions. Caruana et al. (2015),
for example, show that a model trained to predict
pneumonia risk can incorrectly identify asthma as a
protective factor. This error can occur because asth-
matic patients generally receive more aggressive
treatment, leading to better outcomes.

In contrast to clinicians who draw on prior train-
ing and domain expertise, models are typically de-
veloped with limited prior knowledge (Moor et al.,
2023). They rely on statistical associations between

input features and targets and do not understand the
underlying physiology (Moor et al., 2023). Learn-
ing these associations can be further complicated
by the heterogeneous features and complex inter-
actions present in medical datasets (Ruan et al.,
2024).

The lack of knowledge can also hinder the de-
velopment of models for specialized medical tasks
(Moor et al., 2023), as it can limit their ability to
perform reliably in various clinical settings. In ad-
dition, inconsistencies in data standardization of
medical datasets (Ahmadian et al., 2011) can be
a barrier to the generalizability of models across
medical environments.

This paper explores how the integration of do-
main knowledge into machine learning for medical
tabular data can help address these challenges. In
particular, it can guide variable selection (Wu et al.,
2022), mitigate data quality issues (Curé, 2012) and
help establish consistent standardization (Shi et al.,
2021). It can also help ensure that models meet
natural laws and regulatory requirements, which
data-driven approaches may ignore (Von Rueden
et al., 2021). Ultimately, this could support the
translation of machine learning into clinical prac-
tice, a hurdle many existing models have yet to
overcome (El Naqa et al., 2023).

Despite the widespread use of tabular data in
healthcare, to our knowledge, there has been no
comprehensive investigation of domain knowledge
integration for medical tabular data. In this paper,
we first detail the types of medical domain knowl-
edge and their potential uses. We then provide an
overview of strategies for incorporating medical
domain knowledge into tabular machine learning
at all pipeline stages. In particular, we investi-
gate how recent methods in table representation
learning, such as foundation models (Hollmann
et al., 2023a) or LLM-based table representation
(Sui et al., 2024), can be adapted for this purpose.
Finally, we suggest promising research directions

143



for automated knowledge integration in clinical
machine learning for medical tabular data.

2 Related Works

Domain knowledge encompasses relevant informa-
tion about the machine learning task, including rel-
evant features, taxonomies, logical constraints, and
probability distributions (Dash et al., 2022). It is
also referred to as background or prior knowledge.
Domain knowledge has been incorporated into var-
ious fields of machine learning, such as physics
and engineering, where it is used to combine data
with mathematical and physics-based models (Kar-
niadakis et al., 2021; Willard et al., 2022).

In the medical domain, the importance of inte-
grating domain knowledge has been increasingly
recognized (Mao et al., 2024; Leiser et al., 2023;
Von Rueden et al., 2021), especially in areas such
as medical imaging (Xie et al., 2021). While pre-
vious work has shown that domain knowledge can
benefit tabular clinical decision systems (Sirocchi
et al., 2024), it is often poorly integrated into clini-
cal machine learning pipelines and requires custom
algorithms (Sirocchi et al., 2024).

Xie et al. (2021) identify three challenges hinder-
ing the adoption of domain knowledge in medical
computer vision models, which are also relevant to
tabular data: identifying relevant sources, selecting
appropriate representations, and integrating them
into deep learning models.

3 Medical Domain Knowledge

In this section, we build on prior work in machine
learning and domain-informed models (Von Rue-
den et al., 2021; Mao et al., 2024) to propose a
categorization of medical domain knowledge.

3.1 Patient Data

Definition Patient data encompasses a wide
range of health-related information, such as demo-
graphics, laboratory values, and vital signs. These
data are commonly stored in systems like Elec-
tronic Health Records (EHRs).

The accessibility of patient datasets can vary
considerably. MIMIC (Johnson et al., 2023) or
UK Biobank (Sudlow et al., 2015) are available to
researchers through application procedures, while
most datasets are only accessible within individual
institutions. These datasets may reflect the biases
of specific patient populations. Other sources, such

as population-wide health statistics, from initia-
tives like the Global Burden of Disease (Vollset
et al., 2024), can provide context to assess gener-
alizability. In addition, knowledge graphs can be
developed from datasets such as cancer registries
to understand the variation in outcomes (Hasan
et al., 2019). Furthermore, biomedical databases
that capture gene-gene or protein-protein interac-
tions encode biological relationships and can serve
as prior knowledge to inform downstream model
training and inference (Wysocka et al., 2023).

Representation Patient data is often represented
by datasets of various modalities that can be used
to train or pre-train medical models.

Integration Patient data can be used for training
and subgroup analyses, bias detection, and general-
izability evaluation across diverse cohorts. Patient
statistics can also inform feature engineering.

3.2 Formal Knowledge

Definition Formal knowledge encompasses es-
tablished biomedical and scientific information rec-
ognized by scientific consensus. It originates from
authoritative sources, such as medical textbooks or
clinical guidelines, which can establish standard-
ized procedures for clinical practice.

Formal knowledge can be quantitative, often
represented through mathematical models that esti-
mate biomarker dynamics or disease progression,
such as pharmacokinetic models of drug absorp-
tion (Lin and Wong, 2017) or tumor growth mod-
els (Albano and Giorno, 2006; Tabatabai et al.,
2005). Known clinical thresholds (e.g., defining
sinus tachycardia as heart rate ≥ 100 bpm at rest
(Page et al., 2016)) can guide data encoding and
interpretation. Additionally, quantitative rules sup-
port data quality control by flagging physiologi-
cally implausible values.

Formal knowledge can also be qualitative, cap-
turing the known interactions of patient character-
istics. For instance, diagnosing delirium relies on
behavioral and cognitive changes assessed through
mental status exams (Tieges et al., 2018). Similarly,
clinical gestalt refers to the ability of a physician to
synthesize signals such as facial expressions or pos-
ture to form early diagnostic impressions (Cramer
et al., 2025). Though laboratory tests often confirm
a diagnosis, initial suspicion can stem from these
assessments, such as hyperpigmentation in vitamin
B12 deficiency (Brescoll and Daveluy, 2015).

144



Representation Formal knowledge can be repre-
sented as rules, lookup tables (e.g., scoring ranges,
reference intervals), and flow charts or other cate-
gorical mappings for qualitative associations.

Integration Formal knowledge can be used for
feature engineering, data cleaning, encoding med-
ical relationships, integrating medical constraints,
and validation.

3.3 Medical Semantics

Definition Medical semantics refers to standard-
ized representations of biomedical concepts that
support interoperability between datasets.

In tabular medical datasets, biomedical concepts
are often expressed in varying forms, through free
text and different coding systems. This variability
can hinder the generalizability of machine learning
models. To address this, semantic frameworks like
SNOMED CT (Chang and Mostafa, 2021) and the
Unified Medical Language System (UMLS) Lind-
berg et al. (1993) offer structured vocabularies and
ontologies (Gaudet-Blavignac et al., 2021). LLMs
can also generate medical semantic embeddings
that enrich tabular data with contextual meaning.
For example, Michalopoulos et al. (2021) introduce
UmlsBERT, which incorporates domain knowledge
from UMLS by linking terms with shared concepts
and semantic types.

Representation Medical semantics can be repre-
sented through ontologies and dictionaries or cap-
tured by using biomedical language models.

Integration Medical semantics can be used for
preprocessing, standardization, or to enrich exist-
ing data with semantic hierarchy or similarity.

3.4 Experimental Medical Findings

Definition Experimental medical findings de-
rived from data analyses, clinical studies, or trials
often reveal potential interactions between biomed-
ical concepts, even if causal relationships are not
yet established or still require scientific consen-
sus. For example, current evidence from controlled
exposure studies in children supports an associ-
ation between adverse behavioral outcomes and
synthetic food dye (Miller et al., 2022). Experimen-
tal findings are typically also compiled in clinical
guidelines used by physicians. They are classified
into multiple categories of recommendations (Class
I, IIa, IIb, II and III) and levels of evidence (A, B,
or C) (McDonagh et al., 2023). These findings can

serve as hypotheses to guide the design of machine
learning models.

While clinical guidelines can be difficult to in-
terpret due to their length and variations in format
(e.g., text, flowcharts, tables), advances in retrieval
augmented generation models lead the way towards
a more efficient extraction of relevant information
(Kresevic et al., 2024).

Representation: Experimental findings can be
represented as soft rules with confidence scores,
probabilistic associations, or model priors.

Integration Experimental findings can be used
to incorporate promising hypotheses that are sup-
ported by preliminary evidence. It may be used to
explore feature relationships during feature engi-
neering, prioritize variables during feature selec-
tion, and introduce soft constraints during model
training or validation.

3.5 Professional Insights

Definition Reasoning developed by experienced
clinicians provides essential context when interpret-
ing information. With years of clinical experience,
even limited data can be synthesized to make a
diagnosis (Groves et al., 2003). This is demon-
strated, for example, by optometrists outperform-
ing novices in diagnosing glaucoma when data is
limited (Ghaffar et al., 2025).

Expert insight is particularly valuable for identi-
fying potential confounding factors when develop-
ing machine learning models for clinical use. For
instance, patients nearing the end of life may es-
tablish legal directives, such as Do Not Resuscitate
(DNR) orders, to limit medical intervention by their
wishes (Schmidt et al., 2015). However, such direc-
tives are often not recorded in structured datasets
and may be communicated only verbally.

Representation Professional insight can be for-
malized through rules, thresholds, or guidelines
derived from expert interviews or consensus (e.g.,
expert surveys).

Integration Expert input can inform data col-
lection through the design of study protocols and
guide the selection and construction of features. It
also plays a key role in validating models, inter-
preting outliers, and enabling feedback loops for
iterative refinement.
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Integrating Domain Knowledge for Multi-Label Post-operative Complication Prediction

Dataset Gathering

• Include confounders to
improve interpretability of
post-surgery outcomes
e.g., comorbidities (Sec 4.1)

• Generate synthetic data
to overcome data scarcity
(Pezoulas et al., 2024)

Data Preprocessing

• Semantically link symptoms
(Castell-Díaz et al., 2023)

• Leverage missingness patterns
(Che et al., 2018)

• Identify outliers with knowledge
bases (Shi et al., 2021)

Feature Engineering

• Generate features with LLMs
(Hollmann et al., 2023b)

• Model temporal progression
of feature using mathematical
relationships
(Nave and Elbaz, 2021; Lin
and Wong, 2017)

Training
• Leverage transfer learning from pre-trained models (Kim et al.,

2024a; Steinberg et al., 2023; Hollmann et al., 2023a)

• Constrain model training using graphs of feature relationships
(Ruiz et al., 2023)

• Rely on interpretable models to correct shortcuts
learned during training (Caruana et al., 2015)

Validation

• Compare feature importance
against clinical plausibility
(Drenkow et al., 2025)

• Assess generalizability to
lab test ordering variations
(Subbaswamy et al., 2021)

Figure 1: Possible integrations of domain knowledge for the use-case post-surgery complications prediction

4 Integrating Domain Knowledge

In Section 3, we explored the various forms of med-
ical domain knowledge. Here, we examine each
stage of the machine learning pipeline, from data
collection to model validation, and highlight oppor-
tunities to meaningfully integrate domain expertise.
We also focus on how advances in deep learning
can be incorporated for domain knowledge integra-
tion and suggest promising research directions. In
Figure 1, we provide an example of how domain
knowledge can be integrated into the use case of
post-surgery complications prediction.

4.1 Dataset Creation and Selection
Data collection Medical domain knowledge and
professional insight are critical to data collection,
especially in the case of prospective studies. Expert
input (see Section 3.5) is essential when designing
the study protocol, selecting data sources, defining
patient populations, and determining which fea-
tures to collect. Potential confounders should be
considered during study design and data collec-
tion or assessed during analysis (Jager et al., 2008;
Kahlert et al., 2017). A common strategy involves
defining an a priori set of covariates to account for
(Brookhart et al., 2010). For example, in a study
investigating diabetes and ischemic heart disease,
researchers could control for age by including only
participants over 65 (Jager et al., 2008).

Beyond addressing confounders, incorporating

additional relevant variables can help capture clini-
cal context. Savchenko et al. (2023), for example,
incorporate patient socio-demographic information
to model the clinical dynamics of non-invasive blad-
der cancer treatment. Their inclusion yields an
8.14% performance gain over the baseline model
lacking these features (Savchenko et al., 2023).

For retrospective studies, leveraging public
datasets can also enrich training data. Factors such
as demographic statistics can help select appropri-
ate datasets. Ontologies can also be used to seman-
tically categorize features, enabling table compar-
isons (Woźnica et al., 2024).

Synthetic data Synthetic data can help protect
patient privacy or increase data size (Pezoulas et al.,
2024). Bayesian networks can be used to gener-
ate synthetic patient data by modeling probabilistic
relationships and latent variables (Tucker et al.,
2020). These relationships can be informed by ex-
pert knowledge (Rabaey et al., 2024) or learned
from existing datasets (Tucker et al., 2020). To
ensure that the generated data maintains strong in-
ferential properties, informative prior knowledge is
essential to appropriately weight the different net-
work structures (Young et al., 2009). Simulation-
based methods can also leverage domain knowl-
edge to generate data points. Deist et al. (2019)
propose a technique that integrates prior knowl-
edge using domain-informed kernels. The method
performs well in low-data, high-dimensional set-
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tings but is surpassed by data-driven approaches
as training data increases. Shi et al. (2022), for
instance, show that when data-driven methods use
large amounts of data, they can generate synthetic
data that closely resembles real data.

Large language models have also been proposed
for synthetic data generation (Zhang et al., 2023).
However, this approach should be further tested in
the medical domain in terms of privacy preserva-
tion. Kim et al. (2024b) propose combining LLMs
with attribute constraints to generate synthetic fi-
nancial data. Yet, they notice that using constraints
could reduce diversity in some attributes, which
may cause issues for data with high variability.
These findings may also be relevant for similar
approaches in the medical domain.

While synthetic data is often used to replace or
complement training data, it can also help train tab-
ular models. TabPFN (Hollmann et al., 2023a),
a transformer-based model for tabular tasks, is
trained on a large number of synthetic datasets,
reducing reliance on sensitive real-world data. Re-
cent work has demonstrated that domain knowl-
edge can improve its adaptability to specific data
types. For example, Perciballi et al. (2024) en-
hanced TabPFN’s performance on metagenomic
data by modifying the generative model priors to
better reflect the sparsity and variability of this do-
main. However, the high variability in their results
indicates that further experimentation is needed.

Future Research When working with a small
dataset, a common strategy is to identify seman-
tically or structurally similar datasets that can be
leveraged through transfer learning. Advances in
semantic data type detection (e.g., Hulsebos et al.
(2023)) could lead to more informed dataset selec-
tions when combined with medical ontologies.

Synthetic data offers another promising research
avenue for bias mitigation and data augmentation.
The explicit inclusion of domain knowledge could
guide this process, especially for low-resource do-
mains. However, more research is still needed to
compare the various methods of synthetic data gen-
eration in terms of privacy preservation, fidelity,
bias, and clinical relevance.

4.2 Data Preprocessing

Cleaning Clinical data often contains inconsis-
tencies that require tailored preprocessing. While
such issues are best mitigated through standard-
ized data collection protocols, missing data and

non-standardized entries remain common and are
sometimes unavoidable.

Numerical values suffer from inconsistent units
due to varying practices across laboratories and
general practitioners (e.g., ‘g/dL’, ‘??’, ‘NULL’)
(Shi et al., 2021). Domain knowledge can guide
semantic alignment and harmonization through
the identification of valid unit conversions or the
correction of implausible entries (e.g., checking
whether values are in acceptable ranges). For in-
stance, Shi et al. (2021) automatically derive con-
version rates, detect outliers, and identify extreme
ranges using literature and knowledge bases.

Categorical values also require standardization.
For this, medical knowledge bases can provide
structured vocabularies (Chang and Mostafa, 2021;
Bodenreider, 2004), and dictionaries can define
permissible value labels, helping flag and correct
invalid entries (Pilowsky et al., 2024). Beyond rule-
based methods, ontology embedding techniques
can leverage clinical ontologies to generate vector
representations of terms (Zahra and Kate, 2024;
Castell-Díaz et al., 2023). These embeddings en-
able the suggestion of the semantically related post-
coordinated expression (Castell-Díaz et al., 2023).

Using LLMs for automated tabular data cleaning
could alleviate the need for tailor-made outlier de-
tection and error correction algorithms (Bendinelli
et al., 2025). However, (Bendinelli et al., 2025)
observe that LLMs tend to use brute force for data
cleaning. Providing contextual knowledge, such as
partial guidance on how to correct an error, often
improves the results.

Missing data A common approach to handling
missing data is complete case analysis, which ex-
cludes patients with incomplete information. This
can introduce selection bias when missingness is re-
lated to underlying clinical factors (Haneuse, 2016).
Clinical insight is therefore essential to assess if
missingness is occurring at random. In the case of
longitudinal data, missingness patterns can be espe-
cially informative (Che et al., 2018). For instance,
stable patients may have specific lab tests omitted
(Raebel et al., 2016), or patients experiencing se-
vere toxicity may be more likely to drop out of a
clinical trial (Bell et al., 2014).

Medical context also informs the design of im-
putation strategies. Multi-omics correlations from
external datasets can, for instance, help impute ge-
netic data (Lin et al., 2016). More recently, LLM-
based imputation methods have shown significant
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improvement over baselines for data ‘missing not
at random’ (Hayat and Hasan, 2024).

Future Research Preprocessing is crucial for en-
suring interoperability, especially when combin-
ing datasets from multiple institutions where data
quality often varies. In particular, poor standard-
ization across datasets and a high rate of missing
data impact the quality of tabular medical datasets.
Current initiatives on the interoperability of health-
care databases aim to lessen the need for custom
preprocessing (Semler et al., 2018).

Recent advances in table understanding methods
that identify the semantic and syntactic types of
cells (Zhang et al., 2020; Sun et al., 2021) repre-
sent a promising step toward developing end-to-end
pipelines for automatic clinical data preprocessing.
Further research on the use of medical vocabular-
ies or ontologies in conjunction with LLMs could
improve semantic interoperability. More broadly,
LLMs are a promising research direction for autom-
atized data cleaning and standardization. However,
to our knowledge, they have not yet been applied
to medical datasets with complex feature interac-
tions. Thus, further adaptation and validation of
this method to such datasets is necessary.

Although numerous statistical imputation tech-
niques exist, many rely on the assumption that data
is missing at random. This assumption often fails
to account for the clinical context behind missing-
ness. There is a growing need for frameworks that
can represent the reasons behind missing data to
address data ‘missing not at random’. In cases
where the underlying mechanisms can be known or
approximated, mathematical models (e.g., pharma-
cokinetic models) could be leveraged to infer and
impute specific features (Lin and Wong, 2017).

4.3 Feature Engineering

Feature selection and creation Domain knowl-
edge is frequently integrated into feature selec-
tion, particularly in biomedical applications, where
datasets often contain relatively few instances but
many features. In this context, it can help reduce
complexity and enhance model performance. The
effectiveness of this approach depends on the use
of accurate and contextually appropriate knowl-
edge: Wu et al. (2022) show that well-curated, tar-
geted domain knowledge yields superior results
compared to indiscriminate application.

Domain knowledge can also be used to generate
new features from existing ones. Features can be

handcrafted based on clinical knowledge and, in
particular, mathematical relationships. Nave and
Elbaz (2021) train a machine learning model to pre-
dict tumor size over time. Their results showed that
adding mathematical model outputs significantly
improved performance: their tumor size prediction
accuracy increased from 72.5% to 86.33%.

Hollmann et al. (2023b), on the other hand, use
LLMs to engineer additional features automatically
based on a dataset description. This approach can
be further extended by integrating domain exper-
tise. For example, an estimation of medication
absorption could be calculated using baseline pa-
tient information (Rajagopalan and Gastonguay,
2003).

Table serialization Clinical data can also be se-
rialized into text and processed using language
models. This can allow models to extract semanti-
cally rich representations that might not be appar-
ent through standard tabular processing alone. For
example, Chen et al. (2023) apply this approach
to prognosis prediction, leveraging medical knowl-
edge from pre-training data to enrich tabular repre-
sentations. Similarly, Slack and Singh (2023) pro-
pose a pipeline that integrates domain knowledge
into LLM-based differential diagnosis prediction.
They enrich tabular data with disease-specific in-
structions and show that including this can often
significantly increase performance.

Future Research Language models offer a
promising avenue for the automated engineering
of additional features based on domain knowledge.
However, their outputs may introduce biases, as
careful assessment of these methods is still needed.
For instance, Küken et al. (2025) observe that
LLMs often rely too heavily on simplistic oper-
ations, such as addition, when generating features.
Including information on formal relationships from
domain knowledge to engineer features could be a
way to avoid this bias.

While LLMs have been used for medical tabular
tasks, they have yet to be extensively tested on clin-
ical datasets with high-dimensional features. Mul-
timodal approaches combining a language model
and high-dimensional table representation may be
more appropriate (AlSaad et al., 2024). However,
current research on such multimodal models is still
limited. In addition, using LLMs for feature engi-
neering also requires more extensive testing of the
potential propagation of training data biases.
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4.4 Training
Leveraging graph representations Domain
knowledge can be used to introduce clinically
meaningful inductive biases during training, guid-
ing models to learn patterns that align with estab-
lished medical understanding. Graph represen-
tations of domain knowledge can encode struc-
tured relationships. For instance, Middleton et al.
(2024) jointly process tabular data and knowledge
graphs to identify therapeutic genetic targets. Sim-
ilarly, Ruiz et al. (2023) encode prior knowledge
in a graph structure, influencing how feature con-
nections are learned—demonstrating efficiency in
high-dimensional, low-sample settings such as ge-
nomics. The hierarchical structure of medical con-
cepts has also been incorporated into knowledge
graphs to improve single-cell classification (Mojar-
rad et al., 2024).

Other architectures In physics-informed neu-
ral networks, regularization losses can enforce ex-
pected behavior in a model’s outputs (Cuomo et al.,
2022). For example, Nguyen et al. (2020) introduce
a domain-specific loss function based on the dose
volume histogram from radiation therapy. They
show that this loss improves results across most
evaluation categories (Nguyen et al., 2020).

Using interpretable models can also help inter-
pret patterns and use domain knowledge to correct
potential unwanted shortcuts that conflict with clin-
ical reality. For instance, Caruana et al. (2015)
develop generalized additive models with pairwise
interactions for a pneumonia detection task. When
the model incorrectly learns, for example, that
asthma lowers the risk of pneumonia, it can be
addressed by reshaping the learned effect function
to reflect the correct association.

Foundation model pre-training Through self-
supervised pre-training, models can leverage the
longitudinal nature of EHRs. For example,
Steinberg et al. (2023) pre-train a time-to-event
transformer-based model from EHRs medical
codes. This helps model medical codes’ semantic
relationships and temporal dependencies represent-
ing diagnoses, medications, and procedures. Pre-
training models on massive EHR datasets can help
contextualize data with information not included in
smaller task-specific datasets (Rasmy et al., 2021).

Future Research Grinsztajn et al. (2022) note
that the underperformance of neural networks on
tabular data may stem from a lack of inductive bi-

ases—especially when dealing with uninformative
or noisy features, which are common in medical
data. Future research could explore further the in-
tegration of inductive biases using graph or mathe-
matical representations of domain knowledge. For
example, Kim et al. (2024a) propose a new pre-
training architecture for tabular data using graph
representations, enabling improved transfer learn-
ing across structured datasets.

Additionally, given the growing interest in
medical foundation models, it may be valuable
to investigate how pre-training tasks can better
exploit fine-grained relationships between clini-
cal codes—potentially improving the quality of
learned representations in structured medical data.
In addition, though Steinberg et al. (2023) show im-
proved results on pre-trained models compared to
trained from scratch, the effect of the pre-training
dataset should be studied in more depth. For in-
stance, the impact of the size of the dataset or the
distribution shift compared to the downstream task
should be assessed. Furthermore, reinforcement
learning with human feedback—used, for example,
in natural language processing by (Ouyang et al.,
2022)—could offer a way to adapt model behavior
to clinical expertise, as also explored in other align-
ment strategies (Yao et al., 2023). This could also
be leveraged for tabular datasets.

4.5 Validation
Validation of machine learning models incorporates
explainability, generalizability, and bias analysis,
which can be grounded in domain knowledge.

A survey by Tonekaboni et al. (2019) highlights
that clinicians view explainability as a justification
tool in clinical workflows. To that end, clinicians
must be able to relate model features and outputs
to medical reasoning. Explainability methods sup-
port clinicians in understanding which features the
model considers vital for its decisions (Vimbi et al.,
2024).

In addition, auditing frameworks (Drenkow
et al., 2025) can enable structured identification
of dataset “shortcuts” by comparing feature impor-
tance against clinical plausibility. Complementing
this, medical literature and clinician insight offer
valuable knowledge about known confounders or
spurious correlations (Meng et al., 2022).

It is also important to assess model generalizabil-
ity across patient populations and hospitals. One
aspect is to appropriately select metrics and dataset
splits. Expert insight can also provide information
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into possible sources of dataset shift, such as varia-
tions in clinical workflows or patient populations.
Subbaswamy et al. (2021) propose, for example, a
method to evaluate how a model can generalize to
shifts in laboratory test ordering.

Finally, it is also crucial to consider the baselines
against which machine learning methods will be
compared to, as even naive methods can show sur-
prisingly good results. For instance, naive forecast-
ing often shows competitive performance in finan-
cial forecasting tasks (Hewamalage et al., 2023). In
clinical settings, domain knowledge could be used
to construct naive rule-based baselines to validate
clinical applications.

Future Research Although current explainabil-
ity methods increase transparency and trust, they re-
main approximations of the model’s internal logic,
can introduce their uncertainties, and may not be
suited for clinical decision validation (Ghassemi
et al., 2021). Indeed, they cannot guarantee the
correctness of predictions or justify their adoption
in practice (Ghassemi et al., 2021).

Similarly, while valuable for evaluating model
robustness and generalizability, cross-dataset test-
ing assesses performance after distribution shifts
have occurred. Future work could prioritize proac-
tive strategies to build more resilient systems that
mitigate or validate such shifts in advance, for in-
stance, through synthetic data or causal modeling
informed by clinical expertise.

In bias analysis, incorporating structured med-
ical knowledge and recent experimental findings
could help identify and address harmful shortcuts.
Additionally, synthetic data could be used to gen-
erate slightly modified test datasets to assess the
robustness of the model to changes that should not
be medically relevant to outputs.

5 Discussion

As medical machine learning becomes increas-
ingly prominent, incorporating domain knowledge
is vital. Some approaches emphasize the scala-
bility and diversity of large datasets, relying, for
instance, on pre-trained models (Steinberg et al.,
2023). Others prioritize the structured integration
of domain knowledge using ontologies or graphs
(Sirocchi et al., 2024). This becomes especially
important when dealing with heterogeneous, high-
dimensional, or noisy data.

However, access to expert input and curated
databases can be limited, and integrating this

knowledge effectively is often complex. In ad-
dition, clinical practices and medical understand-
ing evolve, and relying on outdated ontologies or
prior assumptions may introduce biases. More-
over, models trained on historical data may learn
and reinforce prior clinical behaviors, leading to
the risk of self-fulfilling prophecies in real-world
decision support systems (De-Arteaga and Elmer,
2023). Furthermore, relying too heavily on domain
constraints can unintentionally limit the discovery
of novel patterns or rare cases. Thus, further empir-
ical evaluations should assess the benefits of knowl-
edge integration methods across medical datasets
of different types and quality.

In general, we first recommend early discussions
with medical partners to determine potential bi-
ases and confounders. While confounders can be
unavoidable for retrospective studies, they should
be recognized as limitations. Domain knowledge
should also be included during data preprocess-
ing to harmonize values following ontologies and
guidelines or to assess the reasons for missing data
and impute them accordingly. Domain knowledge
can also engineer medically relevant features or
integrate information from knowledge bases for
feature selection. Moreover, model training can
leverage pre-trained models or mathematical re-
lationships. Finally, validation should be based
on clinical expertise, and potential generalizability
should be assessed for other patient populations or
hospital settings.

While this process can be time-consuming, re-
cent studies suggest that domain knowledge inte-
gration can be automated by leveraging foundation
models for knowledge extraction (Kresevic et al.,
2024) and its integration in the pipeline (Hollmann
et al., 2023b). This paves the way toward scalable
medical deep-learning models. Yet, medical foun-
dation models also need to be evaluated in terms of
privacy preservation, bias propagation, and general-
izability. Recently, studies have led benchmarking
efforts for scientific foundation models. Chen et al.
(2024) show that while expert knowledge did not
always improve code validity, it consistently in-
creased success rates—supporting the idea that do-
main expertise can improve model outcomes, and
its inclusion should be further studied for founda-
tion models. However, medical machine learning
on complex tabular datasets cannot rely yet on end-
to-end LLMs.

Closer collaboration between the fields of health-
care and tabular machine learning could leverage
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deep learning advances to design models that inte-
grate domain knowledge more efficiently. Promis-
ing research directions include adapting and validat-
ing automated approaches for domain knowledge
integration and transfer learning for tabular data
(Kim et al., 2024a).

6 Limitations

The current study presents several limitations that
should be acknowledged. The presented work is
not a systematic review and does not aim to cover
all relevant literature comprehensively. Thus, it has
been influenced by the authors’ experiences within
the field of medical machine learning.

In addition, while we propose an overview and
diverse examples for integrating domain knowl-
edge into the medical machine learning pipeline,
we do not offer concrete recommendations that are
applicable to all use cases. Indeed, the appropri-
ate approach may vary depending on the medical
context and application. Therefore, we encourage
interdisciplinary discussions between medical ex-
perts and machine learning practitioners to define
a concrete guide collaboratively.

Moreover, the efficacy of the discussed methods
of domain knowledge integration may vary accord-
ing to data quality. We do not offer a systematic
assessment of these integration methods on vari-
ous data types, which would be valuable in gaining
a deeper understanding of the impact of domain
knowledge.

Finally, our focus was limited to tabular data.
Integrating domain knowledge into multimodal ma-
chine learning models, which utilize data such as
text, images, or time series, represents an important
direction for future research, but was beyond the
scope of this work.
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Abstract

Time series forecasting is a challenging task,
especially when dealing with data that con-
tains both short-term variations and long-term
trends. In this study, we introduce LLM-Mixer,
a novel framework that combines multiscale
time-series decomposition with the power of
pre-trained Large Language Models (LLMs).
LLM-Mixer breaks down time-series data into
multiple temporal resolutions using downsam-
pling and processes these multiscale representa-
tions with a frozen LLM, guided by a carefully
designed text prompt that encodes information
about the dataset’s features and structure. To
understand the role of downsampling, we con-
duct a detailed analysis using Neural Tangent
Kernel (NTK) distance, showing that incorpo-
rating multiple scales improves the model’s
learning dynamics. We evaluate LLM-Mixer
across a diverse set of forecasting tasks, in-
cluding long-term multivariate, short-term mul-
tivariate, and long-term univariate scenarios.
Experimental results demonstrate that LLM-
Mixer achieves competitive performance com-
pared to recent state-of-the-art models across
various forecasting horizons. Code is available
at: https://github.com/Kowsher/LLMMixer

1 Introduction & Related Work

Time series forecasting is essential in numerous
fields, including finance (Zhang et al., 2024), en-
ergy management (Martín et al., 2010), healthcare
(Morid et al., 2023), climate science (Mudelsee,
2019), and industrial operations (Wang et al., 2020).
Traditional forecasting models, such as AutoRe-
gressive Integrated Moving Average (ARIMA)
(Box et al., 2015) and exponential smoothing tech-
niques (Hyndman, 2018), are widely used for
straightforward predictive tasks. However, these
models assume stationarity and linearity, which
limit their effectiveness when applied to complex,
nonlinear, and multivariate time series often found
in real-world scenarios (Cheng et al., 2015). The

advent of deep learning has significantly advanced
time series forecasting. CNNs (Wang et al., 2023;
Tang et al., 2020; Kirisci and Cagcag Yolcu, 2022)
have been utilized for capturing temporal patterns,
while RNNs (Siami-Namini et al., 2019; Zhang
et al., 2019; Karim et al., 2019) are adept at mod-
eling temporal state transitions. However, both
CNNs and RNNs have limitations in capturing
long-term dependencies (Wang et al., 2024; Tang
et al., 2021; Zhu et al., 2023). Recently, Trans-
former architectures (Vaswani et al., 2017) have
demonstrated strong capabilities in handling both
local and long-range dependencies, making them
suitable for time series forecasting (Liu et al.,
2024b; Nie et al., 2022; Woo et al., 2022).

In parallel, pre-trained LLMs such as GPT-3
(Brown, 2020), GPT-4 (Achiam et al., 2023), and
LLaMA (Touvron et al., 2023) have achieved re-
markable generalization in natural language pro-
cessing tasks (Friha et al., 2024) due to capabilities
of few-shot or zero-shot transfer learning (Brown,
2020), multimodal knowledge (Jia et al., 2024) and
reasoning (Liu et al., 2024a). These models are
now being applied across various fields, including
computer vision (Bendou et al., 2024), healthcare
(Gebreab et al., 2024), and finance (Zhao et al.,
2024). Recently, a few studies have explored using
LLMs for time series forecasting due to their im-
pressive capabilities (Jin et al., 2024, 2023; Gruver
et al., 2023). However, adapting LLMs to time se-
ries data presents challenges because there are sig-
nificant differences between token-based text data
and continuous time series data (Morales-García
et al., 2024). LLMs are built to handle discrete
tokens, which limits their ability to capture the con-
tinuous and often irregular patterns found in time
series data. Additionally, time series data has mul-
tiple time scales, from short-term fluctuations to
long-term trends, making it difficult for traditional
LLMs to capture all these patterns at once. LLMs
typically process fixed-length sequences, which
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Figure 1: The LLM-Mixer framework for time series forecasting. Time series data is downsampled to multiple scales
and enriched with embeddings. These multiscale representations are processed by the Past-Decomposable-Mixing
(PDM) module and then input into a pre-trained LLM, which, guided by a textual description, generates the forecast.

means they may only capture short-term dependen-
cies if the sequence length (i.e., the window of time
steps) is small. However, extending the sequence
length to capture long-term trends increases com-
putational costs and may dilute the model’s ability
to focus on short-term fluctuations within the same
sequence. Previous studies using LLMs on time
series data have mostly fed the original or a sin-
gle sequence directly into a frozen LLM, making
it hard for the model to fully understand these se-
quences (Jin et al., 2024, 2023; Gruver et al., 2023).

To address this, we introduce LLM-Mixer,
which breaks down the time series data into mul-
tiple time scales. By creating various resolutions
(Figure 1), our model can capture both short-term
details and long-term patterns more effectively.
Since the LLM remains frozen during training, the
multiscale decomposition provides a diverse range
of temporal information, helping the model better
understand complex time series data.

Our contributions of this paper are: (1) We pro-
pose LLM-Mixer, a new method that adapts LLMs
for time series forecasting by breaking down the
data into different time scales, helping the model
capture both short-term and long-term patterns. (2)
Our method creates multiple versions of the time
series at different resolutions which helps the LLM
to understand complex time series data more effec-
tively. (3) Empirical results show that LLM-Mixer
achieves competitive performance, improves fore-
casting accuracy on both multivariate and univari-
ate data, and works effectively for both short-term
and long-term forecasting tasks.

2 LLM Mixer

Preliminaries: In multivariate time series fore-
casting, we are given historical data X =

{x1, . . . ,xT } ∈ RT×M , where T is the number
of time steps and M is the number of features. The
goal is to predict the future values for the next K
time steps, denoted as Y = {xT+1, . . . ,xT+K} ∈
RK×M . For convenience, let Xt,: represent the
data at time step t, and X:,m represent the full time
series for variable m ∈M .

Now, suppose we have a prompt P, which in-
cludes textual information about the time sequence
(e.g., source, features, distribution, statistics). We
use a pre-trained language model F(·) with frozen
parameters Θ, then the prediction is made as fol-
lows:

Ŷ = F(X,P; Θ,Φ)

Here Φ is a small set of trainable parameters to
adjust the model for the specific forecasting task.
Multi-scale View of Time Data: Time series data
contains patterns at various levels—small scales
capture detailed changes, while larger scales high-
light overarching trends (Liu et al., 2022; Mozer,
1991). Analyzing data at multiple scales helps to
understand these complex patterns (Wang et al.,
2024). Following (Wang et al., 2024), we apply
a multiscale mixing strategy. First, we downsam-
ple the time series X into τ scales using average
pooling, resulting in a multiscale representation
X = {x0,x1, . . . ,xτ}, where each xi ∈ R

T

2i
×M .

Here, x0 contains the finest temporal details, while
xτ captures the broadest trends.

Next, we project these multiscale series into deep
features using three types of embeddings: token,
temporal, and positional embeddings. Token em-
beddings are obtained via 1D convolutions (Ki-
ranyaz et al., 2021), temporal embeddings repre-
sent day, week, and month (Jiménez-Navarro et al.,
2023), and positional embeddings encode sequence
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positions.
We then use stacked Past-Decomposable-Mixing

(PDM) blocks by following the framework
from (Wang et al., 2024; Jiménez-Navarro et al.,
2023) to mix past information across different
scales. PDM works by breaking down complex
time series data into separate seasonal and trend
components at multiple scales, allowing for tar-
geted processing of each component by using the
framework from (Wang et al., 2024; Wu et al.,
2021). For the l-th layer, PDM is defined as

X l = PDM(X l−1), l ∈ L

where L is the total number of layers, and X l =

{xl
0,x

l
1, . . . ,x

l
τ}, with each xl

i ∈ R
T

2i
×d, where d

is the model’s dimension.
Prompt Embedding: Prompting is an effective
technique for guiding LLMs by using task-specific
information (Sahoo et al., 2024; Li et al., 2023).
Studies like (Xue and Salim, 2023) show promis-
ing results by treating time series inputs as prompts
for forecasting. (Jin et al., 2024) further improved
time series predictions by embedding dataset de-
scriptions in the prompts. Inspired by this, we em-
bed dataset descriptions (e.g., features, statistics,
distribution) as prompts. We use a textual descrip-
tion for all samples in a dataset, as suggested by
(Jin et al., 2024), and generate its embedding using
the pre-trained LLM’s word embeddings, denoted
by E ∈ RV×d, where V is the LLM’s vocabulary
size. This prompt leverages the LLM’s semantic
knowledge to improve the prediction task.
Multi-scale Mixing in LLM: After processing
through L PDM blocks, we obtain the multiscale
past information XL. Since different scales fo-
cus on different variations, their predictions offer
complementary strengths. To fully utilize this, we
concatenate all the scales and input them into a
frozen pre-trained LLM along with the prompt as
F(E ⊕ XL). Finally, a trainable decoder (simple
linear transformation) with parameters Φ is applied
to the last hidden layer of the LLM to predict the
next K future time steps.

3 Experiments

We evaluate our LLM-Mixer on several datasets
commonly used for benchmarking long-term and
short-term multivariate forecasting and compared
with SOTA baselines. For long-term forecasting,
we use the ETT datasets (ETTh1, ETTh2, ETTm1,
ETTm2) from (Zhou et al., 2021), as well as

the Weather, Electricity, and Traffic datasets from
(Zeng et al., 2023). For short-term forecasting, we
use the PeMS dataset (Chen et al., 2001), which
consists of four public traffic network datasets
(PEMS03, PEMS04, PEMS07, and PEMS08) with
time series collected at various frequencies. We
used RoBERTa-base (Liu et al., 2019) as a medium-
sized language model and LLaMA2-7B (Touvron
et al., 2023) as a large language model as the back-
bone of our framework.
Baselines We compare our model with well-
established time-series forecasting baselines such
as TimeMixer (Wang et al., 2024), iTransformer
(Liu et al., 2024b), TimeLLM (Jin et al., 2024),
RLinear (Li et al., 2024), SCINet (LIU et al., 2022),
TimesNet (Wu et al., 2022), TiDE (Das et al., 2023),
DLinear (Zeng et al., 2023), PatchTST (Nie et al.,
2022), FEDformer (Zhou et al., 2022), Stationary
(Liu et al., 2022), ESTformer (Woo et al., 2022),
LightTS (Campos et al., 2023), and Autoformer
(Chen et al., 2021). Additionally, we include LLM-
based systems such as TimeLLM (Jin et al., 2024)
and GPT2TS (Zhou et al., 2023). For multivari-
ate time series forecasting, we follow the setup of
(Wang et al., 2024). For short-term forecasting, we
adopt the settings from (Liu et al., 2024b), and for
univariate forecasting, we adhere to the approach
in (Zeng et al., 2023).
Implementation Details All experiments in this
work are implemented using PyTorch. We utilize
the Hugging Face library for the LLM model. Ex-
periments were conducted on an NVIDIA H100
GPU with 80 GB RAM.
Hyperparameters: For long-term experiments, a
look-back window of 96 is used to predict the next
96 (future context) and 192 (forecast horizons),
while short-term experiments use windows of 24
and 48. All experiments run for 10 epochs with
a batch size of 64 for RoBERTa and a batch size
of 8 with gradient accumulation of 4 for LLaMA2.
The ADAM optimizer is employed with default
settings (β1, β2) = (0.9, 0.999) and a learning rate
of 0.0001. Downsampling levels range from 2 to 5
across all experiments. For the baseline models, we
have followed their original works, with differences
only in batch size and learning rate to align with
our experimental setup.
Multivariate forecasting results: LLM-Mixer
demonstrates competitive performance in multi-
variate long forecasting, as shown in Table 1. Aver-
aged over four forecasting horizons (96, 192, 384,
and 720), LLM-Mixer achieves consistently low
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Methods
LLM-Mixer

(llama2)
LLM-Mixer

(roberta)
TIME-LLM TimeMixer iTransformer RLinear DLinear PatchTST TimesNet TiDE TimesNet Crossformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.368 0.395 0.372 0.399 0.369 0.397 0.375 0.400 0.386 0.405 0.386 0.395 0.397 0.412 0.460 0.447 0.384 0.402 0.479 0.464 0.384 0.402 0.423 0.448
192 0.406 0.417 0.439 0.470 0.411 0.428 0.429 0.421 0.441 0.436 0.437 0.424 0.446 0.441 0.512 0.477 0.436 0.429 0.525 0.492 0.436 0.429 0.471 0.474
336 0.446 0.444 0.458 0.467 0.440 0.447 0.484 0.458 0.487 0.458 0.479 0.446 0.489 0.467 0.546 0.496 0.638 0.469 0.565 0.515 0.491 0.469 0.570 0.546
720 0.461 0.475 0.465 0.480 0.462 0.477 0.498 0.482 0.503 0.491 0.481 0.470 0.513 0.510 0.544 0.517 0.521 0.500 0.594 0.558 0.521 0.500 0.653 0.621
Avg 0.420 0.433 0.434 0.454 0.421 0.437 0.447 0.440 0.454 0.447 0.446 0.434 0.461 0.457 0.516 0.484 0.495 0.450 0.541 0.507 0.458 0.450 0.529 0.522

ETTh2

96 0.274 0.334 0.284 0.347 0.278 0.338 0.289 0.341 0.297 0.349 0.288 0.338 0.340 0.394 0.308 0.355 0.340 0.374 0.400 0.440 0.340 0.374 0.745 0.584
192 0.339 0.384 0.343 0.389 0.338 0.384 0.372 0.392 0.380 0.400 0.374 0.390 0.482 0.479 0.393 0.405 0.402 0.414 0.528 0.509 0.402 0.414 0.877 0.656
336 0.380 0.408 0.375 0.409 0.389 0.411 0.386 0.414 0.428 0.432 0.415 0.426 0.591 0.541 0.427 0.436 0.452 0.452 0.643 0.571 0.452 0.452 1.043 0.731
720 0.390 0.431 0.394 0.438 0.393 0.432 0.412 0.434 0.427 0.445 0.420 0.440 0.839 0.661 0.436 0.450 0.462 0.468 0.874 0.679 0.462 0.468 1.104 0.763
Avg 0.345 0.389 0.349 0.395 0.349 0.391 0.364 0.395 0.383 0.407 0.374 0.398 0.563 0.519 0.391 0.411 0.414 0.427 0.611 0.550 0.414 0.427 0.942 0.684

ETTm1

96 0.294 0.346 0.304 0.348 0.293 0.343 0.320 0.357 0.334 0.368 0.355 0.376 0.346 0.374 0.352 0.374 0.338 0.375 0.364 0.387 0.338 0.375 0.404 0.426
192 0.348 0.367 0.350 0.377 0.350 0.368 0.361 0.381 0.377 0.391 0.391 0.392 0.382 0.391 0.390 0.393 0.374 0.387 0.398 0.404 0.374 0.387 0.450 0.451
336 0.387 0.392 0.395 0.409 0.382 0.391 0.390 0.404 0.426 0.420 0.424 0.415 0.415 0.415 0.421 0.414 0.410 0.411 0.428 0.425 0.410 0.411 0.532 0.515
720 0.439 0.442 0.448 0.450 0.443 0.451 0.454 0.441 0.491 0.459 0.487 0.450 0.473 0.451 0.462 0.449 0.478 0.450 0.487 0.461 0.478 0.450 0.666 0.589
Avg 0.367 0.387 0.374 0.396 0.367 0.388 0.381 0.395 0.407 0.410 0.414 0.407 0.404 0.408 0.406 0.407 0.400 0.406 0.419 0.419 0.400 0.406 0.513 0.495

ETTm2

96 0.160 0.251 0.160 0.253 0.160 0.251 0.175 0.252 0.180 0.264 0.182 0.265 0.193 0.293 0.183 0.270 0.187 0.267 0.207 0.305 0.187 0.267 0.287 0.366
192 0.226 0.290 0.229 0.297 0.220 0.292 0.237 0.299 0.250 0.309 0.246 0.304 0.284 0.361 0.255 0.314 0.249 0.309 0.290 0.364 0.249 0.309 0.414 0.492
336 0.283 0.339 0.299 0.346 0.284 0.337 0.298 0.340 0.311 0.348 0.307 0.342 0.382 0.429 0.309 0.347 0.321 0.351 0.377 0.422 0.321 0.351 0.597 0.542
720 0.392 0.398 0.399 0.405 0.391 0.397 0.391 0.396 0.412 0.407 0.407 0.398 0.558 0.525 0.412 0.404 0.365 0.359 0.558 0.524 0.408 0.403 1.730 1.042
Avg 0.265 0.320 0.272 0.325 0.264 0.319 0.275 0.323 0.288 0.332 0.286 0.327 0.354 0.402 0.290 0.334 0.291 0.333 0.358 0.404 0.291 0.333 0.757 0.610

Weather

96 0.149 0.202 0.151 0.203 0.148 0.202 0.163 0.209 0.174 0.214 0.192 0.232 0.195 0.252 0.186 0.227 0.172 0.220 0.202 0.261 0.172 0.220 0.195 0.271
192 0.197 0.239 0.209 0.249 0.199 0.242 0.208 0.250 0.221 0.254 0.240 0.271 0.237 0.295 0.234 0.265 0.219 0.261 0.242 0.298 0.219 0.261 0.209 0.277
336 0.270 0.282 0.310 0.281 0.262 0.279 0.251 0.287 0.278 0.296 0.292 0.307 0.282 0.331 0.284 0.301 0.246 0.337 0.287 0.335 0.280 0.306 0.273 0.332
720 0.323 0.332 0.339 0.342 0.330 0.334 0.339 0.341 0.358 0.347 0.364 0.353 0.282 0.331 0.356 0.349 0.365 0.359 0.287 0.335 0.280 0.306 0.379 0.401
Avg 0.235 0.264 0.252 0.269 0.235 0.264 0.240 0.271 0.258 0.278 0.272 0.291 0.265 0.315 0.265 0.285 0.251 0.294 0.271 0.320 0.259 0.287 0.264 0.320

Electricity

96 0.143 0.233 0.150 0.241 0.142 0.234 0.153 0.247 0.148 0.240 0.201 0.281 0.210 0.302 0.190 0.296 0.168 0.272 0.237 0.329 0.168 0.272 0.219 0.314
192 0.151 0.242 0.166 0.259 0.152 0.241 0.166 0.256 0.162 0.253 0.201 0.283 0.210 0.305 0.199 0.304 0.184 0.322 0.236 0.330 0.184 0.289 0.231 0.322
336 0.178 0.267 0.180 0.281 0.180 0.263 0.185 0.277 0.178 0.269 0.215 0.298 0.223 0.319 0.217 0.319 0.198 0.300 0.249 0.344 0.198 0.300 0.246 0.337
720 0.213 0.305 0.221 0.311 0.218 0.308 0.225 0.310 0.225 0.317 0.257 0.331 0.258 0.350 0.258 0.352 0.220 0.320 0.284 0.373 0.220 0.320 0.280 0.363
Avg 0.171 0.253 0.174 0.273 0.173 0.261 0.182 0.272 0.178 0.270 0.219 0.298 0.225 0.319 0.216 0.318 0.193 0.304 0.251 0.344 0.192 0.295 0.244 0.334

Traffic

96 0.380 0.264 0.394 0.274 0.382 0.268 0.462 0.285 0.395 0.268 0.649 0.389 0.650 0.396 0.526 0.347 0.593 0.321 0.805 0.493 0.593 0.321 0.644 0.429
192 0.396 0.269 0.399 0.276 0.394 0.267 0.473 0.296 0.417 0.276 0.601 0.366 0.598 0.370 0.522 0.332 0.617 0.336 0.756 0.474 0.617 0.336 0.665 0.431
336 0.423 0.274 0.439 0.280 0.425 0.281 0.498 0.296 0.433 0.283 0.609 0.369 0.605 0.373 0.517 0.334 0.629 0.336 0.762 0.477 0.629 0.336 0.674 0.420
720 0.458 0.296 0.460 0.298 0.460 0.300 0.506 0.313 0.467 0.302 0.647 0.387 0.645 0.394 0.552 0.352 0.640 0.350 0.719 0.449 0.640 0.350 0.683 0.424
Avg 0.414 0.265 0.433 0.282 0.415 0.279 0.484 0.297 0.428 0.282 0.626 0.378 0.625 0.383 0.529 0.341 0.620 0.336 0.760 0.473 0.620 0.336 0.667 0.426

Table 1: Full long-term multivariate forecasting results. Red: the best, Blue: the second best.

Methods
LLM-Mixer

(llama2)
LLM-Mixer

(roberta)
TIME-LLM TimeMixer iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PEMS03

12 0.069 0.173 0.082 0.190 0.092 0.201 0.082 0.189 0.071 0.174 0.126 0.236 0.099 0.216 0.090 0.203 0.178 0.305 0.085 0.192 0.122 0.243 0.066 0.172
24 0.090 0.200 0.092 0.201 0.095 0.207 0.090 0.199 0.093 0.201 0.246 0.334 0.142 0.259 0.121 0.240 0.257 0.371 0.118 0.223 0.201 0.317 0.085 0.198
48 0.123 0.232 0.126 0.237 0.127 0.237 0.125 0.235 0.125 0.236 0.551 0.529 0.211 0.319 0.202 0.317 0.379 0.463 0.155 0.260 0.333 0.425 0.127 0.238
96 0.165 0.274 0.166 0.276 0.165 0.274 0.167 0.275 0.164 0.275 1.057 0.787 0.269 0.370 0.262 0.367 0.490 0.539 0.028 0.317 0.457 0.515 0.178 0.287

Avg 0.112 0.220 0.116 0.226 0.120 0.230 0.116 0.225 0.113 0.221 0.495 0.472 0.180 0.291 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224

PEMS04

12 0.072 0.177 0.076 0.183 0.071 0.177 0.073 0.179 0.078 0.183 0.138 0.252 0.105 0.224 0.098 0.209 0.182 0.324 0.087 0.195 0.148 0.272 0.073 0.177
24 0.095 0.201 0.105 0.211 0.106 0.214 0.097 0.205 0.108 0.205 0.258 0.387 0.150 0.266 0.135 0.250 0.309 0.454 0.099 0.217 0.225 0.367 0.084 0.193
48 0.099 0.216 0.103 0.220 0.101 0.218 0.099 0.217 0.120 0.233 0.572 0.544 0.229 0.339 0.205 0.353 0.470 0.539 0.135 0.253 0.355 0.437 0.099 0.217
96 0.120 0.225 0.130 0.232 0.121 0.225 0.121 0.225 0.150 0.267 1.159 0.947 0.309 0.520 0.299 0.467 0.656 0.637 0.043 0.317 0.550 0.541 0.129 0.227

Avg 0.097 0.205 0.104 0.211 0.100 0.209 0.098 0.207 0.111 0.221 0.526 0.491 0.195 0.307 0.209 0.314 0.353 0.475 0.129 0.245 0.329 0.395 0.119 0.234

PEMS07

12 0.065 0.165 0.072 0.180 0.068 0.166 0.070 0.168 0.067 0.165 0.118 0.235 0.097 0.226 0.093 0.209 0.155 0.324 0.081 0.185 0.118 0.272 0.068 0.174
24 0.087 0.105 0.091 0.198 0.088 0.192 0.087 0.105 0.088 0.190 0.271 0.449 0.153 0.276 0.138 0.251 0.338 0.475 0.096 0.223 0.207 0.381 0.087 0.180
48 0.106 0.215 0.117 0.224 0.109 0.219 0.106 0.217 0.110 0.215 0.596 0.621 0.343 0.459 0.309 0.401 0.532 0.547 0.145 0.264 0.593 0.484 0.149 0.233
96 0.147 0.266 0.146 0.265 0.150 0.269 0.151 0.269 0.141 0.245 1.096 0.795 0.346 0.490 0.329 0.443 0.674 0.650 0.203 0.307 0.789 0.531 0.191 0.267

Avg 0.101 0.204 0.107 0.217 0.104 0.212 0.104 0.218 0.101 0.204 0.504 0.478 0.213 0.303 0.215 0.326 0.355 0.499 0.129 0.245 0.529 0.387 0.119 0.234

PEMS08

12 0.082 0.186 0.086 0.190 0.080 0.184 0.083 0.183 0.079 0.182 0.133 0.247 0.168 0.232 0.152 0.267 0.215 0.367 0.154 0.276 0.172 0.291 0.087 0.184
24 0.107 0.213 0.109 0.217 0.105 0.208 0.109 0.218 0.105 0.209 0.242 0.360 0.189 0.321 0.174 0.314 0.258 0.430 0.178 0.307 0.290 0.346 0.104 0.193
48 0.187 0.235 0.192 0.240 0.193 0.242 0.192 0.241 0.125 0.237 0.596 0.556 0.269 0.389 0.247 0.388 0.433 0.512 0.210 0.345 0.418 0.422 0.124 0.216
96 0.140 0.245 0.142 0.249 0.147 0.256 0.143 0.252 0.167 0.275 1.043 0.841 0.344 0.470 0.326 0.459 0.534 0.571 0.283 0.387 0.593 0.514 0.155 0.253

Avg 0.119 0.226 0.132 0.224 0.131 0.223 0.132 0.224 0.119 0.226 0.503 0.501 0.243 0.353 0.225 0.357 0.360 0.470 0.206 0.329 0.368 0.393 0.118 0.212

Table 2: Full short-term multivariate forecasting results. Red: the best, Blue: the second best.

Methods
LLM-Mixer

(llama2)
LLM-Mixer

(Roberta)
Linear NLinear DLinear FEDformer-f FEDformer-w Autoformer Informer LogTrans

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.052 0.175 0.053 0.177 0.189 0.359 0.055 0.176 0.056 0.180 0.079 0.215 0.080 0.214 0.071 0.206 0.193 0.377 0.283 0.468
192 0.064 0.200 0.066 0.203 0.078 0.212 0.069 0.204 0.071 0.204 0.104 0.245 0.105 0.256 0.114 0.262 0.217 0.395 0.234 0.409
336 0.080 0.226 0.081 0.226 0.091 0.237 0.084 0.228 0.098 0.244 0.119 0.270 0.120 0.269 0.107 0.258 0.202 0.381 0.386 0.546
720 0.075 0.222 0.078 0.223 0.172 0.340 0.080 0.226 0.189 0.359 0.142 0.299 0.127 0.280 0.126 0.283 0.183 0.355 0.475 0.629
Avg 0.068 0.206 0.071 0.207 0.133 0.287 0.071 0.208 0.104 0.247 0.111 0.257 0.108 0.255 0.106 0.252 0.199 0.377 0.345 0.513

ETTh2

96 0.125 0.274 0.123 0.276 0.133 0.283 0.129 0.278 0.131 0.279 0.128 0.271 0.156 0.306 0.153 0.306 0.213 0.373 0.217 0.379
192 0.166 0.322 0.169 0.324 0.176 0.330 0.169 0.324 0.176 0.329 0.185 0.330 0.238 0.380 0.204 0.351 0.227 0.387 0.281 0.429
336 0.193 0.353 0.194 0.356 0.213 0.371 0.194 0.355 0.209 0.367 0.231 0.378 0.271 0.412 0.246 0.389 0.242 0.401 0.293 0.437
720 0.222 0.380 0.225 0.381 0.292 0.440 0.225 0.381 0.276 0.426 0.278 0.420 0.288 0.438 0.268 0.409 0.291 0.439 0.218 0.387
Avg 0.177 0.332 0.178 0.334 0.204 0.356 0.179 0.335 0.198 0.350 0.205 0.350 0.238 0.384 0.218 0.364 0.243 0.400 0.252 0.408

ETTm1

96 0.023 0.118 0.026 0.125 0.028 0.125 0.026 0.122 0.028 0.123 0.033 0.140 0.036 0.149 0.056 0.183 0.109 0.277 0.049 0.171
192 0.033 0.145 0.036 0.147 0.043 0.154 0.039 0.149 0.045 0.156 0.058 0.186 0.069 0.206 0.081 0.216 0.151 0.310 0.157 0.317
336 0.053 0.172 0.054 0.176 0.059 0.180 0.052 0.172 0.061 0.182 0.084 0.231 0.071 0.209 0.076 0.218 0.427 0.591 0.289 0.459
720 0.071 0.205 0.072 0.204 0.080 0.211 0.073 0.207 0.080 0.210 0.102 0.250 0.105 0.248 0.110 0.267 0.438 0.586 0.430 0.579
Avg 0.045 0.161 0.047 0.163 0.053 0.167 0.048 0.163 0.054 0.168 0.069 0.202 0.070 0.203 0.081 0.221 0.281 0.441 0.231 0.381

ETTm2

96 0.062 0.180 0.064 0.181 0.066 0.189 0.063 0.182 0.063 0.183 0.067 0.198 0.063 0.189 0.065 0.189 0.088 0.225 0.075 0.208
192 0.090 0.222 0.089 0.220 0.094 0.230 0.090 0.223 0.092 0.227 0.102 0.245 0.110 0.252 0.118 0.256 0.132 0.283 0.129 0.275
336 0.114 0.255 0.116 0.257 0.120 0.263 0.117 0.259 0.119 0.261 0.130 0.279 0.147 0.301 0.154 0.305 0.180 0.336 0.154 0.302
720 0.169 0.313 0.171 0.314 0.175 0.320 0.170 0.318 0.175 0.320 0.178 0.325 0.219 0.368 0.182 0.335 0.300 0.435 0.160 0.321
Avg 0.109 0.243 0.110 0.243 0.114 0.250 0.110 0.246 0.112 0.248 0.119 0.262 0.135 0.279 0.130 0.271 0.150 0.295 0.130 0.277

Table 3: Full univariate long sequence time-series forecasting results on ETT full benchmark. Red: the best, Blue:
the second best.
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MSE and MAE values across most datasets, partic-
ularly excelling on ETTh1, ETTh2, and Electricity.
Compared to other models such as TIME-LLM,
TimeMixer, and PatchTST, LLM-Mixer performs
favorably, showing that its design effectively cap-
tures both short- and long-term dependencies. No-
tably, LLM-Mixer also exhibits robustness on chal-
lenging datasets such as Traffic, where it outper-
forms several baseline models. These results high-
light the efficacy of the LLM-Mixer in handling
complex temporal patterns over extended horizons.
Short-term forecasting results: In Table 2,
we present the short-term multivariate forecast-
ing results, across four forecasting horizons: 12,
24, 48, and 96 time steps. Our proposed model
consistently achieves low MSE and MAE values
across the PEMS datasets, indicating a strong
short-term predictive performance. Specifically,
LLM-Mixer demonstrates competitive accuracy on
PEMS03, PEMS04, and PEMS07, outperforming
several baseline models, including TIME-LLM,
TimeMixer, and PatchTST. Additionally, the LLM-
Mixer shows robustness on PEMS08, where it de-
livers superior results compared to iTransformer
and DLinear. These results emphasize the effec-
tiveness of the LLM-Mixer in capturing essential
temporal dynamics for short-horizon forecasting
tasks.
Univariate forecasting results: Table 3 presents
the univariate long forecasting results on the ETT
benchmark and averaged over horizons of 96, 192,
384, and 720-time steps. LLM-Mixer achieves the
lowest MSE and MAE values across all datasets,
consistently outperforming other methods like Lin-
ear, NLinear, and FEDformer. LLM-Mixer demon-
strates superior accuracy, particularly on most of
the datasets. These results confirm the effectiveness
of the LLM-Mixer in capturing complex temporal
dependencies, solidifying its capability for univari-
ate long-term forecasting.

3.1 Ablation Study
Effect of Downsampling on Learning Dynam-
icse: To evaluate the impact of different down-
sampling levels on the learning dynamics of LLM-
Mixer, we conducted an ablation study using the
Neural Tangent Kernel (NTK) (Jacot et al., 2018).
Specifically, we aimed to understand how the num-
ber of downsampling levels affects the model’s
ability to capture multiscale information. First,
we used DeepEcho (Patki et al., 2016) to generate
synthetic multivariate time series datasets for this

study. We trained 10 versions of LLM-Mixer, each
with a different number of downsampling levels
τ ∈ {1, 2, . . . , 10}. For each model, we calculated
the NTK on 300 sample pairs from both the train-
ing and test sets. The NTK, denoted as K(x,x′),
is computed as the inner product of the gradients
of the model outputs with respect to its parameters:

K(x,x′) = ∇θθt(x;θ)
⊤∇θθt(x

′;θ),

where ∇θθt(x;θ) is the gradient of the model out-
put with respect to its parameters at iteration t.

<span style="color: red;">Data Leakage Pre-
vention Protocol: To ensure fair comparison and
avoid data leakage, we construct prompts using
only metadata and statistics computed exclusively
from the training set. Specifically, we include: (1)
dataset description (e.g., "electricity consumption
data"), (2) feature names and units, (3) basic statis-
tics (mean, standard deviation, data frequency)
computed only from training samples. No infor-
mation from validation or test sets is incorporated
into the prompt construction process. We validate
this approach through ablation studies comparing
models with and without statistical information in
prompts.</span>

To measure how the NTK structure changes with
different 10 levels, we used the Frobenius norm to
calculate the distance between the NTK of each
model (Kτ ) and a reference NTK (K10), which
corresponds to the model with the maximum down-
sampling levels. The NTK distance is defined as:

dNTK(τ) = ∥K10 −Kτ∥F ,

where ∥ · ∥F denotes the Frobenius norm. Smaller
NTK distances indicate that the model’s learning
dynamics are closer to the reference model.

Our results, shown in Figure 2, reveal that as the
number of downsampling levels τ decreases, the
NTK distance increases. The largest distance is ob-
served when τ = 1, indicating that using only one
downsampling level significantly alters the model’s
learning dynamics.However, more downsampling
levels are not always better. While increasing τ
enhances the model’s ability to capture multiscale
patterns, excessive downsampling may smooth out
critical fine-grained details, which are essential for
tasks with significant short-term variations. In Fig-
ure 3, we visualize the NTK of the reference model
across different downsampling levels τ and the nor-
malized absolute differences.
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Figure 2: (Left) Frobenius norm of NTK distance. (Right) Pooling technique for Multi-scale Mixing

(a) τ = 9

(b) τ = 7

(c) τ = 5

Figure 3: Visualization of (a) τ = 9, (b) τ = 7, and (c) τ = 5. Each subfigure displays the reference NTK at
τ = 10, the NTK at the respective τ level, and their absolute difference.

Multi-scale Mixing by Pooling: We conducted
an ablation study to explore the effects of various
Multi-scale Mixing techniques. The techniques ex-

amined were Min, Max, Avg, and L2, each apply-
ing a unique method for aggregating downsampling
information across scales. Figure 2 (right) presents
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the MSE for each downsampling method across
different datasets. Notably, average pooling con-
sistently yielded a lower MSE, suggesting that this
method is better suited for capturing multi-scale
dependencies in the data.

4 Conclusion

This work introduces the LLM-Mixer, a novel
framework that combines multiscale time-series de-
composition with pre-trained LLMs for improved
forecasting. By leveraging multiple temporal
resolutions, the LLM-Mixer effectively captures
both short-and long-term patterns, enhancing the
model’s predictive accuracy. Our experiments
demonstrate that the LLM-Mixer achieves com-
petitive performance across various datasets, out-
performing recent state-of-the-art methods.

5 Limitations and Future Directions

Although LLM-Mixer improves forecasting accu-
racy, several limitations warrant discussion.

Computational Requirements: The use of
pre-trained language models introduces significant
computational overhead, which may limit deploy-
ment in real-time or resource-constrained environ-
ments. Prompt Engineering: Model performance
depends on prompt quality and domain expertise
for optimal prompt design, which may limit acces-
sibility for non-experts.

Out-of-Distribution Robustness: When train-
ing and test data distributions differ significantly,
the fixed prompt approach may not adapt effec-
tively to distributional shifts.

Limited Classical Baseline Analysis: Our eval-
uation focuses primarily on deep learning methods
and would benefit from comprehensive compari-
son with statistical approaches like ARIMA and
exponential smoothing.

Data Leakage Potential: While we imple-
ment protocols to prevent information leakage, the
prompt-based approach requires careful validation
to ensure fair comparison.

Domain Generalization: Testing on more di-
verse domains (finance, healthcare, climate) would
strengthen claims about broad applicability. Future
work should address these limitations through adap-
tive prompting strategies, efficiency optimizations,
and expanded empirical validation.
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Abstract

Processing large tables provided in-context
to LLMs is challenging due to token limits
and information overload. While Retrieval-
Augmented Generation can select relevant sub-
sets externally, this work explores Key-Value
(KV) cache compression as an alternative, ap-
plied directly to the linearized table during in-
ference. We show that the LLM’s internal at-
tention scores over the table context guides the
retention of essential KV pairs, effectively com-
pressing the processing context while preserv-
ing crucial relational information needed for
complex queries. Experiments on Spider, Wik-
itableQA, and QTSumm datasets validate the
compression approach for in-context table pro-
cessing, offering a promising path for improved
table representation learning in LLMs.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across language tasks. A
promising frontier is enabling LLMs to reason over
structured data, such as tables, alongside natural
language. This ability is key for applications such
as table question answering (TableQA) (Chen et al.,
2024) and fact-checking using relational data (Aly
et al., 2021). While generating SQL queries from
text (Text2SQL) is a popular approach (Yu et al.,
2019), directly processing tabular data within the
LLM’s context offers a unified framework, leverag-
ing the model’s abilities to handle nuances beyond
SQL’s scope (Deng et al., 2024).

However, directly feeding large tables into
LLMs faces significant issues. The primary chal-
lenge is context length: even moderately sized ta-
bles (e.g., thousands of rows and tens of columns)
linearized into text easily exceed the token limits
of popular models (e.g., >120,000 tokens) (Chen
et al., 2024). Consequently, full-table inputs are of-
ten impractical, necessitating truncation or retrieval
mechanisms (Ji et al., 2024; Badaro et al., 2023).

Figure 1: High-level overview of attention-guided KV
compression for efficient tabular reasoning with LLMs.
The model compresses the KV representation of a large
table by selecting only the most attended tokens, en-
abling inference over a compressed table.

Even when models accommodate large contexts,
their reasoning accuracy often degrades substan-
tially (Liu et al., 2024). This phenomenon is exacer-
bated by tables, which inherently mix relevant cells
with irrelevant information, diluting the model’s
attention (Sui et al., 2023; Satriani et al., 2025).
Capturing relational patterns that span disparate
rows or columns is particularly difficult, hindering
accurate aggregation or multi-step reasoning.

Existing solutions often rely on Retrieval-
Augmented Generation (RAG) (Chen et al., 2024;
Lin et al., 2023). While RAG effectively reduces
the input length by pre-selecting relevant table
chunks (rows, columns, or cells), it introduces its
own complexities. First, it requires separate re-
trieval modules and deciding how to optimally par-
tition and retrieve table segments (e.g., by row, col-
umn, or semantic blocks) (Bodensohn and Binnig,
2024). Second, relying on embedding similarity
for retrieval might fail to capture the fine-grained
relational dependencies, shifting the bottleneck to
the retriever’s effectiveness.

In this paper, we explore an alternative approach:
leveraging Key-Value (KV) cache compression tech-
niques, originally developed for general text infer-
ence (Qin et al., 2023; Corallo and Papotti, 2024),
to handle large tabular data directly within the
LLM’s inference process. Our core hypothesis is
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that the LLM’s own attention mechanism, as it pro-
cesses the linearized table, inherently identifies the
most salient information. We exploit these atten-
tion scores to dynamically prune the KV cache,
retaining only the key-value pairs corresponding to
the most attended-to tokens. This effectively com-
presses the table’s representation, making the in-
formation from the original tables available during
inference, mitigating information overload while
avoiding the complexities of explicit retrieval.

Our experiments across datasets, including Spi-
der (Yu et al., 2019), WikitableQA (Pasupat and
Liang, 2015), and QTSumm (Zhao et al., 2023),
demonstrate the viability of this approach.

Related Work. RAG methods retrieve relevant
subsets of tabular data to reduce input complex-
ity. TableRAG (Chen et al., 2024) employs schema
and cell retrieval techniques, while TAP4LLM (Sui
et al., 2023) uses sampling strategies to focus the
model’s attention on relevant subsets of data. Spe-
cialized encoding techniques tailored for structured
inputs have also gained attention. SpreadsheetLLM
(Tian et al., 2024) exploits structural redundancies
within tabular data, compressing input lengths with-
out losing semantic fidelity. However, retrieval-
based methods often fall short in capturing the com-
prehensive relational contexts that are required to
handle queries involving multiple tuples. Although
KV cache compression methods (Qin et al., 2023;
Corallo and Papotti, 2024) have demonstrated sig-
nificant context compression by retaining subsets
of relevant tokens, these techniques have yet to
be adapted for structured data. This work, there-
fore, represents the first exploration of KV cache
compression tailored to tabular inputs.

2 Background

Given a sequence of n tokens x ∈ Rn, each trans-
former layer produces hidden representations via a
multi-head self-attention mechanism:

Attention(Q,K,V) = softmax
(QK⊤
√
dk

)
V,

where Q = WQh,K = WKh,V = WV h,
with h representing the hidden states (token em-
beddings) for the input sequence. The dimension
dk is d

H where d is the hidden size and H is the
number of attention heads. Most LLMs organize
their input as a context followed by a prompt. Let x
denote a sequence of tokens and the input sequence:
x =

[
x(cont), x(prompt)

]
∈ Rn(cont)+n(prompt)

,

where x(cont) serves as the knowledge (i.e., the ta-
ble) the model has access to when generating the
final response. During inference, an LLM oper-
ates in two phases. In the Prefill Stage, the model
processes the entire input sequence x and caches
the KV matrices for each layer K ∈ Rn×d,V ∈
Rn×d. In the Generation Stage, for each new
token yj , the model computes autoregressively
qnew,knew,vnew ∈ R1×d, and updates the KV
cache. With the cached KV matrices, self-attention
complexity reduces from O(n2d) to O(nd). How-
ever, storing these matrices for every layer is mem-
ory intensive. To mitigate the memory load from
very long contexts, one approach is KV cache com-
pression. Instead of retaining K,V for all n tokens,
one compresses them into smaller matrices K̃ ∈
Rk×d and Ṽ ∈ Rk×d with k ≪ n, that pre-
serve the information needed for generating the re-
sponse, i.e., min

K̃, Ṽ

[
dist

(
y |K,V, y | K̃, Ṽ

)]
,

where y is the model’s output.
To introduce compression, we detail a query-

aware approach that compresses the KV cache by
retaining only the most relevant KV vectors for
the query given at inference time (Corallo and Pa-
potti, 2024). Let m be the chunk length, and let
{c1, c2, . . . } be the segments obtained by slicing
the input table x(cont). At iteration i, the method
takes as input

[
K̃i−1, Ṽi−1︸ ︷︷ ︸

previous compressed cache

, ci︸︷︷︸
current chunk

, q︸︷︷︸
question

]
,

where K̃i−1, Ṽi−1 ∈ Rk×d denote the compressed
cache from the previous iteration, ci ∈ Rm×d is
the chunk of context for the current iteration, and
q ∈ Rq×d is the question to be answered.

During the forward pass, the multi-head atten-
tion scores are computed. The cross-attention sub-
matrix W(q,c) ∈ Rq×(k+m), captures how each
question token attends to both the previous cache
and the current chunk. The method then selects
the top k token positions (according to the highest
attention scores in W(q,c)) to form K̃i, Ṽi. Here,
k is a user-defined global budget that stays constant
across iterations.

After processing all chunks, the final K̃, Ṽ ∈
Rk×d provide a global representation of the entire
context, at a reduced length. Agnostic methods
use similar principles but in a single offline com-
putation of the cache, thus without making use of
the query. For example, Ada Expected Attention
scores are computed by modeling the distribution
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of queries and estimating their interaction with key
vectors at future positions (Jegou et al., 2024), in
conjunction with head-specific compression (Feng
et al., 2025).

3 KV Compression for Tables

Handling structured data in LLMs remains a sig-
nificant challenge due to the quadratic complexity
of self-attention and limited context windows. An-
other challenge is capturing interconnections be-
tween tuples. For example, consider a table contain-
ing sales data. Answering a query such as SELECT

region, SUM(sales) FROM table GROUP BY region re-
quires capturing information across multiple tuples.
Retrieval methods may fall short by only selecting
isolated tuples or columns, missing the holistic rela-
tional context necessary for accurate aggregations.

KV cache compression, initially introduced for
general LLM inference, presents a promising op-
portunity for tabular data. The key insight of KV
compression is straightforward: after linearizing a
structured table into a textual representation, stan-
dard mechanisms within transformers naturally en-
code relevance and information importance within
attention scores. When selecting KV vectors from
the cache, these vectors inherently contain latent
information representing broader relational context,
including information from vectors that have been
evicted. Thus, rather than employing separate re-
trieval systems or encoding mechanisms tailored
specifically for tables, we hypothesize that LLMs
themselves inherently identify critical elements of
linearized tables directly through attention patterns.

We explore two types of compression for lin-
earized tabular data. (1) Query-aware compression
dynamically compresses the cache during inference
by retaining KV vectors with the highest attention
scores relative to a specific question. (2) Query-
agnostic compression pre-computes a representa-
tion of the cache independently of a specific query,
capturing general information from the table.

4 Experimental Setting

Datasets. We consider three datasets. In all cases,
we linearize the input table as a string with a list of
lists: the first element is the table header and each
subsequent sub-list is a tuple in the table. This ap-
proach outperforms or is comparable to alternative
serializations. Spider (Yu et al., 2019) is primarily
used for Text2SQL and its dev split contains 1,034
examples, each using one or more tables. We gener-

ate our ground truth by executing the SQL queries
on the corresponding tables. In cases involving
multiple tables, we concatenate their linearized
representations sequentially, prepending the name
of each table before its content. WikitableQA
(Pasupat and Liang, 2015) and QTSumm (Zhao
et al., 2023) focus on question answering and query-
focused summarization, respectively, with answers
in natural language. We use their evaluation splits.
Both datasets operate on a single table at a time.

Metrics. We use different evaluation metrics de-
pending on the task. For Spider, we assess the
generated output tables with four metrics from the
literature (Papicchio et al., 2023): Cell Precision
and Recall, Tuple Constraint, and Execution Ac-
curacy. For the WikitableQA dataset, we evaluate
outputs with Accuracy (Pasupat and Liang, 2015).
For QTSumm, we rely on ROUGE-L (Lin, 2004)

LLMs. We use LLaMA-3.1-8B-Instruct (Tou-
vron et al., 2023) and Qwen-2.5-7B (Yang et al.,
2024). Both models are used in a few-shot setting,
where we prepend task-specific instructions, defin-
ing expected input and output formats along with
two examples. Additionally, we enforce a fixed
maximum number of output tokens (the maximum
number of tokens in the ground truth), to ensure fair
comparisons and prevent overly long generations.

Methods. For compression, we report results for
a query-aware method, Finch (Corallo and Papotti,
2024), a query-agnostic one, Ada Expected At-
tention, and a RAG approach similar to those in
(Lin et al., 2023; Sui et al., 2023). We chunk the
tables into tuples and iteratively select them based
on their relevance to the question, until the number
of tokens aligns with the context length used in
the compression methods - we use BGE-BASE-1.5-
EN (Xiao et al., 2023) as embedding model. We
also report results for a baseline for the full-context
setting, i.e., input table without compression.1

5 Results

In Tables 1a and 1b, we report results for all meth-
ods on WikiTableQA and QTSumm, respectively.
Based on the tables’ average length in each dataset,
we select different target context lengths, obtain-
ing compression rates between 1.7x and 51.39x
(average context length in Spider is 13158 tokens).

1We do not report results for the execution with the base
model only (no tuples in the context) because of low perfor-
mance, e.g., 1.80 accuracy for WikiTableQA.
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Model Context Length Finch Ada EA RAG

Llama-3.1-8B-Instruct

1024 (1.7x) 35.11 34.16 29.09
512 (3.35x) 34.92 32.16 28.00
256 (6.71x) 33.59 28.66 24.05
128 (13.43x) 30.02 21.94 9.82

Full context 35.08

Qwen2.5-7B-Instruct

1024 (1.91x) 29.72 29.17 29.27
512 (3.83x) 28.80 28.22 28.59
256 (7.66x) 27.07 23.30 23.04
128 (15.31x) 23.49 15.24 9.96

Full context 30.04

(a) WikiTableQA

Model Context Length Finch Ada EA RAG

Llama-3.1-8B-Instruct

512 (2.5x) 30.61 30.59 26.67
256 (5x) 29.78 29.74 24.32
128 (10x) 26 25.85 19.23
64 (20x) 21.86 20.75 12.14

Full context 30.56

Qwen2.5-7B-Instruct

512 (2.85x) 29.82 30.01 26.58
256 (5.70x) 28.62 29.39 24.32
128 (11.40x) 25.75 24.71 19.69
64 (22.78x) 23.54 19.57 16.07

Full context 29.96

(b) QTSumm

Table 1: Performance of Finch, Ada Expected Attention, and RAG on WikiTableQA (left) and QTSumm (right)
across various target context lengths; “Full context” at the bottom of each block shows the full table input result.
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Figure 2: Performance of Finch, Ada Expected Attention, and RAG on the Spider dataset for two LLMs.

Overall, KV compression methods outperform
the RAG-based approach in most scenarios, and in
several cases, achieve better results than the full-
context setup. Finch achieves strong results on
WikiTableQA: with LLaMA-3.1-8B-Instruct, it ob-
tains an Accuracy of 35.11 at a compression rate
of 1.7× (1024 tokens), which is significantly higher
than the other approaches, including full context.
With QTSumm, compression methods yield results
that are either better or very close to those of the
full-context case, with compression (e.g., 30.61 for
Finch with LLaMA-3.1-8B-Instruct and 30.01 for
Ada with Qwen-2.5-7B).

In the Spider dataset’s results in Figure 2a, query-
aware compression reports promising results for
Llama, outperforming the row retrieval-based strat-
egy in all cases. Moving to Spider on Qwen in
Figure 2b, RAG and Ada (agnostic) are more com-
petitive and even surpass the full-context scenario.

In this scenario, Finch reports strong performance
in terms of Precision, Recall, and Tuple Constraint,
but lower scores for Execution Accuracy.

In terms of execution-time, query-agnostic KV
cache compression delivers faster inference than
RAG, while query-aware compression similarly to
full-context decoding (Corallo et al., 2025).

6 Conclusion and Future Work

This work shows that KV cache compression can
outperform RAG and match full-context perfor-
mance, offering a promising technique for pro-
cessing tables directly within LLMs. Future re-
search includes developing table-specific compres-
sion strategies beyond adapting existing methods
and investigating the interplay between table/query
complexity and compression effectiveness. Finally,
we plan to examine hybrid approaches combining
KV compression with lightweight retrieval.
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Abstract

We present OrQA, a novel agentic frame-
work to generate large-scale tabular question-
answering (TQA) datasets based on real-world
open data. Such datasets are needed to over-
come the limitations of existing benchmark
datasets, which rely on synthetic questions
or limited web tables. OrQA employs LLM
agents to retrieve related open data tables, gen-
erate natural questions, and synthesize exe-
cutable SQL queries—involving joins, unions,
and other non-trivial operations. By leverag-
ing hundreds of GPU hours on four NVIDIA
A100, we applied OrQA to Canadian and
UK government open data to produce 1,000
question-tables–SQL triples, a representative
sample of which has been human-validated.
This open-source dataset is now publicly avail-
able to drive transparency, reproducibility, and
progress in table-based question answering.

1 Introduction

The Open Data initiative aims to ensure trans-
parency and foster informed civic engage-
ment—e.g., for accessing data related to public
policy outcomes or monitoring phenomena of in-
terest. Such initiatives have significantly increased
the availability of publicly accessible tabular and
structured datasets, often referred to as open data
lakes, many of which are accessible through web
portals that facilitate discovery and reuse. How-
ever, these open datasets are typically published
with highly heterogeneous schemas, making their
integration into structured relational databases chal-
lenging. As a result, identifying tables that can be
meaningfully joined or unioned remains a difficult
task, limiting the ability to extract comprehensive
insights across multiple datasets. Furthermore, to
fully democratize the access to open data a Tabular
Question Answering (TQA) approach is desirable,
allowing users to issue queries through natural lan-
guage interfaces, removing technical barriers for

1

2

3

4

Figure 1: OrQA workflow: 1) Crawl tables; 2) Join/Union
table-pairs discovery; 3) pairs scoring with the Scorer agent; 4)
Analyst and Reviewer agents generate SQL and NL questions.

the user, such as query languages and data schema
understanding.

TQA has emerged as a crucial task in natural
language processing, enabling models to answer
questions using tabular data (Zhu et al., 2024).
TQA tasks can be divided into two main cate-
gories: (i) the older one, fine-tuning specialized
models tailored specifically for this task (Herzig
et al., 2020; Yin et al., 2020; Liu et al., 2022; Zhou
et al., 2022); (ii) the newer one, utilizes LLMs
to generate code capable of manipulating tabular
data (Yin et al., 2023; Liu et al., 2024; Zhang et al.,
2024). While these new LLM-based approaches
have shown impressive performance in reasoning
over a single table—where all pertinent informa-
tion is self-contained—they often struggle in more
complex scenarios that require reasoning across
multiple tables, including operations such as joins
and unions, which are essential for handling real-
world data (Zhu et al., 2024). Moreover, although
LLMs have demonstrated robust capabilities across
various natural language tasks, their evaluation
has largely been confined to QA datasets derived
from small, web-based tables (Pasupat and Liang,
2015; Iyyer et al., 2017; Zhong et al., 2017; Nan

172



et al., 2022). This limitation arises from two key
challenges. First, real-world multi-table datasets
are not widely available, as many remain private
due to confidentiality concerns (Hulsebos et al.,
2023; Vogel et al., 2024). Second, dataset creation
has traditionally relied on crowdsourcing, which,
while effective, is slow, expensive, and difficult to
scale (Long et al., 2024).

LLMs have shown great potential to generate
synthetic datasets, providing a scalable alternative
to costly human annotation. They can create di-
verse training data that better reflects real-world
challenges, which is critical for model develop-
ment (Long et al., 2024). As a pivotal applica-
tion of LLMs, synthetic data generation holds sig-
nificant importance for the development of new
LLMs (Long et al., 2024). As of April 2025, over
519 tabular datasets on Hugging Face are labeled as
synthetic1 and have been employed for fine-tuning
or reinforcement learning applications (Guo et al.,
2025). Yet, ensuring both high accuracy and suffi-
cient variety in these datasets is challenging. Thus,
careful design and specific techniques are required
to guide the generation process toward the desired
outcomes.

Our Contributions
We present the Open Data retrieval and Question
Answering (OrQA)2 datasets generation workflow,
designed to create large-scale and completely new
datasets for end-to-end TQA evaluation using tab-
ular content from Open Data sources. We also
present a dataset generated with OrQA, which cov-
ers tables obtained from the Open Data portals of
Canada3 and UK4. The dataset includes questions
expressed in natural language, each of which is
associated with: (i) the table or set of tables con-
taining the required information (useful for evalu-
ating the retrieval phase of a TQA system); (ii) the
SQL query to obtain the answer from the table(s)
(useful for evaluating the generation phase of a
TQA system); (iii) a set of statistics for analysis
and inspections.

We built OrQA by designing an agentic work-
flow that exploits state-of-the-art data discovery
techniques to select high-quality joinable and
unionable tables, which are employed as seeds for

1https://huggingface.co/datasets?modality=
modality:tabular&other=synthetic

2https://anonymous.4open.science/r/orqa-B4BD
3https://open.canada.ca
4https://www.data.gov.uk/

generating synthetic pairs of natural language ques-
tions and SQL queries with LLMs agents—as de-
scribed in the following.

2 OrQA Overview

The OrQA workflow is designed to be easily ap-
plied to any Open Data portal and allows the user
to create a new dataset given a specific Open Data
endpoint. OrQA is composed of four main steps,
listed hereafter and explained afterward:

1. Data Crawling: to download both tables and
metadata from a given Open Data endpoint;

2. Candidate Table Pair Search: to yield candidate
pairs of related tables discovered through data
discovery tool;

3. Candidate Evaluation: to evaluate the candidate
table pairs with a multi-agent debate mechanism
to filter casual and unmeaningful cases;

4. Question Generation: the accepted pairs are
used as input to create the final dataset.

Data Crawling. During the first step, the user
specifies the Open Data endpoint of interest ex-
posing CKAN API 5, and from there, tables and
relative metadata are downloaded and stored for
the next steps.

Candidate Table Pair Search. Data discov-
ery algorithms from the BLEND framework (Es-
mailoghli et al., 2024) are applied to identify candi-
date pairs of related tables, which could be merged
with a join or union operation. BLEND is a
general-purpose framework for table discovery in
data lakes; after an indexing stage of the available
tables, it can efficiently retrieve results, based on
overlap metrics, related to a given query table. In
the OrQA workflow, each column of every table is
used as an input seed for BLEND, which returns K
candidate tables. This search could be limited up
to a user-specified budget. In initial experiments,
we observed that filtering less informative columns
was necessary to reduce noise Thus, for the datasets
generated for this paper, we filtered out columns
with less than 10 unique values and 30 rows, or
more than 80% of missing values.

Candidate Evaluation. An agentic step is per-
formed to assess for each candidate pair whether
the two tables are meaningfully related or not. A
team of AI agents assigns a numerical relatedness

5https://docs.ckan.org/en/latest
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score θ
over θ pairs
UK CAN

6 952 807
7 938 755
8 902 551
9 160 256

10 0 0

Table 1: Candidate join pairs evaluated with a score equal of
higher than the threshold, on a sample of 1000 pairs.

score (on a scale from 0 to 10, the highest being
the most related) to each pair, using a description
of each table, a small sample of rows, and other
available metadata obtained from Open Data por-
tals. Only pairs that achieve a score higher than
a predefined threshold θ are retained for the final
generation phase.

To assess this scoring system, user feedbacks
were collected over a sample of 100 random candi-
date pairs from the UK dataset. The results showed
an average difference of just 0.43 between human
and agent team scores, with a standard deviation of
1.45, p-value 0.0038. These findings suggest that
the agent-based evaluation scoring appears to be
comparable to the user’s when assessing how much
a couple of tables is related to limited information
and domain knowledge. In our experiments, we
set the minimum score θ to 8—as seen in Table
1—which significantly reduces the total number of
pairs that need to be processed in the final compu-
tational step.

Question Generation. An agentic workflow is
implemented to generate the final output: a team
of agents—composed of a natural language ques-
tion generator, a text-to-SQL coder, and relative
reviewers—is responsible for creating both an SQL
query and the corresponding natural language ques-
tion. For each pair of unionable or joinable ta-
bles validated in the previous steps, the team of
agents produces queries and questions for single
and multi-table cases. The coder agent receives in
input the tables’ metadata, a sample of their rows,
and the other specifications for the current task;
then it generates an SQL query, verifying its syntax
through a dedicated tool. Once the query is cre-
ated, the question generator agent outputs a natural
language question that accurately represents the
query’s intent. In both these previously described
stages, a reviewer evaluates the generated output:
until specific requirements are not satisfied, it asks
the relative generator agent to refine its output, pro-
viding suggestions for improvement. To prevent
excessively long computations when the generator

source tables # rows # columns
avg stdev avg stdev

UK 24404 22747 174497 52 628
CAN 31437 141714 1405456 17 168

Table 2: Statistics of the crawled tables.

difficulty type #queries

simple single-table 208
multi-table 104

moderate single-table 272
multi-table 97

challenging single-table 236
multi-table 83

Table 3: Generated queries per difficult level and type.

agent repeatedly fails, a maximum number of re-
views is set. In every natural language question, it
is ensured that useful references for retrieval tasks
on the Open Data portals are inserted—such as
remainders to significant keywords or to the or-
ganization that created the resource. We applied
OrQA with a maximum of 3 review cycles, a choice
that balances efficiency and accuracy, as additional
cycles yielded diminishing returns. Additionally,
given that many tables may contain a large number
of columns, we restrict the agent’s context to the
first to the first 20 columns—appending any neces-
sary columns as required. This assumes the first 20
columns contain enough information to generate
meaningful queries.

3 Generated Dataset

By employing OrQA, we generated a dataset con-
sisting of 1,000 natural language questions and
corresponding ground truth, derived from both UK
and Canada (CAN) open data portals—Table 2 re-
ports statistics collected from these portals.

To generate the dataset, we employed a GPU
node equipped with 4 NVIDIA A100 GPUs, each
of them with 40 GB of memory. We opted for
Qwen2.5 (Yang et al., 2025) family models as
LLMs for the evaluation and generation steps. In
particular, we used Qwen2.5-7b for the evaluation
team agents and Qwen2.5-32b and Qwen2.5-coder-
32b for the Natural Language and SQL generation
agents, respectively. With this setup, the creation of
the dataset from data crawling to the generation of
the final questions required almost 100 hours of to-
tal computation, with a large part of these dedicated
to crawling, indexing and candidate search.

Following (Li et al., 2024), we divided SQL
queries into three main categories, simple, moder-
ate and challenging, specifying to the coder agent
for each category what we expect, from simple fil-
tering clauses to window functions, grouping and
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measure group 2013 2016

canada child benefit
refundable tax credit

classified as
transfer payment

"" "16860"

employee benefit plans tax expenditure "n.a." "n.a."
logging tax credit tax expenditure "15" "25"

Table 4: Example rows from one Open Data table. The
columns "2013" and "2014" are not recognized by default
as numeric columns.

SELECT measure , \ " group \ " , SUM(
CASE WHEN r e g e x p _ m a t c h e s (

\ " 2013 \ " , ' ^ \ \ d+$ ' )
THEN CAST ( \ " 2013 \ " AS INTEGER)
ELSE 0 END

) AS t o t a l _ 2 0 1 3
FROM r _ d f GROUP BY measure , \ " group \ "

Listing 1: Example query with data wrangling operation. label

subqueries. Table 3 reports distributions of the
difficult levels for the generated collection. In addi-
tion to the question-query pairs, we provide several
metadata, which are valuable for future evaluations
of workflow efficiency. These include the number
of review, the time taken to generate both SQL and
natural language queries, and the number of tokens
exchanged by the underlying LLMs. We also re-
port the details of the final review and, in cases of
SQL generation failure, the error message from the
database engine to facilitate failure analysis.

Online Data Wrangling. One burdening chal-
lenge when working with Open Data is to ex-
tract meaningful information while facing data-
wrangling issues. In OrQA, the agent team
itself—in particular the pair of coder and code
reviewer—attempts to dynamically wrangle the
desired columns during query generation. As an
example, the table 4 contains the columns “2013”
and “2014”, whose values are initially recognized
as strings, due to the presence of missing values
(like "n.a.") and the empty string "" in the same
column. By interacting and analyzing the query
output, the agents are able to generate an SQL query
that solves this issue, as shown in listing 1.

4 Related Work

Text-to-SQL and Fact verification are well-known
topics in the literature, and several datasets have
been proposed and tested across different systems
and scenarios. Notable among these are Spider (Lei
et al., 2025) and BIRD (Li et al., 2024), two com-
prehensive Text-to-SQL benchmark datasets with a
wide range of difficult tasks based on real-world
data. However, they assume that the tables or
databases where needed information is stored are
already provided. As Retrieval Augmented Gen-

eration (RAG) systems gain relevance, there is
the need to address the retrieval phase with ded-
icated tabular benchmark datasets. While datasets
such as CRAG (Yang et al., 2024) and MTEB
(Muennighoff et al., 2023) focus on text embed-
ding, TARGET (Ji et al., 2024) represents a first
step toward benchmarking table retrieval. Its eval-
uates model performance using embedding-based
retrieval systems, assuming that tables are totally in-
dexed. However, in many real-world scenarios with
limited resources, making a complete pre-indexing
stage is unfeasible. Open Data are a significant ex-
ample of this case: their dynamic nature and scale
make it difficult to incorporate them into static
datasets, but their content could address several
types of use-cases. Final users, such as public ad-
ministrations or private citizens, typically need to
extract information from them without perform-
ing large computations. Although Open Data have
been widely used in previous years in the data dis-
covery literature, prior work has not focused on
downstream tasks, only on finding related tables.
In particular, LakeBench (Deng et al., 2024) is a
benchmark dataset for joinable and unionable ta-
ble discovery methods, which limits its scope to
identify subsets of related results given a query ta-
ble. Like OrQA, during benchmark preparation it
uses established data discovery tools to generate
candidate pairs of related tables, but in that case a
large human effort is used to evaluate them, while
in OrQA this is fully automated.

5 Conclusion and Future Work

We present OrQA, an agentic workflow to generate
new datasets for retrieval and question-answering
model evaluation based on Open Data tables. With
OrQA, we generated a dataset composed of 1,000
questions, which can be employed as realistic
benchmark for RAG systems targeting TQA on
Open Data.

We believe that our effort paves the way for fur-
ther research, since several open challenges have
not yet been addressed. For instance, semantic-
aware data discovery tools could provide more in-
teresting candidates for question generation. Addi-
tionally, the current workflow covers only questions
that involve one or two tables, while users’ needs
may require more complex patterns. Furthermore,
different datasets might correctly address the same
question and should be considered in the ground
truth.
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evaluation_prompt = f""" \
You are a helpful assistant in tabular data comprehension.
Your task is to evaluate pairs of candidate tables
for a SQL operation by providing a numerical score.
If given , reason on other assistants observations.
Limit your output to 50 words: your final answer should be
a single integer number , between {self._min_score} and {self._max_score}.
Respond with the form:
Answer: <your numerical score here >
Explanation: <your concise explanation >
---------------------------------------------------------------
The table '{r_rsc_name}' belongs to the package '{r_pkg_name}'.
This package is published by the organization '{r_org_name}',
that is '{r_org_desc}', under the jurisdiction '{r_jur}'.
The table description is: {r_pkg_notes}.
Keywords and tags about it are: {r_pkg_keywords}, {r_pkg_tags}.
Example rows with schema: {r_df_str}
---------------------------------------------------------------
The table '{s_rsc_name}' belongs to the package '{s_pkg_name}'.
This package is published by the organization '{s_org_name}',
that is '{s_org_desc}', under the jurisdiction '{s_jur}'.
The table description is: {s_pkg_notes}.
Keywords and tags about it are: {s_pkg_keywords}, {s_pkg_tags}.
Example rows: {s_df_str}
---------------------------------------------------------------
Define a relationship quality score for the two tables.
Focus on the meaningfulness of a potential operation between
the given tables.

"""

Listing 2: Candidate table pair Evaluator agent system and initial task prompts.

debate_prompt = f""" \
Using the evaluations from other agents as additional
information , provide your score to the current table pairs.
The original task is: {task}.
These are the evaluations from other agents:
One agent evaluation: {agent_evaluation}.
...
One agent evaluation: {agent_evaluation}.

"""

Listing 3: Candidate table pair Evaluator agent inter-debate prompts.
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query_generator_prompt = f""" \
You are a SQL coder assistant. Your task is to generate SQL
queries of different difficult levels.
A 'simple ' query involves just basic operations , like simple
WHERE clauses.
A 'moderate ' query could use also casting , string replacement ,
grouping functions and other forms of aggregations.
A 'challenging ' query may require window functions , subqueries
and other complex operations.
You are using DuckDB: if necessary , put column names inside
double -quotes , like "column_name ".
Do not cast FLOAT to REAL. If a VARCHAR attribute is similar
to a datetime , try to cast it to DATE or DATETIME.
When using regex operations , use proper options.
Use the given tool to validate your SQL query: your response
must be only a valid function call.
---------------------------------------------------------------
Given the following information:
Use 'R' to indicate the first table.
Its schema is:
{r_SQL_schema}
Example rows of R table:
{r_df_str}
---------------------------------------------------------------
Use 'S' to indicate the second table.
Its schema is:
{s_SQL_schema}
Example rows of S table:
{s_df_str}
---------------------------------------------------------------
Generate a {difficulty} SQL query based on the given tables.
Use only 'R' and 'S' to reference the tables.
The query must include a JOIN on the R column {r_col_name}
and on the S column {s_col_name}.
The new query must be different from previous queries:
{prev_SQL}.

"""

Listing 4: SQL Generator agent system and task prompts to generate multi-table SQL queries involving a JOIN operation. Prompts
for single and UNION queries are similar.
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question_generator_prompt = f""" \
Your task is to generate natural language questions , related
to tables from Open Data.
Pretend to be a user that is using Open Data search portals
and needs to get answers.
The questions you create must be fluent and human -like: do not
use SQL-like words , such as null or select.
Keep focus on join and union operations between tables , if any.
If available and meaningful , use the given keywords and tags.
Because a common Open Data user (as you , in this case) does
not know anything in advance about the final result , you can't
use terms like records , data , datasets , tables , csv , packages
and resources.
If values are used inside the SQL query , try to
understand what they means based on the given context: for
example , 'ref' may mean 'refused ' in a column about orders
status.
You must not use explicit table or column names into the
question.
Your response must be only the question , nothing else.
---------------------------------------------------------------
Consider the following information:
The table '{r_rsc_name}' belongs to the package '{r_pkg_name}'.
This package is published by the organization
'{r_org_name}', titled as '{r_org_title}' that is
that is about '{r_org_desc}', under the jurisdiction '{r_jur}'.
The table description is: {r_pkg_notes}.
Keywords and tags about it are: {r_pkg_keywords}, {r_pkg_tags}.
Example rows with schema: {r_df_str}
---------------------------------------------------------------
The table '{s_rsc_name}' belongs to the package '{s_pkg_name}'.
This package is published by the organization
'{s_org_name}', titled as '{s_org_title}' that is
about '{s_org_desc}', under the jurisdiction '{s_jur}'.
The table description is: {s_pkg_notes}.
Keywords and tags about it are: {s_pkg_keywords}, {s_pkg_tags}.
Example rows: {s_df_str}
---------------------------------------------------------------
Generate a natural language question which accurately
represents the SQL query {sql} on the given tables
and its aim.
Pay attention to all the clauses used into the query.
You must introduce into the question remainders to keywords ,
organization and other metadata.

"""

Listing 5: Natural Language question Generator agent system and task prompts to generate questions based on a multi-table
operation.
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query_reviewer_prompt = f""" \
You are a query reviewer.
You focus on the correctness of proposed SQL queries
or Natural Language Questions.
For the SQL, focus on the query syntax.
Consider that is used DuckDB syntax.
---------------------------------------------------------------
The problem statement is:
{message.SQL_task}
The proposed SQL query is:
{SQL_query}
The execution of this query is:
{execution_result}
Previous feedback:
{previous_feedback}
Revise the query if the execution was not successful.
In the query has given an error , check if:
- Previous feedback was not addressed.
- The query does not involve required columns (if any).
- The query is identical to any previously generated query.
Respond with the following format:
```json
{

"correctness ": <Your comments >,
"approval ": <APPROVE or REVISE >,
"suggested_changes ": <Your comments >

}
```

"""

Listing 6: SQL Reviewer system and task prompts.

quuestion_reviewer_prompt = f""" \
You are a query reviewer.
You focus on the correctness of proposed SQL queries
or Natural Language Questions.
For the SQL, focus on the query syntax.
Consider that is used DuckDB syntax.
---------------------------------------------------------------
The problem statement is:
{nl_task}
The proposed Natural Language Question is:
{nl_question}
Previous feedback:
{previous_feedback}
Don't approve the question if:
- Previous feedback was not addressed.
- The question is too generic (like 'What is the average

value?') or too simple (like 'Where is Canada?').
- The question seems to be uncorrelated to the current task.
- Columns and tables names are explicitly present into the

question.
- Columns required by the user are not correctly used (if any).
- The question use too specific terms , like 'tables ',

'datasets ', 'packages ', 'data ', 'records '.
Respond with the following format:
```json
{

"correctness ": <Your comments >,
"approval ": <APPROVE or REVISE >,
"suggested_changes ": <Your comments >

}
```

"""

Listing 7: Natural Language question Reviewer system and task prompts.
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Abstract

With in-context learning foundation models
like TabPFN excelling on small supervised tab-
ular learning tasks, it has been argued that
“boosted trees are not the best default choice
when working with data in tables”.1 However,
such foundation models are inherently black-
box models that do not provide interpretable
predictions. We introduce a novel learning task
to train ICL models to act as a nearest neighbor
algorithm, which enables intelligible inference
and does not decrease performance empirically.

1 Introduction

In-context learning (ICL) yields state-of-the-art
models for small supervised tabular learning tasks,
exemplified by TabPFN (Hollmann et al., 2023,
2025). TabPFN is trained to solve supervised tab-
ular learning tasks via in-context learning directly,
meaning that at the inference time, the model is
effectively fitted to the task without any weight up-
dates. While such a model shows impressive perfor-
mance, its inference mechanism is not interpretable,
and users have to rely on model-agnostic explain-
ability methods (Rundel et al., 2024). This is in
contrast to recent requirements for more transpar-
ent, interpretable, and intelligible models (Rudin,
2019). 2

K-Nearest neighbor (KNN) algorithms, a com-
plementary research direction, recently reappeared
in tabular state-of-the-art methods, such as Modern-
NCA (Ye et al., 2025) and TabR (Gorishniy et al.,
2024). KNN-based methods make predictions
based on the similarity between a query and train-
ing samples, thus offering transparent, example-
driven inference. However, the performance of
KNN is highly dependent on a similarity function

1https://bsky.app/profile/sammuller.bsky.
social/post/3lfaql7hyhk2j

2See Vaughan and Wallach (2021) for a discussion of the
term "intelligibility".

(a) L2 based similarity (b) SoftKNN-ICL similarity

Figure 1: Our in-context learning model makes predic-
tions by weighting labels of similar data points (alpha
value encodes weight). In contrast to L2-based nearest
neighbor methods (left), our method learns the similar-
ity function via in-context learning (right).

and the choice of hyperparameter k, which are
both dataset-specific, rendering this approach in-
appropriate for foundation models (FMs) working
across many different datasets. The generalization
to the soft-nearest neighbor method (Goldberger
et al., 2004) bases its predictions on the weighted
sum of the labels of all training samples in the
dataset, yielding accurate predictions while still
being human-interpretable. The ModernNCA ex-
tension (Ye et al., 2025) demonstrates that learning
the similarity function via a neural network can
further boost the performance.

In our work, we aim to obtain intelligible, state-
of-the-art, off-the-shelf models and study "How
can we leverage nearest neighbor methods to make
ICL more intelligible?"

More precisely, we propose a novel training task
for tabular ICL models, inspired by continuous
nearest neighbor methods (Ye et al., 2025) and
RAG (Gorishniy et al., 2024) (see Figure 1). Our
contributions are the following:

1. We introduce a novel training task for ICL,
yielding an intelligible extension for any tabu-
lar ICL model. We dub our method SoftKNN-
ICL.
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2. We qualitatively and quantitatively evaluate
our method on standard tasks and demonstrate
it achieves competitive performance while be-
ing intelligible.

The following section discusses related literature
on ICL for tabular data, nearest neighbor methods
in deep learning and intelligible deep learning meth-
ods. After introducing and evaluating our method
in Section 3 and Section 4, we further discuss how
our method relates to kernel learning in Section 5
and conclude with future work and limitations in
Section 6.

2 Related Work

In-context learning for tabular data. One of
the successful paradigms for training tabular deep
learning (DL) is ICL, where a model is trained on
many datasets to make predictions for a test (query)
set conditioned on the train (support) set. Interest-
ingly, the ICL regime in the model competes with
usual, in-weight learning, and has a transient nature
(Singh et al., 2023). Early works on ICL for tabu-
lar data were developed for specific tasks (Garnelo
et al., 2018a,b). Later work demonstrated that train-
ing these models using purely synthetic data can
achieve strong performance (Müller et al., 2022;
Hollmann et al., 2023; den Breejen et al., 2024), but
general pre-training on natural data is also possi-
ble (Ma et al., 2024). ICL models perform well and
primarily differ in the data used for pre-training,
e.g., real or synthetic data, and architectural de-
sign, e.g., cell-based attention (den Breejen and
Yun, 2025), yielding continuous performance im-
provements over time (den Breejen et al., 2024;
Hollmann et al., 2025; Qu et al., 2025a). We lever-
age this model class and propose a new training
task.

Few works argue that ICL models such as
TabPFN learn an efficient kernel (Nagler, 2023;
McCarter, 2024), and we will discuss this connec-
tion in more detail in Section 5. In concurrent work
to make TabPFN invariant to class order, Arbel
et al. (2025) also noted this connection. Their re-
sulting model leverages a technique similar to ours
but further processes a combination of labels with
a non-linear module, because the main emphasis of
their work is performance rather than intelligibility.

Finally, a complementary research direction
leverages the ICL capability of LLMs for tabular
data, instead of training FMs on tabular data (Gard-
ner et al., 2024). While they perform well for small

datasets, they are computationally expensive, not
robust to table manipulations, and inherently strug-
gle with large tables (Fang et al., 2024).
Development of nearest neighbor algorithms
(NNA) in deep learning. NNAs are used exten-
sively in deep learning models and mostly build on
Nearest Component Analysis (NCA, Goldberger
et al., 2004), also known as soft-NN, to allow for
back-propagation. In NCA, the label for an unseen
test sample is predicted by taking a weighted aver-
age of all available training samples. The follow-
up work Nonlinear NCA (NNCA) (Salakhutdinov
and Hinton, 2007) extends NCA to operate on fea-
tures extracted with a neural network. The work
of Vinyals et al. (2016) uses an NNA for few-shot
learning and a bi-LSTM to capture global context.
Plötz and Roth (2018) generalized this to a differen-
tiable KNN selection rule, outputting a set of neigh-
bors, rather than their average. Wang and Sabuncu
(2023) study explainability of soft-NN methods
for image classification from the perspective of the
kernel methods. Recently, Li et al. (2024) proved
that a 1-NN can be learned in-context with a one-
layer transformer. Our model continues this line
of research and is the first to explicitly combine
NNAs with ICL, by training an ICL embedder that
captures global context and produces features for a
soft-NN.
Applications of NNAs in deep learning. The
use of NNAs can be broadly categorized into two
groups: those where NNAs serve as the core model
and those where they enhance the performance of
a downstream model. Retrieval-Augmented Gener-
ation (RAG) is a prominent method that improves
the performance of an LLM by enriching the con-
text with relevant information from an external
knowledge base (Lewis et al., 2020). NNAs are
also employed for scaling prompt size in LLMs
(Xu et al., 2023; Zhao et al., 2024), and context
localization in tabular ICL models, helping to relax
the support set size limitations (Koshil et al., 2024;
Thomas et al., 2024; Nejjar et al., 2024; Xu et al.,
2025). Examples of the models with NNA as a core
algorithm include the extended version of NNCA,
ModernNCA (Ye et al., 2025), and TabR (Gorish-
niy et al., 2024), which is inspired by RAG. Our
method SoftKNN-ICL also falls within the cate-
gory of models using NNA at its core.
Intelligibility in deep learning. A model’s de-
cisions can be made intelligible either by design-
ing the model to be explainable from the outset
(intrinsic interpretability) or by applying post hoc
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explanation methods after training, which often
entail a computational overhead or require a sepa-
rate dataset. Basic DL models like MLP, ResNet,
or Transformer are not intrinsically interpretable
and require post-hoc explanation methods (Mol-
nar, 2025) like SHAP (Lundberg and Lee, 2017) or
LIME (Ribeiro et al., 2016). However, by combin-
ing neural networks with explainable methods like
GAM (Chang et al., 2022), it is possible to leverage
the complex features of DL models while maintain-
ing intrinsic explainability. A more exotic approach
is to train a deep learning meta-model that predicts
the optimal parameters of an explainable model
(Müller et al., 2023; Mueller et al., 2024), which,
however, are constrained in size. Our model also
combines an ICL transformer with an NNA model,
which is considered intelligible if the features of
the sample are/or can be made interpretable, e.g.,
by dimensionality reduction (Molnar, 2025).

3 Methodology

We are interested in supervised tabular classifi-
cation, which is the task to predict test labels
yq ∈ {c ∈ N : c ≤ C}m given p features of m test
samples Xq ∈ Rm×p and a training set (Xs,ys),
where Xs ∈ Rn×p and ys ∈ {c ∈ N : c ≤ C}n.

Here, we focus on ICL approaches, which means
a pre-trained model fθ is "fitted" on the data set
during the inference without weight updates, in con-
trast to the classical in-weight learning approach.
To disambiguate the terminology, when talking
about inference, we refer to the test set as query
and the training set as support.

We introduce a novel learning task that imple-
ments a nearest neighbor method. KNN is the most
popular nearest neighbor method and operates by
assigning each query point a label yj based on the
majority vote of its k closest neighbors in the sup-
port set. This can be written down using an indica-
tor function 1N (x) := {1 if x ∈ N , else 0}, and
defining a neighborhood Nj := N (Xq[j],Xs, k)
as a function returning a set of nearest neighbors
according to a similarity function, most commonly
based on the Euclidean distance. Then, the pre-
dicted label is:

ŷj = argmax
c∈C

n∑

i=1

ohc(ys)[i]1Nj (X
s[i])

k

with ohc(ys) = {0, 1}n×C being the one-hot-
encoded labels of the support set.

ys

[n]
Xs

[n, p]
Xq

[m, p]

ICL transformer
(12 layers)

Es

[n, d]
Eq

[m, d]

a(·, ·) (Eq. 3)

As

[m,n]

Matrix
Multiplication (Eq. 2)

prediction
[m, c]

on
e-

ho
t
[n
,c
]

Figure 2: The architecture of SoftKNN-ICL. At the core
of our approach is an ICL transformer that produces
embeddings used to compute similarities between the
query and support samples. The final prediction is ob-
tained by taking a similarity-weighted average of the
support labels.

However, we cannot directly leverage this as
a learning task to fit a model, since the neigh-
borhood function N (·, ·, ·) is not differentiable.
Instead, we propose to train the model using
a continuous generalization of the KNN model
(Goldberger et al., 2004) by allowing all data
points to contribute to the prediction according to
their similarity aj(X

s[i]) = a(Xq[j],Xs[i]) :=
sim(Xq[j],Xs[i]):

ŷj = argmax
c∈C

∑n
i=1 ohc(y

s)[i]aj(X
s[i])∑n

i=1 aj(X
s[i])

. (1)

Now, the prediction is the weighted average of
all labels in the support set, similar to Nadaraya-
Watson kernel regression (Nadaraya, 1964; Wat-
son, 1964), with the main difference that we do
not explicitly condition the similarity function on
the distance between inputs. We parametrize the
similarity function by introducing an embedding
function fθ mapping the raw data to a latent space
using information from the support and query sets:
a(fθ(X

s,ys,Xq)) → As,As ∈ [0, 1]m×n. This
allows learning a similarity function based on the
given learning task, and we will explain later how
to use a standard transformer architecture for this.
Assuming similarity scores are normalized wrt.
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support |As[i, ·]|1 = 1, prediction (1) can be writ-
ten in matrix form:

ŷq = As · ohc(ys), ŷq ∈ {0, 1}m×C , (2)

where labels can be obtained as ŷj =
argmaxc∈C ŷq[j, ·] This setup directly conceptu-
ally matches ICL, which operates on support and
query sets. However, existing ICL models are
not (yet) explicitly trained to make predictions by
weighting support set labels.

We propose implementing the similarity func-
tion a by taking the transformed embeddings of
the query and the support set and a merged KVT

matrix of a transformer layer W ∈ Rd×d:

a(Eq[j],Es) := softmax((Eq(W ·EsT ))[j, ·]),
(3)

with fθ(X
s,ys,Xq) → (Es,Eq), Es ∈ Rn×d

and Eq ∈ Rm×d being the corresponding embed-
dings of Xs and Xq with dimensionality d. Thus,
aq := As[q] is a corresponding row of the "at-
tention matrix" representing attention values from
query xq to the support samples Xs. The merged
KVT matrix follows work on learning KNN via
ICL with linear transformers (Li et al., 2024). This
means that we train our transformer model, for
a given query point, to attend to similar points
in the support set and to make predictions by
weighting the labels of all points in the support
set based on these similarity (attention) values. For
training our model, we use the cross-entropy loss
L(ŷq,yq) = CE(ŷq,yq). We refer to this model
as SoftKNN-ICL and display its structure in Fig-
ure 2.

We also experimented with the alternative, poten-
tially more straightforward, implementation which
outputs the 1-d logit per token by setting m = 1
and d = 1 and taking a softmax over the sample
dimension, a(Es,Eq) := softmax(Es[·, 1]). How-
ever, this version results in inferior convergence
and requires advanced pre-training schedules, so
we do not consider it further.
Implementation and Hardware Details. Our im-
plementation is based on the repository of den Bree-
jen et al. (2024), and we will release our code upon
acceptance.3 Following other works in the field,
e.g., Hollmann et al. (2023) and den Breejen et al.
(2024), the model is trained using synthetic data
only. Concretely, we use the TabForest prior as

3https://github.com/FelixdenBreejen/
TabForestPFN

introduced by den Breejen et al. (2024), which
is a mix of the original TabPFN prior (Hollmann
et al., 2023) and the forest prior (den Breejen et al.,
2024). In practice, we add information from the
label in Xs as part of the input token, following
the standard TabPFN methodology. Optimization
is performed using Adam (Kingma and Ba, 2015)
with learning rate of 4e−5. We employ cosine an-
nealing (Loshchilov and Hutter, 2017) with linear
warmup (10 epochs with 8192 datasets) for learn-
ing rate scheduling. SoftKNN-ICL is trained using
three V100 GPUs on 24.6M synthetic datasets.

4 Experimental Evaluation

We divide the evaluation of our model into two
parts. First, we perform a study using toy problems
to analyze the decision boundaries of our model.
Second, we compare our model against competitor
models on standard benchmark datasets.

4.1 Decision Boundaries on Toy Problems

First, we want to study how our model behaves
on simple toy problems. In Figure 3 we compare
decision boundaries on 2-dimensional toy datasets
of our SoftKNN-ICL to KNN (using k = 3) and
the Nadaraya-Watson estimator (using RBF ker-
nel with γ = 15) as the methodologically clos-
est non-deep-learning methods. Furthermore, we
compare against an SVM (using RBF kernel with
γ = 5, C = 3) and TabForestPFN (den Breejen
et al., 2024). Overall, SoftKNN-ICL yields compet-
itive performance and reasonable decision bound-
aries. Compared to the nearest neighbor meth-
ods (second and third column), our method pro-
vides reasonable uncertainty estimates when mov-
ing away from seen datapoints (see "Moons" and
"Circles") and is less prone to overfitting on noisy
datasets (see "Noisy Moons" and "Noisy Circles").
Additionally, it performs comparably to the Tab-
ForestPFN model, which is desirable.

Furthermore, we study the neighborhood used
to make predictions. In the last column of Figure 3,
we visualize the values of aq (see Equation (1)), i.e.,
the predicted similarity between the query point
(black cross) and the data set. Overall, the neigh-
borhood of SoftKNN-ICL can become very small,
with the bias of selecting samples from the same
class (see "Circles"). The most interesting finding
is that the model dynamically adjusts the number
of samples it considers for prediction: when the
neighborhood is noisy (i.e., the nearest samples do

185

https://github.com/FelixdenBreejen/TabForestPFN
https://github.com/FelixdenBreejen/TabForestPFN


Data Near.Neigh. NW-regression SVM RBF TabForestPFN SoftKNN-ICL inference
M

oo
ns

N
oi

sy
M

oo
ns

C
ir

cl
es

N
oi

sy
C

ir
cl

.
C

on
c.

C
ir

cl
.

L
in

.S
ep

ar
.

Figure 3: Decision boundary of SoftKNN-ICL and other methods on toy datasets.

not exhibit a dominant class), it aggregates infor-
mation from more points, similar to decreasing γ
in an RBF kernel. In contrast, when the nearest
sample is strongly indicative, the model relies pri-
marily on the labels of a few samples (compare
"Moons" and "Circles" with "Noisy Moons" and
"Noisy Circles").

4.2 Evaluation on Real-World Datasets

Next, we compare our method against baselines
using standard benchmark tasks. Concretely, we
use the same datasets as the TabPFN paper (Holl-
mann et al., 2023): these are 30 datasets from
the OpenML benchmarking suites CC-18 (Bischl
et al., 2021), restricted to contain at most 2 000 data
points. Inspired by the original evaluation proto-
col, which uses five randomized 50/50 train/test
splits, we conducted a two-fold cross-validation
five times to reduce the variance of our results by
guaranteeing that each datapoint is used for testing

in each repetition while using training and test sets
of the same size as in the original evaluation pro-
tocol. We provide OpenML task IDs in Table 2 in
Appendix A to allow reproducing our results. We
compare average AUC across all repetitions and
datasets.

As baselines, we use the TabPFN model pro-
vided by Hollmann et al. (2023) and the Tab-
ForestPFN model provided by den Breejen et al.
(2024), which is trained with the same TabFor-
est prior (den Breejen et al., 2024) as our model
SoftKNN-ICL. Additionally, we disable ensem-
bling by input permutations for all PFN-style mod-
els.4 To test the capabilities of the nearest neigh-
bor algorithm, we also use a traditional KNN with
k = 1 and k = 5 from scikit-learn (Pedregosa
et al., 2011), where we preprocess the data as it is

4Enabling ensembling could further boost our perfor-
mance, but this is not the goal of our study. Furthermore,
ensembling would decrease the intelligibility of our proposed
method.

186



Model Name k avg. AUC

Random Forest n.a. 0.8712
TabForestPFN n.a. 0.8816
TabPFN n.a. 0.8856

KNN
1 0.7498
5 0.8272

SoftKNN-ICL (ours)

1 0.7746
5 0.8460
10 0.8606
all 0.87975

Table 1: Average AUC of all methods on 30 datasets
using 5-repeated 2-fold cross-validation. We boldface
the best method in each category.

in the original evaluation protocol (Hollmann et al.,
2023).

We present average AUC values in Table 1. No-
tably, SoftKNN-ICL outperforms KNN with dif-
ferent values of K and matches the performance
of TabPFN and the TabForestPFN trained on the
same synthetic datasets. Furthermore, in Figure 4
we compare AUC values per dataset, showing that
there are no outlier datasets on which SoftKNN-
ICL performs substantially better or worse than the
current PFN architecture. Lastly, Figure 5 reports
the average ranks and statistical results following
Demšar (2006), demonstrating that our SoftKNN-
ICL does not perform statistically differently than
TabForestPFN and TabPFN.

We also conducted an ablation on using only
the top-k similar datapoints from the support set
(as done by Wang and Sabuncu (2023)). While
performance (not surprisingly) degrades, it is better
than for KNN with the same number of neighbors,
and using only a fixed number of neighbors could
be valuable for tasks where it is essential to be able
to study which samples contribute to the prediction.

Figure 4: AUC values of SoftKNN-ICL vs. PFN. Each
dot corresponds to one dataset.

123456789
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Figure 5: Average rank and critical distance diagram.

5 Connection with kernel machines and
metric learning

Before turning to the conclusion and after having
presented the technical details of SoftKNN-ICL,
we would like to embed our method further into
the existing literature. NCA inspired our method;
however, our methodological framework allows
us to connect our method and the fields of metric
learning and kernel learning (Bellet et al., 2013),
which we briefly highlight in the following. As
shown in Equation 3, our model effectively per-
forms kernel regression and can be framed as a
deep kernel learning with an exponential kernel
as the base kernel (see Equation (5) in Wilson
et al. (2016)). While it is known that self-attention
mechanisms can be interpreted through the lens
of kernel methods (Tsai et al., 2019), this connec-
tion opens up promising directions for future re-
search. These include exploring alternative base
kernels for the final layer, or gaining insight into
the mechanisms of ICL by revisiting the approach
of Han et al. (2024). Their work developed a theo-
retical and empirical framework for studying this
phenomenon and its connection to kernel meth-
ods in LLMs. Our settings are more constrained
than in the original work (our model is sample-
order invariant and can be made feature-order in-
variant using the attention mechanism proposed
by den Breejen and Yun (2025)), which helps
to mitigate some of the issues raised in reviews.
Furthermore, the model can be reformulated as a
metric learning approach by expressing the final
layer (before normalization wrt support dimension)
as Aunnorm[Xq[j],Xs[i]] = exp(−||W(Eq[j] −
Es[i])||2), following the formulation in (Wein-
berger and Tesauro, 2007). This makes the model
to explicitly learn a metric between the support and
query points d((Xs,ys), (Xq)) = ||W(Eq[j] −
Es[i])|| in the embedding space parametrized by
the embedder fθ (ICL-transformer in our model)
and W. Connecting to a growing body of litera-
ture that seeks to relate kernel methods and neural
networks (Belkin et al., 2018; Domingos, 2020;
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Bell et al., 2023; Tarzanagh et al., 2023; Teo and
Nguyen, 2024; Wilson, 2025; Arbel et al., 2025),
our model could largely benefit from the synergy
between both fields.

6 Conclusion and Future Work

We have demonstrated that a (soft) KNN learning
task for ICL models leads to competitive perfor-
mance compared to the standard learning task. The
resulting SoftKNN-ICL is closely related to kernel
and metric learning and can be used as a drop-in
replacement for tasks requiring intelligibility. Ad-
ditionally, by using SoftKNN-ICL, we overcome
two limitations of traditional KNN methods: (1)
the need to tune the number of neighbors, k, and
the need to define a neighborhood (similarity) func-
tion manually. We hope this spurs research into
interpretability methods targeted at instance-based
learning methods, and that the in-context learn-
ing of a soft neighborhood is a valuable basis for
distance learning, potentially even beyond tabular
tasks. Furthermore, we deem future work along
the following directions particularly interesting for
tabular machine learning.
Detailed empirical evaluation. Most importantly,
we plan to study how our method uses attention in
noisy query sets and how different data-generating
priors, used to train the ICL model, impact perfor-
mance and behaviour.
Alternative architecture and learning tasks. Sec-
ondly, by extending our methodology of ICL using
neighbor methods to, for example, using the NCA
prediction function or training the model without
the merged KVT matrix, we hope to understand
better how to train an ICL nearest neighbor method
in the best manner. Other possible architecture
improvements include the use of cell-based atten-
tion like in TabPFN v2 (Hollmann et al., 2025)
and TabICL (Qu et al., 2025b), efficient embed-
dings similar e.g. TabICL, and localization meth-
ods (Thomas et al., 2024; Koshil et al., 2024) to
mitigate the need of ensembling and improve scal-
ing wrt. training set.
Making use of the distance function. Finally,
while we only assessed the learned distance func-
tion to make predictions, it should also be possible
to use it for exploratory data analysis and meta-
learning. Additionally, it would be interesting to
condition our method to consider as few neighbors
as possible.

Limitations

Firstly, our method inherits the limitations of the
ICL model class it resembles, i.e., limited context
size and slow inference speed. Secondly, it is not as
powerful as TabPFN (yet); however, we expect it to
improve with longer training and hyperparameter
tuning. Thirdly, our evaluation of intelligibility is
limited to synthetic datasets; a thorough evaluation,
potentially including a user study, remains future
work. Lastly, although our model’s inference mech-
anism is transparent by explicitly combining labels
of existing data points, it remains unclear why these
points are chosen due to the black-box nature of
transformer models.
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A Dataset and Task IDs

Data ID Dataset Name Task ID

11 balance-scale 361412
14 mfeat-fourier 361414
15 breast-w 361415
16 mfeat-karhunen 361416
18 mfeat-morphological 361417
22 mfeat-zernike 361419
23 cmc 361420
29 credit-approval 363512
31 credit-g 233149
37 diabetes 361424
50 tic-tac-toe 363513
54 vehicle 361426
188 eucalyptus 363511
458 analcatdata_authorship 361437
469 analcatdata_dmft 363514
1049 pc4 363515
1050 pc3 363516
1063 kc2 361440
1068 pc1 363517
1462 banknote-authentication 361462
1464 blood-transfusion-... 361463
1480 ilpd 363518
1494 qsar-biodeg 361448
1510 wdbc 361442
6332 cylinder-bands 363519

23381 dresses-sales 363520
40966 MiceProtein 363521
40975 car 363522
40982 steel-plates-fault 363523
40994 climate-model-... 363524

Table 2: OpenML (Vanschoren et al., 2014) dataset and
task IDs used for the evaluation.
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Abstract
This paper presents Retrieval-Augmented Fore-
casting (RAF), a novel framework for tabu-
lar time-series prediction that dynamically re-
trieves and integrates relevant historical table
slices. RAF addresses three key limitations of
existing methods: 1) schema rigidity through
dynamic hashing of column metadata, 2) tem-
poral myopia via cross-attention with learned
decay, and 3) pipeline sub-optimality via end-
to-end retriever-forecaster co-training. Exper-
iments across macroeconomic (FRED-MD),
financial (Yahoo Finance), and development
(WorldBank) benchmarks demonstrate RAF’s
superiority over six baselines, reducing sMAPE
by 19.1-26.5% while maintaining robustness
to schema changes (+3.2% sMAPE increase
vs. +6.7-12.7% for alternatives). The archi-
tecture’s computational overhead (1.8 vs. 1.2
hours/epoch vs. TFT) is justified by significant
accuracy gains in critical scenarios like market
shocks (61.7% vs. 55.1% directional accuracy).

1 Introduction

Forecasting economic and financial indicators us-
ing tabular time-series data is a high-stakes chal-
lenge. Consider a hedge fund analyst predicting
next-quarter earnings for a portfolio of tech compa-
nies: they must synthesize historical financial state-
ments (e.g., Apple’s quarterly revenue), macroeco-
nomic trends (e.g., interest rates), and unstructured
signals (e.g., news about supply chains). Current
approaches fall short in two key ways. First, tradi-
tional time-series models like ARIMA (Box et al.,
2015) or Prophet (Taylor and Letham, 2018) ig-
nore cross-series dependencies—for instance, they
cannot leverage the fact that NVIDIA’s GPU sales
may lag TSMC’s wafer production by 3 months.
Second, while modern deep learning methods (e.g.,
Temporal Fusion Transformers (Lim et al., 2021))
handle multivariate inputs, they treat tables as static
matrices, failing to retrieve and contextualize rel-
evant historical patterns. For example, during the

2022 oil crisis, a model unaware of analogous 2008
price shock dynamics would miss critical risk sig-
nals.

This gap is exacerbated in retrieval-augmented
generation (RAG) systems, which excel in text-
based QA (Lewis et al., 2020) but struggle with
structured data. Financial tables demand schema-
aware retrieval (e.g., matching “EBITDA” across
filings with differing column names) and tempo-
ral alignment (e.g., retrieving Q3 2020 data when
forecasting Q3 2023). We propose Retrieval-
Augmented Forecasting (RAF) for tabular time
series, which: (1) dynamically retrieves semanti-
cally and temporally relevant table slices (e.g., past
oil price surges when predicting energy stocks),
and (2) fuses them with neural forecasts via a
schema-guided attention mechanism. Our work
is grounded in real-world needs, from Bloomberg
terminal users querying correlated assets to central
banks simulating policy impacts across historical
regimes.

2 Related Work

2.1 Time-Series Forecasting

Recent advances in deep learning for time-series
forecasting fall into three camps. Transformer-
based methods like PatchTST (Nie et al., 2023)
segment series into patches but ignore cross-table
relationships (e.g., linking GDP to unemployment).
Graph-based approaches (Cao et al., 2020) model
variable dependencies but assume static schemas,
failing when new columns (e.g., “AI Revenue”)
emerge. Hybrid models like Temporal Latent
Graph (Chen et al., 2023) combine text and tables
but lack explicit retrieval, limiting their ability to
“look up” analogous historical contexts. Other time-
series related forecasting can be found in (Wang
et al., 2024; Peng et al., 2025).

192



2.2 Retrieval-Augmented Models
While RAG systems excel in NLP (Lewis et al.,
2020), their adaptation to tables is nascent. TURL
(Deng et al., 2020) retrieves entity-linked tables
for QA but cannot handle time-varying schemas.
TABERT (Yin et al., 2020) pretrains on static ta-
bles, missing temporal shifts (e.g., inflation recal-
culations). FinRAG (Wu et al., 2023) retrieves
financial text but not tabular history. These gaps
are critical: without temporal retrieval, a model
analyzing 2023 bank failures cannot retrieve 2008
crisis data despite similar liquidity patterns. We
also try to leverage on techniques used in (Zhang
and Sen, 2024; He et al., 2024; Liang et al., 2024)
to improve Retrieval-Augmented models.

2.3 Deficiencies and Our Improvements
Current methods share four key limitations:

1. Schematic Rigidity: Models like TAPAS
(Herzig et al., 2020) hardcode column embed-
dings, breaking when schemas evolve (e.g.,
new SEC reporting standards). We introduce
dynamic schema hashing to align columns
across time.

2. Temporal Myopia: Retrievers like DPR
(Karpukhin et al., 2020) optimize for text sim-
ilarity, not time-aware relevance. We propose
a dual-time attention scorer that prioritizes
both semantic and lagged correlations (e.g.,
oil prices → airlines with a 6-month lag).

3. Modality Bias: Hybrid models (Ding et al.,
2021) process text and tables separately. Our
retriever jointly embeds text-table pairs (e.g.,
earnings calls + balance sheets) via contrastive
alignment.

4. Benchmark Gaps: Existing evaluations (e.g.,
M4 (Makridakis et al., 2020)) focus on univari-
ate series. We curate a multi-table benchmark
(FRED-MD + Yahoo Finance) with schema-
shift challenges.

Our RAF framework addresses these by unify-
ing retrieval with schema-temporal grounding, en-
abling forecasts that adapt to both data evolution
and regime shifts.

3 Methodology

3.1 Problem Formulation
Given a tabular time-series dataset D = {Xt}Tt=1,
where each Xt ∈ RN×d (N variables, d features),

and an optional text corpus C (e.g., earnings re-
ports), our goal is to forecast Xt+1:t+H by: 1) Re-
trieving relevant historical slices {Xt−k}k∈K using
a schema-temporal retriever, and 2) Fusing them
with the current state Xt via a forecaster.

3.2 Retriever Design
Our dual-encoder retriever computes relevance
scores between query Xt and candidate Xt′ as:

Score(Xt,Xt′) = sim(Eϕ(Xt),Eϕ(Xt′))︸ ︷︷ ︸
schema alignment

+ λ · exp
(
−|t− t′|

τ

)

︸ ︷︷ ︸
temporal decay

, (1)

where Eϕ is a schema-aware encoder (details be-
low), λ controls temporal weight, and τ is a decay
rate.

Schema-Aware Encoder For variable i in Xt,
we embed its name (e.g., "GDP"), type (e.g.,
"float"), and temporal statistics (mean/variance
over a sliding window) as:

ei = MLP([Embed(namei)⊕Embed(typei)⊕si]),
where si ∈ R2 contains normalized statistics. The
table embedding Eϕ(Xt) is the mean of {ei}Ni=1.

3.3 Forecaster with Retrieved Context
The forecaster uses a Transformer with retrieved
tables {X(1)

t′ , . . . ,X
(K)
t′ } as cross-attention inputs:

ht = TransformerLayer(Xt, {X(k)
t′ }) (2)

X̂t+1 = MLP(ht). (3)

In our RAF framework as illustrated in Figure
1, the retriever selects schema-aligned historical
tables through dynamic hashing, which the fore-
caster integrates via temporal cross-attention. Solid
arrows show primary data flow, while dashed lines
indicate gradient propagation during end-to-end
training.

Our RAF framework advances beyond existing
approaches through fundamental architectural in-
novations that address three key limitations in tab-
ular forecasting systems. Where prior work either
focused exclusively on static table structures or
treated retrieval as a separate preprocessing step,
we unify schema-aware retrieval with temporal
forecasting in an end-to-end differentiable frame-
work. This integration enables several critical im-
provements over state-of-the-art methods:
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• vs. TAPAS (Herzig et al., 2020): While
TAPAS relies on fixed column embeddings
pretrained on Wikipedia tables, our en-
coder dynamically adapts to domain-specific
schemas through online learning of statisti-
cal features (mean, variance, kurtosis). This
proves essential for financial forecasting
where reporting standards evolve quarterly.

• vs. Temporal Fusion Transformer (Lim
et al., 2021): TFT’s static metadata inputs
cannot leverage historical context beyond the
fixed input window. Our cross-attention mech-
anism actively retrieves and incorporates rel-
evant table slices from the entire history, en-
abling true long-range dependency modeling.

• vs. FinRAG (Wu et al., 2023): Where Fin-
RAG retrieves textual financial reports, our
system operates directly on tabular slices, pre-
serving numerical relationships that get lost
in text serialization. This proves crucial for
precise quantitative forecasting tasks.

3.4 Parameter Settings

The RAF architecture incorporates several carefully
tuned hyperparameters that balance model capacity
with computational efficiency. These values were
determined through extensive ablation studies on
our validation sets, considering both forecasting
accuracy and resource constraints:

Parameter Value
Retrieval top-K 5
Temporal decay τ 12 (months)
λ (retrieval weight) 0.7
Transformer layers 4
Embedding dim 128

The K = 5 retrieval setting provides suffi-
cient context diversity while avoiding noise from
marginal matches. The 12-month temporal decay
(τ ) aligns with typical macroeconomic cycles, au-
tomatically downweighting older data while pre-
serving structural patterns. Our 4-layer transformer
with 128D embeddings offers the best accuracy-
efficiency tradeoff, achieving 98% of the perfor-
mance of larger models (8L, 256D) at half the com-
putational cost.

3.5 Model Innovations

Our framework introduces three key innovations
over prior work (Lim et al., 2021; Herzig et al.,
2020):

Input Table X_t

Schema-Temporal Retriever

Transformer Forecaster

Top-K Retrieved Tables

Forecast X_{t+1}

Figure 1: Retrieval-Augmented Forecasting (RAF)
pipeline

• Dynamic Schema Hashing: Column embed-
dings adapt to naming variations (e.g., "Rev-
enue" vs. "Sales") through statistical normal-
ization of metadata features, solving the vo-
cabulary mismatch problem in (Herzig et al.,
2020).

• Temporal Cross-Attention: The forecaster
attends to both current data and retrieved
tables using learned position biases for
time-warped alignment, addressing the fixed-
window limitation of (Lim et al., 2021).

• End-to-End Retrieval Tuning: The re-
triever’s parameters are updated through the
forecaster’s gradients via Gumbel-Softmax re-
laxation (Jang et al., 2016), overcoming the
pipeline suboptimality noted in (Wu et al.,
2023).

3.6 Dynamic Schema Hashing

Building on the schema-aware pretraining concepts
from (Eisenschlos et al., 2021), we develop a learn-
able hashing mechanism that maps variable meta-
data (names, types, statistical properties) to a uni-
fied embedding space. For variable vi at time t, the
hash is computed as:

hti = MLP([Embed(namei)⊕ σ(statsti)

⊕ Embed(uniti)]) (4)
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where statsti contains rolling window statistics
(mean, variance, kurtosis) over the previous k
timesteps. This allows the model to recognize that
"Unemployment Rate (%)" and "Jobless Population
(% Labor Force)" represent equivalent concepts de-
spite naming differences, addressing the schema
rigidity problem noted in (Borisov et al., 2023).

3.7 Temporal Cross-Attention
The forecaster module extends the standard Trans-
former architecture (Vaswani et al., 2017) with two
attention mechanisms:

• Intra-table Attention: Standard self-
attention within the current table Xt

• Cross-table Attention: Between Xt and re-
trieved tables {X(k)

t′ }Kk=1

Each attention head computes modified energy
scores incorporating temporal distance:

eij =
(Wqxi)

T (Wkxj)√
d

− λ
|ti − tj |

τ
(5)

where λ and τ are learned parameters control-
ling temporal decay. This architecture directly ad-
dresses the temporal myopia limitation identified
in (Cao et al., 2020).

3.8 End-to-End Retrieval Tuning
Unlike pipeline approaches in (Wu et al., 2023), our
retriever is trained jointly with the forecaster us-
ing Gumbel-Softmax relaxation (Jang et al., 2016).
The training objective combines:

L = Lforecast + αLretrieval + βLschema (6)

where α and β control the contribution of re-
trieval accuracy and schema consistency losses re-
spectively. This end-to-end approach, visualized in
Figure 2, enables the retriever to specialize for fore-
casting tasks rather than generic similarity match-
ing.

4 Experiments and Results

Building on the methodological foundations estab-
lished in Section 3, we now evaluate RAF’s perfor-
mance across diverse forecasting scenarios. The
experiments are designed to validate each compo-
nent of our architecture while assessing practical
utility in real-world conditions.

Figure 2: Example of RAF’s end-to-end architecture
showing the interaction between retrieval and forecast-
ing components.

4.1 Datasets and Baselines

We evaluate on three carefully curated benchmarks:
FRED-MD (McCracken and Ng, 2016) com-

prises 107 monthly US macroeconomic indica-
tors from 1959-2023, including GDP, unemploy-
ment, and industrial production. This dataset tests
RAF’s ability to handle long-range dependencies
and structural breaks (e.g., 2008 financial crisis).
The variables exhibit complex cross-correlations -
for instance, interest rates typically lag inflation by
6-18 months (Stock and Watson, 2002).

Yahoo Finance-Volatility aggregates daily
stock returns and 10-K filing texts for S&P 500
companies (2010-2023). Unlike FRED-MD’s fixed
schema, this dataset contains evolving financial
reporting standards, challenging models to align
historical data with current metrics. We focus on
volatility forecasting, where textual context (e.g.,
"supply chain disruption" in filings) complements
numerical trends (Ding et al., 2021).

WorldBank Open Data provides 50+ years
of cross-country development indicators with fre-
quent schema changes. The 2021 revision added
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SDG-related variables like "Renewable Energy
Share", testing RAF’s schema adaptation capabili-
ties. Missing data (30% of entries) further stresses
the model’s robustness (Group, 2023).

Baselines include:

• Temporal Fusion Transformer (TFT) (Lim
et al., 2021): State-of-the-art neural forecaster
with static metadata handling.

• TAPAS-RAG: Our adaptation of (Herzig
et al., 2020) using its table retriever with
Prophet (Taylor and Letham, 2018) as fore-
caster.

• Schema-Adaptive GNN (Cao et al., 2020):
Graph neural network with manual schema
alignment rules.

4.2 Evaluation Metrics

We prioritize sMAPE (Symmetric Mean Absolute
Percentage Error) for three domain-specific rea-
sons:

• Scale Invariance: Critical for comparing fore-
casts across diverse economic indicators (e.g.,
GDP in billions vs. unemployment rates in
percentages) (Hyndman and Koehler, 2006).

• Directional Balance: Unlike MAE/MSE,
sMAPE equally penalizes over- and under-
predictions (Armstrong, 2001), essential for
financial decision-making.

• Established Benchmarking: Standard in
macroeconomic forecasting (McCracken and
Ng, 2016) and aligns with M4 competition
metrics (Makridakis et al., 2020).

4.3 Quantitative Results

Table 1: Forecasting Accuracy (sMAPE) on FRED-MD

Model 1-Month 6-Month 12-Month
TFT 9.8 14.2 19.5
TAPAS-RAG 8.9 13.1 17.8
RAF (Ours) 7.2 11.4 15.3

As shown in Table 3, RAF reduces sMAPE by
26.5% versus TFT at 1-month horizons, with gains
persisting at longer forecasts. The improvement
stems from retrieving analogous historical regimes
- for example, RAF automatically links 2022 infla-
tion patterns to 1970s stagflation episodes through

schema-agnostic column matching. TAPAS-RAG’s
fixed embedding strategy fails to recognize that
"CPI All Items" and "Consumer Price Index" repre-
sent identical metrics across different time periods.

Table 2: Schema Shift Robustness (WorldBank)

Model sMAPE Increase
TAPAS-RAG +9.1
Schema-GNN +6.7
RAF +3.2

Table 2 demonstrates RAF’s superiority when
new variables are introduced. The 2021 WorldBank
revision added 17 SDG-related columns - while
TAPAS-RAG’s performance degraded significantly
due to frozen embeddings, RAF’s dynamic hash-
ing maintained accuracy by inferring relationships
(e.g., "Renewable Energy %" ≈ "Clean Energy
Share" with seasonal adjustments).

Table 3: Forecasting Accuracy (sMAPE) on FRED-MD

Model 1-Month 6-
Month

12-
Month

DeepAR 11.2 16.8 22.1
N-BEATS 10.4 15.3 20.7
TFT 9.8 14.2 19.5
TSMixer 9.1 13.5 18.9
TAPAS-RAG 8.9 13.1 17.8
RAF (Ours) 7.2 11.4 15.3

In Table 3, RAF reduces sMAPE by 19.1% com-
pared to TFT at 1-month horizons, with consis-
tent gains at longer forecasts. The improvement
stems from its ability to retrieve and align historical
regimes – for example, linking 2022 inflation pat-
terns to 1970s stagflation through dynamic schema
matching. While TAPAS-RAG shows competitive
results, its performance degrades when variables
are renamed (e.g., "Unemployment Rate" vs. "Job-
less Rate"). DeepAR and N-BEATS, though com-
putationally efficient, fail to capture cross-variable
dependencies critical for macroeconomic forecast-
ing. TSMixer’s MLP-based approach performs
well but lacks interpretability in retrieved contexts.
RAF’s superiority is most pronounced at 12-month
horizons (15.3 vs. 17.8 sMAPE), demonstrating its
capacity for long-term structured reasoning.

4.4 Financial Market Prediction
With data from Table 4, RAF achieves 65.4% di-
rectional accuracy in tech stocks, outperforming
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Table 4: Directional Accuracy (%) on Yahoo Finance

Model Tech Energy Healthcare
DeepAR 54.3 52.1 53.8
N-BEATS 56.7 54.9 55.2
TFT 58.7 57.2 56.9
TSMixer 59.4 58.1 57.3
TAPAS-RAG 60.2 58.8 58.1
RAF (Ours) 65.4 63.1 62.8

Table 5: Schema Shift Impact (sMAPE Increase)

Model sMAPE Increase (%)
DeepAR +12.7
N-BEATS +10.3
TFT +8.5
TSMixer +7.9
TAPAS-RAG +9.1
Schema-GNN +6.7
RAF (Ours) +3.2

TAPAS-RAG by 5.2 percentage points. This results
from sector-specific retrievals - for instance, match-
ing current semiconductor inventories to 2018
shortage patterns. Energy sector predictions bene-
fit similarly from retrieving past oil glut scenarios
(63.1% DA). TFT and TSMixer show respectable
performance but lack explicit retrieval mechanisms,
leading to inconsistent responses during market
shocks.

4.5 Schema Shift Robustness
After WorldBank’s 2021 schema update (adding
17 SDG variables), RAF maintains robustness with
only 3.2% sMAPE increase. Its dynamic hashing
correctly links new variables like "Renewable En-
ergy Share" to legacy columns through statistical
feature matching. TAPAS-RAG’s frozen embed-
dings cause a 9.1% degradation, while Schema-
GNN’s manual rules require retuning (+6.7%).
This confirms RAF’s superiority in real-world set-
tings where reporting standards evolve frequently.

4.6 Ablation Study
Removing retrieval causes the largest performance
drop (28%), validating its necessity for contextual
forecasting. Disabling temporal decay leads to 12.9
sMAPE as the model attends to irrelevant historical
periods. Schema hashing ablation degrades accu-
racy to 13.1, showing its importance for handling
variable renaming. The full model’s 11.4 sMAPE
confirms all components synergistically improve

Table 6: Component Analysis (6-Month sMAPE)

Variant sMAPE
RAF w/o retrieval 14.6
RAF w/o temporal decay 12.9
RAF w/o schema hashing 13.1
RAF full 11.4

Table 7: Training Time vs. Accuracy

Model Hours/Epoch 1-Month sMAPE
DeepAR 0.8 11.2
N-BEATS 1.1 10.4
TFT 1.2 9.8
TSMixer 0.9 9.1
RAF (Ours) 1.8 7.2

forecasting.

4.7 Computational Efficiency

RAF’s retrieval adds 50% training time versus TFT
but achieves 26.5% better accuracy. The overhead
comes from cross-attention over retrieved tables,
justified for high-stakes forecasts. TSMixer of-
fers the best efficiency-accuracy tradeoff among
baselines but lacks interpretability. In production,
RAF’s faster convergence (3× fewer epochs) off-
sets its per-epoch cost.

4.8 Crisis Period Performance

During market shocks, RAF maintains 61.7% DA
versus TFT’s 55.1% by retrieving analogous crises
(e.g., 2008 recession for COVID-19). Retrieval
logs show it successfully identified relevant histori-
cal patterns - for Ukraine War impacts, it prioritized
2014 Crimea sanctions data and 1990s oil supply
shocks.

4.9 Computational Efficiency

RAF adds modest overhead versus TFT (1.8 vs. 1.2
hours/epoch) but achieves 3× faster convergence
due to retrieved context guiding the optimization
landscape. The retriever’s complexity is O(N log
N) through locality-sensitive hashing (Indyk and
Motwani, 1998).

5 Discussion

Our results demonstrate three key advances over
existing methods in tabular forecasting. First,
RAF’s dynamic schema handling solves a funda-
mental limitation in prior work (Herzig et al., 2020;

197



Table 8: Market Shock Accuracy (DA %)

Model COVID-19
(2020)

Ukraine War
(2022)

DeepAR 48.1 47.3
N-BEATS 52.6 51.8
TFT 55.1 53.9
TSMixer 56.3 54.7
RAF (Ours) 61.7 59.4

Borisov et al., 2023) by enabling robust match-
ing of variables across different naming conven-
tions and reporting standards. Where traditional
approaches require manual schema alignment or
suffer performance degradation during schema
changes (Table 5), our learned hashing mechanism
maintains accuracy by focusing on statistical pat-
terns rather than surface-level labels. This is par-
ticularly valuable in real-world applications like
financial reporting, where companies frequently
modify their presentation formats while maintain-
ing underlying accounting principles.

Second, the integration of retrieval with fore-
casting addresses the temporal myopia problem
identified in (Cao et al., 2020). While most neural
forecasters focus on recent history, RAF’s ability
to identify and incorporate relevant distant events
(e.g., linking 2022 market conditions to 2008 cri-
sis patterns) provides a more comprehensive con-
text for predictions. This explains the particularly
strong performance during volatile periods (Ta-
ble 8), where conventional models struggle to adapt
quickly to regime shifts. The temporal decay pa-
rameters in our cross-attention mechanism automat-
ically learn the appropriate time scales for different
types of variables - short for high-frequency finan-
cial data, longer for macroeconomic trends.

Finally, our end-to-end training approach over-
comes the suboptimality of pipeline systems noted
in (Wu et al., 2023). By jointly optimizing the re-
triever and forecaster, RAF ensures that retrieved
tables are specifically useful for the forecasting
task, rather than simply being semantically sim-
ilar. The ablation study (Table 6) confirms that
this tight integration contributes significantly to
overall performance. From a practical perspective,
the additional computational overhead (Table 7) is
justified by the accuracy gains in critical applica-
tions like economic policy planning or portfolio
management, where small improvements can have
substantial real-world impact.

These advances suggest promising directions for
future work, including application to multivariate
probabilistic forecasting and integration with large
language models for enhanced textual-table reason-
ing. The consistent outperformance across diverse
benchmarks (Tables 3–8) establishes RAF as a new
state-of-the-art for tabular time-series forecasting
while providing a framework for addressing similar
challenges in other structured data domains.

6 Conclusion

RAF establishes a new state-of-the-art in tabular
forecasting through its schema-aware retrieval and
temporal fusion approach. By unifying dynamic
column hashing, context-aware attention, and end-
to-end training, the framework outperforms special-
ized alternatives in both accuracy and robustness.
Real-world validation confirms its practical value
for financial and economic prediction tasks where
schema evolution and regime shifts are common.
Future work will extend the architecture to prob-
abilistic forecasting and multimodal (table+text)
retrieval scenarios.
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Abstract
The increasing availability of electronic health
records (EHR) offers significant opportunities
in data-driven healthcare, yet much of this data
remains fragmented, semantically inconsistent,
or incomplete. These issues are particularly
evident in tabular patient records where impor-
tant contextual information are lacking from
the input for effective modeling. In this work,
we introduce a system that performs ontology-
based entity alignment to resolve and complete
tabular data used in real-world clinical units.
We transform patient records into a knowl-
edge graph and capture its hidden structures
through graph embeddings. We further pro-
pose a meta-path sample generation approach
for completing the missing information. Our
experiments demonstrate the system’s ability
to augment cardiovascular disease (CVD) data
for lab event detection, diagnosis prediction,
and drug recommendation, enabling more ro-
bust and precise predictive models in clinical
decision-making.

1 Introduction

The amount of data stored as electronic health
records (EHR) in tabular format has grown signifi-
cantly in recent years, now including an immense
quantity of interactions, events and interconnected
information. As such, data integration will play a
transformative role in health information systems
for the years to come, bridging the gap between
research and applications. Existing machine
learning paradigms however cannot directly
operate on relational data due to the complex
structure of interconnected tables. Domain specific
algorithms therefore are in need for efficient and
robust processing of tabular EHR for use in clinical
decision making (Teng et al., 2020).

In recent years, graph representation learning
has been proposed as an approach for modeling
relational data where rows become nodes, columns

form node features, and primary-foreign key links
establish edges. To learn their underlying structure,
embedding models have been successfully applied
to capture hidden hierarchies for downstream
clinical tasks, such as comorbidity and readmission
prediction (Choi et al., 2020). In (Robinson
et al.), entity-level features are extracted and
embedded via Graph Neural Networks (GNN)
for training a task-specific model by adopting a
schema-less approach, modeling relational data as
a heterogeneous graph. While schema-less design
offers flexibility, it is less suited for integrating
external knowledge sources due to the absence of a
predefined structure (Yue et al., 2020).

In contrast, a fixed schema can be imposed
enabling seamless extension to external knowledge
sources which exist in the form of clinical and
biomedical ontologies. However, integrating
these sources necessitates ontology alignment
to resolve semantic ambiguities and maintain
coherent representations. In (Hao et al., 2021), a
graph representation learning approach is proposed
that maps tabular data sources to a domain specific
ontology in order to mitigate the presence of
ambiguous information. These models continue to
suffer from the inherent incompleteness, missing
values, and inconsistent codification from legacy
systems.

In this work, we propose a robust resolution-
alignment-completeness (RAC) system for consoli-
dating tabular EHR into semantically consistent
health knowledge graphs, using standard termi-
nologies aligned with medical ontologies. Unlike
prior schema-less, graph-based approaches, our
fixed schema approach prioritizes structural inte-
gration and scalability for enhancing predictive per-
formance by aligning domain-specific knowledge
with relational data. Our modular design consists
of the following components:
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Figure 1: Pathway Informed Generative Sampling and Table Representation through Resolution (R), Alignment (A),
and Completeness (C) modules: EHR entities are mapped to Basic Graph Patterns (BPG) of a reference schema,
clinical codes are resolved and aligned to SNOMED CT, and meta-path sampling augments representations with
missing and task-relevant knowledge.

◦ Resolution (R): In the first module, relevant
patient entities are extracted from a relational
data source and resolved/mapped via semanti-
cally equivalent identifiers and a fixed schema.
This module is responsible for identifying and
assigning types to data across patient visits
using concepts and relations from the fixed
schema. Subsequently, the semantically anno-
tated admission records are integrated into a
personal health knowledge graph as described
in subsection 2.1.

◦ Alignment (A): In the second module, the re-
sulting knowledge graph is transformed and
vectorized into a shared embedding space.
Through alignment of core concepts with a ref-
erence ontology, ambiguous representations
are semantically enriched and contextualized,
as described in subsection 2.2.

◦ Completeness (C): In the third module, the
aligned representations are further enhanced
by generating samples along upper ontology
concepts (i.e. meta-paths) in the knowledge
graph. The samples generate the augmented
graph that is used to complete missing infor-
mation given a prediction task, as described
in subsection 2.3.

We use the MIMIC repository for experimenta-
tion which contains data associated with distinct
hospital admissions concerning adult patients ad-

mitted to critical care units (Johnson et al., 2016).
In order to map patient relational records, we
use the Swiss Personal Health Network Schema
(SPHN)1 and a fine-tuned language model to pro-
cess the input data. The resulting health knowl-
edge graph is embedded using relational graph neu-
ral networks and aligned with the Systematized
Nomenclature of Medicine2 (SNOMED) as domain
knowledge graph. We test our framework for three
different down-stream clinical tasks, namely lab
event detection, diagnosis prediction, and drug rec-
ommendation. Our experiments demonstrate the
contributions from each component, namely se-
mantic annotation, schema-based entity resolution
and domain ontology alignment, to predictive per-
formance using precision, recall, and f1 scores as
classification metrics.

2 Method

The meta-path sampling framework proposed for
tabular EHR processing in this work, is shown
in Figure 1. Related entities from tables are ex-
tracted and mapped to the relevant parts repre-
sented by Basic Graph Patterns (BPG) in a refer-
ence schema. Rows (records) are assigned unique
identifiers and instances of the corresponding class
and column attributes are mapped to retrieved pred-
icates as triples. Clinical codes (e.g. ICD3, etc)

1https://biomedit.ch/rdf/sphn-schema/sphn
2https://www.snomed.org/
3https://icd.who.int/
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are assigned unique identifiers to resolve their se-
mantically equivalent instances and aligned with a
domain-specific ontology, namely SNOMED CT.
Lastly, the transformed records are embedded and
enriched using meta-pathway informed sampling
in order to augment their representations, including
missing and domain knowledge, as described in
the following subsections. Knowledge represented
through this system can ultimately be utilized to
complete the input data in tabular format.

2.1 Semantic Annotation
In this section we provide details related to the
Resolution module, including admission record
extraction, semantic annotation, and personal
health knowledge graph generation. The existing
records from the dataset are grouped according to
individual visits and by admission ID into separate
tables, thus taking an admission centric view. Sub-
sequently, records from each record are mapped
to concepts and relationships from a reference
schema using a pre-trained large-language model
(LLM) to generate typed entities and properties in
form of a personal health knowledge graph. The
steps to generate the latter, referred to as Semantic
Annotation, are shown in Figure 2.

More specifically, the tabular data are trans-
formed into a knowledge graph in this stage in
order to enable semantic interoperability required
in later stages. To this end, cell values are
given a type from a reference schema (column
annotation) and cell value pairs are linked through
a predicate from the reference schema (property
annotation). The mapping from the original
relational representations to entities linked with
reference predicates can be done using a pretrained
LLM (Dasoulas et al., 2023). The output is
further processed to produce a PHKG in Resource
Description Framework (RDF) format.

The steps for generating the transformed RDF
from tabular data using the LLM are summarized
in Algorithm 1. The records are processed and
mapped around core concepts C from the reference
schema (e.g. C = ‘Diagnosis’). Once the type of
the concept is identified, the basic graph pattern
(BGP) related to C given the record r is retrieved
(denoted by Cr). For each record, the LLM is
applied in several iterations to retrieve the entity
types e for each value and the predicate type p
between value pairs using the corresponding BGP.

Algorithm 1 Semantic Annotation with Pretrained
Large Language Model

Input: Single patient u records Ru, basic graph
patterns for core concepts C, LLM

Output: Personal Health Knowledge Graph Gu
for the patient

Initialize: empty graph Gu
1: for each record r inRu do
2: Cr ← LLM(r) ▷ Determine BGP
3: for each pair (ci, cj) in r do
4: (pij , ei, ej)← LLM(Cr, ci, cj)
5: Gu ← Gu ∪ (ci, pij , cj) ▷ Add edge
6: Gu ← Gu ∪ (ci, ei) ▷ Add type for ci
7: Gu ← Gu ∪ (cj , ej) ▷ Add type for cj
8: end for
9: end for

10: return Gu

Algorithm 2 Entity Alignment Between PHKG
and DSRO
Input: PHKG G = {V,E}, DSRO Gs =
{Vs, Es}, labeled nodes VL = {v1, . . . , vL},
unlabeled nodes VU = {vL+1, . . . , vL+U},
pretrained GCN encoder & decoder {ENC()
,DEC()}, threshold λ

Output: Alignment graph Galign

# Fine-tuning Step
Initialize: empty Ge and Gc

1: for vi in VL do
2: Ge ← Ge ∪ {(s, p+, vi) ∈ G}

∪ {(vi, p+, o) ∈ G} ▷ subgraph
3: Gc ← Gc ∪ {(s, p+, vi) ∈ Gs}

∪ {(vi, p+, o) ∈ Gs} ▷ subclass
# Update Encoder & Decoder

4: ENC,DEC← DEC(ENC(Ge),ENC(Gc))
5: end for

# Alignment Step
6: for vu in VU do
7: for vs in Vs do
8: s← DEC(⟨vu, vs⟩) ▷ score
9: if s > λ then ▷ threshold

10: Galign ← Galign ∪ {⟨vu, vs⟩}
11: end if
12: end for
13: end for
14: return Galign
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The generated types and predicates are added to the
personal health knowledge graph G and returned at
the end of the algorithm (Mehryar, 2025).

2.2 Ontological Matching
In this section we provide details related to
Alignment module, including extracting core
concepts, retrieving and encoding the correspond-
ing membership graphs, encoding patient health
knowledge graph, and alignment via graph neural
network decoding. We rely on a domain specific
reference ontology (DSRO) for the alignment task.
The coded clinical concepts for each patient are
first matched based on their label information
with core classes from the reference ontology,
non-exhaustively. Subsequently, the target classes
are enriched with RDF/s and Web Ontology
Language (OWL) hierarchical information,
forming a corresponding (subsumption) subgraph.
The subsumption graph along with the original
personal health knowledge graph are encoded
into a shared vector space and further decoded
to determine final alignments for Ontological
Matching, as shown in Figure 3.

More specifically, with Ontological Matching
the aim is to align codified information within
a personal health knowledge graph (PHKG)
according to structural and semantic information
of the DSRO required in later stages. To this end,
coded information pertaining to core concepts
(i.e. diagnosis, procedures, prescriptions etc) are
embedded using a graph convolution network
(GCN) encoder. The GCN encoder is used to
embed the source and target entities, including
membership information (i.e. sub- and super-
classes). The matching between two sets of
encoded representations is established through
the GCN decoder trained on labeled information.
For the unlabeled entities, the pretrained encoder
and decoder are applied to determine matching
pairs that score over a pre-specified threshold value.

The steps for generating alignment pairs
between the PHKG denoted by G and the DSRO
membership graph denoted by Gs, are summarized
in Algorithm 2. The labeled entities vi ∈ VL

are first extracted from both sources to produce
training graphs Ge and Gc, respectively. The
decoder is fine-tuned on these sets for alignment
task and by decreasing the distance between the
matching representations (i.e. update step). It is
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Figure 2: Semantic Annotation using a Large Language
Model (LLM), generating health knowledge graph given
input electronic health records (EHR) for a single pa-
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Figure 3: Ontological Matching using a layered
(from 1 to L) Graph Neural Network (GNN), gener-
ating matches between the entities in a health knowl-
edge graph (PHKG) in alignment with SNOMED CT
(SNMG) as domain ontology, to produce the enriched
knowledge graph (PHKG-MSN).

worth mentioning that nodes are not limited to
immediate neighbors (as denoted by p+ for one or
more property paths). Subsequently, the fine-tuned
encoder and decoder are applied to unlabeled
nodes VU . Each candidate pair is scored and added
to the set of alignment pairs Galign satisfying the
threshold λ.

2.3 Graph Augmentation

In this section we provide details related to
Completion module, including generating samples
from the aligned PHKG with respect to the
upper-level pathways. The generated samples
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following the upper level ontology concepts and
constraints produce the final augmented graph. In
particular we focus on generating samples missing
from the original PHKG along paths pertaining
to clinical observations (lab events), findings
(diagnosis), and substances (prescriptions). The
samples encode domain knowledge and satisfy
ontological constraints with respect to the DSRO
as described in the previous section. The generated
samples form an Augmented Graph, which may
be used to complete the information from original
input tables, as shown in Figure 1.

More specifically, the augmented graph is
generated for each admission following the
pathways that connect observations taken during
lab events, leading to outcome based diagnoses
and prescriptions. These core concepts form
the sampling meta-paths, informing the learning
process used in generating embeddings by the
GCN encoder. Given the range information for
each relation along a meta-path edge, the GCN
decoder can be used to predict target node types.
The predicted types capture the information
codified from the DSRO and can in turn be
translated into original table values.

The steps for generating a set of N node types
following L meta-paths denoted by {p1, · · · , pL}
are summarized in Algorithm 3. The unlabeled en-
tities {o1, · · · , oN} correspond to missing values
in the original table, initialized randomly to begin
with. Following the GCN training algorithm, for
each relation p on the meta-pathway we sample
the p-neighborhoods including the unlabeled enti-
ties. The encoder and decoder are fine-tuned on
these neighborhoods by decreasing the distance be-
tween the representations of path-wise neighbors.
Once the embedding representations are updated,
for each unlabeled node a score s is computed with
respect to the relation type p it appears in (as range).
The node type is added to the augmented graph
Gaug if it satisfies a threshold value λ.

3 Experimentation

In this section, extensive experiments are con-
ducted and reported for evaluating the proposed
framework towards aligning and completing tabular
EHR records. We report on dataset pre-processing
steps, semantic annotation accuracies, ontology
alignment results, and predictive performance for

Algorithm 3 Graph Augmentation with Meta-Path
Sampling

Input: Galign for patient u, L meta-paths
{p1, . . . , pL}, set of N blank nodes for
augmentation {o1, . . . , oN}

Output: Augmented graph Gaug

# Meta-path sampling
Initialize: empty graphs {G1, . . . ,GL}

1: for each predicate pl in {p1, . . . , pL} do
2: Gl ← Gl−1 ∪ {(s, p+l , o) ∈ Galign}

∪ {(s, p+l , o) | o ∈ {o1, . . . , oN}}
# Update encoder & decoder

3: ENC,DEC← DEC(ENC(Gl),ENC(Gl))
4: end for

# Augmentation step
5: for vj in {o1, . . . , oN} do
6: for each predicate p in {p1, . . . , pL} do
7: for vi in {(vi, p, vj) ∈ Galign} do
8: s← DEC(⟨vi, vj⟩) ▷ score
9: if s > λ then ▷ threshold

10: Gaug ← Gaug ∪ {(vi, p, vj)}
11: end if
12: end for
13: end for
14: end for
15: return Gaug
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Figure 4: Clinical Upper-level Concepts and Meta-
pathways. The highlighted edges indicate the causal
paths that inform the use case in our work.

lab event detection, diagnosis prediction, and drug
recommendation through precision (P), recall (R),
and f1 scores (F).

3.1 Datasets

We use the MIMIC repository containing tabular
data for patients to ultimately generate triples for
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training and evaluation purposes. In this work, we
limit the scope to records from patients that are
hospitalized for Cardiovascular Disease (CVD).
The relevant data are separated by admissions
encoded by ICD-9 code range 410-430, such as
428.22 (Chronic systolic heart failure), 428.23
(Acute on chronic systolic heart failure), 428.32
(Chronic diastolic heart failure), 428.33 (Acute on
chronic diastolic heart failure), 428.42 (Chronic
combined systolic and diastolic heart failure), and
428.43 (Acute on chronic combined systolic and
diastolic heart failure). These codes categorize
various forms and severities of heart failure
based on the systolic and diastolic dysfunction
of the heart. In ICD-10, these codes are largely
replaced by categories under I50 (Heart Failure).
To generate this subset, we identify and store the
admissions for those patients that have at least one
of the above ICD codes associated with them and
exclude items outside the above scope for our final
set of patients.

The tabular data used in this work are selected
and organized around four core themes, namely
Diagnosis, Procedures, Prescriptions, and Lab
Events. Although there are cases where extra
information such as transfers, provider source, and
notes exist, for the purposes of tabular processing
related to our use case we organize the data
under aforementioned core concepts. These four
concepts provide the pathways for most critical
care decision making (Mao et al., 2022). In
particular, lab events and procedures typically
inform diagnosis, while diagnosis decisions inform
prescriptions, causally speaking, as shown in
Figure 4.

In order to transform tabular data to knowl-
edge graph representation, SPHN4 is used as
a schema that defines core concepts and predi-
cates for modeling clinical patient records (i.e.
EHR). In particular, we focus on 13 core con-
cepts, namely, ‘LabTestEvents’, ‘LabResult’,
‘Code’, ‘DrugPrescription’, ‘Drug’, ‘Substance’,
‘Diagnosis’, ‘BilledProcedure’, ‘Administrative-
Case’, ‘SubjectPseudoIdentifier’, ‘MedicalProce-
dure’, ‘BodySite’, and ‘AdministrativeGender’. We
also consider an additional concept named ‘Pa-
tient’ in order to model the individual patients.
As for predicates, we model a total of 7, namely

4https://www.biomedit.ch/rdf/sphn-schema/sphn
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Figure 5: The effect of record quantities available to
generate the personal health knowledge graph (PHKG)
using LLM Semantic Annotation.
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Figure 6: Ontological Alignment scores in terms of
number of layers in the Encoder/Decoders.

‘hasCode’, ‘hasLabTest’, ‘hasAdministrativeCase’,
‘hasSubjectPseudoIdentifier’, ‘hasDrug’, ‘hasAc-
tiveIngredient’, and ‘hasAdministrationRoute’ to
capture the relations between the entities. Addi-
tionally, we include ‘is a’ relation to indicate the
type assertions, ‘rdfs:subClassOf’ to indicate mem-
bership, and ‘owl:sameAs’ to indicate equivalent
codes.

3.2 Results

In the first set of experiments, we demonstrate the
effectiveness of the proposed semantic annotation
step (i.e. Algorithm 1) for predicting core concepts
in the BGP. We run the experiment for upto 5
iterations and measure the predictive precision
with 1, 3, 10, 15, and 20 records per core concept,
as shown in Figure 5. We observe that with 10 or
higher number of records and after 5 iterations, the
algorithm achieves satisfactory results. Once the
entities are annotated, the PHKG is generated in
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triple format.

The PHKG embeddings are learned with l con-
volution operators, each followed by a ReLu and
Dropout (p = 0.2) layer using the PyGeometric
library5. The hyperparameters are set by default
to batch_size=1024, learning_rate=0.005,
dropout=0.2, and regularization=1e-2. In
our experiments we create a separate train and test
split for each task at a random 80-to-20 ratio and
train a new model each time.

In order to find the effective model depth
for alignment and completion tasks, we run
algorithm 2 with different number of layers
l = {1, 2, 3, 4, 5} of the encoder and measure the
predictive precision, recall, and f-1 score of the
outcomes at threshold level λ = 0.5. We observe
as shown in Figure 6 that the models achieve the
best results up to and including three layers, past
which the performance begins to degrade. In the
following we set this hyper-parameter as l = 2.

The PHKG contains entities from one or
multiple coding systems - ICD for Diagnosis and
Procedures, LOINC for Lab and Observation
results, and NDC for Drugs and Substances.
On the other hand, SNOMED CT enables an
encompassing representation of clinical concepts
including diagnoses, procedures, observations and
substances. Aligning ICD, LOINC, and NDC
vocabularies to SNOMED CT allows the encoding
of patient data with contextualized representations
under one coding scheme, deemed crucial for
predictive tasks which we evaluate next.

In Figure 7, we demonstrate the results of
meta-path informed generative sampling in terms
of precision, recall, and f1-score according to
Algorithm 3. The progression of pathways follows
‘has lab code’ for LOINC code prediction, ‘has
diagnosis code’ for ICD code prediction, and ‘has
drug code’ for NDC drug prediction. For each
meta-path, the encoder and decoder are updated
for 30 iterations (i.e. a total of 90 iterations). It
can be observed with introduction of each new
pathway, that the scores exhibit a step function
behavior before converging within a window of 20
iterations. All in all, f1-scores of 0.984 , 0.862 ,
and 0.997 are achieved in this experiment for lab

5https://pyg.org/
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Figure 7: Performance scores on test data using the
meta-path sample generation of Algorithm 3, augment-
ing a personal health knowledge graph including 100
random admissions and following lab event (p1), diag-
nosis (p2), and prescription (p3) pathways.

event, diagnosis, and prescription code imputation.

We experiment further and report results for var-
ious down-stream prediction tasks using our graph
augmentation framework in Table 1. We provide
performance details in terms of three tasks, namely
lab event detection, diagnosis prediction, and drug
recommendation. Each task is defined as predict-
ing the corresponding code given the embedded
and aligned context from a particular admission
of a test patient. We experiment with both the
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Dataset
Size

Drug Recommendation Lab Event Detection Diagnosis Prediction
P R F P R F P R F

MIMIC III
DS100 0.99 ± 0.002 0.99 ± 0.002 0.99 ± 0.002 0.92 ± 0.009 0.91 ± 0.012 0.91 ± 0.013 0.87 ± 0.018 0.85 ± 0.022 0.85 ± 0.023
DS200 0.99 ± 0.002 0.99 ± 0.002 0.99 ± 0.002 0.87 ± 0.018 0.83 ± 0.031 0.82 ± 0.034 0.96 ± 0.009 0.96 ± 0.009 0.96 ± 0.009
DS300 0.99 ± 0.002 0.98 ± 0.002 0.98 ± 0.002 0.83 ± 0.010 0.73 ± 0.024 0.71 ± 0.029 0.96 ± 0.013 0.96 ± 0.014 0.96 ± 0.014
DS400 0.98 ± 0.002 0.98 ± 0.002 0.98 ± 0.002 0.84 ± 0.016 0.77 ± 0.033 0.76 ± 0.039 0.94 ± 0.021 0.94 ± 0.021 0.94 ± 0.021
DS500 0.98 ± 0.001 0.98 ± 0.001 0.98 ± 0.001 0.84 ± 0.012 0.78 ± 0.025 0.76 ± 0.029 0.97 ± 0.007 0.97 ± 0.008 0.97 ± 0.008

Average 0.99 ± 0.005 0.98 ± 0.005 0.98 ± 0.005 0.86 ± 0.034 0.80 ± 0.064 0.79 ± 0.074 0.94 ± 0.039 0.94 ± 0.048 0.94 ± 0.048
MIMIC IV

DS100 1.00 ± 0.002 1.00 ± 0.002 1.00 ± 0.002 0.95 ± 0.010 0.94 ± 0.013 0.94 ± 0.013 0.93 ± 0.011 0.92 ± 0.014 0.91 ± 0.014
DS200 0.99 ± 0.002 0.99 ± 0.002 0.99 ± 0.002 0.89 ± 0.021 0.85 ± 0.035 0.85 ± 0.038 0.98 ± 0.014 0.98 ± 0.015 0.98 ± 0.015
DS300 0.98 ± 0.004 0.98 ± 0.004 0.98 ± 0.004 0.89 ± 0.020 0.85 ± 0.033 0.85 ± 0.036 0.96 ± 0.014 0.96 ± 0.015 0.96 ± 0.015
DS400 0.98 ± 0.003 0.98 ± 0.003 0.98 ± 0.003 0.83 ± 0.020 0.74 ± 0.048 0.72 ± 0.061 0.94 ± 0.021 0.94 ± 0.022 0.94 ± 0.022
DS500 0.98 ± 0.002 0.98 ± 0.002 0.98 ± 0.002 0.87 ± 0.015 0.82 ± 0.027 0.81 ± 0.030 0.96 ± 0.010 0.96 ± 0.011 0.96 ± 0.011

Average 0.99 ± 0.008 0.99 ± 0.008 0.99 ± 0.008 0.89 ± 0.042 0.84 ± 0.070 0.83 ± 0.082 0.95 ± 0.019 0.95 ± 0.021 0.95 ± 0.025

Table 1: Performance evaluation of the proposed meta-path sampling generation algorithm for predictive tasks,
i.e. Drug Recommendation, Lab Event Detection, and Diagnosis Prediction. Different sizes of datasets are used,
including 100 to 500 admissions in each case (DS100-DS500) from both MIMIC III and MIMIC IV. Mean and
standard deviation over 10 separate runs are reported, in terms of precision (P), recall (R), and f1 score (F).

third and forth version of the MIMIC repository
(MIMIC III and MIMIC IV) and run the experi-
ment with different input sizes. In particular, we
generate graphs with randomly sampled data from
100, 200, 300, 400, and 500 distinct admissions
(i.e. DS100-DS500). It can be observed that the
models consistently achieve high performance in
precision, recall, and f1 score for each prediction
task and across different graph sizes.

4 Conclusions

In this work, a framework is proposed that trans-
poses the electronic health records from real-world
patients in tabular format with graphical represen-
tation using generative sampling. The represen-
tations are aligned with a domain specific ontol-
ogy to further disambiguate and contextualize. A
graph neural network that supports multi-relational
entities is trained and meta-path sampling is ap-
plied to generate missing information according
to upper-level ontological information. The gen-
eration process applied to tabular inputs related to
cardiovascular disease, achieve precision, recall,
and f1 scores in the ideal range for clinical data
augmentation and decision making.
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Abstract

Recent advances in tabular deep learning have
demonstrated the importance of embeddings
for numerical features, where scalar values are
mapped to high-dimensional spaces before be-
ing processed by the main model. Here, we
propose an embedding method using the hyper-
bolic tangent (tanh) activation function that al-
lows neural networks to achieve better accuracy
on tabular data via an inductive bias similar to
that of decision trees. To make training with the
new embedding method reliable and efficient,
we additionally propose a principled initializa-
tion method. Experiments demonstrate that the
new approach improves upon or matches accu-
racy results from previously proposed embed-
ding methods across multiple tabular datasets
and model architectures.

1 Introduction
Deep learning has achieved success in various do-
mains, from computer vision to natural language
processing. However, its application to tabular data
has been challenging, with gradient-boosted deci-
sion trees (GBDTs) typically outperforming neural
networks. This has led researchers to investigate
how neural networks can better capture the induc-
tive bias that makes tree-based models effective on
tabular data.

Work by Gorishniy et al. (2022) has demon-
strated that proper embedding of numerical features
is beneficial for achieving performance competi-
tive with that of GBDTs. Recent developments
have introduced additional approaches to tabular
embeddings: Li et al. (2024) use tree ensembles to
transform numerical variables into binarized em-
beddings, while Wu et al. (2024) suggest a two-step
feature expansion and deep transformation tech-
nique.

We propose here an approach to numerical fea-
ture embeddings based on properties of the hy-
perbolic tangent (tanh) function. The tanh func-

Figure 1: With a large weight w, tanh(wx) approxi-
mates an indicator function, enabling tree-like decision
boundaries, while with small w, it allows a smooth fea-
ture transformation.

tion exhibits a dual nature that aligns well with
the structure of tabular data: with large weight w,
tanh(wx + b) captures a tree-like inductive bias
by creating a sharp decision boundary, while with
small w it approximates a linear function; see Fig-
ure 1.

However, with poor initialization, neural net-
work training using tanh can lead to vanishing gra-
dients and unstable learning. To overcome this,
we introduce an initialization method based on a
simple probability argument. The new method en-
sures that the embedding parameters w and b start
in a region that facilitates both tree-like and linear
representations. Empirically, the new initialization
method does achieve the desired benefits of more
stable training and better accuracy.

Experiments demonstrate the effectiveness of
our approach in two scenarios. In the first scenario,
we compare embeddings using fixed dimensions,
where the model hyperparameters are tuned with-
out considering the embedding layer. In this case,
the new tanh-based approach consistently outper-
forms previous embedding methods across various
datasets and model architectures. In the second
scenario, we compare against previous ReLU em-
beddings, where both the model parameters and the
embedding dimensions were tuned for the use of
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ReLU. Even in this challenging comparison, tanh-
based embeddings lead to accuracy improvements.
Overall, the new approach can achieve competi-
tive or superior performance with minimal tuning
overhead, making it particularly practical for sce-
narios where extensive hyperparameter search is
not feasible.

2 Related Work
The application of deep learning to tabular data has
historically been challenging, with GBDTs often
achieving superior performance (Ke et al., 2017).
Recent studies provide insights into this perfor-
mance gap: Grinsztajn et al. (2022) demonstrated
that tree-based models’ success stems from their in-
herent ability to learn effective decision boundaries
and handle heterogeneous features, while McEl-
fresh et al. (2023) identified specific data charac-
teristics where neural networks can potentially out-
perform GBDTs.

Traditional neural networks treat numerical fea-
tures as direct inputs without specialized process-
ing. This approach has limitations in captur-
ing complex feature interactions and non-linear
relationships. Recent work by Gorishniy et al.
(2022) has studied simple differentiable embed-
dings, which apply a linear transformation followed
by an activation function, and piecewise linear em-
beddings, which creates disjoint learnable bins for
feature values. Their experiments demonstrated
that these embeddings can significantly improve
neural network performance on tabular data.

More recently, Li et al. (2024) proposed a tree-
regularized method that uses tree ensembles to
transform numerical variables into binarized em-
beddings, and Wu et al. (2024) introduced a unified
framework employing lightweight neural networks
for both numerical and categorical features, utiliz-
ing two-step feature expansion and transformation.
Importantly, neither of these methods is a standard
single neural network that can be trained by back-
propagation in a standard way, whereas the method
that we suggest below can be.

Recent research has also made progress in clos-
ing the performance gap with GBDTs through
other innovations in feature processing and model
architecture. Transformer-based models such as
TabTransformer (Huang et al., 2020) and FT-
Transformer (Gorishniy et al., 2021) tokenize the
features, using attention mechanisms to capture
complex feature interactions. Hybrid approaches
such as NODE (Popov et al., 2020) incorporate

tree-like structures into neural architectures, while
DCN V2 (Wang et al., 2021) uses cross networks
to model feature interactions. However, these meth-
ods are also not a simple single neural network that
is trainable in a standard way.

2.1 Activation functions and initialization

ReLU (Nair and Hinton, 2010) has become the
default choice for activation function due primar-
ily to its ability to mitigate the vanishing gradient
problem. However, it has limitations, including
that neurons can become inactive during training.
Alternatives proposed to address these limitations
include Leaky ReLU (Maas et al., 2013) and Para-
metric ReLU (He et al., 2015) which introduce a
small negative slope, while ELU (Clevert et al.,
2016) and GELU (Hendrycks and Gimpel, 2016)
offer smoother gradients.

The hyperbolic tangent (tanh) function, although
less commonly used in modern architectures, has
useful properties. Its bounded output between −1
and 1 provides natural normalization, while its sig-
moidal shape enables both smooth transformations
and sharp transitions that are similar to decision
boundaries in trees.

Proper initialization is crucial for training stabil-
ity and convergence, particularly in the context of
tabular data where feature scales and distributions
can vary significantly. Glorot and Bengio (2010)
introduced Xavier initialization, scaling weights
based on layer dimensions to maintain variance.
He et al. (2015) extended this for ReLU activations,
accounting for the activation’s non-linearity. For
tanh activations, LeCun et al. (2012) proposed scal-
ing weights by the square root of fan-in to maintain
variance.

While these approaches provide solid founda-
tions for neural network training, adapting them for
tabular data embeddings presents challenges due
to varying feature distributions and the need to bal-
ance linear and non-linear representations. Recent
data-dependent methods such as LSUV initializa-
tion (Mishkin and Matas, 2016) are adaptive, but
can be computationally intensive.

3 The tanh-based embedding method
Given a tabular dataset with numerical features, our
goal is to develop an embedding method that can
capture both linear and non-linear relationships in
the data. Let x ∈ Rp represent a numerical feature
vector, where p is the number of features. The new
embedding method maps each feature xi to Rd,

209



where d is the embedding dimension.
Previous approaches using ReLU activation func-

tions in the embedding layer can be expressed as
ei = ReLU(Wixi + bi) where Wi ∈ Rd×1 and
bi ∈ Rd are learnable parameters and ei ∈ Rd is
the embedding of xi (Gorishniy et al., 2022).

We propose replacing the ReLU activation with
tanh, so ei = tanh(Wixi + bi). The advantage is
that with large embedding weights Wi,j ≫ 1, each
component of the embedding captures a tree-like
inductive bias, by creating a sharp decision bound-
ary. Conversely, with a small weight Wi,j ≪ 1, a
component approximates a linear transformation,
because tanh(x) ≈ x for small x. See Figure 1.

We also propose an enhanced embedding variant
with a second transformation layer:

ei = σ(Mi tanh(Wixi + bi) + ci)

where Mi ∈ Rd×d and ci ∈ Rd are additional
learnable parameters, and σ is another activation
function, possibly ReLU. This two-layer method
allows for more complex feature transformations
while keeping the benefits of the tanh approach.

3.1 Connection to decision trees

A decision tree can be expressed as a function as
follows. First, each node in the tree is an indicator
function of some feature. Next, a path from the
root to a leaf node, which represents a sequence of
decisions, is a product of these indicator functions
or their negations along the path. Finally, the entire
tree is a combination of decision path functions:

f(x) =
∑

p∈P
cp

∏

i∈p
Di(xi, θi)

where P is the set of all paths from root to leaves,
cp is the constant value assigned to the leaf node
at the end of path p, and Di(xi, θi) is either 1xi≥θi

or 1xi<θi for feature xi with threshold θi, where
the choice depends on the split direction and which
half-domain the node represents. As a simple ex-
ample, see Figure 2.

Each component of a tanh embedding can ap-
proximate a smoothed version of an indicator func-
tion as follows. Consider component j of the vector
ei, as the weight Wi,j approaches infinity. Given
bi,j = −θi,jWi,j for a fixed θi,j , the tanh function
approaches an indicator function:

lim
Wi,j→∞

tanh(Wi,jxi + bi,j) = 1xi≥θi,j .

x1

2

< 3

x2

−4
< 4

5

≥ 4

≥ 3

Figure 2: A example of decision tree of depth 2 operat-
ing on features x1 and x2, showing both branches at the
root but only expanding the right subtree (x1 ≥ 3).

Each component j can capture a different decision
boundary, allowing the model to learn a rich set of
decision rules while maintaining differentiability,
which is crucial for gradient-based optimization.

The piecewise linear embedding method in Gor-
ishniy et al. (2022) partitions each feature’s range
into bins with predefined boundaries. In contrast,
the tanh-based approach allows the model to adapt
the location and the sensitivity of bin boundaries.

3.2 Principled initialization

Proper initialization of embedding weights is im-
portant for the success of tanh-based embeddings.
We propose a method that takes advantage of the
properties of tanh. We first preprocess all numer-
ical features using min-max scaling to the range
[−1, 1]. Our method uses the fact that tanh(t) be-
haves approximately linearly for t in [−0.5, 0.5].

When initializing an embedding that maps a fea-
ture xi into d dimensions, we aim to create uni-
formly distributed bins across the [−1, 1] range,
with each bin having a length of 2/d. We initialize
the embedding parameters as

Wi,j = d/2 and bi,j ∼ Uniform(−d/2, d/2).

As training progresses, the model learns to adjust
the weights and biases to capture both linear rela-
tionships (when Wi,jxi+bi,j is within [−1, 1]) and
non-linear relationships (otherwise).

In the appendix, we prove that this initializa-
tion strategy ensures that for any input value x ∈
[−1, 1], the expected number of bins where pre-
activation wx+ b falls within [−0.5, 0.5] is 1.

The effectiveness of the proposed initialization
strategy is empirically validated through analysis of
learned weight distributions in Section 5.3, which
shows that the embeddings maintain good coverage
of the feature space while adapting to local feature
complexity.
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Table 1: Dataset properties. MSE (↓: lower is better) denotes mean-square error, and AUC (↑: higher is better)
denotes area under the ROC curve. Dataset abbreviations: GE (gesture), CH (churn), CA (california), HO (house),
AD (adult), OT (otto), HI (higgs-small), FB (fb-comments), SA (santander), CO (covtype).

Regression Classification

CA FB HO AD CH CO GE HI OT SA

#objects 20640 197080 22784 48842 10000 581012 9873 98049 61878 200000
#num. features 8 50 16 6 10 54 32 28 93 200
#cat. features 0 1 0 8 1 0 0 0 0 0
metric MSE↓ MSE↓ MSE↓ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑
#classes – – – 2 2 7 5 2 9 2
majority class – – – 76% 79% 48% 29% 52% 26% 89%

Table 2: Naming scheme for model variants. Each
variant name consists of a prefix (experiment scenario),
embedding variants, and initialization suffix. For ex-
ample, 2B-LT-a is a model using optimized piecewise
linear embedding parameters (2B-), with tanh-based em-
bedding (T), and optimized initialization (-a).

(Abbr.) (Embedding Variants)
Base model MLP, ResNet, FT-Transformer
FR control group with ReLU activation
FT control group with Tanh activation
LR embedding with ReLU activation
LT embedding with Tanh activation
LRLR LR + linear layer + ReLU
LTLR LT + linear layer + ReLU

(Abbr. suffix) (Initialization)
-s standard initialization
-a principled initialization

(Abbr. prefix) (Scenarios)
(#)- preassigned embedding dim (#)
2A- see the main text
2B- see the main text

4 Design of Experiments

The embedding dimension is a hyperparameter that
has to be chosen to balance model expressiveness
with computational efficiency. We conduct ex-
periments under two scenarios that differ in how
base model parameters (e.g., hidden dimensions of
MLP) and embedding dimensions are selected.

Scenario 1 - Preassigned Dimensions: In this
scenario, we adopt the optimized base model pa-
rameters (hidden dimensions and dropout rates for
MLP, number of blocks etc. for ResNet and Trans-
former) obtained from hyperparameter search with-
out considering embeddings, and use preassigned
embedding dimensions. This allows us to evaluate
the impact of replacing ReLU with tanh activations
while keeping all architectural choices fixed.

Scenario 2 - ReLU-Optimized Dimensions: Here,
we adopt both the base model parameters and em-
bedding dimensions that are obtained from hyper-
parameter search for ReLU embeddings variants.

This scenario is split into two cases. Scenario 2A
uses tuned hyperparameter for linear embedding,
and Scenario 2B uses tuned hyperparameter for
piecewise linear embedding, as reported in Gor-
ishniy et al. (2022). This creates a challenging
comparison where we replace ReLU with tanh in
settings optimized for ReLU, demonstrating the
robustness of our approach.

Importantly, we do not perform additional hyperpa-
rameter search for model parameters or embedding
dimensions for the tanh-based approach. This eval-
uation strategy demonstrates that the benefits of our
method are inherent rather than the result of hyper-
parameter search, making it a drop-in replacement
for ReLU-based embeddings in applications where
extensive tuning may be infeasible.

As baselines for comparison, we consider two
control groups that, before feeding the input data
to the base model, process it through an extra
single fully-connected layer for all features, with
either ReLU or tanh activation functions. Thus
e = σ(Wx + b) where W ∈ Rd×p, b ∈ Rd and
σ is either ReLU or tanh. These control groups
separate the impact of our feature-wise embedding
approach from the increase in dimensionality by
comparing against a baseline fully-connected layer.

We evaluate three base model architectures, fol-
lowing the implementations in Gorishniy et al.
(2022).

MLP: A multi-layer perceptron with multiple hid-
den layers.

ResNet: A residual network adapted for tabular
data, incorporating skip connections to facilitate
training of deeper architectures.

FT-Transformer: A Feature Tokenizer Trans-
former architecture that treats tabular features as a
sequence, enabling feature interactions through the
attention mechanism.

For each base architecture, we evaluate several vari-
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Table 3: Performance of MLP variants on multiple datasets in Scenario 1. All rows are variations of MLP.

MSE↓ AUC↑
MLP-variants CA FB HO AD CH CO GE HI OT SA

MLP .0682 .0115 .0483 .8972 .8568 .9953 .7954 .7392 .9541 .8575
30-FR-s .0575 .0115 .0483 .9027 .8544 .9957 .7932 .7296 .9608 .8520
30-FT-s .0578 .0117 .0486 .9029 .8590 .9925 .7947 .7584 .9632 .8549
30-LR-s .0577 .0108 .0495 .9101 .8640 .9925 .7746 .5554 .9663 .8927
30-LT-s .0591 .0108 .0508 .9085 .8615 .9956 .7827 .5000 .9686 .8601
30-LT-a .0497 .0098 .0526 .9110 .8490 .9839 .8052 .7619 .9589 .8926
30-LRLR-s .0584 .0099 .0500 .9096 .8611 .9962 .6181 .5000 .9678 .8932
30-LTLR-s .0566 .0100 .0493 .9097 .8574 .9960 .7955 .6681 .9658 .8958
30-LTLR-a .0525 .0096 .0492 .9125 .8538 .9969 .8099 .7990 .9664 .8958

Table 4: Performance of ResNet variants on multiple datasets in Scenario 1. All rows are variations of ResNet.

MSE↓ AUC↑
ResNet variants CA FB HO AD CH CO GE HI OT SA

ResNet .0662 .0107 .0420 .9106 .8610 .9978 .8273 .8129 .9695 .8658
30-FR-s .0598 .0103 .0447 .9093 .8546 .9976 .8153 .7940 .9689 .8713
30-FT-s .0633 .0107 .0426 .9058 .8630 .9975 .8162 .7907 .9694 .8609
30-LR-s .0752 .0092 .0416 .9119 .8623 .9980 .8092 .8160 .9698 .8786
30-LT-s .0648 .0093 .0420 .9120 .8627 .9977 .8152 .8175 .9696 .8628
30-LT-a .0463 .0095 .0506 .9117 .8484 .9974 .8180 .7997 .9638 .8894
30-LRLR-s .0699 .0090 .0463 .9111 .8644 .9978 .7239 .8178 .9698 .8819
30-LTLR-s .0610 .0091 .0419 .9121 .8659 .9978 .7520 .8179 .9696 .8699
30-LTLR-a .0456 .0087 .0516 .9158 .8622 .9983 .8146 .8146 .9656 .8901

ants to assess the impact of different embedding
approaches. The base model is the architecture
without any specialized embedding layer, serving
as our primary baseline. The variants are:

• ReLU-based: Simple differentiable embed-
dings with ReLU activation

• Tanh-based: Our approach using tanh activa-
tion

• Enhanced: Additional linear transformation
layer after the activation function for both
ReLU and tanh variants

• Control: A fully-connected layer with spec-
ified activation function. (For the FT-
transformer, we do not test control group vari-
ants as they are not applicable.)

Standard initialization follows Kaiming for ReLU-
based models and Xavier for tanh-based models.
For the FT-transformer, we use the initialization
method from Gorishniy et al. (2022). “Principled"
refers to our initialization method described above.
Names for the model variants and hyperparameter
settings are in Table 2.

4.1 Datasets and metrics

We evaluate our approach on the nine tabular
datasets used in Gorishniy et al. (2022), which

represent a range of real-world scenarios with vary-
ing mixtures of numerical and categorical features,
both regression and classification problems, and
sizes. For categorical features, we employ label
encoding without additional preprocessing in the
MLP and ResNet models, and tokenization in the
FT-Transformer model. Table 1 provides statistics
for each dataset, including the number of numeri-
cal and categorical features, sample sizes, and task
types.

For evaluation of model performance, we em-
ploy task-specific metrics as follows.

Classification: We use the Area Under the Re-
ceiver Operating Characteristic Curve (AUC-ROC)
as our primary metric. AUC-ROC provides a mea-
sure of classification performance that is indepen-
dent of the chosen decision threshold and han-
dles class imbalance. For multi-class classification
tasks, we report the average one-vs-rest AUC-ROC
across all classes.

Regression: We evaluate using Mean Squared Er-
ror (MSE), which measures the average squared
difference between predicted and actual values.
Lower MSE values indicate better accuracy.

Training Efficiency: We record the training time
for each initialization method to compare conver-
gence speed and training efficiency.
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Table 5: Performance of MLP variants on datasets in Scenario 2A and 2B.

MSE↓ AUC↑
MLP variants CA FB HO AD CH CO GE HI OT SA

MLP .0682 .0115 .0483 .8972 .8568 .9953 .7954 .7392 .9541 .8575
2A-LR-s .0530 .0104 .0715 .8923 .8546 .9666 .7833 .5494 .9704 .8940
2A-LT-s .0530 .0106 .0566 .8888 .8521 .9783 .7798 .6638 .8988 .8618
2A-LT-a .0496 .0099 .0442 .8717 .8495 .9201 .8274 .7955 .9066 .8955
2A-LRLR-s .0575 .0093 .0651 .9105 .8582 .9692 .7897 .7990 .8970 .8770
2A-LTLR-s .0574 .0101 .0444 .9091 .8520 .9896 .8414 .7885 .6885 .8966
2A-LTLR-a .0470 .0073 .0360 .9174 .8520 .9963 .8545 .8013 .9649 .9028
2B-LR-s .0832 .0104 .0509 .9020 .8572 .9965 .8058 .7377 .9652 .8946
2B-LT-s .0858 .0111 .0513 .8971 .8502 .9979 .8033 .6883 .9639 .8790
2B-LT-a .0528 .0092 .0464 .8856 .8482 .9979 .8121 .7881 .9611 .8946
2B-LRLR-s .0511 .0106 .0457 .9088 .8598 .9914 .7987 .7874 .9553 .8909
2B-LTLR-s .0524 .0100 .0466 .9095 .8614 .9946 .7998 .7999 .9644 .8906
2B-LTLR-a .0510 .0087 .0434 .9143 .8488 .9915 .8181 .8112 .9737 .9054

Table 6: Performance of ResNet variants on multiple datasets in Scenario 2A and 2B.

MSE↓ AUC↑
ResNet variants CA FB HO AD CH CO GE HI OT SA

ResNet .0662 .0107 .0420 .9106 .8610 .9978 .8273 .8129 .9695 .8658
2A-LR-s .0725 .0082 .0365 .9176 .8644 .9909 .8228 .8237 .9712 .8895
2A-LT-s .0704 .0096 .0428 .9119 .8607 .9949 .8815 .8045 .9736 .8827
2A-LT-a .0427 .0089 .0481 .9170 .8516 .9985 .8619 .7941 .9736 .9077
2B-LR-s .0601 .0096 .0449 .9124 .8617 .9972 .7971 .8182 .9685 .8928
2B-LT-s .0671 .0094 .0428 .9146 .8602 .9955 .8065 .8198 .9684 .8849
2B-LT-a .0477 .0089 .0459 .9135 .8492 .9970 .8093 .7897 .9643 .8919

We employ 5-fold cross-validation. We split the
data into five shares, and in each fold, pick one
share as test set and split the rest as training and
validation set. We report the mean metrics across
all five folds, and we consider one result to be better
than another if its mean score is better and its stan-
dard deviation is less than the difference between
the best and the second best result. Unless other-
wise specified, we use hyperparameters that were
tuned on 80% of the original dataset by Gorishniy
et al. (2022).

We adapt the training framework from TabSur-
vey (Borisov et al., 2024) and begin with the model
implementations from Gorishniy et al. (2021). All
models are implemented in PyTorch and trained us-
ing the Adam optimizer with hypertuned learning
rate, batch size of 128, and at most 300 epochs
with early stopping based on validation perfor-
mance. All experiments are conducted on a sin-
gle Nvidia A100 GPU. Our code is available at
https://github.com/liu-bingyan/numbed.

5 Results and Analysis

In Tables 3 to 7 MSE (↓: lower is better) denotes
mean-square error and AUC (↑: higher is better)
denotes area under the ROC curve. The best results
for each dataset are shown in bold. Multiple bold

entries in the same column indicate results that are
statistically equivalent. Table 2 explains the model
variant abbreviations used in the results.

5.1 Scenario 1: Preassigned Dimensionality

We first evaluate the effectiveness of our method in
Scenario 1 as defined above.

For MLP models (Table 3), the tanh-based em-
bedding exhibits better performance compared to
the ReLU-based embedding across almost all test
cases. Moreover, our initialization method shows
notable improvements in the enhanced variants.

For ResNet models (Table 4), we observe consis-
tent improvements similar to those observed in the
MLP architecture. The tanh-based enhanced em-
bedding demonstrates superior performance com-
pared to the ReLU-based embedding across the
majority of test cases. The new initialization signif-
icantly improves performance for the CA and SA
datasets.

Overall, the results from Scenario 1 demonstrate
that given a preassigned embedding dimension, the
new tanh-based method effectively outperforms
the ReLU-based embedding, particularly in the en-
hanced variants.
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Table 7: Performance evaluation of FT-Transformer variants on multiple datasets in Scenario 2A and 2B. All rows
are variations of FT-Transformer.

MSE↓ AUC↑
FT-Transformer variants CA FB HO AD CH CO GE HI OT SA

2A-LR-s .0555 .0098 .0604 .9205 .8690 .9982 .8865 .8093 .9672 .8987
2A-LT-s .0519 .0099 .0502 .9194 .8689 .9981 .8501 .8069 .9657 .8939
2A-LT-a .0396 .0090 .0476 .9224 .8562 .9967 .8446 .8015 .9665 .8954
2B-LR-s .0679 .0098 .0478 .9158 .8619 .9981 .8026 .8074 .9677 .8988
2B-LT-s .0685 .0098 .0466 .9144 .8650 .9975 .8470 .8082 .9661 .8943
2B-LT-a .0443 .0091 .0313 .9259 .8623 .9968 .8718 .8040 .9655 .8949

5.2 Scenario 2: ReLU-Optimized Dimensions

Models with carefully tuned hyperparameters con-
stitute Scenario 2. While the improvements are
more modest, they remain consistent across archi-
tectures.

For MLP (Table 5), tanh-based enhanced embed-
dings demonstrate superior performance compared
to ReLU-based embeddings across all test cases
in both Scenarios 2A and 2B. This suggests that
our method effectively combines the advantages
of both linear embeddings and piecewise linear
embeddings. Notably, this performance advantage
holds even though the hyperparameters are tuned
for the comparison model, demonstrating the gen-
erality and robustness of our approach.

For ResNet (Table 6), while the original ReLU-
based embedding shows competitive performance,
our tanh-based enhanced embedding maintains bet-
ter performance in more than half of the test cases.
This demonstrates that our method achieves com-
parable or better performance than hyperparameter-
tuned models. Additionally, our initialization
method improves performance in more than half
of the test cases and does not significantly degrade
performance in the remaining cases.

For FT-Transformer (Table 7), our method shows
significant improvement in some datasets, reduc-
ing MSE to .0396 on dataset CA, while it stays
competitive in other cases.

5.3 Further Analyses

Figure 3 visualizes the learned embeddings for the
first feature from the California Housing dataset.
Compared to standard initialization, principled ini-
tialization allows bins to concentrate in regions
where the conditional expectation of the label
changes rapidly with the feature.

A significant advantage of our method lies in
its computational efficiency, as demonstrated in
Table 8. The average number of epochs required
for convergence is consistently improved for MLP

Figure 3: Comparison of embedding spaces learned
with different initializations for the first feature x of the
California Housing dataset (left standard, right princi-
pled). The center of each box is the embedding center
c = −b/w in the expression w(x−c) = wx+b, and the
width is 1/w. The horizontal line represents width 2/w.
Boxes are sorted by their centers; the vertical position
of each box is for display only and carries no meaning.

models, with many cases converging twice as fast
compared to the ReLU-based embedding.

Table 8: Number of epochs required for convergence
across different MLP variants in Scenario 1. Lower
values indicate faster convergence. The best values in
each group are bolded.

MLP variants AD CA CH CO FB GE HI HO OT SA

MLP 62 94 38 100 113 31 54 63 89 20
30-FR 76 84 27 101 104 33 40 65 79 18
30-FT 57 99 28 55 74 29 74 62 47 18

30-LR-s 56 117 85 207 105 78 44 106 216 93
30-LT-s 51 89 79 124 116 109 32 78 240 41
30-LT-a 38 74 22 46 72 61 30 35 94 22

30-LRLR-s 50 90 67 129 126 41 23 141 90 87
30-LTLR-s 45 97 50 122 104 41 50 106 74 99
30-LTLR-a 34 51 26 74 56 28 63 46 33 26

6 Discussion
In summary, the experimental results above show
that:

• In Scenario 1 (preassigned dimensions), the
new method achieves better accuracy than the
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ReLU-based method, particularly in enhanced
variants.

• In Scenario 2 (ReLU-optimized dimensions),
the new method maintains competitive perfor-
mance against hyperparameter-tuned models,
suggesting it captures a useful inductive bias.

In both scenarios, our initialization’s performance
varies for different models, but it doesn’t degrade
performance and improves it in half of the cases.
Moreover, the new method improves computational
efficiency, reducing training time while maintain-
ing or improving model accuracy.

Overall, tanh-based embeddings appear to consti-
tute a practical and effective solution for using nu-
merical features in tabular deep learning, offering
both accuracy improvements and computational
benefits, without the need for extensive hyperpa-
rameter tuning.

Limitations and Future Work
While our method demonstrates promising results
across multiple architectures and datasets, there are
several directions for future exploration.

Our current evaluation is based on the bench-
mark datasets from Gorishniy et al. (2022). Future
work could extend this evaluation to more recent
benchmarks, such as those proposed in Gorishniy
et al. (2024a) and Holzmüller et al. (2024), to fur-
ther validate the effectiveness of our approach.

In terms of model architectures, we have demon-
strated the effectiveness of our method on the mod-
els presented in Gorishniy et al. (2022), which
includes MLP, ResNet, and Transformer archi-
tectures. Future work could explore the integra-
tion of our method with more recent architectures,
such as TabR (Gorishniy et al., 2024b), RealMLP
(Holzmüller et al., 2024) and others.
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A Analysis of Initialization Strategy
This appendix analyzes the proposed initialization
strategy for the embedding parameters. Consider
a numerical feature x normalized to the interval
[−1, 1] and its embedding tanh(wx + b). For
optimal learning of decision boundaries, the pre-
activation values wx+ b should lie predominantly
within [−0.5, 0.5], where the tanh function exhibits
linear behavior.

Lemma 1. Let {ci}di=1 be independent and iden-
tically distributed random variables following a
uniform distribution on [−1, 1]. For each i, let
Ii = [ci − r, ci + r] be the closed interval of ra-
dius r centered at ci. Then, for any fixed point
x ∈ [−1, 1], the expected number of intervals con-
taining x is more than dr/2.

Proof. For any fixed x ∈ [−1, 1] and each interval
Ii, we have

P(x ∈ Ii) = P(ci − r ≤ x ≤ ci + r)

=

{
r if x ∈ [−1 + r, 1− r],
r+1−|x|

2 if |x| > 1− r,

Thus the P(x ∈ Ii) ≥ r/2. By the linearity of
expectation, the expected number of intervals con-
taining x is

E

[
d∑

i=1

1x∈Ii

]
=

d∑

i=1

P(x ∈ Ii) ≥ dr/2

The proposed initialization strategy sets w =
d/2, so r = 1/d, because −0.5 < wx + b < 0.5
is equivalent to −0.5/w < (x + b/w) < 0.5/w
and r = 0.5/w = 1/d. Therefore the expected
number of bins where the tanh activation provides
meaningful gradients for learning, for any given
data point, is at least 1.

This property ensures effective gradient propa-
gation during training while keeping the bins rela-
tively small for discriminative learning. The theo-
retical justification for this choice stems from the
trade-off between gradient propagation and fea-
ture discrimination: a higher coverage probabil-
ity would lead to excessive activation and reduced
discriminative capacity, while a lower probability
would risk insufficient gradient flow during train-
ing.
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Abstract
Recent advances in open-domain question an-
swering over tables have widely adopted large
language models (LLMs) under the Retriever-
Reader architecture. Prior works have effec-
tively leveraged LLMs to tackle the complex
reasoning demands of the Reader component,
such as text-to-text, text-to-SQL, and multi-hop
reasoning. In contrast, the Retriever compo-
nent has primarily focused on optimizing the
query representation—training retrievers to re-
trieve relevant tables based on questions, or
to select keywords from questions for match-
ing table segments. However, little attention
has been given to enhancing how tables them-
selves are represented in embedding space to
better align with questions. To address this,
we propose QGpT (Question Generation from
Partial Tables), a simple yet effective method
that uses an LLM to generate synthetic ques-
tions based on small portions of a table. These
questions are generated to simulate how a user
might query the content of the table currently
under consideration. The generated questions
are then jointly embedded with the partial ta-
ble segments used for generation, enhancing
semantic alignment with user queries. Without
the need to embed entire tables, our method
significantly improves retrieval performance
across multiple benchmarks for both dense and
late-interaction retrievers.1

1 Introduction

Table-based question answering (Table-QA) has
drawn increasing attention in recent years, begin-
ning with early works on Wiki-style tables (Pasupat
and Liang, 2015; Zhong et al., 2017). These early
Table-QA tasks typically operate under the assump-
tion that the relevant table is provided alongside
the question. While this assumption simplifies the
problem and allows a focused evaluation of rea-
soning over structured data, it fails to reflect the

1The code and reconstructed corpora are available at
https://github.com/cc3374twa/QGpT

challenges of real-world open-domain usage sce-
narios.

In practical settings, users do not typically spec-
ify which table to consult. Instead, they ask ques-
tions in natural language, and the system must first
determine which tables might contain the relevant
information before reasoning. The assumption of
a known target table is thus insufficient in many
realistic applications, where the answer may reside
in any one of potentially thousands of tables within
a large corpus.

To address this gap, recent research has moved
toward integrating table retrieval into the QA
pipeline. This shift is marked by the adoption of
Retriever-Reader architectures (Chen et al., 2017),
where a retriever component is responsible for iden-
tifying candidate tables, followed by a reader mod-
ule that performs QA over the retrieved tables.

As a pioneering study, NQ-TABLES (Herzig
et al., 2021) provides naturally phrased questions
and their corresponding answer tables extracted
from the Natural Questions dataset (Kwiatkowski
et al., 2019), and transforms TAPAS (Herzig
et al., 2020), a BERT-based table reader, into
a dense table retriever (DTR) by adopting the
DPR (Karpukhin et al., 2020) training paradigm.

Yet another study named CLTR (Pan et al.,
2021) integrates the RCI (Row-Column Intersec-
tion; Glass et al., 2021) model with BM25 (Robert-
son et al., 2009) for table retrieval, and introduces
the E2E-WTQ dataset for RCI retriever fine-tuning.

However, studies such as NQ-TABLES and
CLTR operate under the assumption that the an-
swer to a question resides in a specific cell within
a single, relatively short table. While this setting
facilitates controlled evaluation, it significantly lim-
its the generalizability of these approaches to real-
world applications, where answering questions of-
ten requires reasoning over multiple or lengthy ta-
bles.

Therefore, MMQA (Wu et al., 2025) extend the
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Figure 1: The QGpT pipeline: In the offline stage, top-10 rows from full tables are used to generate synthetic
questions via LLM. The questions and table snippets are embedded and stored in the corpus, enhancing retrieval
through semantic alignment without encoding full tables.

Table-QA paradigm by introducing complex rea-
soning tasks that integrate question answering with
Text-to-SQL, using the Spider dataset (Yu et al.,
2018) as a foundation. They propose a multi-table
retrieval (MTR) setting, in which a single question
may require retrieving and reasoning over multiple
relevant tables. Their approach decomposes the
original query into sub-queries, enabling indepen-
dent retrieval and re-ranking of candidate tables.

Building on the idea of query decomposition,
TableRAG (Chen et al., 2024b) adopts a similar
strategy by splitting questions into schema-level
and cell-level components and performing separate
retrieval for each. Additionally, it segments tables
into schema and content parts, allowing scalable
retrieval across corpora with millions of cells, and
focuses on retrieving localized table segments to
improve efficiency and accuracy.

In summary, Table-QA has evolved from sim-
ple single-table, short-answer settings (Pasupat and
Liang, 2015; Zhong et al., 2017; Herzig et al., 2021;
Chen et al., 2020) to more complex, multi-table,
and reasoning-intensive tasks (Wu et al., 2025;
Li et al., 2025). Nevertheless, practical deploy-
ment remains challenging due to the growing size
and noise of real-world tables. Traditional retriev-
ers (Robertson et al., 2009; Karpukhin et al., 2020;
Khattab and Zaharia, 2020) struggle to capture full-
table context in token limits, while more recent
approaches (Pan et al., 2021; Lin et al., 2023; Chen

et al., 2024b) primarily rely on table segmentation
based on rows, columns, or schema structures to
improve matching between query keywords and
table fragments. These methods focus on keyword-
level matching rather than learning a semantically
rich representation of the table that aligns with
user questions. Moreover, they are often bound
to dataset-specific assumptions or require retriever
fine-tuning (Pan et al., 2021; Lin et al., 2023).

To tackle this issue, we propose Question Gen-
eration from Partial Tables (QGpT), a simple yet
effective table retrieval method for long and com-
plex Table-QA tasks. Our approach requires only a
small snippet of the table and leverages LLMs to
generate simulated questions that are likely to be
asked. These questions are jointly embedded with
the partial table snippet, enabling a dense represen-
tation with minimal token budget while improving
retrieval accuracy.

As shown in Figure 1, QGpT is applied dur-
ing the offline phase to augment the table corpus.
During inference, it can adapt to various retriev-
ers without fine-tuning, and enhances the perfor-
mance of both dense and late-interaction retriev-
ers (Chen et al., 2024a; Jha et al., 2024). Our
QGpT framework offers a lightweight and general-
izable solution that improves semantic alignment
between questions and tables, reduces context size,
and maintains retrieval performance in increasingly
large and complex table settings.
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Figure 2: An illustration of three strategies for enriching truncated tables to enhance semantic alignment with the
input query: selecting headers, generating table descriptions, and generating synthetic questions.

2 Related Work

2.1 Table Question Answering (TableQA)
Early TableQA tasks typically assume the target
table is known, focusing on reasoning within a
single table. Wiki-TableQuestions (Pasupat and
Liang, 2015) is a pioneering dataset that provides
semi-structured Wikipedia tables with questions in-
volving simple answering. WikiSQL (Zhong et al.,
2017) reframes the task as a Text-to-SQL problem,
enabling structured query-based answering. Spi-
der (Yu et al., 2018) introduces higher complexity
by requiring reasoning over multiple tables and
supporting diverse SQL logic.

Subsequent works began exploring more natural
question formulations and open-ended scenarios.
FeTaQA (Nan et al., 2022) introduced free-form,
multi-hop reasoning questions requiring sentence-
level answers across multiple rows. OpenWik-
iTable (Kweon et al., 2023) expanded WikiSQL
and WikiTableQuestions by incorporating a larger
table collection and more natural question expres-
sions.

More recently, MimoTable (Li et al., 2025)
uses real-world spreadsheets of varying size and
complexity, containing multi-sheet structures and
nested tables. It categorizes difficulty levels based
on file count, number of sheets, and header com-
plexity, making it one of the most comprehensive
TableQA benchmarks.

Overall, the evolution of TableQA datasets has
shifted from “single-table, structured QA pairs”
to “multi-table, semantically ambiguous, natural
language” tasks. However, most of these datasets
do not consider the open-domain setting where

tables must be retrieved from a large corpus before
answering.

2.2 Table Retrieval in Open-Domain QA

A core challenge in open-domain TableQA is
efficiently retrieving relevant tables from large
corpora. OTT-QA (Chen et al., 2020) intro-
duces table retrieval from Wikipedia to support
open-domain question answering, highlighting the
need for integrated retriever-reader systems. NQ-
TABLES (Herzig et al., 2021) converts questions
from Natural Questions (Kwiatkowski et al., 2019)
into table-based QA pairs and incorporates a re-
trieval subtask. E2E-WTQ (Pan et al., 2021) ex-
tends WikiTableQuestions into a retrieval setting
and proposes Cell-Level Table Retrieval (CLTR),
focusing on cell-level semantic matching.

LI-RAGE (Lin et al., 2023) combines the con-
cept of joinable tables with late-interaction retriev-
ers (Khattab and Zaharia, 2020; Santhanam et al.,
2022b), enabling joint training of retrievers and
readers for better performance. TableRAG (Chen
et al., 2024b) decomposes questions and tables into
schema-level and cell-level components, enabling
compression of million-cell tables into retrievable
chunks.

MMQA (Wu et al., 2025) introduces Multi-Table
Retrieval (MTR), which leverages LLMs like GPT-
4 (Achiam et al., 2023) for query decomposition
without retriever fine-tuning. It further employs
LLM-based retrievers such as TableLlama (Zhang
et al., 2024) and SGPT (Muennighoff, 2022).

While advances in retriever architectures—from
sparse (Robertson et al., 2009) to dense (Karpukhin
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Retriever Table size R@1 R@3 R@5 R@10 Avg

BGE-m3-dense

Full-Table (8K) 44.68 38.20 61.82 54.06 67.62 62.52 75.30 70.07 62.36 56.21

1K tokens 46.09 40.27 62.83 56.22 68.90 63.47 77.46 70.06 63.82 57.51

2K tokens 45.15 40.15 62.75 55.62 68.16 63.70 76.70 70.61 63.19 57.52

5K tokens 44.53 38.86 61.82 55.26 67.69 62.69 75.53 70.32 62.39 56.78

Top10-rows 46.24 40.52 62.29 55.99 67.77 62.92 75.22 70.98 62.88 57.60

Jina-ColBERT-v2

Full-Table (8K) 42.15 26.53 57.59 37.97 61.93 43.67 69.06 54.06 57.68 40.56

1K tokens 48.82 37.56 64.24 53.11 70.40 58.61 75.25 67.09 64.68 54.09

2K tokens 46.67 32.09 61.10 45.69 66.22 52.44 72.10 62.24 61.52 48.12

5K tokens 42.62 26.70 56.97 39.22 62.09 44.44 68.12 54.50 57.45 41.22

Top10-rows 51.74 36.70 64.47 51.21 69.23 57.30 74.38 66.11 64.96 52.83

Table 1: Recall@k performance on the MiMoTable-English dataset (normal font) and MiMoTable-Chinese dataset
(shown in next to each value) across different retrievers and table representation lengths. Note that all table titles in
table embeddings are excluded . Best and second-best scores are bolded and underlined respectively per language.

Statistics English Chinese

Number of Tables 206 295
Number of Sheets 295 464
Number of Queries 641 995
Max Tokens per Sheet 8,974 1,227,845

Tokens / sheet

<1k 35% 29%
1k–2k 41% 36%
2k–5k 20% 22%
>5k 4% 13%

Table 2: Comparison of MiMoTable-English and
MiMoTable-Chinese statistics.

et al., 2020; Herzig et al., 2020) and late-interaction
models (Khattab and Zaharia, 2020; Santhanam
et al., 2022b; Lin et al., 2023)—have signifi-
cantly improved retrieval performance, our pro-
posed framework is agnostic to the underlying re-
triever. It can flexibly integrate with various re-
trieval paradigms and consistently enhance perfor-
mance across different backbone models.

3 Methodology

3.1 Partial Table Selection
To support complex TableQA tasks, it is essential
to reduce large tables by removing irrelevant cells.
A common approach is to retain only the header /
schema or to constrain the input by a fixed number
of tokens or rows. However, the former is heavily
dependent on the nature of the dataset: SQL-based

datasets typically rely heavily on headers, while in
datasets like MiMoTable (Li et al., 2025), which
aim to increase difficulty, headers are not neces-
sarily positioned in the first row and may even be
multi-level.

To inform our strategy for partial table selection,
we first analyze the length distribution of tables in
the MiMoTable dataset (see Table 2). Given the
wide variance in table sizes, we compare two rep-
resentative approaches for truncation: limiting by
token length and selecting the top-10 rows. We
construct English and Chinese table corpora ac-
cordingly and evaluate retrieval performance using
BGE-m3 (Chen et al., 2024a) and Jina-ColBERT-
v2 (Jha et al., 2024)—both supporting up to 8K
tokens—as our retrievers. As shown in Table 1,
the top-10 rows selection achieves comparable per-
formance to 1K tokens truncation in complex ta-
ble QA tasks. Considering the diversity of table
lengths across datasets and the simplicity of imple-
mentation, we adopt the top-10 rows as our default
strategy for partial table input.

To further improve semantic alignment between
user questions and compressed table inputs, we
explore several strategies for enriching table rep-
resentations. As illustrated in Figure 2, these in-
clude selecting table headers, generating natural
language descriptions, and producing synthetic
questions by LLMs. To realize these strategies,
we leverage LLaMA-3.1-8B-Instruct (Grattafiori
et al., 2024) to implement these strategies. Table 3
presents the retrieval results using each method. In-
terestingly, even without table content, simulated
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Retriever Method R@1 R@3 R@5 R@10 Avg

BGE-m3-dense

pT 44.27 61.95 67.25 75.27 62.19

header-only 33.06 49.18 57.59 65.04 51.28
desc-only 36.05 51.85 61.04 71.48 55.10
QG-only 48.09 64.47 72.39 79.28 66.06

pT + header 45.55 62.83 68.81 76.95 63.54
pT + desc 45.85 64.47 71.41 78.99 65.18
QGpT 50.66 66.42 72.35 80.80 67.58

Jina-ColBERT-v2

pT 54.25 69.16 75.83 81.97 70.30

header-only 51.14 67.42 74.14 80.72 68.36
desc-only 47.37 65.21 72.04 81.49 66.53
QG-only 52.76 70.10 75.17 80.45 69.62

pT + header 57.72 74.04 80.08 85.34 74.29
pT + desc 58.53 74.71 80.40 86.15 74.95
QGpT 57.94 75.21 79.11 83.26 73.88

Table 3: Recall@k results on the MiMoTable-English dataset comparing different table representation strategies and
retrievers. The base table input pT corresponds to the top-10 rows of each table. Additional representations—headers,
descriptions, and questions—are generated using the LLaMA3.1-8B-Instruct model. We evaluate combinations
such as pT with header, desc and QG. Scores are reported using dense and Multi-vector retriever.

Dataset #Q #Tables Type

OTT-QA 2.2K 789 TQA
FeTaQA 2K 2K TQA
E2E-WTQ 241 2.1K TQA
MiMoTable (en) 641 295 sheets Long, TQA

MMQA (2-Tbl) 2591 2591 / 644 Long, MTR,
MMQA (3-Tbl) 721 721 / 391 TQA, SQL

Table 4: Dataset statistics. For MMQA, we report
both the original and reconstructed table counts (origi-
nal/ours).

questions alone can achieve comparable or better
performance than partial tables. Combining simu-
lated questions with partial tables further improves
retrieval performance consistently. Motivated by
these findings, we propose a unified table repre-
sentation method—QGpT (Question Generation
from Partial Tables)—which augments the top-10
table rows with generated questions to construct an
enriched table corpus.

3.2 Question Generation from Partial Tables

QGpT is highly extensible and model-agnostic.
The simulated questions are generated during an
offline preprocessing stage, enabling integration
with various retrieval paradigms (e.g., query de-
composition or different retrievers) during online
inference.

Offline Stage Given a table corpus CT , we con-
vert each table into a markdown format and extract
its name and the top-10 rows to construct a new par-
tial table corpus Ct. For each partial table ti ∈ Ct,
we use a language model M to generate a set of
questions {qti,j} such that the number of generated
questions j satisfies:

j ≥
⌈ |Hti |

2

⌉

where |Hti | is the number of headers in Table
ti. The resulting augmented partial table t′i =
(ti, qti,1, qti,2, . . . , qti,j) is then embedded using an
embedding model E, producing a set of vectors for
the table corpus:

E(Ct′) = {E(t′1), E(t′2), . . . , E(t′n)}
Online Stage Given a user query qi ∈ Q, we
compute its embedding E(qi) and perform cosine
similarity with all table representations:

sim(E(qi), E(t′j)) ∀j ∈ [1, n]

The top-k most similar entries are then retrieved.

4 Experiments

4.1 Experimental Settings
Datasets For the Single Table Retrieval task, we
conduct experiments on OTT-QA (Chen et al.,
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Model Method
& Recall@k

Dataset Avg
MimoTable OTTQA FetaQA E2E-WTQ

BGE-m3
dense

pT
R@1

44.27 52.17 31.75 39.83 42.01
+QGpT 50.66 ↑6.39 51.45 ↓0.72 33.95 ↑2.20 41.49 ↑1.66 44.39 ↑2.38

pT
R@5

67.25 78.27 48.08 59.75 63.34
+QGpT 72.35 ↑5.10 78.14 ↓0.13 50.87 ↑2.79 65.98 ↑6.23 66.84 ↑3.50

pT
R@10

75.27 86.04 55.62 70.54 71.87
+QGpT 80.80 ↑5.53 86.68 ↑0.64 57.86 ↑2.24 72.61 ↑2.07 74.49 ↑2.62

Jina-
ColBERT-v2

pT
R@1

54.25 54.43 35.30 48.55 48.13
+QGpT 57.94 ↑3.69 55.15 ↑0.72 37.19 ↑1.89 51.45 ↑2.90 50.43 ↑2.30

pT
R@5

75.83 76.87 50.82 65.56 67.27
+QGpT 79.11 ↑3.28 78.73 ↑1.86 52.17 ↑1.35 71.37 ↑5.81 70.35 ↑3.08

pT
R@10

81.97 83.83 57.36 70.95 73.53
+QGpT 83.26 ↑1.29 86.04 ↑2.21 58.61 ↑1.25 76.76 ↑5.81 76.17 ↑2.64

Table 5: Single-table retrieval performance (Recall@k) across four QA datasets using two retrievers. The base
method pT uses the top-10 table rows, while QGpT denotes the enhancement via question generation. Only
embeddings for OTTQA exclude table titles, while all other datasets include them. ↑ indicates the improvement
over the corresponding pT baseline.

2020) and FeTaQA (Nan et al., 2022) following
the evaluation settings proposed by TARGET (Ji
et al., 2024), as well as on E2E-WTQ (Pan et al.,
2021) and MiMoTable-English (Li et al., 2025).

For the Multi-Table Retrieval task, we evaluate
on the MMQA dataset (Wu et al., 2025). How-
ever, the original MMQA dataset only provides
question-table-answer triples without releasing a
unified table corpus. Moreover, tables with the
same table_name may differ in structure across
different examples—some pointing to semantically
distinct tables despite identical names. To en-
sure consistency and reproducibility, we recon-
struct the MMQA table corpus by performing a
schema-based deduplication. Specifically, we (1)
group tables by table_name and enumerate dis-
tinct schema variants, (2) assign unique identifiers
(e.g., department__1, department__2) for struc-
turally distinct tables, and (3) update all question-
table mappings accordingly. This process results
in a flattened and de-duplicated table corpus that
supports robust retrieval evaluation. A summary of
all datasets used can be found in Table 4.

Models Throughout all experiments, we adopt
BGE-m3 (Chen et al., 2024a) and Jina-ColBERT-
v2 (Jha et al., 2024) as base retrievers, which
support up to 8K tokens and represent dense and
late-interaction paradigms, respectively. All ques-

tion generation is performed using LLaMA-3.1-
8B-Instruct (Grattafiori et al., 2024), with prompt
details provided in Appendix A.

To analyze the impact of model capacity on
query decomposition in Multi-Table Retrieval
(MTR), we experiment with multiple large lan-
guage models, including LLaMA-3.1-8B-Instruct,
GPT-4o-mini, and GPT-4o (Hurst et al., 2024),
within the MTR framework.

Evaluation Metrics We report performance us-
ing the Recall@K metric across all experiments.
For Multi-Table Retrieval, we follow the MMQA
evaluation settings with K = {2, 5, 10}.

4.2 Implementation Details

All experiments are conducted using two NVIDIA
RTX A6000 GPUs. We use RAGatouille2 and
Milvus3 (Wang et al., 2021) as the retrieval
infrastructure for vector indexing and search
for Jina-ColBERT-v2 and BGE-m3, respectively.
For Milvus, we adopt index_type=IVF_FLAT,
metric_type=IP, and nlist=256 to balance re-
trieval speed and accuracy. For RAGatouille, we
leverage PLAID (Santhanam et al., 2022a), a high-
performance indexing engine specifically designed
for late interaction retrievers, enabling efficient

2https://github.com/AnswerDotAI/RAGatouille
3https://milvus.io/
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Retriever Method R@2 R@5 R@10 Avg

BGE-m3-dense

pT 48.65 (39.36) 68.54 (61.10) 80.94 (74.69) 62.55

MTR (LLaMA3.1-8b) 44.60 (36.50) 65.32 (60.02) 79.07 (74.15) 59.94
+QGpT 49.63 (38.81) 68.33 (62.17) 80.13 (75.86) 62.49

MTR (GPT4o-mini) 45.60 (36.51) 67.32 (59.51) 79.80 (72.61) 60.23
+QGpT 50.19 (37.93) 71.37 (61.24) 82.58 (74.86) 63.03

MTR (GPT4o) 46.15 (36.41) 67.79 (58.90) 81.05 (73.17) 60.58
+QGpT 51.10 (38.09) 71.89 (60.40) 82.13 (74.45) 63.01

QGpT 52.24 (40.05) 71.47 (63.36) 82.33 (75.36) 64.14

Jina-ColBERT-v2

pT 58.18 (45.79) 77.87 (70.16) 87.09 (81.63) 70.12

MTR (LLaMA3.1-8b) 54.34 (42.65) 73.90 (66.84) 83.93 (78.30) 66.66
+QGpT 54.28 (43.52) 74.98 (67.67) 84.22 (79.71) 67.40

MTR (GPT4o-mini) 56.40 (41.24) 75.27 (65.18) 86.36 (75.96) 66.74
+QGpT 56.33 (42.15) 76.18 (66.81) 86.17 (78.11) 67.63

MTR (GPT4o) 56.76 (42.15) 75.82 (65.72) 86.80 (76.53) 67.30
+QGpT 56.99 (43.23) 76.91 (67.82) 86.91 (77.97) 68.31

QGpT 59.49 (46.75) 78.41 (71.43) 87.25 (83.14) 71.08

Table 6: Recall@k performance on the MMQA dataset with different retrievers and query methods. Metrics reflect
performance on the 2-table setting; scores in parentheses show corresponding results under the 3-table setting
(in small font). All methods are built upon the pT baseline (top-10 table rows). MTR uses sub-query generation via
LLaMA3.1-8B-Instruct, GPT-4o, or GPT-4o-mini. QGpT questions are generated using LLaMA3.1-8B-Instruct.

token-level matching at scale.

5 Experimental Results

5.1 Main Results

Single Table Retrieval We evaluate retrieval per-
formance across datasets ranging from short and
simple to long and complex tables. As shown
in Table 5, QGpT consistently improves retrieval
performance across all Single Table QA datasets
compared to using partial tables alone. Notably,
on the MiMoTable dataset—which features longer
and more complex tables—both the dense and
late-interaction retrievers benefit significantly from
QGpT. This demonstrates that QGpT is particularly
effective in scenarios where aggressive table com-
pression is required, offering robust performance
regardless of table complexity.

Multi Table Retrieval Building on the same
partial table setup, we compare Multi-Table Re-
trieval (MTR), QGpT, and their combination on the
MMQA dataset. Note that our evaluation is based
on a reconstructed table corpus. Therefore, our re-
sults are not directly comparable to those reported
in the original paper.

Table 6 shows that while MTR performance

slightly improves with larger query decomposition
models (e.g., GPT-4o), it still underperforms com-
pared to directly using partial tables for retrieval.
This gap may stem from differences in implemen-
tation, such as our exclusion of the original pa-
per’s hand-crafted one-shot examples or the use of
full tables during retrieval. However, integrating
QGpT into MTR substantially closes the perfor-
mance gap, and QGpT alone consistently outper-
forms the baseline across settings. These results
highlight QGpT’s effectiveness in both single- and
multi-table retrieval, providing strong gains even
when only limited table information is available.

5.2 Ablation studies

Can Simulated Questions Bridge the Seman-
tic Gap? To understand whether simulated ques-
tions truly enhance the semantic alignment between
partial tables and questions, we conduct an abla-
tion study on the OTT-QA dataset. As noted by
TARGET (Ji et al., 2024), OTT-QA questions often
align closely with table titles, and excluding titles
from the corpus can dramatically reduce BM25
Recall@10 from 95% to 44%.

In our study, we generate two versions of simu-
lated questions using QG models: one with access
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Model & Method R@1 R@3 R@5 R@10 Avg

BGE-m3-dense (pT) 52.17 70.73 78.27 86.04 71.80
+QGpT w/o title 51.45 ↓0.72 70.64 ↓0.09 78.14 ↓0.13 86.68 ↑0.64 71.23 ↓0.57

+QGpT w/ title 60.79 ↑8.62 78.14 ↑7.41 84.37 ↑6.10 91.46 ↑5.42 78.69 ↑6.89

Jina-ColBERT-v2 (pT) 54.43 70.01 76.87 83.83 71.29
+QGpT w/o title 55.15 ↑0.72 71.27 ↑1.26 78.73 ↑1.86 86.04 ↑2.21 72.80 ↑1.51

+QGpT w/ title 60.07 ↑5.64 75.34 ↑5.33 80.80 ↑3.93 87.71 ↑3.88 75.98 ↑4.70

Table 7: Recall@k results on the OTT-QA dataset with different retrievers and QGpT enhancements. All embedding
representations exclude table titles, while QGpT question generation is conducted with or without referencing
table titles.

to table titles, and another without. We then embed
both variants alongside partial tables that exclude
the titles. As shown in Table 7, incorporating simu-
lated questions generated with access to titles leads
to significant performance improvements, outper-
forming both the baseline and the QGpT variant
that does not use titles. These results validate that
simulated questions can effectively bridge the se-
mantic gap, helping partial tables better align with
user queries during retrieval.

6 Conclusion

In this work, we propose QGpT (Question Gener-
ation from Partial Tables), a simple yet effective
framework to enhance table retrieval by bridging
the semantic gap between compressed table inputs
and user queries. By leveraging LLMs to generate
simulated questions from partial tables, QGpT pro-
vides a semantically enriched representation that
improves retrieval performance across both single-
and multi-table QA benchmarks.

Our extensive experiments demonstrate that
QGpT consistently outperforms traditional partial
table baselines on diverse datasets, including long,
noisy, and multi-table settings. Notably, the frame-
work is model-agnostic and can be flexibly inte-
grated with different retrievers without requiring
fine-tuning.

Limitations

While QGpT offers a generalizable solution for en-
hancing table retrieval, several limitations remain:

LLM dependency: The quality of simulated
questions relies heavily on the capabilities of the
underlying LLM. Lower-quality LLMs may gen-
erate irrelevant or redundant questions, limiting
retrieval gains.

Generation latency: Although question gen-
eration occurs offline, large-scale preprocessing
for hundreds of thousands of tables may introduce
overhead in real-world deployments.
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A Prompt Details for Question
Generation

We provide the exact prompts used in our LLM-
based pipeline for extracting headers and gen-
erating simulated questions from partial tables.
Prompts were designed to be highly structured
and instructive, guiding the LLM (LLaMA-3.1-
8B-Instruct) to handle inputs. All prompts return a
strict JSON format, suitable for programmatic post-
processing.

A.1 Header Extraction + Question
Generation (Full Pipeline)

If header extraction is desired (used in most QGpT
scenarios), we use the following prompt format:

You are an expert in table data analysis.
Given a table with its file name, sheet
name, and a portion of its content (first
ten rows), your task is to **extract key
headers and generate questions** based
on the table & headers.

Important Considerations:

• The table may contain nan or
Unnamed: values, which represent
empty merged cells in the original
table. These **should not**
be considered as meaningful data
points or headers.

• The **true column headers may not
always be in the first row or
first column**. Carefully analyze
the table to identify the correct
headers.

• If the table has **multi-level
headers**, preserve the
hierarchical structure without
merging or altering the text.

• If the table has an **irregular
header structure** (such as
key-value formatted headers
where column names are listed
separately), extract the correct
header names accordingly.

• **Ignore rows that contain mostly
empty values (nan, Unnamed:) or
placeholders without meaningful
data.**

• **Do not generate python code,
extract headers and questions on
your own.**

• The type of Questions could be one
of (lookup, calculate, visualize,
reasoning).

• **Generate question using the
language of the table.**

Tasks:

1. Extract Header Names:

• Identify the **true headers**
by analyzing the structure of
the table.

• **Exclude** placeholder values
like "nan" and "Unnamed:".

• If the table contains
**multi-level headers**,
keep them as separate levels
without merging.

• If the table has **key-value
headers**, extract the correct
column names.

2. Generate Questions
(Context-Specific to the Table):

• Formulate **questions that can
only be answered using this
specific table**.

• Ensure **each question involves
1 to 3 different headers**
to capture interactions between
data & columns.

• Ensure the header diversity in
all the questions.

• Use ” to mark the headers in the
question.

• **Total number of questions
should larger than the half
number of extracted headers**

**Output Format (Strictly JSON format)**
Only return a JSON dictionary object
with the extracted headers and questions,
without any additional explanations or
formatting.

{{ "headers": ["header1", "header2",

"..."], "questions": ["question1",

"question2", "..."] }}

Input Table: <table>

A.2 Question Generation Only (Without
Header Extraction)

If header extraction is skipped (e.g., MMQA), we
apply a simplified prompt:

You are an expert in table data analysis.
Given a table with its file name and a
portion of its content (first ten rows),
your task is to **generate questions**
based on the table & headers.

Important Considerations:

• **Do not generate python code,
generate questions on your own.**

• The type of Questions could be
one of (Numerical, List, Count,
Select).

• **Generate question using the
language of the table.**

**Tasks:**

• **1. Generate Questions
(Context-Specific to the Table):**

• Formulate **questions that can only
be answered using this specific
table**.
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• Ensure **each question involves
1 to 3 different headers** to
capture interactions between data
& columns.

• Ensure the header diversity in all
the questions.

• Use ” to mark the headers in the
question.

• **Total number of questions should
larger than the half number of
extracted headers**

**Output Format (Strictly JSON format)**
Only return a JSON dictionary object
with the extracted headers and questions,
without any additional explanations or
formatting.

{ "questions": ["question1",

"question2","..."]

Input Table: <table>
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Abstract
This work reframes the Text-to-SQL task as
a pathway for teaching large language mod-
els (LLMs) to reason over and manipulate tab-
ular data—moving beyond the traditional fo-
cus on query generation. We propose a two-
stage framework that leverages SQL supervi-
sion to develop transferable table reasoning ca-
pabilities. First, we synthesize detailed chain-
of-thought (CoT) traces from real-world SQL
queries, providing step-by-step, clause-level
supervision that teaches the model how to tra-
verse, filter, and aggregate table fields. Second,
we introduce a Group Relative Policy Optimiza-
tion (GRPO) reinforcement learning objective
that connects SQL execution accuracy to gen-
eralizable reasoning by encouraging steps that
extend beyond task-specific syntax and transfer
across datasets.

Empirically, our approach improves perfor-
mance on standard Text-to-SQL benchmarks
and achieves substantial gains on reasoning-
intensive datasets such as BIRD, CRT-QA and
Tablebench, demonstrating enhanced general-
ization and interpretability. Specifically, the
distilled-quantized LLaMA-8B model achieved
a 34% relative increase in exact match scores
on CRT-QA when trained on Text-to-SQL
tasks, while Qwen-2.5-7B achieved a 10% and
Qwen-2.5-14B a 6% relative increase. These
results suggest that SQL can serve not only as
a target formalism but also as an effective scaf-
fold for learning robust, transferable reasoning
over structured data.

1 Introduction

Recent advancements in LLMs have substantially
improved performance on Text-to-SQL tasks, trans-
lating natural language into executable SQL queries
over relational databases (Gao et al., 2023).

Progress has been driven primarily by supervised
fine-tuning (SFT) on SQL-focused datasets (e.g.,

*Equal contribution
†One Pancras Square, Pancras Rd, London N1C 4AG

Spider (Yu et al., 2018), BIRD (Li et al., 2023)) or
prompt-based adaptation (Sun et al., 2023). How-
ever, these methods often narrowly optimize for
syntactic correctness or execution accuracy, over-
looking deeper reasoning over underlying data
structures—resulting in degraded performance in
real-world settings (Liu et al., 2024; Nascimento
et al., 2025).

This highlights a broader issue: Text-to-SQL is
frequently treated as a standalone task, rather than
as a facet of the more general challenge of reason-
ing over tabular data (Liu et al., 2024). SQL, as a
formal language, provides a vehicle for structured
reasoning over relational tables; thus, models gen-
erating SQL should ideally also support broader
forms of table-based question answering (e.g., Tab-
Fact (Chen et al., 2019), WikiTQ (Pasupat and
Liang, 2015), FinQA (Chen et al., 2021)).

Yet, models fine-tuned exclusively for Text-to-
SQL often exhibit degraded performance on re-
lated tasks, suggesting overfitting to SQL-specific
patterns at the expense of flexible reasoning (Ab-
hyankar et al., 2024). Methods like H-STAR (Ab-
hyankar et al., 2024) integrate symbolic and se-
mantic reasoning for improved table comprehen-
sion, while Plan-of-SQLs (POS) (Brugere et al.,
2024) emphasize interpretability and QA perfor-
mance. However, both approaches tend to bias the
model toward SQL-centric reasoning, potentially
limiting generalization (Nascimento et al., 2025).
Inspired by DeepSeek-R1 (Guo et al., 2025), we
explore whether reinforcement learning (RL) can
foster emergent reasoning capabilities that connect
Text-to-SQL with general tabular QA.

We propose a two-stage approach depicted in
Figure 1. First, we introduce a supervised fine-
tuning phase leveraging synthetically generated
CoT reasoning traces to provide structured guid-
ance between the natural language input and its cor-
responding SQL representation. Unlike SynSQL-
2.5 (Li et al., 2025b), which emphasizes data scale,
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our approach focuses on generating high-quality
CoT traces grounded in real data points. Second,
we apply GRPO (Shao et al., 2024), a reinforce-
ment learning method that compares multiple can-
didate outputs, aligning SQL execution accuracy
and query structure with broader reasoning fidelity.

While prior work (e.g., Reasoning-SQL (Pour-
reza et al., 2025), SQL-R1 (Ma et al., 2025)) has
applied RL to SQL generation, our key contribution
lies in bridging Text-to-SQL with general tabular
reasoning. We show that models trained with our
two-stage framework outperform SFT baselines not
only on SQL benchmarks but also on reasoning-
intensive QA datasets such as CRT-QA (Zhang
et al., 2023) and Tablebench (Wu et al., 2025), illus-
trating that SQL generation, when properly framed,
can serve as a foundation for broader structured
data reasoning.

Our key contributions are:

1. Synthetic CoT Supervision: We present a
method for generating synthetic reasoning
traces tailored to the SQL domain, offering
structured and interpretable supervision dur-
ing fine-tuning. The synthetic data is made
publicly available1.

2. Reinforcement Learning with GRPO for
Generalization: We apply GRPO not only to
improve SQL execution accuracy, but also to
regularize model behavior toward more gener-
alizable table reasoning.

3. Empirical Evidence of Cross-Task Gains:
Our two-stage method improves performance
on standard Text-to-SQL benchmarks while
enhancing reasoning ability on diverse QA
datasets such as CRT-QA and Tablebench.

The training and evaluation code is made publicly
available2.

2 Background

2.1 Reasoning in Language Models
LLMs have demonstrated strong capabilities in
general-purpose reasoning tasks, including arith-
metic, logic, and multi-step decision-making.
These capabilities are often enhanced by prompt-
ing techniques, tool integration, and reinforcement

1https://huggingface.co/datasets/jls205/
synthetic_cot_traces_clinton/blob/main/cot.csv

2https://github.com/josefastoisser/sparks_of_
tabular_reasoning

learning (Jaech et al., 2024; Guo et al., 2025). A
growing line of work has focused on intermedi-
ate reasoning structures, such as CoT prompting,
which guide models through decomposed, inter-
pretable inference steps (Zhao et al., 2025).

In particular, long-form CoT reason-
ing—requiring detailed, iterative solutions—has
shown benefits in domains like mathematics,
program synthesis, and multi-hop question
answering (Team et al., 2025). Unlike short-form
CoT, long-form reasoning involves planning,
reflection, and consistency across intermediate
steps. Recent studies have shown that such
behavior can be learned through data-efficient
supervised fine-tuning and parameter-efficient
adaptation methods such as low-rank updates
(LoRA) (Li et al., 2025a). Beyond training-time
learning, test-time methods like self-consistency
and re-ranking over multiple generations have
been shown to improve reasoning reliability (Wei
et al., 2022; Wang et al., 2022).

Complementary to these approaches, reinforce-
ment learning has been explored as a way to pro-
mote reasoning beyond imitation, allowing models
to discover extended inference patterns through
reward-driven optimization (Qin et al., 2024; Chen
et al., 2025; Shinn et al., 2023).

2.2 LLMs on Text-to-SQL
Mapping natural language to executable SQL in-
volves three principal challenges: interpreting user
intent, understanding database schema, and gener-
ating syntactically and semantically correct queries
(Hong et al., 2024; Stoisser et al., 2025). LLMs
have shown strong performance on this task, sup-
ported by progress in semantic parsing and schema
linking (Liu et al., 2024; Shi et al., 2020). Recent
work continues to refine LLMs across subcompo-
nents of the task, including question understanding
(Pourreza and Rafiei, 2023), schema comprehen-
sion (Yuan et al., 2025), and SQL generation (Lee
et al., 2024).

To move beyond supervised fine-tuning, rein-
forcement learning has been proposed as a means
of aligning model behavior with downstream per-
formance objectives (Jiang et al., 2025). GRPO
compares multiple candidate outputs, offering a
denser learning signal that mitigates the limitations
of sparse or binary rewards (Pourreza et al., 2025).
SQL-R1 builds on this idea by integrating rein-
forcement learning with synthetic CoT supervision,
achieving competitive results on benchmarks such
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as BIRD and WikiSQL (Ma et al., 2025; Li et al.,
2025b).

These approaches suggest that supervision
grounded in SQL execution can serve not only as
a means of training for query generation, but as a
proxy for inducing structured reasoning in LLMs.

2.3 LLMs on Tabular Question Answering

LLMs have increasingly been applied to ques-
tion answering over structured tabular data—a task
that combines natural language understanding with
symbolic reasoning. In the typical formulation,
models receive a serialized table and a natural lan-
guage query, and are tasked with producing an accu-
rate answer. While this setting is straightforward, it
presents several challenges, including query intent
disambiguation, context-aware retrieval, numeri-
cal reasoning, and robust handling of multi-turn
interactions (Pal et al., 2023).

Recent work has introduced frameworks that ex-
tend LLM capabilities in this domain. The Chain-
of-Command approach, for instance, reformulates
user queries into structured commands that guide
table interaction (Zha et al., 2023). Other strategies
improve retrieval through query-based sampling
or adaptive search mechanisms (Sui et al., 2023).
Multi-turn dialogue settings have also gained at-
tention, where task decomposition and iterative
refinement have shown improvements in reasoning
depth and consistency (Yu et al., 2025).

Benchmarks such as CRT-QA provide a foun-
dation for evaluating LLM performance on table
reasoning tasks (Zhang et al., 2023; Ashury-Tahan
et al., 2025). These settings demand not only the
ability to parse structured inputs, but also to inte-
grate logical, numerical, and contextual cues across
diverse formats. Together, these developments sug-
gest that tabular question answering offers a rich
and challenging testbed for evaluating the reason-
ing capabilities of LLMs.

3 Methodology

Our methodology is outlined in Figure 2, where we
see the breakdown into 6 steps.

3.1 Generating Synthetic Reasoning Traces
for SQL Tasks

In the first stage, we construct synthetic CoT
traces for Text-to-SQL questions using a structured
prompting pipeline. The core generation process
employs a LLMs trained on 25 diverse datasets (see

Appendix A), following the methodology of Boub-
novski et al. (2025). Specifically, we prompt the
o3-mini model to answer SQL-related questions
while producing intermediate reasoning steps in
natural language as shown in Appendix B.1. A
second language model is used as a verifier to as-
sess both the correctness of the final answer and
the internal reasoning trace (prompt details in Ap-
pendix B.2).

This framework yields a dataset of 3,174 exam-
ples containing only correctly reasoned outputs,
which we use as high-quality supervision during
model fine-tuning.

3.2 Training and Reward Design

To promote tabular reasoning in large-scale lan-
guage models for natural language to SQL tasks,
we adopt a two-stage training approach inspired by
DeepSeek-R1 (Guo et al., 2025). In the first stage,
we apply supervised fine-tuning on synthetic rea-
soning traces generated by o3-mini. This step im-
proves the model’s ability to follow instructions, de-
compose complex tasks, and generate interpretable
outputs within the SQL domain.

In the second stage, we apply reinforcement
learning to refine the model’s reasoning behavior
and align it more closely with execution-based per-
formance objectives. This training encourages con-
sistency between intermediate reasoning steps and
the final executable output, enabling the model to
generalize beyond dataset-specific patterns in the
data.

3.2.1 Reinforcement Learning

To refine model behavior beyond supervised learn-
ing, we employ GRPO, a reinforcement learning
method originally introduced in Deepseekmath
(Shao et al., 2024). This approach enables more
stable optimization by comparing multiple outputs
for the same input and assigning relative rewards.
By evaluating groups of candidate outputs rather
than individual sequences in isolation, the model re-
ceives finer-grained feedback that encourages con-
sistent and generalizable reasoning.

Formally, for a given natural language ques-
tion q and its associated database schema, the
model generates a set of G candidate SQL queries
{o1, o2, . . . , oG}. Each candidate is scored using
a task-specific reward function, and the relative
advantage Ai is computed for each output. The
optimization objective is given by:
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Figure 1: Training on Text-to-SQL, Evaluating on Dual Tasks. Our framework is trained solely on Text-to-SQL
data, using structured supervision from CoT traces and reinforcement learning objectives. At evaluation time,
we assess performance on both Text-to-SQL benchmarks and tabular question answering tasks. This setup tests
whether SQL-centered training can induce reasoning capabilities that generalize beyond query generation to broader
table-based inference.

Figure 2: Overview of the training pipeline. Given
a natural language question and schema, we generate
SQL queries and CoT traces using a pretrained o3-mini.
A second model filters these outputs by judging cor-
rectness and consistency. Verified traces are used for
supervised fine-tuning on Clinton, followed by GRPO
on the BIRD dataset. This two-stage training process
promotes generalization across both SQL generation
and tabular question answering.

JGRPO(Θ) =E

[
1

G

G∑

i=1

min

(
πθ(oi|q)
πθold(oi|q)

Ai,

clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)]

− βDKL(πθ||πref) (1)

Here, πθ denotes the current policy, πθold is the
policy before the update, and πref is a frozen refer-
ence policy used for regularization. The hyperpa-
rameters ϵ and β control the clipping threshold and
divergence penalty, respectively.

3.2.2 Reward Design
We define several reward functions tailored to the
Text-to-SQL task, each capturing different dimen-
sions of query quality. These rewards guide the
optimization process during reinforcement learn-
ing with GRPO.

1. Execution-Based Reward: The primary ob-
jective in Text-to-SQL is to generate queries
that execute to the correct result. Traditional
binary execution rewards offer no gradient
for near-correct predictions. To address this,
we implement a reward function that lever-
ages a language model to count orthographic
changes—textual mutations between the pre-
dicted and reference queries, such as token
insertions, deletions, or substitutions. The cor-
responding prompt can be found in B.3. The
reward is computed as:

Rexec =
1

x+ 1
, (2)

where x is the number of detected changes.
This formulation provides a smoother feed-
back signal that penalizes incorrect queries
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proportionally, even when they are close to
correct.

2. String Matching Reward: This reward com-
pares the predicted and gold SQL strings by
identifying the longest contiguous matching
subsequence. It is computed as the ratio
of matching characters to the total number
of characters across both sequences, thereby
encouraging partial correctness even when
queries are not exact matches.

3. Component-Level Matching Reward: To
capture semantic equivalence beyond surface
form, we compute overlap between query
components such as SELECT, WHERE, and
GROUP BY – using the F1 score as in the com-
ponent matching metric (Yu et al., 2018). This
allows the model to be rewarded for capturing
the correct logical structure, even when query
formatting varies.

4. LLM Judge Reward with Classes: Pre-
trained language models exhibit strong sen-
sitivity to syntactic correctness and logical
coherence. Building on the literature that uti-
lizes pretrained language models to provide
continuous rewards based on these criteria for
SQL queries (Pourreza et al., 2025), we ex-
tend this approach to categorize model out-
puts into ordinal quality classes—Very Bad,
Bad, Average, Above Average, Good, and Ex-
cellent, see Appendix B.4. This categorical
scoring is adapted from Xin et al. (2024) and
enables more interpretable and consistent su-
pervision, particularly in filtering low-quality
outputs during training.

All language model-based evaluations are per-
formed using OpenAI’s o3-mini model (Jaech et al.,
2024), which serves as both a scorer and judge for
reward construction.

4 Experiments

We design our experiments to investigate the fol-
lowing research questions:

• RQ1: How does the use of synthetic reason-
ing traces during supervised fine-tuning im-
pact Text-to-SQL performance?

• RQ2: Can our two-stage frame-
work—combining supervised fine-tuning

and GRPO—facilitate the induction of
transferable tabular reasoning capabilities?

• RQ3: Which reward functions in GRPO con-
tribute most significantly to improved table-
based reasoning?

4.1 Setup

Evaluation Benchmarks: We evaluate our frame-
work across two primary tasks: Text-to-SQL and
tabular question answering. For Text-to-SQL, we
utilize the Clinton A and BIRD minidev 3 datasets.
For tabular question answering, we evaluate per-
formance on the Tablebench Fact Checking dataset
(Wu et al., 2025), as it provides a comprehensive es-
timate of model understanding of tables across 18
fields. Additionally, to emphasize complex reason-
ing, we utilize the CRT-QA dataset (Zhang et al.,
2023), which focuses on complex table-based rea-
soning, incorporating multi-step operations and in-
formal reasoning techniques.

Evaluation Metrics: We employ task-
appropriate evaluation metrics for each benchmark.
For Text-to-SQL tasks, we report execution
accuracy, defined as the exact match between
the predicted and reference SQL query results.
Given the limited access to the full database within
Clinton, we utilize OpenAI’s o3-mini model as
a proxy for execution for this dataset, assessing
query correctness based on structural and semantic
alignment. For CRT-QA, we use Exact Match to
compare the predicted answer with the ground
truth. For Tablebench, we employ the ROUGE
score as outlined in the original paper (Wu et al.,
2025).

Training Settings: We utilize three base
models: Qwen-2.5-7B-Instruct, Qwen-2.5-14B-
Instruct, and a 4-bit quantized version of the
distilled DeepSeek-R1-Distill LLaMA 8B model.
This selection enables us to evaluate both distilled
and quantized architectures, as well as smaller and
larger models. For supervised fine-tuning, we use
a learning rate of 2 × 10−4 and a batch size of 1.
During reinforcement learning with GRPO, we fix
the learning rate at 1× 10−6. Each GRPO training
instance consists of a natural language question and
its associated schema; for each prompt, the model
generates 8 candidate completions used to com-
pute group-based rewards. Further implementation
details can be found in Appendix C.

3https://github.com/bird-bench/mini_dev
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4.2 Tabular Aha-Moments

During reinforcement learning with GRPO, we
observe instances of emergent tabular reasoning,
which we term Tabular Aha-Moments. These mo-
ments, inspired by the Aha Moment concept from
DeepSeek-R1 (Guo et al., 2025), occur when the
model, provided only a natural language question
and schema (but no table content), implicitly re-
constructs the structure of the underlying table and
uses this to solve the query. An example of this
behavior is shown in Figure 4, where the model
demonstrates schema-grounded inference without
explicit tabular context during the training process.

When evaluated on tabular question answering
tasks, the model often invokes SQL-like structures
as intermediate reasoning tools—even when SQL
output is not required. This is illustrated in Fig-
ure 3, where the model constructs an internal SQL
representation to derive a binary answer. This re-
flects a bidirectional inductive bias: the model not
only learns to generate SQL from questions but also
learns to use SQL representations to support rea-
soning over tables. These findings highlight the po-
tential for GRPO to induce transferable, structure-
aware reasoning in LLMs.

4.3 Benefit of CoT Supervision

Table 1 reports the performance of our supervised
models across Text-to-SQL and tabular question
answering tasks. Comparing models fine-tuned
with (SFT-CoT) and without (SFT) CoT supervi-
sion, we observe that including reasoning traces
slightly reduces performance on the in-domain
Clinton dataset, but improves generalization to un-
seen SQL benchmarks (BIRD) and table-based rea-
soning tasks (CRT-QA, Tablebench).

We attribute this to the inductive bias intro-
duced by reasoning supervision: models exposed
to intermediate inference steps are more likely to
learn transferable patterns rather than overfitting to
schema-specific templates. Moreover, fine-tuning
with CoT traces provides a more structured initial-
ization for reinforcement learning, ensuring that the
GRPO stage begins from semantically grounded
outputs.

CoT supervision yields markedly different gains
for LLaMA and Qwen due to their architectural
disparities. In our experiments, a distilled and
quantized LLaMA model received a substantially
larger performance boost from CoT supervision
than the uncompressed Qwen model. We attribute

this discrepancy to LLaMA’s compressed nature:
distillation and low-precision quantization reduce
its representational capacity and can weaken its in-
nate reasoning ability. Consequently, providing
explicit step-by-step reasoning guidance during
training allows LLaMA to compensate for these
lost details, resulting in outsized improvements. In
contrast, Qwen—being neither distilled nor quan-
tized—retains a higher precision and fuller pre-
trained capacity for reasoning, which means it al-
ready performs strongly on complex tasks before
CoT fine-tuning. As a result, Qwen’s robust base-
line reasoning ability leaves less headroom for dra-
matic gains. This contrast highlights that CoT su-
pervision is especially critical for enhancing com-
pressed models like LLaMA.

4.4 Text-to-SQL Performance
The combination of supervised fine-tuning with
CoT (SFT-CoT) and GRPO yields marked improve-
ments in Text-to-SQL performance. While the
gains on the BIRD dataset—where GRPO was ex-
plicitly trained—are anticipated, the enhancement
on the Clinton dataset is more notable. This in-
dicates that GRPO not only fine-tunes models to
specific tasks but also encourages broader SQL
comprehension and reasoning capabilities, facilitat-
ing generalization within the Text-to-SQL domain.

In particular, the SFT-CoT + GRPO model
shows a strong ability to generalize, demonstrat-
ing that models trained on real-world tasks can
effectively perform even on data they haven’t seen
during training, provided they have a strong foun-
dational understanding of SQL reasoning.

4.5 Zero-shot Question Answering Tabular
Reasoning Performance

Table 1 demonstrates that our combined approach
of SFT and GRPO, originally fine-tuned on Text-
to-SQL data, also enhances tabular reasoning per-
formance in zero-shot settings. Specifically, when
evaluated on CRT-QA and Tablebench, we observe
improved reasoning across the model, showcas-
ing that the model’s exposure to SQL structures
helps it tackle general tabular question answering
tasks even when SQL generation is not explicitly
required.

The zero-shot performance is indicative of the
transferability of the reasoning skills learned during
SQL task training. By implicitly learning to rea-
son over structured tables in the SQL framework,
the model becomes better at navigating more com-
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Model Clinton (LLM-EXE) Bird (EXE) CRT-QA (EM) Tablebench (Rouge)
o1 60.7 28.3 61.3 64.4
LLaMA Base 44.4 8.1 43.3 57.1
LLaMA SFT 62.1↑ 17.7 3.0 33.7 49.9
LLaMA SFT-CoT 56.3 9.1 47.7 57.2
LLaMA SFT-CoT-GRPO 57.0 14.2↑ 6.1 58.1↑ 14.8 61.1↑ 4.0
Qwen-2.5-7B-Instr Base 56.1 18.9 49.0 61.6
Qwen-2.5-7B-Instr SFT 66.6 ↑ 10.5 9.3 45.3 52.2
Qwen-2.5-7B-Instr SFT-CoT 59.6 19.1 46.2 53.8
Qwen-2.5-7B-Instr SFT-CoT-GRPO 59.9 23.1 ↑ 4.2 54.0 ↑ 5.0 63.2↑ 1.6
Qwen-2.5-14B-Instr Base 55.1 22.9 56.1 60.7
Qwen-2.5-14B-Instr SFT 68.6 ↑ 13.5 19.7 52.2 57.8
Qwen-2.5-14B-Instr SFT-CoT 58.6 23.5 52.8 60.6
Qwen-2.5-14B-Instr SFT-CoT-GRPO 59.2 27.2 ↑ 4.3 59.2 ↑ 3.1 63.3 ↑ 2.6

Table 1: Performance comparison of OpenAI o1, the 4-bit quantized version of the distilled Deepseek-R2 LLaMA
8B model, the Qwen-2.5-7B-Instruct model (Qwen-2.5-7B-Instr), and the Qwen-2.5-14B-Instruct model (Qwen-2.5-
14B-Instr) evaluated across various datasets. This table compares the performance of untrained models (Base), those
supervised fine-tuned on the Clinton Dataset (SFT), models fine-tuned with Chain-of-Thoughts (SFT-CoT) on the
Clinton Dataset, and models that have undergone SFT-CoT on the Clinton Dataset and GRPO on the BIRD Dataset.
Evaluation scores include execution accuracy (EXE), execution accuracy determined by an OpenAI o3-mini LLM
judge (LLM-EXE), exact match scores (EM), and Rouge score (Rouge).

plex question answering tasks, further underlining
the value of using SQL as a foundational tool for
structured data reasoning.

4.6 Reward Ablation

In this section, we investigate the contribution of
various reward functions in our GRPO training.
Table 2 presents the results of our ablation study,
evaluating the impact of different reward configu-
rations on the model’s performance on the BIRD,
CRT-QA and Tablebench tasks. Specifically, we
analyze the effect of different combinations of re-
wards—including execution-based, string match-
ing, component-level matching, and LLM-based
judgment rewards—on the accuracy of SQL ex-
ecution and tabular question answering. Due to
computational costs, we utilize the 7B and 8B mod-
els.

Ablation studies indicate that string matching
serves as the most effective single reward due to
its continuous nature, facilitating initial learning.
However, exclusive reliance on string matching can
lead to diminished performance in later training
stages. We observe that combining string matching
with additional reward mechanisms enhances over-
all effectiveness, as the initial continuous reward
provides a substantial learning advantage. The
most promising two-reward combination identified
is string matching coupled with the LLM Judge
Reward with classes. This synergistic approach ef-
fectively merges the continuous evaluation of string
accuracy with the discrete assessment of general
SQL quality, thereby creating a robust framework
for improved model performance.

From the results in Table 2, we observe that in-
corporating a broader range of reward functions

Reward Configuration BIRD CRT-QA Tablebench
Best Reward (LLaMA) 11.5 57.8 60.1
Best Reward (Qwen-2.5-7B-Instr) 19.6 53.9 62.7
Best 2 Rewards (LLaMA) 12.1 56.9 60.3
Best 2 Rewards (Qwen-2.5-7B-Instr) 20.0 53.2 64.5
Best 4 Rewards (LLaMA) 14.2 58.1 61.1
Best 4 Rewards (Qwen-2.5-7B-Instr) 23.1 54.0 63.2

Table 2: Ablation study of reward configurations.
The models initially underwent SFT on Chain-of-
Thought traces on Clinton, followed by GRPO on BIRD,
where specific reward functions were applied. Perfor-
mance is evaluated across the best GRPO reward con-
figurations (best one, two, and four rewards) for each
model. Evaluation scores include execution accuracy
for BIRD, exact match for CRT-QA and Rouge for
Tablebench.

generally improves model performance. For in-
stance, the best four rewards configuration shows
significant improvements on CRT-QA for the
LLaMA model, indicating that a more diverse set
of feedback signals enhances generalization across
tasks. This suggests that combining different re-
ward signals allows the model to better capture
both syntactic correctness (in SQL) and logical co-
herence (in tabular reasoning), leading to a more
balanced and accurate reasoning process.

5 Conclusion

In conclusion, our experiments demonstrate that
integrating reinforcement learning with a super-
vised pretraining phase significantly enhances the
model’s ability to reason over tabular data. Notably,
the distilled quantized LLaMA-8B model achieved
a 34.2% relative performance improvement on the
CRT-QA dataset, while the Qwen-2.5-7B model
saw a 10.2% increase and the Qwen-2.5-14B model
5.5% relative increase, underscoring the efficacy
of our two-stage framework in optimizing SQL
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Figure 3: SQL-Structured Reasoning in Tabular QA.
An LLM answering a natural language question over
a table. While the output is a binary response ("Yes"),
the model’s internal reasoning implicitly follows an
SQL-like logic: it compares subsets of rows filtered by
different conditions to support its answer. This illus-
trates how models may invoke formal query structures
even when the task does not explicitly require SQL, re-
flecting an internal alignment between table QA and
SQL semantics.

execution and fostering transferable reasoning for
complex question answering tasks. These findings
suggest that SQL serves not only as a task-specific
format but also as a foundational scaffold for devel-
oping robust tabular reasoning skills in LLMs.

Limitations

Our study focuses on medium-scale foundation
models—distilled LLaMA 8B, Qwen-7B, Qwen-
14B —whose exact pretraining corpora are undocu-
mented. As a result, we cannot determine coverage
or gaps across domains, languages, or proprietary
material. This opacity complicates any analysis of
domain blind spots, spurious correlations, or mem-
orization risks. Moreover, the relatively modest
parameter counts of these models may limit perfor-
mance on tasks requiring deep domain expertise,
such as biomedical or legal reasoning.

We evaluate tabular reasoning using CRT-QA
and Tablebench, with o3-mini serving as an auto-
mated judge. While expedient, this setup lacks the
nuance of human evaluation, particularly for com-
plex reasoning and semantic alignment. Addition-
ally, standard Text-to-SQL and tabular QA bench-
marks may under-represent the complexity, ambi-
guity and noise present in real-world data, making
our results more indicative of structured reasoning
progress than deployment readiness.

Our current framework employs only two train-
ing stages. In contrast, multi-phase pipelines such
as R1 leverage up to four stages, including instruc-
tion tuning and iterative CoT refinement. While
our approach prioritizes simplicity and efficiency,
it may sacrifice opportunities for deeper alignment

Figure 4: Table-Guided CoT in LLMs for SQL Gen-
eration. A reasoning trace from an LLM translating a
natural language question into SQL. The model first in-
terprets the task by examining the schema and example
table rows, breaks the logic down into actionable steps,
and validates the final SQL query through hypothetical
execution. This illustrates how structured table under-
standing can guide accurate SQL synthesis.

or curriculum structuring.
Future research should address these limitations

by exploring larger, better-documented models,
human-in-the-loop evaluation, and more diverse
datasets. Additional training stages—such as pre-
CoT bootstrapping or domain-adaptive pretrain-
ing—may further enhance generalization and ro-
bustness in real-world table reasoning.
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A Summary of Clinton Dataset

We conduct part of our evaluation using the
Clinton/Text-to-sql-v1 dataset,4 a large-scale
compilation of natural language to SQL examples
spanning a broad set of domains. This benchmark
includes 26 individual datasets, covering academic
records, medical databases, entertainment meta-
data, government statistics, and more.

Each example in the dataset consists of a natu-
ral language query, an associated database schema,
and a corresponding SQL statement. Some subsets
also include table content or ground-truth execution
results. The diversity in schema complexity and do-
main coverage makes this benchmark well-suited
for evaluating both generalization and transfer in
Text-to-SQL and tabular reasoning models.

Key datasets include:

• Spider (Yu et al., 2018) – Complex, cross-
domain Text-to-SQL benchmark.

• WikiSQL (Zhong et al., 2017) – Large-scale
dataset with simple queries over Wikipedia
tables.

• ATIS (Hemphill et al., 1990) – Airline travel
information with traditional semantic parsing
annotations.

• MIMICSQL (Wang et al., 2020) and eICU
(Pollard et al., 2018) – Clinical databases for
medical question answering.

We also include lesser-known and synthetic
datasets such as Criteria2SQL (Fang et al., 2022),
SEDE (Hazoom et al., 2021), SQuALL (Shi et al.,
2020), and NVBench (Wang and Crespo-Quinones,
2023), along with public domain tabular corpora
like IMDb, Yelp, and historical sports or wildfire
datasets.

This variety allows us to test the ability of LLMs
to reason across database schemas, interact with
realistic tabular structures, and generalize beyond
fixed SQL templates.

4https://huggingface.co/datasets/Clinton/
Text-to-sql-v1

B Prompts

B.1 Creating Synthetic CoT

This section outlines the structure of prompts de-
signed for SQL query generation tasks. Each
prompt features SQL table schemas and clear in-
structions, facilitating the generation of valid SQL
queries using SQLite syntax. The expert guidance
within the prompts emphasizes the requirement to
articulate the reasoning behind the constructed SQL
queries. By utilizing this approach, we aim to train
models that can effectively understand the context
of relational data and generate precise queries that
meet specific operational goals, thereby enhancing
the overall interpretability and accuracy of auto-
mated SQL generation.

You are a SQL expert. Below are SQL table schemas paired with instructions
that describe a specific task. Using valid SQLite syntax, write a response that
appropriately completes the request for the provided tables.
SCHEMA: schema
INSTRUCTIONS: specific task instructions
When answering, provide reasoning for the SQL query you create using the
following template:
<sql> Write the SQL query here, ensuring it adheres to SQLite syntax and
effectively accomplishes the task described in the instructions. </sql>

B.2 Evaluation of Synthetic CoT

This section specifies a prompt for evaluating the
correctness of SQL queries based on a defined
schema and a reference SQL query. The prompt
clearly delineates the evaluation task for the SQL
expert, presenting the query to be evaluated, the rel-
evant schema, and the correct SQL reference. The
evaluator is instructed to determine whether the
provided SQL query is correct or incorrect, with
responses limited to "Correct" or "Wrong." This
structured approach facilitates precise assessment
of SQL queries, contributing to the development of
robust models capable of generating and validating
SQL syntax effectively.

You are an SQL expert, and your task is to evaluate whether the SQL query
below is correct based on the provided schema and the correct SQL reference.
SQL Query: ans.sql
Schema: schema
Correct SQL: correct_sql
Return ONLY "Correct" or "Wrong".

B.3 LLM Judge for Execution Based Reward

For our Execution Reward in Group Relative Policy
Optimization (GRPO) the LLM judge is instructed
to count the number of orthographic changes re-
quired to convert each predicted query into the cor-
responding correct query. The reward is computed
using the following equation:
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Rexec =
1

x+ 1
, (3)

where x is the number of detected changes. This
methodology provides a more continuous mea-
sure of execution accuracy, crucial for refining the
model’s performance.

You are an SQL expert. Count how many changes you need to make to get the
following predicted queries correct.
Predicted Queries (one per line): queries_to_rank
For reference, use this Schema: schema.
Here is the correct query: true_query
You should count the number of Orthographic elements you need to change
from the predicted queries to the correct query.
ONLY RETURN a JSON object with a single ’scores’ field containing a list
of num_queries numbers reflecting the number of changes needed for each
predicted query.

B.4 LLM Judge with Classes

The LLM judge reward is designed to evaluate
the quality of predicted SQL queries by compar-
ing them to a reference correct query. In this task,
the judge is instructed to assign a grade to each
predicted query on a scale from ’Very bad’ to ’Ex-
cellent.’ The grading criteria are explicitly defined,
allowing the judge to assess various aspects of the
queries, including grammatical correctness, logical
accuracy, and overall fidelity to the correct query.
This structured grading system enables a nuanced
analysis of the model’s output quality, providing
insights that facilitate targeted improvements in
query generation.

Compare these SQL queries to the correct query and grade each one as: ’Very
bad’, ’Bad’, ’Above average’, ’Good’, or ’Excellent’. Use the following grading
system, and the correct query as reference :
Correct Query: true_query
1. Excellent: this is only given when the SQL query is perfect and matches
{true_query}
2. Good: This is when there is a grammar mistake in the query
3. Above average: This is when the query is mostly correct but gets a logical
step wrong in the query
4. Bad: Makes more than one mistake in the query
5. Very bad: does not produce a query or varies significantly from the correct
query
Queries to grade: queries_to_rank
{format_instructions}

C Implementation Details

In our experiments, we utilize VERL5 for training
the 14B models. To enhance efficiency, Unsloth6

is employed for the 7B and 8B models. Unsloth
provides support for QLoRA-style training with
Flash Attention 2, bitsandbytes quantization, and
PEFT-compatible adapters.

We fine-tuned three pretrained models:

5https://GitHub.com/volcengine/verl
6https://GitHub.com/unslothai/unsloth

• Qwen-2.5-7B, a dense, instruction-tuned
model released by Alibaba DAMO, trained
in full precision 7.

• Qwen-2.5-14B, a larger, dense, instruction-
tuned model released by Alibaba DAMO,
trained in full precision 8.

• DeepSeek-R1-Distill LLaMA3-8B, a 4-bit
quantized variant of Meta’s LLaMA 3–8B,
distilled by DeepSeek AI9.

Supervised fine-tuning (SFT) was performed on
the Clinton dataset using QLoRA adapters, while
reinforcement learning with GRPO was applied on
the BIRD benchmark. The GRPO setup used can-
didate comparisons and execution-guided rewards
computed via SQLite.

Experiments were conducted on 4×A100 80GB
GPUs using mixed-precision (FP16).

7https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

8https://huggingface.co/Qwen/Qwen2.
5-14B-Instruct

9https://huggingface.co/unsloth/
DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit
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Abstract

Large Language Models (LLMs) excel in nat-
ural language tasks, but less is known about
their reasoning capabilities over tabular data.
Prior analyses devise evaluation strategies that
poorly reflect an LLM’s realistic performance
on tabular queries. Moreover, we have a lim-
ited understanding of the robustness of LLMs
towards realistic variations in tabular inputs.
Therefore, we ask: Can general-purpose LLMs
reason over tabular data, really?, and focus
on two questions 1) are tabular reasoning ca-
pabilities of general-purpose LLMs robust to
real-world characteristics of tabular inputs, and
2) how can we realistically evaluate an LLM’s
performance on analytical tabular queries?
Building on a recent tabular reasoning bench-
mark, we first surface shortcomings of its
multiple-choice prompt evaluation strategy, as
well as commonly used free-form text met-
rics such as SacreBleu and BERT-score. We
show that an LLM-as-a-judge procedure yields
more reliable performance insights and unveil
a significant deficit in tabular reasoning perfor-
mance of LLMs. We then extend the tabular
inputs reflecting three common characteristics
in practice: 1) missing values, 2) duplicate en-
tities, and 3) structural variations. Experiments
show that the tabular reasoning capabilities of
general-purpose LLMs suffer from these vari-
ations, stressing the importance of improving
their robustness for realistic tabular inputs.1

1 Introduction

Large Language Models (LLMs) are intended for
general-purpose usage and particularly excel on
natural language tasks represented in text (Liang
et al., 2023). In organizations, another common
modality for data analysis and decision-making, is
tabular data, for which recent studies have shown
promising performance of LLMs as well (Fang
et al., 2024). Structural analysis to understand to

1Code: github.com/trl-lab/tabular-robustness

what extend the reasoning capabilities of LLMs
pertain, realistically, in more complex tabular rea-
soning tasks, such as analytical aggregations, is still
lacking. Without reliable knowledge of their failure
modes on tabular inputs and tasks, though, we risk
unwarranted usage of these models in practice and
delayed development of more robust capabilities.

Surfacing the reasoning capabilities on tabu-
lar tasks is, however, not straightforward. Most
studies adopt free-form text metrics, which hardly
capture reliable reasoning accuracy due to differ-
ent formatting of the ground-truth answers, par-
ticularly of analytical questions, versus long-form
LLM-generated responses (Ji et al., 2024; Xu et al.,
2023). The alternative of forcing certain output for-
mats (Sui et al., 2024) yields a limited understand-
ing of the open-form reasoning performance and is
prone to parsing errors, while another alternative
of including the ground-truth answer in a multiple-
choice prompt (Qiu et al., 2024) leaks ground-truth
answers into the prompt compromising its relia-
bility. Beyond realistic evaluation procedures, in
order to use LLMs in a reliable manner for tabular
reasoning tasks, it is important to understand how
well they can handle the characteristics of tabular
data inputs (Cong et al., 2023; Singha et al., 2023)
as encountered in practice.

To close these gaps, we first address the ques-
tion: how can we realistically evaluate an LLM’s
performance on analytical tabular queries? We
examine the limitations of existing evaluation met-
rics, such as SacreBleu (Post, 2018) and BERT-
score (Zhang* et al., 2020), as the distributions
are these among correct and incorrect answers are
inseparable. Instead, we propose using the LLM-
as-a-judge evaluation method (Zheng et al., 2023)
for more reliable performance insights and show,
through calibration with human annotations, that
the LLM-as-a-judge provides a reliable signal of
tabular reasoning performance. Using this eval-
uation procedure, we unveil a significant gap in
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tabular reasoning accuracy than previously found
in the existing TQA-Bench benchmark for tabular
reasoning (Qiu et al., 2024).

Second, through comprehensive analysis we an-
swer the question: are LLMs robust to real-world
characteristics of multi-table inputs? Building on
the TQA-Bench, we first improve the validity of
the task queries and downscale multi-table inputs
to gain more fine-grained insights. We then in-
spect the robustness of LLMs against characteris-
tics of tabular inputs as commonly found in prac-
tice. Specifically, we formalize the following three
characteristics: missing values, duplicate entities,
and structural variations. We show that most LLMs
are not as robust to, and insufficiently acknowledge
the presence of, such quality issues or anticipated
variations in multi-table inputs, highlighting the
need for more robust models for tabular reasoning.
We make the following concrete contributions:

• We concretize the limitations of free-form text
metrics and show the reliability of using an
LLM-as-a-judge for evaluating open-ended re-
sponses for tabular reasoning tasks.

• We extend the TQA-Bench benchmark with tab-
ular inputs reflecting typical real-world charac-
teristics of tabular data: missing values, dupli-
cate entities, and structural variations.

• We surface the shortcomings of LLMs to ac-
count for realistic variations in tabular data of
varying sizes, providing more fine-grained in-
sights into their scalability and robustness.

2 Related Work

Analysis of Tabular Reasoning Capabilities
The TQA-Bench (Qiu et al., 2024) examines multi-
table reasoning capabilities with LLMs over vari-
ous query complexities. We complement the TQA-
Bench by using it as a base for our evaluation, and
integrating common properties in tabular data, such
as missing values, to study the robustness of multi-
table reasoning capabilities of LLMs. Similarly,
Sui et al. (2024) considers structural understanding
capabilities by evaluating the accuracy of LLMs
in basic tasks such as row/column retrieval. The
QATCH benchmark (Papicchio et al., 2023) eval-
uates tabular representation learning models spe-
cialized for SQL-centric tasks and mainly focuses
on SQL-based evaluations. While the QATCH
benchmark considers enterprise-centric evaluation
tasks and inputs, it does not surface robustness for
real-world properties. Earlier work by Cong et al.

(2023) formalizes and analyzes key properties of
tabular data principled in the relational data model,
such as column-order insignificance. In this work,
we focus on assessing the robustness on similar
properties in the reasoning capabilities through the
LLMs’ generated responses. In this realm, Singha
et al. (2023), evaluate various LLMs on their tabu-
lar understanding capabilities under noisy tabular
inputs and variations in formatting of tabular data
in prompts. While their robustness assessments
cover realistic characteristics such as permutations
in column-order, we include more properties and as-
sess more complex reasoning capabilities of LLMs.

Evaluation Metrics for Tabular Reasoning The
TARGET benchmark (Ji et al., 2024) focuses on
evaluating table retrieval methods in open-domain
querying over structured data. They surface issues
in the reliability of free-form text evaluation met-
rics such as SacreBleu and BERT-score, as ground-
truth answers in tabular reasoning datasets are
small text snippets or exact values while LLMs gen-
erate longer outputs which challenges such metrics.
Other work (Sui et al., 2024) intends to remedy the
evaluation problem by forcing an LLM to output
a singular answer in a structured format. While
relying on an LLMs’ structured output generation
and response parsing are prone to error, ground-
truth answers are often sentences, albeit short, and
not single values (Chen et al., 2020). An alterna-
tive procedure, adopted in the TQA-Bench (Qiu
et al., 2024), is to include the ground-truth answer
in multiple-choice options and let the LLM select
an option. The validity hence reliability of this
evaluation approach is questionable as it leaks the
ground-truth answer in the input prompt.

3 The TQA-Bench and Revisions

Here, we explain the tabular reasoning tasks in-
cluded in the TQA-Bench that we use to assess
the reliability of evaluation metrics as well as the
robustness of the tabular reasoning capabilities of
LLMs. We explain revisions we made to invalid
queries, and tabular inputs to gain granular insights.

3.1 TQA-Bench reasoning tasks

The TQA-Bench (Qiu et al., 2024) provides a
benchmark for tabular reasoning capabilities of
three complexities: 1) lookup queries, 2) aggre-
gation, and 3) complex calculations. Specifically,
the TQA-Benchmark evaluates three different lev-
els of reasoning complexities as follows:
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Lookup queries These queries involve simple
entity extraction based on one or two direct condi-
tions. For example, “What is the description of air
carrier 20398?” (Entity lookup) or “Which Horror
movie gets the highest budget?” (Top selection)
require the model to retrieve a value from a column
given a key or set of values from the same or an-
other table. In multi-table settings, the challenge
lies in resolving foreign key relationships.

Aggregation queries These queries require cal-
culations over filtered table segments. Examples
include “How many airlines land in Flint, MI:
Bishop International?” (Count), “What is the total
flight delay (DEP_DELAY) from ORD?” (Sum),
and “What is the average arrival delay for flights
landing at FNT?” (Average). These tasks test the
model’s ability to perform basic numeric operations
while managing filters and joins.

Complex calculations These queries go beyond
basic aggregation by requiring operations between
multiple fields or statistical analysis. For instance,

“What is the average total delay (ARR_DELAY -
DEP_DELAY) for Envoy Air (MQ)?” (Subtraction)
and “What is the correlation between departure
and arrival delays for flights with delays over -9
minutes?” (Correlation) assess deeper reasoning
by requiring chained arithmetic, statistical compu-
tation, and multi-step reasoning.

3.2 TQA-Bench Revisions
We leverage the tabular data and query generation
methods from TQA-Bench but make two adjust-
ments which we describe here: 1) we improve the
validity of the queries, and 2) we downscale the
tabular data inputs to yield more granular insights.

Query Refinements We updated some of the ex-
isting question templates, as they lead to unnatural
questions such as “Where is the 16S21E21G001S?”.
For cases such as this, we adapted the tem-
plates to be more precise and in line with natural
questions. For instance, the question “Where is
the 16S21E21G001S?” is updated to “In which
county is the the station with the full name/id
16S21E21G001S?“. These updates also ensured
that there is only one logical answer which can be
extracted from the available tables, as the original
question could have also referred to the longitude
and latitude columns of the respective dataset.

Tabular Data Downscaling While TQA-Bench
evaluates multi-table reasoning capabilities with

relatively large and multiple tables resulting in con-
text sizes from 8K to 128K tokens. Our preliminary
experiments revealed significant challenges in rea-
soning capabilities already with smaller table sizes,
motivating the downsizing of context sizes to 1K,
2K, 4K, 6K and 8K to obtain more granular in-
sights. To do so, we employ the scaling method
introduced by TQA-Bench to truncate and segment
tables while preserving their structural and rela-
tional integrity (Qiu et al., 2024).

4 Towards Reliable Evaluation of Tabular
Reasoning Capabilities

Evaluating multi-table reasoning, and generally
free-form question answering, still is an open chal-
lenge (Ji et al., 2024; Xu et al., 2023). While con-
text and reasoning traces of LLM-generated an-
swers are useful, they complicate evaluation when
ground-truth answers are short and exact, as is the
case in typical tabular tasks. Table 1 illustrates this
issue for two example queries from the popular OT-
TQA dataset for table question answering (Chen
et al., 2020) along with their ground-truth answers.
When the LLM-generated answers are evaluated
against the short ground-truth answers by two free-
form text metrics, SacreBleu (Post, 2018) and
BERT-score (Zhang* et al., 2020), their scores are
inconclusive. For example, for the queries in Ta-
ble 1, the SB score for a correct generated answer
is higher for the first query (1.4) but lower than the
correct generated answer for the second query (0.5)
for which the incorrect generated answer is closer
to the correct answer for the first query (1.0). The
BERT-score (BS) reflects mainly textual similarity,
and shows barely any differences for different nu-
meric values included in the response: its value is
0.81 for an incorrect as well as a correct generated
answer. In what follows, we study the reliability of
these different metrics in detail.

LLM-generated answers We adopt a syn-
thetic procedure to maximize the likelihood of
(in)correctness of the LLM-generated answers,
which we refer to as generated answers. In to-
tal, we extract 350 questions from the question
database in the TQA-Bench tabular reasoning
benchmark. We only provide a single row as con-
text to the LLM to generate its answer, while forc-
ing it to only use the table data and not its memory.
For correct generated answers, we provide the row
that contains the ground-truth cell value for the
lookup task as context to generate the response.
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Table 1: Below query examples from the OTTQA benchmark (Chen et al., 2020) illustrate the difficulty of evaluating
long-form LLM-generated answers against ground-truth answers (exact values or short text snippets) with existing
text metrics such as the SacreBleu (SB) and BERT-score (BS) metrics, which fail to distinguish between incorrect
versus correct answers. We find that an LLM-as-a-judge is a more reliable metric for evaluating tabular reasoning
capabilities in these cases.

Question: According to the 2016 census, what is the population of the city that is home to the Territorial
Administration Building designed by Thomas W. Fuller?

Generated answer Answer SB score BS score LLM

The Territorial Administration Building is located
in Dawson City, Yukon. According to the 2016
Canadian census, the population of Dawson City
was 1,375 .

1,375 1.4 0.83 correct

According to the 2016 census, the population of
the city that is home to the Territorial Adminis-
tration Building designed by Thomas W. Fuller is
45,000 .

1,375 0.0 0.81 incorrect

Question: How long has the team that qualified for the 1999 FIFA Confederations Cup in June existed?

Generated answer Answer SB score BS score LLM

The team that qualified for the 1999 FIFA Confed-
erations Cup in June was Germany, who secured
their qualification on 30 June 1996. To determine
how long they had existed as a team by June 1999:
The Germany national football team was officially
founded in 1908 . From 1908 to 1999 is 91 years.

Answer: The Germany national team had existed
for 91 years by June 1999.

since 1908 0.5 0.81 correct

The team that qualified for the 1999 FIFA Confed-
erations Cup in June was Germany. Germany has
existed as a national team since 1974 , so by June
1999, they had existed for 25 years.

since 1908 1.0 0.82 incorrect

For incorrect answers, we also provide the row
that contains the ground-truth cell, but replace the
ground-truth cell value with a random but different
value from the same column, resulting in a factu-
ally incorrect but still realistic generated answer.
Following this procedure, we extract 175 correct
and 175 incorrect generated answers.

To validate the LLM-generated answers, we
check the correctness of the 350 generated ref-
erence answers against the ground-truth answers
(original cell values) through human annotation.
The human evaluation reveals that approximately
93.75% of the generated correct answers are indeed
accurate, while 98.26% of the generated incorrect
answers are indeed incorrect. These results con-
firm the reliability of our procedure for creating the
LLM-generated answer dataset.

Free-form text evaluation metrics Using the
LLM-generated answers and ground-truth answers,
we inspect the reliability of two commonly used
free-form text metrics: SacreBleu (Post, 2018) and
BERT-score (Zhang* et al., 2020). SacreBLEU is
a standardized version of the BLEU score that mea-
sures n-gram overlap between generated and refer-
ence texts, while the BERT-score leverages BERT
embeddings to compute similarity based on token-
level semantic matching. Our analysis reveals that
neither the BERT-score nor SacreBleu metric pro-
vide a reliable signal for evaluating the correctness
of generated answers. To visualize the reliability
of these scores, we used Kernel Density Estimation
(KDE) to estimate their distributions. For BERT-
score, due to tight clustering of values, the KDE can
exceed 1, while the more dispersed SacreBLEU val-
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ues result in lower KDE peaks. The distributions of
scores for correct and incorrect LLM-generated an-
swers, when compared with ground-truth answers,
exhibit significant overlap making them indistin-
guishable (Figures 1a and 1b). The inseparability
between these distributions illustrates the unsuit-
ability of these metrics for evaluating the accuracy
of long-form answers against concise ground-truth
answers.
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(a) BERT Score distribution using Kernel Density Estimation
(KDE) of the incorrect and correct generated answers. Scores
close to 1 indicate stronger semantic similarity between LLM-
generated and ground-truth answers.
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(b) SacreBleu Score distribution using Kernel Density Esti-
mation (KDE). Higher scores indicate better n-gram overlap
between LLM-generated and ground-truth answers.

Figure 1: Distribution of SacreBleu and BERT-scores
obtained by comparing LLM-generated answers, from
which we know their (in)correctness, against ground-
truth answers. To be reliable as a metric, the distribu-
tions should be clearly separable, which is not the case
for both metrics.

LLM-as-a-judge Recently, LLMs have emerged
as a useful evaluation metric for free-form text,
termed as LLM-as-a-judge evaluation (Zheng et al.,
2023). This approach to be particularly well-suited
for tabular reasoning evaluation, where generated
answers are often long- and free-form text com-
pared to, for example OTTQA, where answers are
short text snippets or single (numeric) values. We
propose using an LLM-as-a-judge for evaluating
tabular reasoning through LLMs, as this allows us

to keep the generation close to real-world usage,
where users expect models to generate complete
answers rather than forcing a single-valued answer
(which does not always correspond to the ground-
truth answer) or choose from predefined options
as in TQA-Bench (Qiu et al., 2024). Second, re-
lying on forced answer formats –accommodating
multiple-choice or string-matching– can be brittle,
especially for smaller models that may produce
slightly misformatted outputs or fail to follow con-
straint templates (Liu et al., 2024).

To understand the reliability of the LLM-as-a-
judge for evaluating tabular reasoning, we first
evaluate the performance of the LLM-as-a-judge.
Specifically, we devise reference-guided grad-
ing (Zheng et al., 2023) and let the LLM compare
between the LLM-generated answer against the
ground-truth answer. Specifically, we use Qwen2.5
(32B parameters) and assess if its generated answer
matches the ground-truth answer based on a struc-
tured prompt, and outputs yes or no, as follows:

When it comes to the following question:

Question: {Question}

does the answer "{Answer}" match the
expected response value of the correct
answer "{Correct Value}"?

Consider that if the answer is None, it
means that the value could not be found in
the table. Please conclude your answer with
’answer correct: yes/no’

Table 2: Evaluation of the LLM-as-a-judge proce-
dure on the human-annotated dataset. While the LLM
slightly underestimates correctness – 4.2% of correct
answers are judged to be incorrect – we observe a strong
alignment between predicted and actual (in)correctness
with an accuracy more than 95%.

Pred. Incorrect Pred. Correct
Actual Incorrect 99.2% 0.8%
Actual Correct 4.2% 95.8%

The results of our evaluation (Table 2) demon-
strates that the LLM-as-a-judge yields a high ac-
curacy, identifying 95.8% of correct answers as
correct, and 98% of the incorrect answers as such.
Notably, the absence of false positives (0.8%) high-
lights the model’s reliability in avoiding incorrect
classifications of negative cases as positive.
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5 On the Realistic Tabular Reasoning
Capabilities of LLMs

Here, we first examine how well LLMs can per-
form tabular reasoning tasks using the downscaled
TQA-Bench data (as discussed in Section 3) and
the more reliable LLM-as-a-judge evaluation, and
highlight new insights contextualized in the TQA-
Bench. Then, we extend the benchmark by formal-
izing tabular characteristics commonly found in
practice, such as missing values, and measure the
robustness of LLMs for such realistic variations.

5.1 LLM Selection and Prompts

LLMs for analysis and evaluation We conduct
our analysis on a diverse set of models to ensure
comprehensive evaluation. We include publicly
available models Qwen2.5 (Yang et al., 2024),
Llama3.1 (Grattafiori et al., 2024), DeepSeek-
R1 (Guo et al., 2025), and Mistral (Jiang et al.,
2023). In all cases, we select the 7B parameter
versions (except llama3.1 with 8B) of the models
and utilize the same prompt structure. We also
include the proprietary GPT-4o-mini model (ver-
sion 2024-07-18) (Hurst et al., 2024) representing
a state-of-the-art larger general-purpose model.

For evaluation with the LLM-as-a-judge proce-
dure we, again, devise Qwen2.5 (32B parameters)
for its strength in generating structured outputs, and
use the same prompt introduced in section 4.

Tabular reasoning prompt For evaluating tab-
ular reasoning capabilities of the LLMs, we adopt
a structured prompt template inspired by Qiu et al.
(2024) to guide question answering based on tabu-
lar data2. The prompt instructs the LLM to use the
information from the provided single or multiple
tables to answer a given question. Each table is pre-
sented with a title and its contents. The structure
of the prompt template is as follows:

Answer the question based on these tables:

Table: {Table 1}
Table: {Table 2}

Question: {Question}

This question has only one correct answer.
Please break down the question, evaluate
each option, and explain why it is correct
or incorrect. Conclude with your final
answer.

2We inspected accuracy variance across templates and
didn’t observe a significant difference.

5.2 Insights on Down-scaled Tabular Inputs
Accuracy over various table sizes Our analy-
sis of the TQA-Bench questions and down-scaled
tabular inputs shows that the performance of the
LLMs decreases as the tabular input increases in
size. This is particularly evident in the average
and subtraction tasks (Figure 2 and 3). The only
exception is GPT-4o-mini, which achieves a steady
performance across table sizes for most tasks, and
is generally the best model for tabular reasoning
tasks. Furthermore, our results indicate that LLMs
struggle particularly with more complex reasoning
tasks, such as calculating correlation and subtrac-
tion, where the performance is significantly lower
compared to the simpler tasks like counting and
lookups. A comprehensive overview of the accu-
racy performances across all models and tasks can
be found in appendix A.
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Figure 2: Performance of LLMs on calculating the aver-
age of columns, across varying table sizes. The accuracy
of all models gradually decreases with table size.
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Figure 3: Performance of LLMs on calculating a sub-
traction across columns, across varying table sizes. The
accuracy significantly drops after 4K input size except
for GPT-4o-mini.

Realistic LLM performance on TQA-Bench
We also plot the accuracy of the Qwen2.5 model
(7B params), as found by the TQA-Bench multiple-
choice evaluation, for the average and subtraction
tasks for the 8K sized tabular inputs (★ in Fig-
ures 2 and 3). Our LLM-as-a-judge evaluation
of open-form answers unveils a significant differ-

246



Table 3: Accuracies of LLMs across reasoning tasks for tables with token size 4k. Generally, LLMs can reasonably
do basic entity lookups, but show large deficits in more complex reasoning tasks such as calculating averages and
correlations. As expected given the larger model size, GPT-4o-mini shows best performance across tasks.

Model Entity lookup Top selection Average Count Subtraction Sum Correlation

Llama3.1 49.75 22.96 16.33 28.79 20.92 16.08 4.90
Mistral 28.14 14.00 9.14 20.20 5.58 8.50 12.75
Qwen2.5 29.00 15.00 11.28 36.92 7.22 12.50 8.65
Deepseek-r1 20.00 14.56 7.64 25.95 3.90 8.18 20.48
GPT-4o-mini 68.72 44.62 32.83 49.75 36.73 35.86 24.04

ence in accuracy of 30% and 60% for average and
subtraction calculations, respectively, compared
to multiple-choice answering. This insight under-
scores the importance of evaluating models in open-
ended form to better understand their true reasoning
abilities. Across models, we generally observe rela-
tively stronger capabilities in entity lookups, while
selecting a range (top selection) is more challeng-
ing (Table 3). LLMs show larger deficits in more
complex aggregation tasks, such as calculating av-
erages, while the relatively basic task of subtraction
generally appears most challenging.
Model-specific incompatible behaviors During
analysis, we observed notable behaviors in how
models approached tabular reasoning tasks. For
instance, DeepSeek-R1 often struggles with coher-
ence in its chain of thought outputting extracts like
“Wait no—the data doesn’t show that. Wait I’m
getting confused.”, leading to incomplete or incon-
sistent reasoning. Llama3.1, on the other hand, oc-
casionally fails to generate any meaningful output,
and effectively “breaks” under certain conditions,
particularly on larger tables or complex queries.
Additionally, both Qwen2.5 and Llama3.1 attempt
to generate Python code snippets to compute an-
swers, rather than directly providing the response.

5.3 Real-world characteristics of tabular data
We analyze how robust LLMs can reason over tabu-
lar data through their generation capabilities, in the
presence of three variations in the tabular inputs:
missing values, duplicate entities, and column per-
mutations. These variations are common in prac-
tice and resemble either data quality issues or valid
permutations. In what follows, we elaborate on the
desired behavior which goes beyond accuracy (Xu
et al., 2023), for each characteristic. In order to
instill these characteristics in the tabular inputs, we
adapt the symbolic extension of TQA-Bench to
generate new tasks. Symbolic extension works by
manually creating prompt templates and functions
for calculating the ground-truth answers, and us-

ing them to automatically generate combinations
of (question, ground-truth)-pairs.

Missing Values Due to incomplete data collec-
tion or errors during data entry, tables often con-
tain missing values, leading to incomplete infor-
mation (Little and Rubin, 2019). This has been a
longstanding issue for predictive ML, as missing
values can distort analysis and lead to unreliable
results (Emmanuel et al., 2021). To reflect this in
the data, we first identify the cells needed to gen-
erate the answers and randomly remove one of the
relevant cells. We recalculate the ground-truth an-
swer by, effectively, setting the missing value to 0.
The LLM-as-a-judge evaluates two behaviors: the
model’s ability to produce the correct answer de-
spite the missing information (Accuracy), and its
capacity to explicitly acknowledge the absence of
relevant data (Acknowledgement). These criteria
reflect how well the model navigates incomplete
data—whether it can reason effectively with what’s
available—and transparently communicate the lim-
itations introduced by missing values.

Duplicate Entities While duplicate entities are
in violation with the relational data model (Codd,
1979), we often find duplicate rows in tables. We
simulate this by randomly selecting rows and repli-
cating them at random points in the same table.
These entities are intended to be ignored. The
LLM-as-a-judge then evaluates two desired behav-
iors: whether the correct answer has been generated
despite duplicates values (Accuracy), hence ignor-
ing duplicate values, and whether the model ex-
plicitly acknowledges the duplicates in its response
(Acknowledgement).

Structural Variation While tables within some
contexts might reflect a typical column or row or-
der, hence bias an LLM through its training data,
the structural order of tables is insignificant in the
relational data model (Codd, 1979). In line with
prior work for examining robustness of table em-
beddings (Cong et al., 2023), we extract different
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permutations of the same tables by shuffling their
rows and columns. The desired behavior is that the
answer is not affected by different column order
permutations of the input tables. Therefore, we
evaluate if the answer remains unchanged.

5.4 Robustness to Realistic Variation in Tables
Missing Values We observe some mixed behav-
iors in the presence of missing values across tasks
(Table 4). For summation, we observe a signif-
icant drop in accuracy when missing values are
present for llama3.1, which achieves only 8% accu-
racy compared to 16% in the baseline. In contrast,
qwen2.5 actually shows improvements, particularly
for entity lookups where it shows an accuracy of
43% compared to 29%. This may be due to the
model’s (desirable) behavior as it refuses to answer
if the value to-be-looked-up is missing, which is
treated by the judge as a correct response.

At the same time, we find that the models of-
ten acknowledge missing values in their responses,
with both models achieving around 44% in the sum
task and 51% in the average task. This suggests that
while models may struggle with accuracy, they are
still able to recognize and communicate the pres-
ence of missing values in their answers. Still, even
on this metric, the models do not behave reliably
enough for most practical use cases.

Table 4: Results of the Missing Value perturbation
across three aggregation tasks (average, sum and en-
tity lookups) with table size 4k.

Task Model Baseline Acc. Acknow.
Entity lookup llama3.1 50% 47% 57%

qwen2.5 29% 43% 60%
Sum llama3.1 16% 8% 44%

qwen2.5 13% 16% 44%
Average llama3.1 17% 11% 51%

qwen2.5 11% 19% 51%

Duplicate Entities When it comes to dealing
with duplicate entities, the trends displayed in table
5 overall are quite similar to dealing with missing
values, showing a significant decrease in accuracy
in most tasks. A notable observation is that models
are less likely to acknowledge duplicate values,
compared to missing values.

Structural Variations We find that structural
variations, such as column shuffling, have only a
small impact on model performance in most cases
(Table 6), in contrast to the significant performance
decline observed with missing values or duplicate
entities. Interestingly, the robustness to column

Table 5: Results of the Duplication perturbation across
two advanced tasks (average, sum) at table size 2k.
LLMs typically struggle with duplicate values, and fail
to acknowledge duplication in their response.

Task Model Baseline Acc. Acknow.
Sum llama3.1 41% 20% 27%

qwen2.5 30% 31% 8%
Average llama3.1 36% 17% 11%

qwen2.5 36% 20% 6%

order varies across models and tasks—some ex-
hibit resilience, while others are mildly affected.
This shows a divergence from previous findings
in embedding-based studies (Cong et al., 2023),
which reported a sensitivity to column order in the
representation space.

Table 6: Impact of column shuffling on select reasoning
tasks with a table size of 2k, showing difficulties for
aggregation queries particularly for the llama model.

Task Model Baseline Acc.
Entity lookup llama3.1 50% 46%

qwen2.5 42% 34%
Sum llama3.1 41% 30%

qwen2.5 30% 28%
Average llama3.1 36% 28%

qwen2.5 36% 32%

6 Conclusion
While recent studies suggest LLMs exhibit rea-
sonable tabular reasoning abilities beyond natural
language tasks, these studies often lack reliable
evaluations and robustness checks, prompting our
study into how well LLMs truly reason over tabu-
lar inputs. First, we surface limitations of common
free-form text evaluation metrics, such as Sacre-
Bleu, which fail to distinguish between correct and
incorrect answers in tabular reasoning tasks. We
demonstrate that an LLM-as-a-judge is more reli-
able for this purpose. A revised evaluation of an ex-
isting benchmark with the LLM-as-a-judge unveils
a significant deficit in tabular reasoning capabili-
ties of LLMs. Second, we analyze the robustness
of tabular reasoning capabilities of LLMs through
queries of various complexities and find that they
can be sensitive to realistic variations like missing
values, even for relatively simple tasks. Moreover,
we find that LLMs insufficiently acknowledge such
undesired variations risking errors in downstream
interpretation. These findings underscore the need
for further advancements in LLM architectures and
training to improve their robustness to real-world
tabular data.
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A Full Benchmark

This table provides a comprehensive overview of the performance of various LLMs across different
reasoning tasks (e.g., entity lookup, top selection, average, etc.) for tabular data of varying sizes (1k to 8k
tokens).

Size Model Entity lookup Top Selection Average Count Subtraction Sum Correlation
1k

llama3.1 43.43 30.15 47.21 59.30 50.85 52.02 18.64
mistral 30.15 31.31 31.31 47.50 29.78 33.67 36.75

qwen2.5 49.24 30.30 55.78 65.15 63.13 56.78 37.82
deepseek-r1 34.01 29.80 54.31 69.19 39.33 50.00 47.46
gpt-4o-mini 41.62 36.18 48.48 70.56 36.72 54.50 45.38

2k
llama3.1 76.38 49.49 35.68 44.95 45.45 41.21 11.21

mistral 58.08 36.18 23.23 28.00 21.81 17.17 16.82
qwen2.5 66.33 42.86 35.86 53.27 50.00 30.26 22.64

deepseek-r1 42.93 28.28 25.89 49.75 21.05 26.26 24.07
gpt-4o-mini 69.54 47.24 39.90 57.07 32.98 37.76 28.44

4k
llama3.1 49.75 22.96 16.33 28.79 20.92 16.08 4.90

mistral 28.14 14.00 9.14 20.20 5.58 8.50 12.75
qwen2.5 29.00 15.00 11.28 36.92 7.22 12.50 8.65

deepseek-r1 20.00 14.56 7.64 25.95 3.90 8.18 20.48
gpt-4o-mini 68.72 44.62 32.83 49.75 36.73 35.86 24.04

6k
llama3.1 21.11 15.15 9.50 19.60 5.08 7.50 4.00

mistral 11.56 12.00 8.04 16.00 2.54 4.06 8.82
qwen2.5 16.16 8.00 7.04 19.50 4.57 6.53 9.80

deepseek-r1 7.00 11.50 9.00 16.67 4.12 5.50 9.90
gpt-4o-mini 68.53 42.13 17.68 38.50 35.53 16.08 16.16

8k
llama3.1 12.50 10.55 8.04 18.00 3.55 2.54 3.03

mistral 9.00 10.10 10.00 8.00 5.53 2.51 10.31
qwen2.5 8.04 7.54 8.08 11.50 6.00 1.51 9.00

deepseek-r1 8.04 12.00 5.08 13.00 4.02 4.00 9.09
gpt-4o-mini 64.00 35.86 15.23 32.16 39.59 14.80 11.22
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