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Introduction

We are pleased to present the proceedings of SIGTYP 2025, the seventh edition of the Workshop on
Research in Computational Linguistic Typology and Multilingual Natural Language Processing. This
year, the workshop is held as a joint event with FieldMatters and is co-located with the 63rd Annual
Meeting of the Association for Computational Linguistics (ACL 2025), taking place in Vienna, Austria.
Building on the success of previous editions from 2019 through 2024, SIGTYP continues to serve as
a platform for fostering dialogue between the fields of linguistic typology and multilingual NLP. Our
core mission remains the same: to raise awareness of typological diversity and to explore how insights
from linguistic typology can inform, enrich, and challenge computational methods in cross-lingual and
multilingual settings. We are particularly committed to the development of truly inclusive NLP methods
that serve a broad and typologically diverse range of languages.
SIGTYP 2025 invites contributions at the intersection of typology and NLP, with key areas of focus
including:

• The integration of typological features in multilingual learning and language transfer;

• The development of unified linguistic taxonomies and cross-lingual resources;

• Automatic inference of typological features using machine learning;

• Enhancing interpretability of multilingual models through typological knowledge;

• Collaborative approaches to improving typological databases;

• Addressing the challenges of cross-lingual annotation and defining linguistic universals;

• Language-specific studies aimed at supporting or revising typological claims.

This year’s program includes 2 keynote talks, 15 archival papers and 2 extended abstracts. We are
honored to host Robert Forkel and Lisa Bylinina as invited speakers, whose work exemplifies the inter-
disciplinary spirit of the workshop. We extend our sincere thanks to all authors for their high-quality
submissions, to the program committee for their diligent and insightful reviews, and to all participants
who contribute to the vibrancy and impact of SIGTYP. For more information, including proceedings
and shared task resources, please visit the workshop website: website: https://sigtyp.github.io/ws2025-
sigtyp.html
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Keynote Talk
Connecting the dots - growing an eco-system for

cross-linguistic data
Robert Forkel

Max Planck Institute for Evolutionary Anthropology
2025-08-01 – Room: TBD

Abstract: One of the key contributions typology can make to multilingual NLP is a fuller picture of the
diversity of the world’s languages. This diversity is also reflected in widely varying documentation across
languages. Thus, informing computational approaches to language processing by this diversity requires
operationalizing a variety of data types describing very different languages. Getting a computational
grasp on cross-linguistic information has been the main motivation behind CLDF - the Cross-Linguistic
Data Formats. This talk will explore the eco-system of cross-linguistic data that is now opened up via
CLDF.

Bio: Robert Forkel leads the research data management group and serves as a scientific programmer
in the Department of Linguistic and Cultural Evolution at the Max Planck Institute for Evolutionary
Anthropology in Germany. His current work centers on developing software solutions to collect, curate,
and publish large-scale databases for linguistic and cultural research. He is also interested in the role
of data in scientific research, with a particular focus on reproducibility. In addition, he contributes to
open-source software packages such as LingPy.
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Keynote Talk
(L)LMs and language theory

Lisa Bylinina
Utrecht University

2025-08-01 – Room: TBD

Abstract: One of the central questions in linguistic typology is: What constrains the space of natural
languages? In a somewhat narrower formulation: How do different grammatical properties of a language
relate to each other, and why are some combinations of features that would, in principle, be possible,
in fact not attested? I would like to put these questions in the context of recent language models. Can
(L)LMs help us understand interconnections within linguistic grammatical systems? I will argue for a
moderately optimistic view and suggest some ways to make progress in this direction, with a focus on
the linguistic generalisations (L)LMs make under different training conditions. My goal is to encourage
discussion about the usefulness of (L)LMs for theoretical and typological linguistic research.

Bio: Lisa Bylinina is an Assistant Professor of Computational Linguistics (UD1) at Utrecht University,
where she is part of the Language and Communication group within the Institute for Language Sciences.
She is also an active member of the NLP@U special interest group. Her research interests lie at the
intersection of theoretical linguistics and natural language processing. Before joining Utrecht University
in September 2024, she held the position of Assistant Professor at the University of Groningen, in the
Computational Linguistics Group at the Center for Language and Cognition (CLCG). At Utrecht, she
teaches in the Applied Data Science master’s program and the bachelor’s program in Communication
and Information Science. She is open to supervising (research) master’s theses in data science, artificial
intelligence, and theoretical linguistics, particularly in semantics.
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Abstract

The rapid development of large language mod-
els (LLMs) in recent years has largely focused
on English, resulting in models that respond
exclusively in English. To adapt these mod-
els to other languages, continual pre-training
(CP) is often employed, followed by supervised
fine-tuning (SFT) to maintain conversational
abilities. However, CP and SFT can reduce a
model’s ability to filter harmful content. We
propose Instruction Continual Pre-training (In-
sCP), which integrates instruction tags—also
known as chat templates—into the CP process
to prevent loss of conversational proficiency
while acquiring new languages. Empirical eval-
uations on language alignment, reliability, and
knowledge benchmarks confirm the efficacy
of InsCP. Notably, this approach requires only
0.1 billion tokens of high-quality instruction-
following data, thereby reducing resource con-
sumption.

1 Introduction
Large language models (LLMs) have demonstrated
remarkable performance across numerous natu-
ral language processing (NLP) tasks(Brown et al.,
2020). However, the majority of LLMs are pre-
trained on English corpora(AI@Meta, 2024; Team
et al., 2024; OpenAI, 2023), thus restricting their
utility to English language contexts.

While some endeavors opt to train their LLMs
from scratch using non-English data, as exem-
plified by YI-34B(AI et al., 2024), we recog-
nize the significant time and computing resources
required for such an approach. Drawing in-
spiration from Ouyang et al. (2022), many re-
search groups have shifted their focus towards
continual pre-training (CP)(Gupta et al., 2023;
Ke et al., 2022) on target languages to enhance
knowledge acquisition and model fluency. Sub-
sequently, supervised fine-tuning (SFT) is con-

∗This work was conducted while the first author was an
intern at ASUS Open Cloud Infrastructure Software Center.

ducted on instruction-formatted data to ensure that
models possess the capability to respond to ques-
tions in a format consistent with English-based pre-
trained LLMs, such as BLOOM(Workshop et al.,
2023), LLaMA2(Touvron et al., 2023), and Mistral-
7B(Jiang et al., 2023).

Yet, as highlighted in Qi et al. (2023), chal-
lenges persist in maintaining RLHF capabilities
when fine-tuning GPT-3.5 turbo(OpenAI, 2023) on
non-English data. Our experiments validate similar
observations with other LLMs like LLaMA2.

This work proposes a novel fine-tuning approach
called Instruction Continual Pre-training (InsCP)
for LLMs to adapt to non-English languages. We
hypothesize that providing a chat template during
CP prevents the model from forgetting its conver-
sational abilities, as it mirrors its original train-
ing conditions. InsCP is essentially the same as
typical CP, except that we augment each piece
of data with a chat template containing special
instruction tokens, such as < |begin_o f _text| >
in LLaMA3(AI@Meta, 2024). This simple aug-
mentation enables the model to effectively retain
its original RLHF capabilities, such as defending
against offensive input while learning a new lan-
guage through CP.

We evaluate the effectiveness of InsCP on LLMs,
primarily focusing on the LLaMA3-instruct model,
across three key aspects: language alignment, reli-
ability, and knowledge benchmarks.

The results demonstrate that the model, after un-
dergoing InsCP on LLaMA3-instruct, effectively
performs in Traditional Chinese when prompted
with Traditional Chinese input, surpassing the per-
formance of LLaMA3-instruct. Moreover, the
model after InsCP does not suffer a serious per-
formance dropped in knowledge, safety and RLHF
ability.
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2 Related Work

2.1 LLMs adapt in other languages

Fine-tuning is a widely-used technique for adapt-
ing models, particularly in the domain of large lan-
guage models (LLMs), to specific domains. Many
downstream tasks have been successfully addressed
through fine-tuning (Howard and Ruder, 2018; De-
vlin et al., 2019; Radford et al., 2018). While most
downstream tasks can be accomplished through
supervised fine-tuning, adapting an English-based
LLM to other languages, such as in the work of Fu-
jii et al. (2024); Zhao et al. (2024); Cui et al. (2023);
Lin and Chen (2023); YuLan-Team (2023) for non-
English languages, typically begins with continual
pre-training (CP). This initial step is crucial for
ensuring that the models possess the necessary lan-
guage proficiency and knowledge. Since acquir-
ing proficiency in a specific language requires a
large amount of data, CP is advantageous as it does
not require labeled data, enabling the use of vast
amounts of available language data. Subsequently,
instruction fine-tuning allows the model to engage
in conversational interactions using specific tem-
plates.

2.2 Problems of Continual Pre-training

Continual pre-training (CP) is often employed to
adapt those English-based models to other lan-
guages. However, Li and Lee (2024) points out
that CP can lead to catastrophic forgetting, particu-
larly diminishing the model’s conversational abil-
ities. To address this issue, Huang et al. (2024)
proposed a method called "chat vector," which
enhances chat capabilities through model weight
arithmetic, achieving good performance across var-
ious benchmarks. Despite these advancements,
many researchers continue to tackle the challenges
posed by CP. In this work, we present a straightfor-
ward approach to mitigate these issues.

3 Methodology
For our method, Instruction Continual Pre-training,
we adopt a similar approach to CP, but with the
addition of the model’s original chat template. The
template is shown in Appendix A.1 The inputs in
the template represent the prompts provided by the
user. In our context, where the objective is to train
LLMs in the target language through next token
prediction tasks while retaining their chat ability,
we place the CP data in the model_response. This
arrangement ensures that LLMs generate tokens

based on the target language. The InsCP template
is shown in A.1.

4 Experimental Setup

4.1 Pre-training Dataset
We utilize a high-quality dataset comprising paired
instruction-following data for LLaMA3-instruct
8B(AI@Meta, 2024) during the InsCP procedure.
The InsCP procedure means the traditional CP
method with instruction-following data. The
dataset consists of Traditional Chinese text and
has a total size of 0.1 billion tokens. Throughout
the InsCP process, we segregate the questions and
answers into two separate data points. Further de-
tails regarding the training process are provided in
the Appendix A.3.

Moreover, to demonstrate the generalizability
of our method to other languages, we extend our
approach to Japanese. We utilize a 70M tokens
dataset, which is also instruction-following data
same as the Traditional Chinese dataset structure,
to perform InsCP on LLaMA3-instruct 8B.

From our experiments, we discovered the crit-
ical importance of selecting appropriate data for
InsCP. We aimed to determine the most suitable
type of data for InsCP. Based on our findings, we
selected instruction-following data with low per-
plexity because low perplexity are likely to closely
resemble the original output of LLMs, thereby min-
imizing any adverse effects on the models’ original
abilities.

4.2 Evaluation
4.2.1 Language Alignment
To evaluate language alignment, we employ the
FastText language identification model (Joulin
et al., 2016a,b). This model is used to determine the
language of 2000 aligned sentences extracted from
the English and Traditional Chinese subset of the
NeuLab-TedTalks language within the tokens gen-
erated by our model. The FastText model classifies
text into two categories: Chinese and English. The
results include the percentage of sentences identi-
fied as Chinese, English, and others from the set of
2000 input prompts.

4.2.2 Reliability
We assess the reliability of the model’s output us-
ing several common benchmarks, including Truth-
fulQA(Lin et al., 2022), ToxiGen(Hartvigsen et al.,
2022), and BOLD(Dhamala et al., 2021), utilizing
lm-evaluation-harness(Gao et al., 2021).

2



4.2.3 Knowledge Benchmarks

We utilize several benchmarks to evaluate our
model’s knowledge: C-eval-tw: A translation of
C-eval(Huang et al., 2023), used to evaluate our
model. Compute metrics by averaging accuracy
across individual tasks. The accuracy computa-
tion involves selecting the option with the highest
probabilities. TTQA(Hsu et al., 2023): Focuses
on Taiwanese commonsense and knowledge by us-
ing 64 expert-selected paragraphs from Wikipedia.
We extract the model’s output and calculate accu-
racy based on multiple-choice questions. TMMLU
Plus(Tam et al., 2024): Used for traditional Chi-
nese multitask benchmarking. We calculate accu-
racy for each task directly. ARC(Clark et al., 2018)
and Hellaswag(Zellers et al., 2019): Ensure that
our model’s English-related knowledge does not
degrade. We utilize length-normalized accuracy.
MMLU(Hendrycks et al., 2020): Suitable for mul-
titask evaluation. We calculate accuracy for each
task directly.

4.2.4 MT-Bench

MT-Bench(Zheng et al., 2023) incorporates multi-
conversation scenarios, allowing us to assess the
model’s ability to handle multiple interactions si-
multaneously. This enables us to demonstrate that
InsCP does not compromise the RLHF ability of
the model. In MT-Bench, the GPT-4 score serves
as our evaluation metric, and we include a prompt
about judging language alignment in GPT-4 evalu-
ation to test the model’s language ability.

4.3 Baselines

We select LLaMA-3-instruct as our baseline model.
To evaluate the performance of Instruction Con-
tinual Pre-training (InsCP), we conduct InsCP us-
ing our baseline model. Importantly, it’s worth
noting that both InsCP and the original contin-
ual pre-training (orgCP) utilize the same continual
pre-training (CP) data. Furthermore, to compare
with the original continual pre-training process, we
also fine-tune a model using original continual pre-
training.

Model EN Prompt ZH Prompt
EN% ↑ ZH% ↓ EN% ↓ ZH% ↑

LLaMA3-instruct 1.0 0.0 0.90 0.09
LLaMA3-orgCP 1.0 0.0 0.50 0.49
LLaMA3-InsCP 0.99 0.01 0.01 0.99

Table 1: Language alignment benchmark.

model TruthfulQA ToxiGen BOLD
mc2 ↑ toxicity ↓ sentiment ↓

language EN ZH EN ZH EN ZH
LLaMA3-instruct 51.6 52.7 0.10 0.14 0.54 0.55
LLaMA3-orgCP 50.8 50.5 0.12 0.26 0.61 0.68
LLaMA3-InsCP 51.8 53.8 0.07 0.16 0.56 0.52

Table 2: Reliability benchmark

5 Experimental Result

5.1 Language alignment evaluation

We present the percentage of responses among
2000 prompts generated by the models. The exper-
imental findings are summarized in Table 1. Our
observations are as follows: (1)LLaMA3-instruct
exhibits poor language alignment: As indicated
in Table 1, when provided with Traditional Chi-
nese input prompts, LLaMA3-instruct frequently
generates output in English. This lack of align-
ment between the input and output languages can
lead to language nonalignment issues during us-
age. (2)The same data used with the original CP
method fails to achieve proper alignment: A key
distinction between InsCP and the original CP lies
in their respective language learning capabilities.
We observed that with the same data size, InsCP en-
ables LLMs to acquire language proficiency more
effectively. (3)LLaMA3-InsCP demonstrates re-
markable language proficiency: Regardless of
whether provided with English or Traditional Chi-
nese input prompts, LLaMA3-InsCP consistently
responds in the appropriate language.

5.2 Reliability evaluation

In Table 2, we present the results of the models’
reliability. Our experiments were conducted in
both English and Chinese to ensure that our model
does not compromise its RLHF ability in either
language. Across each benchmark, we observe that
the orgCP model consistently achieves lower scores
compared to the other models. On the other hand,
LLaMA3-InsCP retain the RLHF ability, allowing
it to defend against toxic inputs and generate non-
harmful context during inference.

5.3 Knowledge benchmark

In Table 3, we present the scores from six knowl-
edge benchmark tests. In Chinese-related bench-
marks, we observed that the model after InsCP
exhibited some improvements compared to both
orgCP and the original model. These findings indi-
cate that InsCP can effectively preserve the LLM’s

3



model ARC Hellaswag MMLU C-eval-tw TMMLU+ TTQA
ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

LLaMA3-instruct 60.5 81.8 67.2 47.3 43.0 23.3
LLaMA3-orgCP 57.5 81.3 66.1 48.5 41.3 41.3
LLaMA3-InsCP 61.6 81.7 65.6 48.9 41.9 48.5

Table 3: Knowledge benchmark

model MT-Bench
language EN ↑ ZH ↑

LLaMA3-instruct 7.8 4.1
LLaMA3-orgCP 4.3 4.6
LLaMA3-InsCP 7.6 6.7

Table 4: MT-Bench

model MT-Bench-JP
LLaMA3-instruct 4.9

LLaMA3-orgCP-JP 4.8
LLaMA3-InsCP-JP 6.6

Table 5: MT-Bench-JP

inherent abilities while also enhancing its perfor-
mance in target language domains.

5.4 MT-Bench and MT-Bench-JP
In Tables 4 and 5, MT-Bench further highlights the
distinctions between orgCP and InsCP. We note
that outputs from orgCP often contain irrelevant
text that deviates from our input prompts. More-
over, the orgCP model appears to forget how to ap-
propriately conclude conversations. Additionally,
due to the inclusion of language alignment crite-
ria in GPT-4 evaluation, we observe a significant
disparity between the InsCP model and LLaMA3-
instruct. While LLaMA3-instruct predominantly
responds in English for most questions, the InsCP
model demonstrates the ability to discern the lan-
guage input by the user. We observe a distribution
similar to that of Traditional Chinese MT-Bench in
Table 5 in Japanese domain.

6 Limitations of InsCP
As discussed in Section 4.1, the choice of data used
in InsCP significantly influences its outcomes. Our
experiments indicate that conducting InsCP neces-
sitates the utilization of low-perplexity instruction-
following data, which can be challenging to acquire
in abundance for certain languages. Consequently,
we opted to perform InsCP using small datasets,
which we believe is a more generalizable approach

for languages with limited resources. Nonetheless,
both data size and data quality remain challenges
when implementing InsCP.

7 Conclusion

In this work, we introduce a novel pipeline called
InsCP designed to facilitate the transfer of LLMs
into non-English domains. Through InsCP, LLMs
can retain their inherent abilities while also acquir-
ing the capability for language alignment in the
target language and gaining knowledge of the tar-
get domain. Additionally, we demonstrate that
InsCP does not necessitate extensive data, thereby
consuming fewer resources and less time. Remark-
ably, even with a small amount of data, InsCP
can transform English-based LLMs into models
aligned with the target language, a stark contrast
to the resource-intensive traditional pipeline. In-
sCP paves the way for future LLMs, primarily fine-
tuned in specific languages, to swiftly transfer their
abilities to other languages.
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A Appendix

A.1 LLaMA3-instruct chat template
To initiate a completion with LLaMA3-instruct,
one must adhere to the following format:

<| begin_of_text |>
<| start_header_id |> user <|end_header_id|>
{{inputs }}<| eot_id |>

<| start_header_id |> assistant <|end_header_id
|>

{{model_response}}

The InsCP template is shown below:

<| begin_of_text |>
<| start_header_id |> user <|end_header_id |><|

eot_id |>
<| start_header_id |> assistant <|end_header_id

|>
{{InsCP_data}<|eot_id |>}

A.2 Training Detail
We utilize LLaMA3-instruct as our base model,
and both the original continual pre-training and
instruction continual pre-training are configured
with the following hyperparameters: a learning
rate of 3e-5, AdamW optimizer with beta1 of 0.9
and beta2 of 0.95, batch size set to 1 per device
(utilizing 64 GPUs), and training conducted for 10
epochs.

A.3 Generation Strategy
We employ vLLM as our generation tool, incorpo-
rating LLaMA3’s system prompt in each genera-
tion to harness the full potential of the LLM. For
vLLM, we set the following generation parameters:
maximum tokens to 1024, temperature to 0.8, top-p
sampling to 0.9, and seed fixed at 42 to facilitate
result reproducibility. Additionally, we maintain
default values for other generation configurations
in vLLM.

A.4 MT-Bench evaluation prompt
In the Traditional Chinese MT-Bench, we predomi-
nantly adhere to the evaluation prompts provided
by the authors. However, to delve deeper into test-
ing the LLM’s language alignment ability, we intro-
duce an additional prompt in Traditional Chinese:
"If the assistant’s answer is in a language other than
Traditional Chinese, please give it a score of 0."
This prompt instructs GPT-4 to assign a score of
0 to responses that are not in the correct language,
thereby enabling a more rigorous assessment of
language alignment capabilities. For Japanese MT-
Bench, we also add the prompt in Japanese: "If
the assistant’s answer is in a language other than
Japanese, please give it a score of 0.", in order to
meet the language alignment requirement we want
to obseve.
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Abstract

While modern language model architectures
are often assumed to be language-agnostic,
there is limited evidence as to whether these
models actually process the vast diversity of
natural languages equally well. We investigate
this question by analyzing how well LMs learn
carefully constructed artificial languages con-
taining a variety of verbal complexity, ranging
from simple paradigms to covering far more
verb classes than occur in natural languages.
Rather than learning all languages equally ef-
ficiently, models trained on these languages
show strict preferences for processing simpler
languages. Furthermore, while some observed
model preferences mimic human linguistic pri-
ors, we find that they correspond to model mem-
orization of its training data rather than general-
ization from it. This finding suggests that while
model behavior often mimics human language
understanding, the underlying causes of their
proficiencies are likely very different.

1 Introduction

Transformer-based language models (LMs) are of-
ten assumed to be language-agnostic, or to learn
all natural languages equally well. This has lead
to their widespread use for different languages
(Scheible et al., 2024; Ahmed et al., 2024, i.a.) and
multilingual modeling (e.g., Üstün et al., 2024).

However, there is immense linguistic diversity in
the world’s languages, and human learners acquire
aspects of these languages at different rates. For
example, children take longer to learn the opaque
Dutch gender system, mastering it by age six (Tsim-
pli, 2014), while children master the transparent
Spanish gender system by three and a half, if not
sooner (Lew-Williams and Fernald, 2007). It re-
mains an open question as to whether this complex-
ity similarly affects model acquisition of different
languages: previous work exploring the differences
in language modeling capabilities presents mixed

results on the effect of morphological complex-
ity on language modeling (Cotterell et al., 2018;
Mielke et al., 2019; Park et al., 2021; Arnett and
Bergen, 2024), and typological differences can im-
pact the performance of models intended to be
language-agnostic (Gerz et al., 2018). Furthermore,
there is limited evidence whether LMs are even
constrained to learning natural linguistic phenom-
ena as humans are (Kallini et al., 2024).

We address this question by testing if LMs
demonstrate human-like learning patterns when ac-
quiring new, artificial languages. Specifically, we
ask: Do LMs exhibit linguistic priors favoring
certain conjugation paradigms over others?. We
center our behavioral analysis on a single grammat-
ical feature—verb conjugation—in a wide variety
of linguistically plausible and implausible settings
as a controlled case study into the effect of linguis-
tic grammatical complexity on transformer-based
modeling of language.

To evaluate LMs for these linguistic priors, we
first construct artificial languages using a proba-
bilistic context-free grammar (PCFG). These lan-
guages cover a wide range of (plausible and implau-
sible) conjugation complexity while controlling for
other confounding variables found in natural lan-
guages. We then test how proficiently and effi-
ciently language models learn these languages by
measuring their mastery of both subject-verb agree-
ment (a commonly used linguistic test for LMs,
see Gulordava et al., 2018), as well as a novel be-
havioral experiment for verb class identification in
these languages throughout the training process.

Our experiments find that language models ac-
quire more complex languages (i.e., those with
more verb classes) more slowly. However, they
achieve close to 100% accuracy on seen verbs given
enough data, even in cases where the number of
verb classes is far larger than naturally occurs in
human languages. The models also perform signifi-
cantly worse on novel verbs than those seen during
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training, with the performance degradation increas-
ing with the number of verb classes; this indicates
that these models do not learn to generalize from
the standard conjugation patterns shown to them
during pretraining.

These findings suggest both that (1) these models
are not language-agnostic, but are instead sensitive
to the complexity of the target language, and that
(2) behavior that resembles human-like language
learning in models may actually be memorization
of the training data, rather than generalization to
the underlying linguistic rules. Put another way,
correlations between model and human behavior
do not necessarily indicate that their underlying
mechanisms are the same. In light of these find-
ings, we recommend future work analyzing model
language learning to incorporate evaluations that
disentangle these factors when probing language
model behavior.

2 Methodology

This section presents our method for generating
artificial languages with the desired characteris-
tics (Section 2.1) and our behavioral experimental
setting to test model proficiency on subject-verb
agreement in these languages (Section 2.2).

2.1 Artificial Language Generation

To evaluate how well LMs can learn languages
across different verb settings, we generate artifi-
cial languages with the desired features using a
Probabilistic Context-Free Grammar (PCFG), an
extension of context-free grammars that assigns
probabilities to transitions between states, allowing
for the stochastic generation of sentences. We focus
our analysis on these artificial languages to control
for various confounding factors found in natural
languages, including but not limited to semantics,
irregularities, ambiguity, and dialectal variation,
that make direct comparisons difficult.

We define our PCFG with a set of parameters
describing the language’s word formation, syntax,
and inflectional rules. For verb paradigms, this pa-
rameterization allows us to perform controlled abla-
tions across various experimental settings. Specif-
ically, for our experiments, we generate ten lan-
guages for each of the {1, 2, 3, 5, 8, 16, 32, 64}
verb class settings and report the average perfor-
mance and standard error in a given setting. There
is no overlap in the suffixes between any two verb
classes, and verb paradigms are fully regular.

Other parameterization of our PCFG is informed
by common natural distributions of language fea-
tures to ensure our artificial languages are as sim-
ilar to natural ones as possible. In each language,
the number of roots generated per part-of-speech
approximates 1% of English senses in Kaikki (Ylö-
nen, 2022), with nouns approximating 0.5% of
senses since jargon is often overrepresented in
nouns (Table 1). As Zipf’s Law is ubiquitous in
human language at many scales (Williams et al.,
2015), the distribution from which words are se-
lected is drawn from a Zipfian distribution. A skew
of 1.2 is used for our word distribution, based on
the empirical distribution found in the American
National Corpus (Piantadosi, 2014). The verb class
assigned to a verb is similarly drawn from a Zipfian
distribution with a skew of 1.

We also allow for features (such as nominative
for subjects) to be passed between states in the
PCFG during generation (Figure 1); this enforces
subject-verb agreement on person and number fea-
tures within each sentence. A more detailed ex-
planation of creating the artificial languages and
generating sentences is given in Appendix A.

Part of Speech Items Kaikki Senses
Adjective 2000 199759

Determiner 1 387
Noun 4000 856855

Preposition 15 1337
Pronoun 6 1053

Verb 2000 220457

Table 1: Word counts per part of speech in our artificial
languages versus Kaikki sense counts for English.

2.2 Model Training and Evaluation

When training language models on our artificial
languages, we consider three factors: the verb

Figure 1: Sample English PCFG. The nominative fea-
ture nom passes from the child of the subject noun phrase
sNP to its descendants, allowing for subject-verb agree-
ment to be enforced later in the generation pipeline.
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(a) Per-num behavioral test on GPT-2 trained from scratch (b) Per-num behavioral test on finetuned GPT-2

(c) Class behavioral test on GPT-2 trained from scratch (d) Class behavioral test on finetuned GPT-2

Figure 2: Behavioral test results for models trained on the generated languages at different training data sizes.

paradigm (or number of verb classes in a language),
the size of the training dataset, and the model
training scheme. We construct training datasets
of 102,3,4,5,6 grammatical training sentences from
each of the generated languages; the two training
schemes considered are training a randomly initial-
ized GPT-2 model from scratch versus finetuning
the pretrained GPT-2 model for English (Radford
et al., 2019), both of which have approximately
124 million parameters. We train LMs on each
combination of these settings (and across all ten
languages per verb paradigm).

We then evaluate these models on how well they
learn the artificial languages they are trained on
by testing whether they can distinguish grammati-
cal examples of the language from ungrammatical
ones.1 Specifically, we construct evaluation sets
consisting of minimal pairs of grammatical and un-
grammatical sentences and measure the perplexity
of the model on each sentence; models that are well-
fit to the training language should prefer (achieve a
lower perplexity on) the grammatical sentences.

We consider two types of behavioral tests to
probe how well the models learn subject-verb
agreement and the verb classes. These tests de-
termine the error type shown during inference in
a minimally different pair of (grammatical, un-
grammatical) sentences: the per-num test (Case
1), where the verb in the ungrammatical sentence
takes a suffix marking a different person and/or

1This is a common approach for surfacing linguistic knowl-
edge in LMs (e.g., Liu et al., 2019), particularly in the case of
subject-verb agreement (Gulordava et al., 2018).

number feature for that class:

(1) a. El perro escucha el gato.
“The dog hears the cat.”

b. *El perro escucho el gato.
“The dog hear the cat.”

and the class test (Case 2), where the ungrammat-
ical verb takes a suffix from a different verb class
agreeing with the subject’s person and number:

(2) a. El perro escucha el gato.
“The dog hears the cat.”

b. *El perro escuche el gato.
“The dog hears2 the cat.”

The evaluation sets contain 5,000 sentence pairs;
we define accuracy as the percentage of test sen-
tence pairs where the grammatically correct sen-
tence’s perplexity is less than that of the ungram-
matical sentence. Thus, we measure the cases
where the model assigns a higher likelihood to the
grammatical case as a proxy for how well it models
conjugation in the generated languages.

Testing covers three settings, varying whether
test verb roots are seen during training: seen roots,
where the model is evaluated on verb roots from the
training; unseen roots, which evaluates the model
on held-out verb roots to test model generalization;
and one-shot, where the model is given one demon-
stration using a hitherto unseen verb before being

2Note that there is no equivalent, ungrammatical En-
glish translation for the class test, as English does not have
verb classes that correspond to multiple regular conjugation
paradigms like in Spanish.

9



tested on that same verb root. Given the set s of
LMs trained across each (data scale, verb paradigm,
and training scheme) combination, we evaluate s
on all described (i) test types and (ii) evaluation
settings. We report the mean performance and stan-
dard error across the ten runs for each combination.

3 Results

This section presents our language learning exper-
iments. We find that while LMs model simpler
inflectional paradigms more easily (indicating that
they are not agnostic to language complexity), they
struggle to generalize to new verbs across experi-
mental settings, including on linguistically plausi-
ble verbal paradigms found in natural languages.

3.1 Per-Num Agreement Evaluation

Figures 2a and 2b show per-num behavioral test
outcomes (where negative samples contain incor-
rect subject-verb agreement) on models trained
from scratch and finetuned GPT-2, respectively.
Across settings, adding verb classes to the gen-
erated languages generally corresponds to worse
performance on (and slower acquisition of) subject-
verb agreement by LMs.

For seen roots, all models achieve high accura-
cies of 97.5% or greater at the largest data size
(1M training sentences). However, acquisition time
varies across model and verb class settings: lan-
guages with more verb classes consistently need
more data to achieve comparable accuracies to
those with fewer classes3. Pretrained GPT-2 also
learns to prefer correctly conjugated seen verbs
slower than models trained from scratch.

Unsurprisingly, agreement accuracy on unseen
roots is lower than on seen roots across comparable
experiments.4 However, we see the same relative
trends here as on seen roots: more data improves
conjugation accuracy (though now with larger gaps
between the best- and worst-performing LMs), and
finetuned GPT-2 continues to underperform in lim-
ited data settings. For unseen verbs, though, the
performance gap between the randomly initialized
and finetuned LMs is smaller, particularly on lan-
guages with eight or more verb classes.

Finally, we find that providing the model with
one correctly conjugated demonstration does not

3E.g., Training from scratch on 100 sentences with one
verb class achieves a mean accuracy of 76.2%, while it re-
quires 10k sentences to get a similar accuracy over 64 classes.

4Limited generalization has been observed for other lin-
guistic tasks in transformers (Liu and Hulden, 2022).

consistently improve accuracy over the unseen verb
(“zero-shot”) setting. In many cases, the models
perform similarly in both settings, and high-data
regimes often perform worse when given a correct
example. This, in addition to the unseen verb re-
sults, suggests the models do not learn abstract con-
jugation patterns when trained on these languages.

3.2 Verb Class Evaluation

Figure 2c presents the class behavioral test (where
negative samples contain a verb that is correctly
conjugated, but with the wrong class pattern) re-
sults on models trained from scratch; Figure 2d
shows the corresponding results for finetuned GPT-
2. Unsurprisingly, we observe random chance per-
formance (50%) on unseen verbs for both the ran-
domly initialized and finetuned models–as the mod-
els cannot predict the correct class for verbs not
seen during training.

More surprisingly, randomly initialized models
are also unable to outperform random chance in the
one-shot setting, suggesting that these models can
not generalize knowledge about underlying verb
classes during inference. While one-shot evalu-
ations of the finetuned model outperform this in
low-data settings (achieving ∼ 68% accuracy), this
is roughly what would occur if the model always
chooses sentences where the prompt and test verb
are identical (occurring ∼ 1

6 of the time across con-
jugations), and chooses randomly otherwise; this
performance also occurs on the per-num test (Fig-
ure 2b). Thus, this behavior is likely caused by the
pretrained GPT-2 exhibiting a strong copying pref-
erence (Olsson et al., 2022), but not generalizing
beyond that.

On seen verbs, model performance again gener-
ally improves with more data, but we see smaller
performance gaps across languages with differ-
ent verb class counts, particularly at smaller data
scales. Furthermore, model accuracy with more
verb classes tends to be higher than those with
fewer classes, though with more variation than ob-
served with per-num probing. The discussion offers
a possible hypothesis for this phenomenon.

4 Discussion

This paper investigates whether LMs exhibit lin-
guistic priors for natural and unnatural conjuga-
tion paradigms. Our probing experiments find that
LMs are much more efficient at modeling person-
number agreement for languages with simpler verb
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paradigms, mirroring human learning of languages.
They also corroborate prior work indicating that
neural LMs prefer human languages to unnatural
ones (Alamia et al., 2020; Kallini et al., 2024).
However, this primarily holds for verbs seen dur-
ing training; models perform much worse at judg-
ing subject-verb agreement on novel verb roots, in
contrast with the strong generalization shown by
human speakers on this task (e.g. Berko, 1958).

Furthermore, we find that LMs adopt unnatural
verb paradigms5 almost as well, given enough train-
ing data. This result, in conjunction with degraded
performance exhibited on unseen verbs, indicates
that model learning of the generated languages is
likely heavily dependent on memorization rather
than generalization of the training data, particu-
larly in the class behavioral test setting. While this
trade-off has been documented in LMs for down-
stream NLP tasks (Tänzer et al., 2022; Zheng and
Jiang, 2022), we find that it also affects the model
when learning lower-level linguistic knowledge.

Even more unnaturally, models trained on lan-
guages with more complex paradigms are slightly
better at identifying correct verb classes, with the
best performance occurring on 32 and 64 classes.
–far beyond what appears in most natural languages.
We hypothesize that this behavior is due to how
models and their inputs are parameterized: as the
number of classes increases, the set of verb roots
a suffix can follow (according to the training data)
becomes smaller, allowing the model to be more
confident about the bigram’s conditional probabil-
ity. However, this finding contrasts sharply with
human language learning, where many unrelated
paradigms are typologically improbable due to the
unreasonable amount of memorization required for
humans to model them correctly.

Based on these results, we argue that while lan-
guage model learning of verbal paradigms may
resemble human learning, the underlying mecha-
nisms driving these behaviors are likely very dif-
ferent. Future work comparing model behavior
with humans should control for these similarities
by also looking at the underlying mechanisms driv-
ing model performance.

5 Limitations

Using carefully constructed artificial languages al-
lows us to isolate syntactic complexity’s effects
on language learnability and to consider a broad,

5I.e., more verb classes than in most natural languages.

systematic complexity distribution. However, this
means that these languages are not natural (partic-
ularly regarding the absence of semantics), which
limits the findings presented here. Future work
should replicate these experiments in a more natu-
ral setting to verify that our findings remain valid
in such conditions.

Another limitation of this work is the size of
the language models: computational limitations
and the number of models considered in our ex-
periments (800 trained LMs across experimental
settings) limited the model size considered to one
setting, GPT-2 Small (124M parameters). Finally,
there are many aspects of complexity in natural
language, with the number of verb classes being
just one aspect. Whether our findings hold for
other linguistic phenomena, such as noun classes
(i.e. gender), freedom in word order, degree of
syncretism, morphophonological alternations, etc.
remains an open area for future research.
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A Methodological Details

A.1 Artificial Language Generation

An overview of the pipeline used to generate sen-
tences is described in Figure 3.

Figure 3: Overview of Sentence Generation with Artifi-
cial Languages.

A.1.1 Morpheme Generation
The parts of speech and number of morphemes that
belong in each category are set manually. For this
experiment, about 8000 morphemes were used in
total. The number of morphemes for each part of
speech was chosen to approximate 1% of the num-
ber of Kaikki’s senses for each of English’s part
of speech (Ylönen, 2022). Approximately 0.5% of
nouns were used instead of 1% since nouns dispro-
portionately have technical vocabulary or jargon in
Kaikki’s database which we do not care to repli-
cate. Additionally, only one determiner, which
inflects for number, and six pronouns for each com-
bination of number (singular, plural) and person
(1st, 2nd, 3rd) were chosen to simplify conjugation
paradigms.

A.1.2 Probabilistic Context Free Grammar
Probabilistic context-free grammars (PCFG) are an
extension of a context-free grammar where each in-
put state’s production rules take a probability. Since
the final result of a PCFG resembles a syntactic tree,
it allows us to create sentences with customizable
linguistic structures. Pseudocode for a simplified
English grammar is provided in Figure 4. All gen-
erations start with an "S" state. Generation rules

may apply categorically, such as rule (1), which
determines that sentences produce a subject noun
phrase followed by a verb phrase with probabil-
ity 1. Other states may have two or more possible
outcomes, as demonstrated by rule (3), which de-
termines that noun phrases may produce a deter-
miner followed by a noun or a pronoun with equal
probability. All preterminal states are lowercase,
while non-preterminal and non-terminal states are
required to have at least one capital letter. This
simplified grammar does not include adjectives or
prepositions and thus is incapable of handling re-
cursion, but the full grammar for the artificial lan-
guages does.

generation_rules = [
S → [sNP, VP], 1
sNP → [NP.nom], 1
NP → [det, noun], 0.5, [pron], 0.5
VP → [verb, NP], 0.7, [verb], 0.3

]

Figure 4: Generation Rules for a simplified grammar.

In order to handle conjugation, states are as-
signed features, as demonstrated by rule (2). Not
demonstrated is the deletion of a feature and the ad-
dition of a tag feature that allows for long-distance
agreement. Unless explicitly stated by a generation
rule, a state passes all of its features to its children.
This can be seen in Figure 1, where the subject NP
with feature nom (short for nominative, i.e., subject
of a sentence) passes on the feature to all of its
children states.

Preterminal nodes are represented by the part of
speech that will beget a morpheme from the vo-
cabulary. A simplified vocabulary can be seen in
Figure 5. In order to mimic the naturalistic distribu-
tion of words in human languages, generation rules
for preterminal states function differently from the
rest of the PCFG. The morpheme that is chosen
by the preterminal state is chosen according to a
Zipfian distribution with skew = 1.2. Additionally,
the part of speech of a terminal node is added to its
set of features.

Rules dictating universal features of certain parts
of speech may be added at this step as well. For
example, in our simplified toy vocabulary, all nouns
are assumed to take the feature 3rd. This is not
included in the toy grammar’s rules, but will be
essential in determining which terminal states agree
with which other terminal states.
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vocabulary = {
det: [“the”],
noun: [“cat”, “dog”],
verb: [“see”, “miss”],
pron: [“you”]

}

Figure 5: Vocabulary for a simplified grammar. The
morphemes in this example are not stochastically gener-
ated for a clearer example.

A.1.3 Conjugator

The conjugator works by (i) determining which
morphemes agree with other morphemes and (ii)
applying each inflection rule to each word in the
sentence that has a given feature set.

After the PCFG generates a sentence without
agreement, the first step is determining which lem-
mas agree with which other lemmas. We define
agreement as a terminal state copying a state from
another terminal state according to rules set by
the user. For example, as demonstrated by Fig-
ure 6, we can see our toy grammar’s verbs are
required to copy one feature relating to number
and one feature relating to person from the nomina-
tive noun constituent, as seen by the definition of
agreement_rules. In the toy example in Figure 1,
the verb see copies the feature 3rd and sg (applied
through rules not shown in previous figures) from
cat to have the feature set verb, 3rd, sg. Note
that if any word seeking agreement finds more than
one word to agree with, or is unable to find ex-
actly one of each of the features it aims to copy,
generation fails.

The second step is applying inflections to the
sentence, now that all words requiring conjugation
have copied features from the word that they are
agreeing with. Inflections apply to any word that
changes form based on some features. For example,
as demonstrated by Figure 6, we can see our toy
grammar’s verbs take a suffix -s iff it has features
3rd and sg or otherwise it does not take any inflec-
tions, as seen by the definition of conjugations.
Conjugations may also apply to words which did
not gain features from the agreement rules, such as
nouns pluralizing with the suffix -s if it gained the
pl feature from a generation rule.

We generate datasets on 8 different numbers of
verb classes: {1, 2, 3, 5, 8, 16, 32, 64}. In all
datasets, any verb agrees with the subject of the
sentence in person and number, for a total of 6

agreement_rules = [
# Verbs agree with the nom nouny word
# Verbs must then copy the word's number
# Similarly, they then copy the person
{"verb": [["nom", "nouny"],

[["sg", "pl"],
["1st", "2nd", "3rd"]]]}

]
conjugations = [

["verb", {
“-s”: 3rd.sg,
“-”: otherwise

}],
["noun", {

“-s”: pl,
“-”: otherwise

}]
]

Figure 6: Pseudocode for agreement rules and conju-
gations for a simplified grammar. Nouny is defined as
being either the feature pron or noun.

possible suffixes given a verb root (3 person x 2
number). In datasets with n verb classes where
n > 1, verbs are assigned to one of n classes.
Each of these classes has a unique set of suffixes
for each combination of person and number for
subject-verb agreement, for a total of 6n verbal
suffixes per language.

B Replicability Details and Miscellanea

This section provides additional details on our ex-
perimental setting for documentation and replica-
bility purposes.

The language models trained in these exper-
iments have the GPT-2 Small architecture with
124.4M trainable parameters. We consider both
a randomly initialized version of this architecture
and the pretrained GPT-2 hosted through Hugging-
face,6 which is released under the MIT license;
intended use of this artifact beyond the license is
not clearly stated.

In our experiments, we trained 800 models (10
runs, 8 languages per run, 5 models with varying
training data amounts per language, 2 base models
- English pretrained vs. randomly initialized), and
the training dataset sizes ranged from 100 sentences
to one million sentences; we evaluated each model

6https://huggingface.co/openai-community/gpt2, as ac-
cessed before and on 02/15/2025.
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across six settings (two behavioral tests, three root
settings) with 5,000 sentences each; though, mod-
els trained on languages with one verb class were
not evaluated on the class behavioral test. There is
no overlap in sentences from the training and test
set. We use 10 GPUs for both training and evalua-
tion, one for each run of 80 models. Training and
evaluating 80 models took approximately one day
per GPU. Given our training batch size of 1 and
single training epoch, this corresponds to between
100 to 1,000,000 training passes per model.
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Abstract

Multilingual wordlists play a crucial role in
comparative linguistics. While many studies
have been carried out to test the power of com-
putational methods for language subgrouping
or divergence time estimation, few studies have
put the data upon which these studies are based
to a rigorous test. Here, we conduct a first ex-
periment that tests the robustness of concept
translation as an integral part of the compila-
tion of multilingual wordlists. Investigating
the variation in concept translations in inde-
pendently compiled wordlists from 10 dataset
pairs covering 9 different language families, we
find that on average, only 83% of all transla-
tions yield the same word form, while identical
forms in terms of phonetic transcriptions can
only be found in 23% of all cases. Our find-
ings can prove important when trying to assess
the uncertainty of phylogenetic studies and the
conclusions derived from them.

1 Introduction

While the quantitative turn in historical linguistics
has been met with a considerable amount of skep-
ticism for a long time (Holm, 2007; Geisler and
List, 2022), phylogenetic methods – originally de-
veloped to infer phylogenies of biological species
– have by now become the new state of the art in
the field, replacing more traditional methods for
subgrouping almost completely. Given that most
linguistic approaches to phylogenetic reconstruc-
tion make use of lexical data, multilingual wordlists
play a crucial role in phylogenetic reconstruction
in historical linguistics.

The compilation of multilingual wordlists itself
is quite tedious. Starting from a list of concepts,
scholars must translate the concepts into all target
languages under investigation. The translation into
the target languages, however, is no standardized
procedure, but may require various steps, including
the consultation of informants, the consultation of

published resources, or the inspection of archived
material. In all these cases, scholars who compile
a wordlist must weight their evidence carefully,
in order to avoid errors. Given the complexity of
this process, it is no surprise that errors can eas-
ily slip into the translations. A given concept may
lack a direct translational equivalent in a given lan-
guage, or there may be several good candidates
from which scholars must select the most appropri-
ate ones. As a result, there is a great risk that multi-
lingual wordlists compiled for phylogenetic studies
show a considerable amount of idiosyncrasies that
might have an impact on the phylogenies scholars
compute from them.

Studies that try to measure the amount of incon-
sistency in multilingual wordlists – introduced by
the translation of concepts into target languages
– are lacking so far. Here, we present a first at-
tempt to shed light on the robustness of the concept
translation task, taking advantage of the fact that
recent efforts have produced large-scale reposito-
ries of standardized multilingual wordlists (List
et al., 2022). In the following, we will give a short
overview on previous discussions and studies that
focus on the translation of concepts in multilingual
wordlist compilation (§ 2). After this, we intro-
duce the materials and methods by which we try to
evaluate the robustness of concept translation (§ 3).
Having presented the results (§ 4), we discuss them
in more detail and share some ideas to improve
the enterprise of wordlist compilation in historical
linguistics (§ 5).

2 Background

Phylogenetic approaches rely on multilingual
wordlists compiled through lexicostatistic meth-
ods, dating back to Swadesh’s foundational work
(Swadesh, 1950, 1952, 1955). A multilingual
wordlist in this context is a list of concepts trans-
lated into one or more target languages (List, 2014).
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Although typically emphasizing their difference
with respect to Swadesh’s lexicostatistics, mod-
ern phylogenetic approaches all build on this ono-
masiological (i.e. concept-based) approach that
takes the concept as the major aspect by which
languages are compared. Building on Geisler and
List (2010), we can identify five major steps in
the typical workflow applied in modern approaches
to phylogenetic reconstruction. Starting from the
compilation of a concept list (1: concept list com-
pilation), the concepts are translated into the target
languages (2: concept translation) in order to cre-
ate an initial comparative wordlist. This wordlist
is then used as the basis for the identification of
cognate words (3: cognate identification). Having
converted the information on cognate words into a
numerical or computer-readable format (4: cognate
coding), scholars then employ their phylogenetic
method of choice in order to compute a phylogeny
of the languages in question (5: phylogenetic re-
construction).

Up to now, most critics of lexicostatistics and
its modern equivalents have concentrated on either
the stage of cognate identification or the resulting
phylogenetic methods. Cognate identification is
often criticized as being flawed due to undetected
borrowings (Donohue et al., 2012). When disput-
ing over phylogenetic methods, there have been
long-standing debates about the complexity of the
models employed, as reflected in the debate about
the age of Indo-European, where models differing
in complexity yielded quite different age estimates
(Bouckaert et al., 2012; Chang et al., 2015; Kassian
et al., 2021; Heggarty et al., 2023).

What has much less often been discussed in the
context of phylogenetic methods, however, are the
first two stages of the workflow, that is, the stage of
concept list compilation, and the stage of concept
translation. While it has been clear for a long time
that different concept lists often yield different phy-
logenies (Chén, 1996; McMahon et al., 2005), a
closer discussion regarding the impact of concept
lists on the results of phylogenetic analyses has
not been carried out so far. The same holds for
the translation of concepts into target languages.
While Geisler and List (2010) found that concept
translation across Romance languages in two inde-
pendently compiled multilingual wordlists differs
by about 10%, and List (2018) and Häuser et al.
(2024) could show that selecting but one out of sev-
eral translations for the same concept in the same
language can have direct consequences on the re-

sulting phylogenies, no closer investigation regard-
ing the degree of variation in concept translation or
the impact of concept translation on phylogenetic
analyses has been conducted up to now.

3 Materials and Methods

3.1 Materials

In order to investigate variation in word choice
across multilingual wordlists, it is important to
find wordlists that have been compiled indepen-
dently for the same language varieties, contain-
ing at least a certain subset of identical con-
cepts. In order to identify such data, we checked
datasets published as part of the Lexibank repos-
itory (https://lexibank.clld.org, List et al. 2022),
searching specifically for those cases where sev-
eral languages from the same language family or
subgroup are available in the form of multilingual
wordlists created by different authors.

Lexibank uses Cross-Linguistic Data For-
mats (CLDF, https://cldf.clld.org, Forkel et al.
2018) to standardize multilingual wordlists along
the three dimensions of language, meaning,
and form. Languages are linked to Glot-
tolog (https://glottolog.org, Hammarström et al.
2024) in order to ensure that languages can
be easily identified across sources, even if
they are given different names in the original
datasets. Concepts are mapped to Concepticon
(https://concepticon.clld.org, List et al. 2025a), a
reference catalog for semantic glosses used to elicit
concepts in concept lists. This facilitates the aggre-
gation of wordlists from different sources to allow
the identification of common concepts for which
different wordlists provide translations in their tar-
get languages. Phonetic transcriptions in Lexibank
are unified with the help of the Cross-Linguistic
Transcription Systems reference catalogue (CLTS,
https://clts.clld.org, List et al. 2024), a standardized
subset of the International Phonetic Alphabet that
has a generative component by which detailed tran-
scriptions of more than 8,000 speech sounds can
be created and compared (see Anderson et al. 2018
and Rubehn et al. 2024).

Checking the Lexibank data in the most re-
cent version of the repository (2.0, Blum et al.
2025a), we identified 10 groups of languages cor-
responding to 9 different languages families, in
which two and more multilingual wordlists from
different datasets could be compared. The 10
groups stem from 18 different datasets, with two
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Group Dataset A Dataset B
Concepts Languages Synonymy

A B A∩B A B A∩B A B
Bai allenbai (Allen, 2024)

.....
wangbai (Wang, 2024) 499 412 208 9 10 2 1.01 1.02

Chadic kraftchadic (Kraft,
2024)

gravinachadic (Gravina,
2024)

429 717 325 67 48 5 1.04 1.10

Chinese beidasinitic (Beijing
University, 2024)

liusinitic (Lìlı̌ et al.,
2024)

738 202 102 18 19 12 1.18 1.17

Dravidian dravlex (Kolipakam,
2024)

northeuralex (Dellert,
2024)

100 954 94 20 107 4 1.39 1.02

Indo-European iecor (Heggarty et al.,
2024)

starostinpie (Starostin,
2024)

170 110 88 160 19 15 1.01 1.05

Japonic leejaponic (Lee and
Hasegawa, 2024)

robbeetstriangulation
(Robbeets, 2025)

210 254 152 59 101 6 1.01 1.03

Koreanic leekoreanic (Lee, 2024) robbeetstriangulation
(Robbeets, 2025)

246 254 175 15 101 13 1.01 1.01

Tupian galuciotupi (Galucio
et al., 2024)

gerarditupi (Ferraz Ger-
ardi and Reichert, 2024)

100 242 70 23 38 5 1.02 1.00

Uralic northeuralex (Dellert,
2024)

syrjaenenuralic (Syrjä-
nen et al., 2024)

954 173 147 107 7 5 1.12 1.17

Uto-Aztecan utoaztecan (Greenhill
et al., 2025)

davletshinaztecan
(Davletshin, 2024)

121 100 92 46 9 3 1.22 1.00

Table 1: Selected language groups along with their original datasets and additional statistics employed in this
study. References to the datasets follow the most recent publication of the data as part of the Lexibank repository.
Information on the original studies in which the data were published for the first time are provided by the more
recent standardized editions. The table lists the number of concepts and languages (along with the intersection), as
well as the synonymy (measured by dividing the number of words by the number of concepts).

datasets (NorthEuralex, see Dellert et al. 2020,
and RobbeetsTriangulation, see Robbeets et al.
2021) offering two groups each. From these 10
wordlist pairs, each consisting of two multilingual
wordlists covering at least two language varieties,
we manually selected 70 language pairs, making
sure that all pairs represent identical languages to
the best of our knowledge. Table 1 provides an
overview on the 10 groups of language pairs that
we compiled for this study, along with the num-
ber of matching concepts, matching language pairs,
and synonymy statistics on the wordlists. Figure 1
shows the geographical distribution of the 70 lan-
guages in our sample.

3.2 Wordlist Comparison

We compare wordlists in terms of their (1) match-
ing Glottocodes, (2) manually selected language
pairs, and (3) matching concepts. Paired language
varieties within each wordlist comparison are ini-
tially identified based on matching Glottocodes.
This results in a total of 75 Glottocode matches
across all language families to be compared. Upon
closer examination of the data, it becomes clear
that Glottocode comparisons alone do not allow
for the comparison of identical language varieties
as different subvarieties are at times encoded with

the same Glottocode both inside the same dataset
and in separate datasets. To quantify the effect of
this discrepancy, language pairs are also manually
selected based on consultation with each dataset’s
metadata, resulting in a total of 70 language pairs
for analysis. Language pairs are then examined
based on matching concepts, which are identified
with the help of the Concepticon mappings pro-
vided by Lexibank.

3.3 Comparing Concept Translations

Since phonetic transcriptions in Lexibank’s
datasets are unified, following the system recom-
mended by the CLTS reference catalog, one might
expect that differences in concept translation can
be simply identified by comparing transcriptions
across different datasets directly, using string iden-
tity as a criterion to assess if two translations are
identical or not. However, word form comparisons
using phonetic data are still error-prone as datasets
often differ with respect to details in the concrete
realization of phonetic transcriptions (Anderson
et al., 2018). Since variation in phonetic transcrip-
tion is a norm rather than an exception (Anderson
et al., 2023), we have to find a metric that allows us
to distinguish those cases where two translations
are identical even if the phonetic transcriptions dif-
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Family

Indo-European

Sino-Tibetan

Koreanic

Japonic

Tupian

Uralic

Afro-Asiatic

Dravidian

Uto-Aztecan

Figure 1: Location of the languages investigated in our study. For each of the 70 languages, two wordlists were
identified in the Lexibank repository (for a full list of languages see file values.csv in the supplement).

fer slightly from those cases where two transla-
tions point to two different words. In order to ad-
dress this problem, we decided for an automated
approach that measures the phonetic similarity of
sound sequences, rather than their identity with
respect to the symbols used in transcriptions.

Our approach makes use of the Sound-Class
Based Phonetic Alignments algorithm (SCA, List,
2012b), which was originally designed to align
words phonetically, but which comes along with
a measure for phonetic distances that ignores mi-
nor transcription differences. SCA distance scores
derived from phonetic alignments carried out with
the help of the SCA algorithm, have been shown
to work quite well in the task of automated cog-
nate detection (List, 2012a) and borrowing iden-
tification (Miller and List, 2023). SCA distance
scores range between 0 (near identity of phonetic
sequences) and 1 (very low similarity). Assuming
that a score below 0.5 points to differences resulting
from phonetic transcriptions, while scores higher
than 0.5 result from differences stemming from dif-
ferent translations, we employ SCA distances as a
proxy to detect whether two translations are simi-
lar (reflecting only phonetic variation) or different
(reflecting true differences in translation).

In addition to the automated identification of
translation differences with the help of SCA dis-
tances, we also computed the average SCA dis-
tances for all language pairs in our sample, as well
as the edit distance (also known as Levenshtein dis-
tance, Levenshtein, 1966), both in its original and
its normalized form (where we divide the distance
by the longer of the two sequences, see List 2014,
178). All in all, these metrics should allow us to
assess the amount of differences in concept transla-
tions across multilingual wordlists fairly well.

3.4 Preprocessing
Lexibank occasionally contains data in which mor-
pheme boundaries are marked with the help of
a plus symbol (+). Since morpheme boundaries
would unnecessarily confuse phonetic alignment
algorithms, introducing extra noise that we are not
primarily interested in, we deleted all morpheme
boundary markers from the sound sequences be-
fore comparing them. For the same reason, we
also decided to ignore tone markers in the data.
These do not occur in all datasets, but are instead
mostly restricted to South-East Asian languages.
Since tone annotation in phonetic transcription can
vary considerably, probably even more than the
transcription of consonants and vowels, we also
ignored all tones in datasets from South-East Asian
languages.

3.5 Evaluation
In order to test whether this approach is suitable
to provide useful information on translation dif-
ferences, we created a test set. Using EDICTOR
(List et al., 2025b), translation differences were
annotated for all language and concept pairs in the
Indo-European datasets of our sample. This al-
lowed us to use the manual annotations as a gold
standard and to assess the suitability of SCA dis-
tance scores to identify true differences in concept
translation. Results of this comparison are reported
in the form of precision, recall, and F-Scores (List,
2014, 191–192).

3.6 Implementation
All methods are implemented in Python. We
use LingPy to compute SCA distances and edit
distances (https://pypi.org/project/lingpy, Version
2.6.13, List and Forkel, 2023). For the han-
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dling of wordlist data in CLDF format, we use
CL Toolkit (https://pypi.org/project/cltoolkit, Ver-
sion 0.2.0, List and Forkel, 2022). For the in-
spection and manual annotation of wordlist data,
EDICTOR was used (List et al., 2025b). For the
creation of the map in Figure 1, CLDFViz was
used (Version 1.3.0, Forkel, 2024). In order to
download the data in its most recent versions de-
fined by the Lexibank 2 repository (Blum et al.,
2025a), we used PyLexibench (Häuser et al., 2025,
https://pypi.org/project/pylexibench).

4 Results

4.1 Handling Phonetic Variation

As mentioned before, we are interested in finding a
way to identify words that reflect the same original
word form that is represented in slight variations
in the phonetic transcriptions. Having a reliable
automated approach for this task is important in or-
der to allow us to investigate differences in concept
translation on a larger amount of data.

To test how well the SCA distances can help us
to identify words that only vary by phonetic tran-
scription, we conducted a test study in which we
annotated all hand-selected language pairs from
the Indo-European group, indicating for each pair
of words whether they were identical – despite
potentially diverging phonetic transcriptions – or
different. This dataset of 15 manually annotated
language pairs was then compared with the results
derived from our automated approach using the
SCA distance. The results of this analysis are
shown in Table 2. As the table illustrates, there
are only minor differences between the automated
and the manual annotation, with F-Scores of 0.98
on average for all 15 language pairs. We conclude
from this that using SCA distances with a thresh-
old of 0.5 provides a very good approximation to
distinguish between identical word forms with po-
tentially diverging transcriptions and word forms
that reflect true differences in concept translation,
allowing us to derive major conclusions when test-
ing it on additional datasets.

4.2 Variation in Concept Translation

We conducted two tests on the 10 datasets. Dur-
ing the first test, we compared all languages by
matching Glottocodes with each other. If more
than one variety was assigned the same Glottocode
in a given dataset, all possible pairs were assembled
and average values for word pair identity, similarity,

Language Precision Recall F-Score
Armenian (Eastern) 0.99 0.99 0.99
Bulgarian 1.00 0.99 0.99
Czech 1.00 0.99 1.00
Danish 1.00 0.95 0.97
French 0.99 0.99 0.99
German 1.00 0.95 0.98
Greek 0.97 0.99 0.98
Hindi 0.99 0.99 0.99
Polish 1.00 0.99 1.00
Portuguese 1.00 0.96 0.98
Romanian 0.98 0.96 0.97
Russian 1.00 0.99 0.99
Spanish 1.00 0.98 0.99
Swedish 0.99 0.97 0.98
Italian 0.97 0.96 0.96
TOTAL 0.99 0.98 0.98

Table 2: Comparison of the evaluation study on Indo-
European. Precision and recall are calculated per con-
cept, counting true and false negatives and positives for
all possible pairings within the same concept slot for
identical languages. F-Scores are based on the harmonic
mean calculated from precision and recall.

and SCA distances were computed. In the second
experiment, only those language pairs were consid-
ered that we had identified as reflecting the same
varieties (to the best of our knowledge). In all cases,
we computed the identity of the sound sequences
that appeared as translations for the same concepts,
the similarity (with those pairs defined as similar
whose SCA distance was below our threshold of
0.5), and the SCA distances. If more than one trans-
lation was available for the same concept in a given
language variety, all possible pairs were compared
and the average value of the individual scores was
computed.

The results of the comparison based on matching
Glottocodes are shown in Table 3, those of the com-
parison based on hand-selected language pairs are
in Table 4. As can be seen from the tables, the re-
sults do not differ too much from each other, at least
as far as their tendencies are concerned. Neverthe-
less, a closer inspection of the differences between
the two approaches reveals that the linking of lan-
guages to Glottocodes shows some major problems
in the datasets on the Chadic, Japonic, and Kore-
anic groups. In all three dataset pairs (Japonic and
Koreanic data in one pair are both taken from the
same study of Robbeets et al. 2021), we find that
links to Glottolog could be improved. The data by
Robbeets et al. (2021), for example, provides the

20

https://pypi.org/project/cltoolkit
https://pypi.org/project/pylexibench
https://glottolog.org/resource/languoid/id/nucl1235
https://glottolog.org/resource/languoid/id/bulg1262
https://glottolog.org/resource/languoid/id/czec1258
https://glottolog.org/resource/languoid/id/dani1285
https://glottolog.org/resource/languoid/id/stan1290
https://glottolog.org/resource/languoid/id/stan1295
https://glottolog.org/resource/languoid/id/mode1248
https://glottolog.org/resource/languoid/id/hind1269
https://glottolog.org/resource/languoid/id/poli1260
https://glottolog.org/resource/languoid/id/port1283
https://glottolog.org/resource/languoid/id/roma1327
https://glottolog.org/resource/languoid/id/russ1263
https://glottolog.org/resource/languoid/id/stan1288
https://glottolog.org/resource/languoid/id/swed1254
https://glottolog.org/resource/languoid/id/ital1282


Family Pairs ↑ Identical STD ↑ Similar STD ↓ SCA STD ↓ NED STD ↓ ED STD
Bai 2 0.32 0.12 0.83 0.02 0.20 0.04 0.44 0.10 1.33 0.32
Chadic 10 0.07 0.05 0.71 0.14 0.32 0.10 0.54 0.11 3.34 0.63
Chinese 12 0.39 0.11 0.77 0.05 0.24 0.04 0.38 0.06 1.66 0.25
Dravidian 4 0.06 0.04 0.79 0.02 0.25 0.03 0.57 0.08 3.30 0.44
Indo-European 15 0.31 0.22 0.94 0.03 0.09 0.05 0.30 0.13 1.48 0.56
Japonic 7 0.28 0.19 0.74 0.24 0.27 0.17 0.40 0.20 2.09 1.02
Koreanic 9 0.06 0.04 0.74 0.21 0.31 0.14 0.59 0.12 3.01 0.72
Tupian 6 0.32 0.19 0.73 0.32 0.29 0.21 0.39 0.25 2.01 1.22
Uralic 6 0.19 0.12 0.85 0.06 0.17 0.08 0.42 0.13 2.26 0.78
Uto-Aztecan 4 0.34 0.22 0.88 0.03 0.18 0.06 0.32 0.11 1.79 0.85
TOTAL 75 0.23 0.13 0.80 0.07 0.23 0.07 0.44 0.10 2.23 0.74

Table 3: Major results per dataset for our comparative study, comparing all languages that show matching Glottocodes
with each other, in terms of Identical (phonetic strings match perfectly) and Similar word pairs (phonetic strings
show SCA distance beyond our threshold of 0.5), as well as averaged SCA distances, normalized edit distance, and
traditional edit distances. Highest similarities are marked in bold font, lowest similarities are shaded in gray.

same Glottocodes for historical and modern vari-
eties of Japanese and Korean. Any comparison that
matches solely by Glottocode will therefore run
the risk of comparing data from different stages
of the same language. This example shows that
scholars who base their analyses on Glottocodes
should take particular care in selecting the most
representative varieties. Especially when aggregat-
ing languages from different sources, one should
make sure to provide extra checks on top of CLDF
that would ensure that the same language varieties
are being compared. Matching Glottocodes are an
extremely good proxy, but they do not provide a
guarantee that languages varieties from different
sources really match.

What we can also see from the table is that
we have extremely low values on phonetic iden-
tity in both comparisons, while phonetic similarity
(as reflected in SCA distance scores beyond the
value 0.5) shows a drastic increase. This proves
the usefulness of computing SCA distance scores
instead of comparing whether sound sequences are
fully identical or not. It also shows (as we have
already seen in the previous section) that SCA dis-
tances seem to provide quite sensitive results when
it comes to assessing the near-identity of sound se-
quences reflecting slight transcription differences.

When considering only the phonetic similar-
ity scores, which point to differences in lexeme
choice when it comes to translating a concept into
a given language variety, it seems remarkable that –
apart from Indo-European, where differences make
up only 6% – we find that differences between
wordlists that we would expect to represent identi-
cal language varieties show a considerable amount

of variation. On average, only 83% of all word
pairs for our hand-selected sample of language
pairs taken from different sources seem to be truly
the same. In the remaining 17% of cases, we find
that the concepts were translated differently. Re-
calling that Geisler and List (2010) report differ-
ences of about 10% with respect to lexeme choice
in the Romance partition of the Indo-European
dataset they compared, we can conclude that the
numbers are even worse when looking at data from
more language families.

That Indo-European data shows the lowest vari-
ation in our study should not come as a surprise.
First, the language family has been studied in much
more detail than any other language family in the
world. Second, the principles by which Heggarty
et al. (2023) compiled their data have been heav-
ily influenced by the principles laid out by the
Moscow school of historical linguistics (Kassian
et al., 2010), from which the second dataset on
Indo-European languages in our sample was taken
(Starostin, 2005). Figure 2 illustrates the domi-
nance of Indo-European, in representing all 70 pair
comparisons in a bar chart with increasing lexical
variation. As can be seen from the example, with
the exception of the Indo-European datasets that
show the highest similarity with respect to the trans-
lation of the concept lists into the target languages,
there is no real trend that might hint to major prob-
lems with the data in particular language groups
or language families. Instead, it seems that what
we find in our experiments can be considered as
the kind of variation that one would expect when
considering the task of having independent people
translate a concept list into the same language.
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Family Pairs ↑ Identical STD ↑ Similar STD ↓ SCA STD ↓ NED STD ↓ ED STD
Bai 2 0.32 0.12 0.83 0.02 0.20 0.04 0.44 0.10 1.33 0.32
Chadic 5 0.11 0.03 0.79 0.04 0.27 0.02 0.48 0.06 3.00 0.36
Chinese 12 0.39 0.11 0.77 0.05 0.24 0.04 0.38 0.06 1.66 0.25
Dravidian 4 0.06 0.04 0.79 0.02 0.25 0.03 0.57 0.08 3.30 0.44
Indo-European 15 0.31 0.22 0.94 0.03 0.08 0.03 0.29 0.11 1.39 0.51
Japonic 6 0.31 0.18 0.83 0.05 0.21 0.07 0.34 0.10 1.75 0.54
Koreanic 13 0.06 0.03 0.82 0.09 0.25 0.06 0.54 0.06 2.76 0.45
Tupian 5 0.38 0.13 0.86 0.05 0.21 0.05 0.29 0.05 1.53 0.34
Uralic 5 0.23 0.08 0.87 0.02 0.14 0.04 0.37 0.06 2.00 0.50
Uto-Aztecan 3 0.24 0.14 0.87 0.01 0.20 0.04 0.37 0.08 2.16 0.54
TOTAL 70 0.24 0.12 0.84 0.05 0.21 0.06 0.41 0.10 2.09 0.70

Table 4: Major results per dataset for our comparative study, comparing all 70 hand-selected language pairs in terms
of Identical (phonetic strings match perfectly) and Similar word pairs (phonetic strings show SCA distance beyond
our threshold of 0.5), as well as averaged SCA distances, normalized edit distance, and traditional edit distances.
Highest similarities are marked in bold font, lowest similarities are shaded in gray.

4.3 Types of Variation in Concept Translation

In order to gain a better understanding of the
sources of variation in concept translation, we car-
ried out a more detailed analysis of the differences
in the Indo-European and the Tupian data. From
this comparison, we can identify two major kinds
of translation differences. First, translations can
point to completely different words. Second, trans-
lations may reflect the same word, but they differ
morphologically.

As an example for completely different words
provided as translations for the same concept in
the same target languages, consider cases like the
concept MEAT, translated correctly into French as
[vjÃ:d] in the Indo-European dataset by Heggarty
et al. (2023), while the Indo-European dataset by
Starostin (2005) provides two translations, [vjÃd]
and [SEK], the latter pointing specifically to “flesh”.
Since one of the two forms is identical with the
form in the first dataset, we count this translation
difference as 0.5 in our calculations. We can see
that the reason for the additional translation in the
dataset by Starostin (2005) results from a lack of
specification in the concept that was being com-
pared. As an additional example, consider Tupian
data for Paraguayan Guaraní, where [gwasu] in
Galucio et al. (2015) is glossed as “big” (cf. Esti-
garribia, 2020, 56) in the original data and matched
with the Concepticon gloss BIG in the Lexibank
dataset. This word form may also be rendered as
“be big”, as in Gregores and Suárez (1967, 224), if
one does not recognize in Paraguayan Guaraní the
existence of an adjective class, for which “little ev-
idence exists” (Estigarribia, 2020, 15). Conversely,
Ferraz Gerardi and Reichert (2021) provide the

word form [posogue] for the concept BIG, which
could be translated into English as “huge” or “gi-
gantic” (Guasch and Ortiz, 2008, 720). This ex-
ample illustrates how subtle semantic differences
influence lexical choice, leading to differences in
the lexical forms selected for inclusion in a wordlist.
The use of periphrastic phrasing with multiple word
forms in contrast to a single word form also con-
tributes to differences in concept translation be-
tween the datasets. Take the concept STAND in
Italian as an example. Heggarty et al. (2023) pro-
vide the form [sta:ReimpjE:di], which consists of
three word forms: a verb, a preposition and a noun.
By contrast, Starostin (2005) specifies the single
verb form [stare] for the same concept. In par-
ticular, for systems which implement automatic
cognate detection, such as SCA, this kind of con-
cept translation dissimilarity can be problematic
as they often rely on surface phonetic similarity
between comparative word forms. Many true cog-
nates could therefore be missed, even if a common
word form is present in the forms being compared.

Morphological variation also causes notable dif-
ferences in concept translation. In Tupian, this
involves a lack of consensus on the citation form of
inflected parts of speech (mainly nouns and verbs)
across different languages, associated with a lim-
ited availability of complete inflectional paradigms.
Generally, the two wordlists differ in their tendency
to report inflected forms (Galucio et al., 2015)
in contrast to roots (Ferraz Gerardi and Reichert,
2021). As an example, consider cases of different
morphological forms in Paraguayan Guaraní. Here,
some nouns have what are traditionally considered
alternating roots with initial consonant [t], [h], or
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Figure 2: Comparison of all language pairs in the sample. The plot shows the hand-curated collection of 70 language
pairs in our sample, colored by language family. The scores on the y-axis indicate the identified proportion of
similar word pairs, showing an SCA distance beyond 0.5, ranked by their scores from left (high similarity) to right
(low similarity).

[r]. The initial consonant may be treated as a pre-
fix (Estigarribia, 2020, 63), with [t-] expressing,
for instance, the “absolute or non-possessed form”.
Galucio et al. (2015) have a tendency to report
the Paraguayan Guaraní forms with [t-], while Fer-
raz Gerardi and Reichert (2021) tend to only report
the prefixless root. This issue is not unique to Tu-
pian languages; similar mismatches arise from dif-
fering representations of inflectional morphology
in other datasets. For example, in the Czech data
for the concept SAY Heggarty et al. (2023) use the
perfective form [rfii:tst], whereas Starostin (2005)
provides the imperfective form [ri:kat]. Root al-
lomorphy in Paraguayan Guaraní also contributes
to differences between Galucio et al. (2015) and
Ferraz Gerardi and Reichert (2021). Take, for ex-
ample, the concept COME in Paraguayan Guaraní.
It exhibits root allomorphy, appearing as [ju] or [u]
(Estigarribia, 2020, 146–147). Galucio et al. (2015)
represent both allomorphs whereas Ferraz Gerardi
and Reichert (2021) only include [ju]. While a
manual analysis would most likely treat these dif-
ferences as marginal, characterizing the variants as
identical translations of the original concept into
the target language in question, there are cases
where morphological variation can yield substan-
tial differences in the translations. As an example,
consider the two forms for YELLOW in Urubú-
Ka’apór. Based on Kakumasu and Kakumasu
(2007, 56, 116, 200, 204), the representation in
Galucio et al. (2015) is a suffix meaning “yellow”
[-ju], while Ferraz Gerardi and Reichert (2021) in-

dicate the third person form of the “descriptive
verb” “be yellow” [itawa].

5 Discussion and Conclusion

Our results confirm the findings of Geisler and
List (2010), who emphasize that concept trans-
lation may cause larger discrepancies between
wordlists compiled independently by different
scholars. While Geisler and List (2010) report dif-
ferences of about 10% for the Romance language
partition in the two Indo-European datasets they
compared, our results, taking data from 9 different
language families into account, show that the dif-
ferences are typically even larger, with only 83% of
concept translations reflecting the same underlying
word forms on average. Figure 2 also demonstrates
the magnitude of variation which occurs in concept
translation between individual language varieties,
also within the same language family, with some
varieties such as Russian achieving the exception-
ally high similarity score of 0.99 and others like
Jeju scoring 0.65. Many factors of course impact
this variation, not least the increased standardiza-
tion present in certain language varieties we ex-
amined, but also perhaps sociolinguistic factors
such as dialect contact, semantic extension and cul-
tural salience, which is beyond the scope of our
current study. It is also worth noting that certain
language families such as Tupian also contain many
unknowns, it is therefore expected to have a certain
level of disparity in these datasets. While we have
not tested the impact that differences in concept
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translation may have on phylogenetic reconstruc-
tion, we consider our results robust enough to call
for the attention of scholars who use phylogenetic
methods to answer big picture questions about hu-
man prehistory.

Although we think it is far too early to discard
phylogenetic methods, we think that it would be
useful for phylogenetic approaches to take poten-
tial problems resulting from the concept transla-
tion stage during the wordlist compilation seriously
and make sure to apply certain measures to in-
crease the robustness of their inferences. These
measures could include tests on sampling errors,
as outlined in Feld and Maxwell (2019), involve
additional tests on inter-annotator agreement (Mc-
Donald et al., 2019) during concept translation, or
entail conducting robustness tests similar to the
bootstrap in phylogenetic reconstruction.

In any case, the declared goal of phylogenetic
approaches should be the same as for traditional
historical linguistics. Ratcliffe (2012) suggests that
an ideal test of the reliability of the traditional com-
parative method for linguistic reconstruction would
be to “take two teams of researchers trained in the
comparative method, put them in the libraries, keep
them in isolation from each other and see what they
come up with” (Ratcliffe, 2012, 240). While it is
clear that such experiments are still lacking in tradi-
tional historical linguistics, it seems important that
scholars working in the field of historical language
comparison, no matter if they work computation-
ally or manually, maintain a mindset that does not
take the reliability of their data for granted.

As far as our own experiments are concerned, we
are still in the early stages of this research. Addi-
tional experiments – potentially even including ad-
ditional data from language families that do not fea-
ture in the sample presented here – will be needed
to get a better understanding of the potential impact
of concept translation on phylogenetic analysis. It
is possible that phylogenetic methods turn out to
be robust enough to yield similar results in terms of
subgrouping and divergence time estimates, even
if the wordlists that they employed show a certain
amount of differences in the translations. With-
out detailed analyses, however, we cannot be sure,
and should not exclude the possibility that concept
translation has a direct impact on the results of
phylogenetic reconstruction analyses.

In addition to phylogenetic reconstruction, it
would also be important to test to which degree con-
cept translation might influence the results of other

studies that make use of multilingual wordlists.
Among these, the most important candidates that
we can identify are global studies on sound sym-
bolism or similar phenomena (Wichmann et al.,
2010; Johansson et al., 2020), as well as studies
that make use of cross-linguistic colexification data
(Jackson et al., 2019; Tjuka et al., 2024; Rubehn
and List, 2025). Recently introduced methods for
language affiliation without phylogenetic recon-
struction (Blum et al., 2025b) may also suffer from
variation in concept translation. In any case, the last
word on the robustness of multilingual wordlists
has not yet been spoken, and more tests are needed
to understand the full implications of the findings
that we reported in this study.

Supplementary Material

The data, code, and detailed instructions needed
to replicate this study are curated on Code-
berg (https://codeberg.org/calc/concept-translation-
study, Version 1.0) and archived with Zenodo
(https://doi.org/10.5281/zenodo.15653036).

Limitations

The most important limitation to our current study
is the uneven distribution of data across language
families and varieties. For instance, we have 15
comparative varieties for Indo-European, while we
only have two for Bai. There is also a disparity in
the number of matching concepts between match-
ing language varieties which allows us to achieve a
more extensive sample of certain paired varieties.
At the moment, we do not see how these limitations
could be addressed consistently. In the long run,
it seems that we must try to increase the number
of comparisons by trying to identify more datasets
that were independently compiled for the same lan-
guages.
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Seguchi, Hirotaka Tomita, Hiroto Takamiya, Hideaki
Kanzawa-Kiriyama, Hiroki Oota, Hajime Ishida,
Ryosuke Kimura, Takehiro Sato, Jae-Hyun Kim,
Bingcong Deng, Rasmus Bjørn, Seongha Rhee,
Kyou-Dong Ahn, Ilya Gruntov, Olga Mazo, John R.
Bentley, Ricardo Fernandes, Patrick Roberts, Ilona R.
Bausch, Linda Gilaizeau, Minoru Yoneda, Mit-
sugu Kugai, Raffaela A. Bianco, Fan Zhang, Marie
Himmel, Mark J. Hudson, and Chao Ning. 2021.
Triangulation supports agricultural spread of the
Transeurasian languages. Nature, 599(7886):616–
621.

Arne Rubehn and Johann-Mattis List. 2025. Partial
colexifications improve concept embeddings. In Pro-
ceedings of the Association for Computational Lin-
guistics 2025, pages 1–15.

Arne Rubehn, Jessica Nieder, Robert Forkel, and
Johann-Mattis List. 2024. Generating feature vectors
from phonetic transcriptions in cross-linguistic data
formats. Proceedings of the Society for Computation
in Linguistics, 7(1):205–216.

Sergey A. Starostin. 2005. Indo-European files in
DBF/VAR. In George Starostin, editor, The Tower of
Babel. RGGU, Moscow.

Sergey. A. Starostin. 2024. CLDF dataset derived from
Starostin’s “Indo-European files in DBV/VAR" from
2005. Zenodo, Geneva.

Morris Swadesh. 1950. Salish internal relationships. In-
ternational Journal of American Linguistics, 16:157–
167.

Morris Swadesh. 1952. Lexico-statistic dating of prehis-
toric ethnic contacts: with special reference to North
American Indians and Eskimos. Proceedings of the
American Philosophical Society, 96(4):452–463.

Morris Swadesh. 1955. Towards greater accuracy in
lexicostatistic dating. International Journal of Amer-
ican Linguistics, 21:121–137.

27

https://doi.org/10.1007/978-3-642-31467-4_3
https://doi.org/10.1007/978-3-642-31467-4_3
https://doi.org/10.1515/9783110720082
https://doi.org/10.1515/9783110720082
http://phylonetworks.blogspot.de/2018/02/tossing-coins-linguistic-phylogenies.html
http://phylonetworks.blogspot.de/2018/02/tossing-coins-linguistic-phylogenies.html
https://doi.org/10.5281/zenodo.10997741
https://doi.org/10.5281/zenodo.10997741
https://pypi.org/project/cltoolkit
https://pypi.org/project/cltoolkit
https://pypi.org/project/cltoolkit
https://pypi.org/project/lingpy
https://pypi.org/project/lingpy
https://pypi.org/project/lingpy
https://doi.org/10.1038/s41597-022-01432-0
https://doi.org/10.1038/s41597-022-01432-0
https://doi.org/10.1038/s41597-022-01432-0
https://concepticon.clld.org/
https://edictor.org
https://edictor.org
https://edictor.org
https://doi.org/10.5281/zenodo.13254682
https://doi.org/10.5281/zenodo.13254682
https://doi.org/10.5281/zenodo.13254682
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1111/j.1467-968X.2005.00148.x
https://doi.org/10.1111/j.1467-968X.2005.00148.x
https://doi.org/10.18653/v1/2023.eacl-main.190
https://doi.org/10.18653/v1/2023.eacl-main.190
https://doi.org/10.18653/v1/2023.eacl-main.190
https://doi.org/10.1075/jhl.2.2.04rat
https://doi.org/10.1075/jhl.2.2.04rat
https://doi.org/10.1075/jhl.2.2.04rat
https://doi.org/10.5281/zenodo.14614177
https://doi.org/10.5281/zenodo.14614177
https://doi.org/10.5281/zenodo.14614177
https://doi.org/10.1038/s41586-021-04108-8
https://doi.org/10.1038/s41586-021-04108-8
https://doi.org/10.48550/arXiv.2502.09743
https://doi.org/10.48550/arXiv.2502.09743
https://doi.org/10.7275/scil.2144
https://doi.org/10.7275/scil.2144
https://doi.org/10.7275/scil.2144
https://starling.rinet.ru/downl.php?lan=en
https://starling.rinet.ru/downl.php?lan=en
https://doi.org/10.5281/zenodo.13167172
https://doi.org/10.5281/zenodo.13167172
https://doi.org/10.5281/zenodo.13167172


Kaj Syrjänen, Terhi Honkola, Kalle Korhonen, Jyri
Lehtinen, Outi Vesakoski, and Niklas Wahlber. 2024.
CLDF dataset derived from Syrjänen et al.’s “Shed-
ding more light on language classification" from
2013. Zenodo, Geneva.

Annika Tjuka, Robert Forkel, and Johann-Mattis List.
2024. Universal and cultural factors shape body part
vocabularies. Scientific Reports, 14(10486):1–12.

Feng Wang. 2024. CLDF dataset derived from Wang’s
“Language contact and language comparison" from
2004. Zenodo, Geneva.

Søren Wichmann, Eric W. Holman, and Cecil H. Brown.
2010. Sound symbolism in basic vocabulary. En-
tropy, 12(4):844–858.

28

https://doi.org/10.5281/zenodo.13164684
https://doi.org/10.5281/zenodo.13164684
https://doi.org/10.5281/zenodo.13164684
https://doi.org/10.1038/s41598-024-61140-0
https://doi.org/10.1038/s41598-024-61140-0
https://doi.org/10.5281/zenodo.13163051
https://doi.org/10.5281/zenodo.13163051
https://doi.org/10.5281/zenodo.13163051
https://doi.org/10.3390/e12040844


Proceedings of the 7th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (SIGTYP 2025), pages 29–42
August 1, 2025 ©2025 Association for Computational Linguistics

Annotating and Inferring Compositional Structures in Numeral Systems
Across Languages

Arne Rubehn1, Christoph Rzymski2, Luca Ciucci1, Katja Bocklage1, Alžběta Kučerová1,
David Snee1, Abishek Stephen3, Kellen Parker van Dam1, Johann-Mattis List1

1Chair for Multilingual Computational Linguistics, University of Passau, Passau, Germany
2Department of Linguistic and Cultural Evolution, Max Planck Institute for

Evolutionary Anthropology, Leipzig, Germany
3Institute of Formal and Applied Linguistics, Charles University, Prague, Czech Republic

Abstract

Numeral systems across the world’s languages
vary in fascinating ways, both regarding their
synchronic structure and the diachronic pro-
cesses that determined how they evolved in
their current shape. For a proper comparison
of numeral systems across different languages,
however, it is important to code them in a stan-
dardized form that allows for the comparison
of basic properties. Here, we present a sim-
ple but effective coding scheme for numeral
annotation, along with a workflow that helps to
code numeral systems in a computer-assisted
manner, providing sample data for numerals
from 1 to 40 in 25 typologically diverse lan-
guages. We perform a thorough analysis of the
sample, focusing on the systematic comparison
between the underlying and the surface mor-
phological structure. We further experiment
with automated models for morpheme segmen-
tation, where we find allomorphy as the major
reason for segmentation errors. Finally, we
show that subword tokenization algorithms are
not viable for discovering morphemes in low-
resource scenarios.

1 Introduction

Numeral systems represented by the words for car-
dinal numbers used in counting are an interesting
kind of linguistic data: they code a part of the lex-
icon of human languages that is potentially large
and often exhibits a regularity that increases with
higher numbers. Regularity is reflected in the re-
cycling of linguistic material used to create higher
numbers, where morphemes for smaller number
words are often reused to motivate the formation
of larger numerals. In addition, numeral systems
are also maximally distinctive. Being used to dis-
tinguish ordinal numbers, we rarely find cases in
which two distinct numbers are expressed by the
same word form, even if numeral words themselves
can have multiple meanings outside of the num-
ber domain (as can be easily seen when browsing

number words in the Database of Cross-Linguistic
Colexifications, Rzymski et al., 2020).

Another important aspect of numeral systems
is that they are not created in an ad-hoc fashion
but have instead often evolved over hundreds of
years. The evolution can leave traces in numeral
systems that counter-act former regularity, leading
to allophonic variation in the morphemes that com-
pose numeral words. Language contact can also
feature as an important aspect of evolution, result-
ing in extreme cases where languages use two or
more numeral systems in combination, reflecting
different stages of their history.

The fact that most numeral systems are compo-
sitional, while at the same time being distinctive
and discrete in their denotation, makes them an
interesting test object for linguistic analyses that
deal with lexical compositionality in the context
of language change. While one would otherwise
have to cope with problems resulting from various
kinds of morphological and semantic variation, nu-
meral systems can be seen as an ideal test ground
for the annotation and inference of compositional
structures in the lexicon of human languages. In
the following, we will try to illustrate this point
in more detail. After a short overview on numeral
systems in the context of descriptive and computa-
tional linguistics (§ 2), we present a small collec-
tion of numeral systems along with methods that
can be used to annotate numeral systems manually
or to segment numeral words automatically into
morphemes (§ 3). After testing these methods and
reporting the results on our small cross-linguistic
sample of numeral systems (§ 4) we discuss our
findings and point to ideas for future work (§ 5).

2 Background

The cross-linguistic diversity of numeral systems
has attracted the interest of scholars since Hervás y
Panduro’s comparative work (1786), which pre-
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sented data from missionaries on many then little-
known languages. Today, the most comprehensive
database on numerals is Chan (2024), who col-
lected data on more than 5,000 varieties, often pro-
vided by linguists with first-hand experience of the
respective languages. The constant increase in data
has allowed for the study of numeral systems from
a formal (see e.g. Brandt Corstius, 1968; Hurford,
1975) and a typological perspective. The latter ap-
proach reached a turning point with Greenberg’s
(1978) 54 generalizations, most of which stood the
test of time (Comrie, 2020).

Even though their synchronic structure may be
opaque, numeral systems are diachronically moti-
vated and are built through a limited number of
cross-linguistic strategies (Heine, 1997, 18-34).
They typically combine a small set of morphemes
(mainly numbers, but also linking elements) accord-
ing to three parameters, including (1) the choice
of the base(s), (2) the operations applied to the
base(s), following the implicational hierarchy: ad-
dition < multiplication < subtraction / division; and
(3) the order of the morphemes (Greenberg, 1978;
Moravcsik, 2017, 459-461). Despite the presumed
regularity and compositionality of numeral systems,
they may occasionally display gaps and ambigui-
ties (Comrie, 1997, 2005, 79-80).

The most common bases are ‘five’, ‘ten’, and
‘twenty’, whose conceptual sources are, respec-
tively, the fingers of the hand, of both hands, and
of all hands and toes (Heine, 1997, 19-24; on fin-
ger counting and its cultural variability, see Bender
and Beller, 2012). Decimal systems are the most
frequent worldwide, followed by vigesimal and
quinary systems (Skirgård et al., 2023). Languages
can employ more than one base, resulting in hybrid
numeral systems.

While languages with no numerals or only the
number ‘one’ are rare (Hammarström, 2010), the
numeral systems of many languages, particularly in
South America, New Guinea and Australia, are re-
stricted to a few numerals (Moravcsik, 2017, 459).
According to Dixon (2012, 71-72), this indicates
that the speakers did not count and enumeration
was not the primary use of these number words.
Hammarström (2008) observed that pidgins and
creoles tend to have more complex numeral sys-
tems than the global average, with their frequent
origin as trade languages being a potential con-
tributing factor. Numeral systems often developed
out of contact, which usually comes with societal

Figure 1: Geographical distribution of the languages in
our sample, indicating the numeral bases they employ
(white: 10, black: 5 and 10, orange: 10 and 20).

change, and borrowing may also involve the lowest
numbers (Dixon, 2012, 75-77).

While numeral systems all over the world have
been quite intensively investigated in the past, very
few computational studies (Calude and Verkerk,
2016; Cathcart, 2025) formalize approaches to
model compositionality and reveal motivation pat-
terns underlying individual number words. Recent
advances in the annotation of lexical motivation
patterns (Hill and List, 2017) and the automated
segmentation of words into morphemes (Goldsmith
et al., 2017) open new possibilities for a compu-
tational investigation of numeral systems that we
will discuss in more detail in the following.

3 Materials and Methods

3.1 Sample of Numeral Systems

We collected the cardinal numbers from 1 to 40
in 25 typologically diverse languages from Eura-
sia and Southern America, spanning ten different
language families. Most language families, with
the exception of Indo-European (12 languages) and
Sino-Tibetan (5 languages), are represented by a
single language. Table 1 provides a comprehensive
overview of the languages covered in the sample,
accompanied by a geographical visualization in
Figure 1.

Most languages employ a decimal system, re-
flecting that the number 10 is by far the most com-
mon base. Three languages in our sample – Ay-
mara, Cavineña, and Paraguayan Guaraní – make
use of the number 5 as a base. They represent a hy-
brid between quinal and decimal systems, since the
word for 10 is monomorphemic and used to express
multiples of 10. Furthermore, two languages of our
sample (Lamjung Yolmo and Scottish Gaelic) have
retained a vigesimal system used in parallel to a
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Family Branch Language Base
Afro-Asiatic Semitic Maltese 10
Araucanian — Mapudungun 10
Arawak Ta-Arawak Wayuu 10
Aymaran — Aymara 5 / 10
Dravidian Southern Telugu 10

Indo-European

Balto-Slavic
Czech 10
Russian 10

Celtic
Irish 10
Scottish Gaelic 10 / 20

Germanic German 10

Indo-Iranian
Assamese 10
Hindi 10
Sanskrit 10

Romance

French 10
Italian 10
Latin 10
Spanish 10

Pano-Takanan Takanan Cavineña 5 / 10
Quechuan Quechua I Huallaga Quechua 10

Sino-Tibetan

Bodic Lamjung Yolmo 10 / 20
Brahmaputran Uipo (Maringic) 10
Patkaian Makyam 10

Sinitic
Mandarin Chinese 10
Shanghainese 10

Tupian Tupí-Guaraní Paraguayan Guaraní 5 / 10

Table 1: Overview of languages covered in the sample,
with their genetic classification and primary bases for
counting.

decimal system, which results in alternating forms
for numbers higher than 20.

All data were collected, annotated, and curated
in a collaborative manner, such that the data for
each language were thoroughly reviewed by at
least two scholars: the responsible annotator for the
given language, and at least one reviewer. The data
were then aggregated and deployed as a unified
dataset conforming to the Cross-Linguistic Data
Formats (CLDF, Forkel et al., 2018; Forkel and
List, 2020). Automated tests accounted for the
structural integrity of the data (e.g. ensuring that
one cognate ID does not map to more than one un-
derlying form; the annotation format is described
in detail in § 3.3).

3.2 Representing Numeral Systems in Tables

The CLDF specification builds on CSVW, a stan-
dard for tabular data on the web (https://csvw.org;
Gower, 2021) that extends simple tabular data, typi-
cally represented in the form of CSV files, by meta-
data that can be used to specify the content of tabu-
lar data in various ways, including the combination
of multiple tables in a relational database. Given
that numeral data can be easily treated as lexical
data, typically provided in the form of wordlists,
we represent number systems as extended CLDF

wordlists that build on the extended wordlist for-
mats introduced by the Lexibank repository (List
et al., 2022; Blum et al., 2025). Lexibank wordlists
represent individual word forms as triples consist-
ing of a language, a concept, and a form. In order
to compare data from different sources, Lexibank
makes use of reference catalogs that link language
varieties to Glottolog (https://glottolog.org; Ham-
marström et al., 2025), map concepts to Concepti-
con (https://concepticon.clld.org; List et al., 2025a),
and represent phonetic transcriptions compatible
with the subset of the IPA proposed by the Cross-
Linguistic Transcription Systems (CLTS) reference
catalog (https://clts.clld.org; List et al., 2021).

While following Lexibank in assembling our
exploratory database of numeral systems, we ex-
tend the format by adding new layers of annota-
tion that help us to make individual analyses of
the numeral systems explicit through annotation.
As a first step, we rigorously split words into mor-
phemes by adding morpheme boundary markers
to all multi-morphemic words (using the plus sym-
bol – + – as a boundary marker). As a second step,
we identify language-internal partial cognates in
all numeral systems in order to mark the degree
by which morphemes are reused to build new nu-
meral expressions (see List et al., 2016 on partial
cognates). In other words, we annotate which mor-
phemes recur across several forms by assigning
a unique numerical ID to each morpheme. As a
third step of analysis, we add morpheme glosses
to the data to add human-readable semantic de-
scriptors to all morphemes (Hill and List, 2017;
Schweikhard and List, 2020). As a fourth step, we
make use of inline-alignments in order to handle al-
lomorphs by distinguishing underlying forms from
surface forms (List, 2025). As a fifth step, we con-
duct phonetic alignment analyses (List, 2014) of
all language-internal cognate morphemes, in order
to facilitate the comparison of allomorphic variants
that differ in length.

Table 2 shows how our annotations are rendered
in tabular form, with examples for annotated nu-
merals from German and French. The column Seg-
ments provides phonetic transcriptions, segmented
into sounds, using a space as boundary marker, and
secondarily segmented into morphemes, using the
plus symbol as a boundary marker. The transcrip-
tions use inline alignments (List, 2025) to align the
surface forms with their underlying forms. Inline
alignments (first introduced by List 2021 and later
tested on Old Chinese etymologies by Pulini and
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Language Concept Form Segments Cognates Morphemes
German one eins aI n s 1 ONE

German two zwei ts v aI 2 TWO

German three drei d r aI 3 THREE

German twenty one einundzwanzig ai n -/s + U n -/d + ts v a n + ts I ç 1 4 5 6 ONE and TWEN TY

German thirty two zweiunddreißig ts v aI + U n -/d + d r aI + s/ts I ç 2 4 3 6 THREE and THREE TY

French one un œ̃ 1 ONE

French two deux d ø 2 TWO

French three trois t K w a 3 THREE

French twenty one vingt-et-un v Ẽ t + e + œ̃ 4 5 1 TWENTY and ONE

French thirty two trente-deux t K -/w -/A + Ã t + d ø 3 6 2 THREE TY TWO

Table 2: Illustration of the format used to annotate morpheme boundaries along with allomorphic variation, language
internal cognates, and morpheme glosses.

List 2024) use the slash symbol (/) in order to dis-
tinguish a surface sound (shown to the left of the
slash) from its corresponding underlying sound. As
an example, consider the transcription of German
[aI n -/s] ‘one’ in the word for ‘twenty one‘ in the
table, where [s] is treated as the underlying form,
while the surface form does not show this sound
(which is marked by using the gap-symbol - before
the slash). The notion of surface form and under-
lying form is strictly technical. We assume that
one morpheme with multiple allomorphs has only
one underlying form, which must consistently be
aligned with all surface forms. We do not claim
that this handling shows any cognitive or historical
truth, but we aim for an annotation that would ide-
ally be meaningful from a diachronic and cognitive
perspective.

The columns Cognates and Morphemes provide
information on language-internal cognates in the
form of morphemes that are reused. Here, the Cog-
nates column employs numerical identifiers, fol-
lowing the format proposed by List et al. (2016),
while the functionally identical Morphemes col-
umn provides semantic glosses that help in making
the lexical motivation underlying the formation
of numerals transparent. This annotation, which
provides explicit glosses for all morphemes consti-
tuting a word, was originally developed to make
language-internal cognate relations more explicit
(Hill and List, 2017). By now, however, it has been
shown to be also very useful to provide rudimen-
tary annotations of lexical motivation patterns (Brid
et al., 2022).

3.3 Computer-Assisted Annotation
While the annotations shown in Table 2 can be
easily carried out with the help of a spreadsheet ed-
itor or directly in text files, we use the web-based

EDICTOR tool for the annotation of numeral data
(List et al., 2025b). Originally, EDICTOR was
designed to facilitate the process of creating multi-
lingual comparative wordlists (List, 2017). Since
Version 3.0 (List and van Dam, 2024), however,
EDICTOR has been substantially extended to help
with the annotation of lexical motivation patterns.
Improvements include – among others – a visual
rendering of inline alignments, sound sequences,
cognate sets, and morpheme glosses, combined
with annotation helpers for manual morpheme seg-
mentation, as well as several sanity checks that
increase the consistency of human annotation.

3.4 Automated Morpheme Segmentation
The task of unsupervised morpheme segmentation
– automatically inferring a language’s morpholog-
ical structure from unannotated corpus data – has
received notable attention in the field of Natural
Language Processing, especially in the late 1990’s
and early 2000’s (Hammarström and Borin, 2011).
While those models were developed with a differ-
ent background in mind, assuming the presence
of relatively large training corpora, numeral sys-
tems naturally lend themselves as an interesting
use case for morpheme segmentation models due
to their high degree of compositionality. Therefore,
we experiment with simple morpheme segmenta-
tion techniques to observe their performance in a
transfer setting with much less data, but an extraor-
dinarily strong morphological signal.

The first formalization of an algorithm for mor-
pheme segmentation reaches back to Harris (1955)
who proposed the so-called Letter Successor Va-
riety (LSV) as a predictability measure at each
position within a word. The underlying assumption
is that the continuation of a word should be fairly
predictable within a morpheme, but much harder to
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predict at a morpheme boundary. Several proposals
have been made to improve upon LSV. Hafer and
Weiss (1974) suggest measuring predictability in
terms of entropy rather than type variety (Letter
Successor Entropy, LSE). They also propose Let-
ter Predecessor Variety (or Entropy) as a logical
inversion of LSV, processing each word backwards.
Hammarström (2009) proposes Letter Successor
Max-Drop, measuring how likely the most frequent
continuation of a word is in comparison to all other
potential continuations. Çöltekin (2010) suggests
normalizing LSV by word position to account for
the fact that LSV usually becomes smaller towards
the end of a word. We experiment with all these
different flavors of LSV, but report only LSE, since
it performs best on average and all LSV variations
show similar patterns in general. Following Hafer
and Weiss (1974), we also experiment with a sim-
ple model that considers every possible prefix and
suffix (in a computational sense) of a word form as
a morpheme if and only if it appears as a complete
word in the data. Using this simple measure, List
(2023) reports promising results in inferring partial
colexifications from multilingual wordlists which
seem to advance concept embeddings substantially
(Rubehn and List, 2025b).

A line of research that can be seen as comple-
mentary to LSV-based approaches formalizes the
task of morpheme segmentation as a minimum
description length (MDL) problem (Goldsmith,
2001). The basic idea behind MDL is to define
a description length as a combination of basic to-
kens and rules to derive complex forms from the
basic vocabulary. This notion is especially interest-
ing on theoretical grounds, since the complexity of
numeral systems can also be measured in terms of
MDL (Hammarström, 2008). In an ideal setting,
an MDL-based segmentation model is therefore
expected to accurately infer and model the compo-
sitional structure of numeral systems. Representing
this family of morpheme segmentation algorithms,
we run our experiments with the Morfessor Base-
line model (Creutz and Lagus, 2002, 2005; Virpioja
et al., 2013).

3.5 Subword Tokenization
Algorithms for subword tokenization form an in-
tegral preprocessing step of state-of-the-art lan-
guage models, since they effectively reduce the
vocabulary size and avoid the occurrence of out-of-
vocabulary items. While these tokenization meth-
ods in principle make downstream applications

more flexible, it can at least be doubted whether
the inferred subwords concord with the language’s
morphological structure (Batsuren et al., 2024). We
apply three popular algorithms for subword tok-
enization on our multilingual numeral data: Byte-
Pair-Encoding (BPE; Gage, 1994; Sennrich et al.,
2016), WordPiece (Schuster and Nakajima, 2012),
and Unigram tokenization (Kudo, 2018).

3.6 Evaluation
All models described in § 3.4 and § 3.5 are trained
on unannotated and unsegmented representations
of the numeral lists. The predicted segmentations
are then evaluated against our manual annotations
which serve as a gold standard. Since all models are
inherently monolingual, each language is processed
and evaluated independently.

Predicted segmentations can directly be evalu-
ated against the gold standard using precision and
recall (Virpioja et al., 2011). While we are aware of
more sophisticated evaluation metrics for morpho-
logical analyses (Spiegler and Monson, 2010), we
argue that simply calculating boundary precision
and recall (BPR) is sufficient in our use case, since
we investigate small corpora with hardly ambigu-
ous morphological patterns. Due to its simplicity,
BPR is readily interpretable, rendering it the ideal
evaluation metric for our use case.

We run all experiments on two different represen-
tations of the numeral lists, relying on the surface
and underlying forms respectively (see § 3.3 for
details on the two representations). The former is
a faithful representation of the actually observable
word forms and therefore reflects a “real-world”
use case for segmentation models. The latter is an
artificially construed “ideal” setting that removes
allophonic and allomorphic variation, that is, varia-
tion that needs to be explained on a different level
than morphology. Comparing these two settings
allows for a fine-grained evaluation of morpheme
segmentation models, enabling us to assess the
share of segmentation errors caused by allomor-
phy.

3.7 Implementation
The data were annotated using EDICTOR 3.1 (List
et al., 2025b), and validated and compiled using
CLDFBench (Forkel and List, 2020). The visu-
alization in Figure 1 was created using CLDFViz
(Forkel, 2024). All experiments regarding auto-
mated morpheme segmentation were run in Python,
using LinSe (Forkel and List, 2024) to conveniently
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Average Highest Lowest
S U S U S U

Morphemes 21.8 13.5 48 20 10 7
Expressivity 5.6 7.9 10.6 15 1.4 3.4
Opacity 1.60 3.18 1
Code Length 2.53 3.83 1.68

Table 3: Overview of statistics about the different nu-
meral systems. S and U refer – where applicable – to
surface vs. underlying forms.

represent the internal structure of word forms in
different granularities. Morfessor was run from its
Python package (Virpioja et al., 2013), all other
models were implemented from scratch and are
available through MorSeg, a package for mor-
pheme segmentation in multi- and monolingual
wordlists (Rubehn and List, 2025a). All data and
code accompanying this study are made available
in the supplementary material.

4 Analysis and Results

4.1 Sample Data of Coded Numeral Systems
Table 3 summarizes the results of computing differ-
ent types of metrics based on surface and underly-
ing forms across all languages in our sample (Table
6 in the appendix provides metrics for individual
languages). In the table, we introduce three simple
metrics – expressivity, opacity, and length – to get
a better understanding of the data and the strategies
to form higher numbers from basic morphemes.
First, we measure the average morpheme expressiv-
ity of a language by counting how many different
numbers are formed using this morpheme. For in-
stance, Mandarin wǔ ‘five’ is used in the formation
of the numbers 5, 15, 25, and 35 and therefore
has an expressivity of 4. Expressivity is averaged
over all morphemes found in a language’s numeral
system. For the rare cases where a language has
multiple forms for the same number, expressivity
is weighted accordingly. Opacity describes the ra-
tio between allomorphic variants and morphemes,
measuring the degree of allomorphy in a system.
The lowest score is 1, with each morpheme in a
language surfacing with the same form. Finally, the
average coding length measures how many mor-
phemes are used to form a word.

On theoretical grounds, the minimum amount
of morphemes required in a numeral system is the
base of that system. That means, a decimal sys-
tem needs at least 10 different morphemes to be
fully expressive. Indeed, our sample covers three

languages – Mandarin, Mapudungun, and Hual-
laga Quechua – that use such a minimal decimal
system to express the numbers up to 40. This ob-
servation holds true on both the surface and the
underlying level, indicating that exactly these lan-
guages lack any kind of allomorphy. Mandarin is
often taken as a prime example for a perfectly trans-
parent and symmetric numeral system: Complex
numerals are simply formed by concatenating the
simple numbers from 1 to 10. For example, twenty
three in Mandarin is èr shí sān, literally two ten
three (2 ∗ 10 + 3).

On the other side of the spectrum, we find As-
samese with 20 different morphemes and Hindi
with 48 distinct morphs, the highest value for the
respective category. This aligns with the general
impression that Indo-Aryan languages feature some
of the most complex and opaque numeral systems
of the world (Hammarström, 2008; Cathcart, 2025).

We observe a wide range of morpheme opacity.
With Uipo, Huallaga Quechua, Mandarin, and Ma-
pudungun, four languages in our sample have the
lowest possible opacity of 1.0, thus not featuring
any allomorphy in their numeral systems. On the
other hand, the language with the highest opac-
ity is still Hindi with a value of 2.82, followed by
Lamjung Yolmo, Telugu, and Sanskrit. From these
extreme cases, the impression might arise that the
opacity correlates with the size of the underlying
morpheme inventory. However, across the entire
dataset, no significant correlation between these
two metrics could be found.

The expressivity of morphemes and their allo-
morphic variants, on the other hand, shows a sig-
nificant negative correlation with the number of
morphemes. The interpretation is straightforward:
The fewer morphemes are available in a system,
the more expressive they need to be, and the more
they will be used. It is therefore not surprising that
exactly those three languages that employ a base
of 5 (Aymara, Cavineña, and Paraguayan Guaraní)
rank the highest in terms of expressivity on the sur-
face and the underlying level. On the low end of
expressivity, we again find Hindi and Assamese,
as well as the modern Romance languages French,
Italian, and Spanish.

Based on these correlations, one might expect
that the average coding length is also directly de-
pendent on the size of the morpheme inventory,
since less available morphemes should – in theory
– require longer word forms. However, no signifi-
cant correlation between these two metrics could
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be found. There is only a significant correlation
between the coding length and the morpheme ex-
pressivity. Considering that our sample is heavily
biased towards decimal systems, and that even the
systems that employ other bases show traces of
decimal coding, we cannot interpret these effects
as a result of different numeral bases. Instead, this
seems to result from oblique marking (connect-
ing morphemes with particles like ‘and’ or ‘with’)
which can happen independently of the numeral
base.

Finally, we experiment with type-token ratio
(TTE) and entropy, which have been proposed
as measures of morphological complexity in the
past (Bentz et al., 2017; Çöltekin and Rama, 2023).
These metrics are not able to capture any aspect
of complexity in our sample, since they correlate
almost perfectly with the number of morphemes.
We therefore conclude that in this special setting,
TTE and entropy are dependent on the vocabulary
size alone, which is probably due to the fact that
morphemes in numeral systems by and large do
not follow a Zipfian distribution, as is the case for
words in natural language corpora.

4.2 Automated Morpheme Segmentation

Table 4 reports the overall performance of three
models for automated morpheme segmentation
on the individual languages, both for those cases
where surface forms were passed to the algorithms,
and where underlying forms were taken as the ba-
sis of analysis. From the model family based on
Letter Successor Variety, we only report Letter Suc-
cessor/Predecessor Entropy, which generally per-
formed best.

The most obvious (and unsurprising) observation
is that all models perform better on the underlying
form than on the surface forms. Since it is a well-
known issue in the literature that automated meth-
ods are challenged by allomorphy (Hammarström
and Borin, 2011; Virpioja et al., 2011), this does
not seem too surprising to us. Comparing the av-
erage scores of the models, however, shows that
allomorphy is the biggest source of error for the

Model Surface Forms Underlying Forms
Morfessor 0.74 0.88
LSPE 0.72 0.83
Affix 0.72 0.88

Table 4: Average F1 scores of morpheme segmentation
algorithms.

analysis on surface forms, which naturally is the
common use case for those models. By extension,
it does not come as a surprise that opacity signifi-
cantly correlates with how well the models perform
on the surface forms, as shown in Figure 2.

But even on the underlying forms – an “ideal”
scenario in which allomorphy does not exist – there
are notable differences in how well the morpholog-
ical structure is detected by the models. Particu-
larly interesting is the case of Uipo. This numeral
system poses a big challenge for Morfessor and
the Affix model, which both only achieve an F1-
score of 0.4 (while achieving a perfect precision
of 1.0!). A closer look at the language data reveals
that Uipo has a complex numeral system, in which
even the numbers between 2 and 9 consist of two
morphemes, a prefix and a stem. The number 6 for
example is [th @ + r u k], but both morphemes are
only used to form the number six (and by extension,
numbers that are formed using ‘six’). Without any
further knowledge of the language, it is very hard if
not impossible to recognize the underlying compo-
sitionality, leading to a massive undersegmentation
by the models at hand. On the other hand, the high
score of LSPE on Uipo – which may come as a sur-
prise – can be described as a coincidental byprod-
uct of the present morphophonology. As generally
typical for South-East Asian languages, Uipo only
allows the simple syllable structure CV(C), and
each syllable in Uipo is a morpheme at the same
time. Since there are more consonants than vowels,
the continuation of a word is much less predictable
at the start of a new syllable. LSPE can therefore
accurately predict syllable boundaries, which hap-
pen to be morpheme boundaries as well.

On the other side, Morfessor is able to perfectly
predict all morpheme boundaries in four languages
at the surface level (Shanghainese, Mandarin, Hual-
laga Quechua, Mapudungun), and in seven more
languages at the underlying level. Mapudungun
seems to have a particularly transparent structure,
since it is the only language that all three mod-
els segment perfectly at both representation levels.
This makes Morfessor the model with the highest
number of completely correct segmentations at the
language level, showing that it clearly has the edge
over the other two approaches tested, which is also
indicated by the average performance. But even in
this “ideal” scenario – no allomorphy and a system
that shows clear compositional structures – Morfes-
sor cannot accurately predict all morpheme bound-
aries for 14 out of 25 languages. For example, in
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Figure 2: F1 scores of Morfessor on surface forms per language in correlation with the morphological opacity
(Spearman’s ρ = −0.596, p-value < 0.01).

the German words zwan-zig ‘twen-ty’ and drei-ßig
‘thir-ty’, the model fails to detect the morpheme
boundaries, even in the underlying form where -zig
[ts I ç] and -ßig [s I ç] are represented in the same
way ({ts I ç}). Generally, the model is much more
prone to undersplitting than to oversplitting: On
the underlying representation, it achieves a nearly
perfect precision of 0.998, but a recall of only 0.80.

4.3 Subword Tokenization
Table 5 provides an overview of how accurately al-
gorithms for subword tokenization can capture the
morphological structure of the numeral systems at
hand. It is evident that these models are in no way
competitive with algorithms designed for the task
of morphological segmentation – even the simplest
segmentation algorithms outperform the subword
algorithms largely. Among the subword tokeniza-
tion algorithms, BPE performed the best on both
levels, and the Unigram model performed worst
across the board.

There are two major conceptual issues that in-
hibit a successful transfer of these algorithms to

Model Surface Forms Underlying Forms
BPE 0.51 0.61
WordPiece 0.38 0.36
Unigram 0.34 0.33

Table 5: Average F1 scores of subword tokenization
algorithms for morphological segmentation.

morpheme segmentation. First, these models only
operate extremely locally – BPE and WordPiece
merge bigrams based on a simple co-occurence
metric, and Unigram removes unlikely n-grams un-
der the assumption that the distribution of all tokens
in the vocabulary is statistically independent. This
prevents the models from learning relevant infor-
mation about longer shared substrings, which is the
foundation for all successful morpheme segmenta-
tion models. The second, and arguably strongest
limiting factor is that it is unclear how to determine
when a model should stop. In their intended set-
ting, subword tokenization algorithms are designed
to define an expressive vocabulary of a tractable
size for downstream NLP applications. Hence, a
desired vocabulary size is defined a priori, and the
subword vocabulary is continually modified until
the predefined size is reached. For BPE and Word-
Piece, the vocabulary size increases monotonically
during that process, while it decreases for Unigram.
In this context, vocabulary size refers to the num-
ber of unique subwords modeled by the respective
tokenizer.

This training set-up leads to two problems. The
first is that the desired vocabulary size must be de-
fined before running the model. For morphological
segmentation, the ideal vocabulary size naturally
will be the size of the morpheme inventory – but
if that is already known, then no automated mor-
phological analysis is required anymore. For the
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Figure 3: Vocabulary size of the BPE tokenizer for
Mandarin and Hindi after each iteration.

sake of illustration, we ran the algorithms under
the unrealistic assumption that the ideal vocabulary
size is already known; so that each model stopped
the training routine once that size was reached. The
numbers shown in Table 5 therefore report the per-
formance of an ideal setting for the models, in-
cluding information that would be unknown in a
practical application. BPE and WordPiece reached
that ideal vocabulary size only in 11 out of 100
cases (and even then did not provide an ideal mor-
phological segmentation by any means). An ac-
curate reduction of the vocabulary to its minimal
representation was therefore rarely achieved.

The second problem results from the assump-
tion that BPE and WordPiece lead to a mono-
tonic increase of vocabulary size. This assumption
does not hold true in the special case of numerals:
Thanks to the high degree of compositionality, the
smallest possible vocabulary size to construct the
data is not necessarily the set of individual charac-
ters, but can be the set of employed morphemes in-
stead. This is visualized in Figure 3: The Mandarin
numerals only require 10 morphemes to construct
numerals up to 40, while 19 distinct segments can
be found in these forms. By subsequently merging
common bigrams, the BPE algorithm is actually
able to reduce the vocabulary size to these ten mor-
phemes. The monotonicity assumption implied by
subword algorithms therefore might be violated,
and the vocabulary size might decrease for a while,
depending on the complexity of a language’s mor-
phology and phonology. However, this is not nec-
essarily the case, as in more opaque languages like
Hindi, the vocabulary size still increases monotoni-
cally with more iterations.

5 Discussion and Conclusion

In this study, we have demonstrated an efficient,
transparent, and robust workflow for the annotation
and analysis of numeral systems. The workflow fea-
tures a detailed annotation scheme for shared mor-
phemes across word forms, accounts for potential
allomorphy, and can be carried out in a computer-
assisted manner, using a web-based annotation tool.
As a result, we presented a small sample of anno-
tated numeral systems from 25 typologically di-
verse languages from Eurasia and South America.
We used this sample to evaluate how well unsuper-
vised methods for automated morpheme segmen-
tation work in extremely low-resource scenarios
with an extraordinarily strong morphological sig-
nal. The results suggest that the major error source
of these models is allomorphy. When this factor
is accounted for, rather satisfactory morphologi-
cal analyses can be inferred automatically. For
future research on morpheme segmentation in low-
resource scenarios, the handling of allomorphy will
therefore be crucial.

Several statistical measures of numeral systems
introduced here confirm intuitive correlations, such
that smaller morpheme inventories necessarily en-
tail a higher expressivity of the individual mor-
phemes. It remains unclear, however, if a mea-
sure of morphological complexity can be inferred
from our measures, since information-theoretic ap-
proaches that have been proposed to measure mor-
phological complexity on corpus data do not con-
vey any useful information about the morpholog-
ical structure of numeral systems. Curiously, it
seems that the performance of Morfessor aligns
with (impressionistic) human judgement of how
transparent a numeral system is. Since Morfes-
sor is based on the Minimum Description Length
(MDL, Rissanen, 1983) principle, which has been
proposed as a framework for measuring complexity
in numeral systems (Hammarström, 2008; Cath-
cart, 2025), it might serve as a useful indicator for
complexity when applied on the underlying data
representation.

We conclude that due to their high degree of
compositionality, numerals serve as an ideal con-
trolled sample for developing and testing the an-
notation and inference of morphological structures
in multilingual wordlists. In the future, we hope
to further expand our sample of numeral systems
and test more methods for automated morpheme
segmentation.
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Supplementary Material

The dataset for compositional structures in numeral
systems (CoSiNuS, Version 1.1) is curated on
GitHub (https://github.com/numeralbank/cosinus)
and archived with Zenodo
(https://doi.org/10.5281/zenodo.15656420).
The MorSeg software package is curated on
GitHub (https://github.com/lingpy/morseg,
Version 0.1) and archived with PyPi
(https://pypi.org/project/morseg). The code
that was used to run the analyses de-
scribed in this study is curated on Codeberg
(https://codeberg.org/calc/numeral-annotation-
study, Version 1.1) and archived with Zenodo
(https://doi.org/10.5281/zenodo.15672425).

Limitations

The annotation of word forms that etymologically
share the same origin, but have diverged over a sub-
stantial amount of time, is not always clear and can
be ambiguous. For example, consider Spanish once
(11): There is no transparent, synchronous pattern
that would combine uno (1) and diez (10) to yield
this form. However, we know that this was histori-
cally the case, as proven by Latin undecim, which
is a clear compound from un- (1) and decem (10).
In Italian, this compounding strategy is still trans-
parently visible (un- + dieci = ùndici). Arguably,
this lexical motivation is still transparent enough
in Italian to annotate it as dimorphemic form, but
not in Spanish (even though the etymology and the
time depth is identical). A similar case can be ob-
served for the Gaelic languages, where the suffix
for deriving tens (Irish: déag; Scottish: deug) is
clearly related to the word for ten (deich in both
languages), but the exact historical connection is
unclear (Matasović, 2009, 93-94; MacBain, 1911,
130).

A further limitation to the current annotation
scheme is that it linearly segments complex forms
into morphemes, for example two ten three. The
annotation does not make the underlying arithmetic
process explicit: Understanding that the underlying
formula would be 2 ∗ 10 + 3, if the word means
‘twenty three’, requires an additional interpretation
step and is not explicitly coded in the annotation
scheme.

Due to its relatively small size of 25 languages,
the patterns observed in the data might not re-
flect universal patterns, especially considering the
choice of languages. While we tried to include

typologically diverse languages, we are aware
that our sample is heavily biased towards Indo-
European and Sino-Tibetan languages, and that the
macroareas of North America, Africa, and Papune-
sia are not represented at all.

We furthermore observe a heavy bias towards
decimal systems, and even those systems that are
not primarily decimal contain some decimal struc-
tures. It is therefore impossible to systematically
analyze different numeral bases beyond some im-
pressionistic analyses. Finally, it remains an open
question if (and how) the morphological complex-
ity of a numeral system or a language in general
can be measured.
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A Statistics for Individual Languages

Language Morph. Expressivity Opacity Length Morfessor LSPE Affix

Maltese 25 / 12 4.24 / 8.83 2.08 2.65 0.71 / 1.00 0.64 / 0.84 0.71 / 0.84
Mapudungun 10 / 10 8.80 / 8.80 1.00 2.20 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
Wayuu 18 / 15 7.26 / 8.71 1.20 3.19 0.90 / 0.90 0.89 / 0.95 0.70 / 0.70
Aymara 12 / 10 10.58 / 12.70 1.20 3.17 0.94 / 1.00 0.67 / 0.65 0.73 / 0.74
Telugu 27 / 12 3.26 / 7.33 2.25 2.20 0.53 / 0.88 0.35 / 0.72 0.56 / 0.99
Czech 17 / 11 5.18 / 8.00 1.55 2.20 0.73 / 1.00 0.86 / 0.82 0.95 / 1.00
Russian 17 / 12 5.65 / 8.00 1.42 2.40 0.62 / 0.91 0.69 / 0.81 0.83 / 0.97
Irish 23 / 14 4.20 / 6.89 1.64 2.41 0.61 / 0.89 0.58 / 0.63 0.87 / 0.99
Scottish G. 17 / 13 6.94 / 9.08 1.31 2.95 0.64 / 0.66 0.76 / 0.90 0.61 / 0.81
German 20 / 15 5.20 / 6.93 1.33 2.60 0.81 / 0.81 0.65 / 0.95 0.80 / 0.83
Assamese 41 / 20 1.66 / 3.40 2.05 1.70 0.64 / 1.00 0.55 / 0.79 0.60 / 0.88
Hindi 48 / 17 1.40 / 3.94 2.82 1.68 0.42 / 1.00 0.46 / 0.95 0.43 / 1.00
Sanskrit 29 / 13 3.14 / 7.00 2.23 2.53 0.66 / 0.70 0.55 / 0.53 0.45 / 0.75
French 24 / 19 3.08 / 3.89 1.26 1.85 0.75 / 0.79 0.73 / 0.80 0.67 / 1.00
Italian 27 / 14 3.07 / 5.93 1.93 2.08 0.75 / 0.82 0.67 / 0.77 0.79 / 0.96
Latin 23 / 15 4.00 / 6.13 1.53 2.30 0.73 / 0.82 0.71 / 0.79 0.65 / 0.86
Spanish 25 / 19 3.92 / 5.16 1.32 2.45 0.55 / 0.87 0.82 / 0.89 0.73 / 0.97
Cavineña 13 / 10 10.46 / 13.60 1.30 3.40 0.93 / 1.00 0.46 / 0.57 0.67 / 0.68
H. Quechua 10 / 10 8.80 / 8.80 1.00 2.20 1.00 / 1.00 0.89 / 0.89 1.00 / 1.00
Lamjung Y. 26 / 11 3.58 / 8.45 2.59 2.36 0.69 / 0.89 0.89 / 1.0 0.71 / 0.89
Uipo (M.) 18 / 18 8.50 / 8.50 1.00 3.83 0.40 / 0.40 0.93 / 0.93 0.40 / 0.40
Makyam 27 / 18 4.81 / 7.22 1.50 3.25 0.70 / 0.85 0.70 / 0.71 0.45 / 0.77
Mandarin 10 / 10 8.80 / 8.80 1.00 2.20 1.00 / 1.00 1.00 / 1.00 0.96 / 0.96
Shanghainese 12 / 11 6.50 / 7.09 1.09 1.95 1.00 / 1.00 0.87 / 0.87 1.00 / 1.00
Par. Guaraní 11 / 7 9.55 / 15.00 1.57 2.62 0.91 / 1.00 0.89 / 1.00 0.99 / 1.00

Table 6: Overview of statistics about the different numeral systems for each individual language. Whenever two
values are given, the left refers to the surface forms, and the right to the underlying form. Morph. indicates the
number of distinct morph(eme)s in the given language. The three rightmost columns indicate the performance of
automated morpheme segmentation models in terms of F1.
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Abstract

This study explores the impact of annotation in-
consistencies in Universal Dependencies (UD)
treebanks on typological research in computa-
tional linguistics. UD provides a standardized
framework for cross-linguistic annotation, facil-
itating large-scale empirical studies on linguis-
tic diversity and universals. However, despite
rigorous guidelines, annotation inconsistencies
persist across treebanks. The objective of this
paper is to assess how these inconsistencies
affect typological universals, linguistic descrip-
tions, and complexity metrics. We analyze
systematic annotation errors in multiple UD
treebanks, focusing on morphological features.
Case studies on Spanish and Dutch demonstrate
how differing annotation decisions within the
same language create contradictory typological
profiles. We classify the errors into two main
categories: overgeneration errors (features in-
correctly annotated, since do not actually exist
in a language) and data omission errors (in-
consistent or incomplete annotation of features
that do exist). Our results show that these in-
consistencies significantly distort typological
analyses, leading to false generalizations and
miscalculations of linguistic complexity. We
propose methodological safeguards for typo-
logical research using UD data. Our findings
highlight the need for methodological improve-
ments to ensure more reliable cross-linguistic
generalizations in computational typology.

1 Introduction

Multilingual corpora with consistent annotation
schemes have become invaluable resources for
typological research in computational linguistics
(O’Horan et al., 2016; Ponti et al., 2019). Among
these, Universal Dependencies (UD) (Nivre et al.,
2023) stands out as one of the most comprehen-
sive collections of consistently annotated tree-
banks across diverse languages. The standard-
ized annotation framework of UD has enabled re-
searchers to conduct large-scale cross-linguistic

comparisons and formulate typological universals
based on empirical data rather than theoretical as-
sumptions (Brosa-Rodríguez and Jiménez-López,
2023; Gerdes et al., 2019). This development has
significantly advanced our understanding of lin-
guistic diversity and universals.

However, the promise of consistent cross-
linguistic annotation faces substantial challenges
in practice. Despite rigorous guidelines and qual-
ity control measures, inconsistencies and errors in
annotation persist across different treebanks, even
within the same language. These inconsistencies,
while perhaps minor when considering individual
treebanks in isolation, can have significant impli-
cations when aggregated for typological studies,
potentially leading to incorrect characterizations
of languages and flawed formulations of linguistic
universals. Our research identified several system-
atic annotation errors across multiple UD treebanks
that directly impact typological characterizations
based on UD data.

This paper examines how these annotation in-
consistencies affect the formulation of typological
universals, description of languages or information
regarding linguistic complexity (Brosa-Rodríguez
et al., 2024) with a particular focus on morpholog-
ical features such as gender, number, and verbal
mode/tense. We establish a correlation between the
concepts of linguistic complexity and linguistic uni-
versals. We understand the concept of complexity
in terms of the difficulty of learning one language
from another (second language acquisition); we in-
terpret universals as structures/categories present in
all languages. From this standpoint, we establish an
inversely proportional relationship between the two
concepts: The greater the degree of shared charac-
teristics between two languages, the less challeng-
ing it will be to learn one from the other. In essence,
the higher the universality of a language, the lower
its complexity level when learned as a second lan-
guage. Given the interrelationship between typo-
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logical universals and complexity, and considering
that typological universals are calculated from tree-
banks, eliminating inconsistencies in UD treebanks
is crucial for accurately calculating linguistic com-
plexity, as these inconsistencies can distort typo-
logical profiles, affecting the relationship between
universals and complexity, particularly when mea-
suring the ease of learning languages based on their
shared features.

We exemplify our research with cases from Span-
ish and Dutch treebanks to demonstrate how anno-
tation decisions in one treebank can differ substan-
tially from another for the same language, creating
contradictory typological profiles. Furthermore, we
explore how conversion processes from legacy an-
notation schemes to UD can introduce systematic
biases if not carefully supervised.

The research questions guiding this investigation
are: (1) How do annotation inconsistencies in UD
treebanks affect typological characterizations of
languages? (2) What methodological safeguards
can researchers implement to account for these
biases when conducting typological studies using
UD data?

By addressing these questions, we aim to
strengthen the foundation of computational typol-
ogy while acknowledging the inherent challenges
in creating truly consistent cross-linguistic annota-
tion schemes. Rather than diminishing the value of
resources like UD, our goal is to enhance their util-
ity by promoting awareness of potential biases and
suggesting practical approaches to mitigate their
effects on typological research.

2 Theoretical Framework

UD (Nivre et al., 2023) has established itself as a
standard framework for syntactic annotation across
languages (Marneffe et al., 2013; Zeman, 2008;
Petrov et al., 2012), with its primary goal being to
capture linguistic universals while accommodating
language-specific phenomena. The standardized
annotation schema enables cross-linguistic compar-
ison and facilitates typological research on an un-
precedented scale in corpora (Haspelmath, 2010).
However, the application of a universal schema
to typologically diverse languages inevitably cre-
ates tension between universal applicability and
language-specific accuracy.

The challenges of cross-linguistic annotation
have been documented in the literature (Kahane
et al., 2021; Gerdes et al., 2018, 2022; Yan and

Liu, 2022; Osborne and Gerdes, 2019). These
challenges include the difficulty of establishing
truly universal categories, the problem of forcing
language-specific phenomena into universal frame-
works, and the lack of correspondence between
UD anotation guidelines and classical linguistic
claims or theories. While UD has made significant
progress in addressing these issues through detailed
guidelines and collaborative development, other au-
thors have proposed alternative proposals in order
to enhance these detected problems (Gerdes et al.,
2022).

In particular, morphological features present
unique challenges for cross-linguistic annotation.
Features such as gender or number vary signifi-
cantly across languages, both in terms of their ex-
istence and their manifestation. UD addresses this
variability through a feature inventory that distin-
guishes universal from language-specific features.
Even if the annotation scheme is adaptable enough,
the problems still arise due to annotators (or anno-
tating) action. In this case we do not find as much
error analysis as in the case of the revision of the
annotation scheme from a theoretical perspective
(Arista, 2022; Oh et al., 2020). The only frequent
review is a specific review of problems inherent to
certain languages, without being general or extend-
able.

3 Typology of Annotation Errors

Based on our analysis of UD treebanks, we pro-
pose a typology of annotation errors that affects
typological generalizations. These errors can be
classified into two broad categories:

1. Overgeneration errors: These occur when
features that do not exist in a language (or
structure) are incorrectly annotated. We have
identified two primary sources of overgenera-
tion:

• Automatic conversion artifacts: When
non UD-native treebanks are converted
from legacy annotation schemes to UD
one, features may be erroneously carried
over or generated based on superficial
similarities with other languages or parts
of speech.

• Overgeneralization of specific contexts:
Annotators may apply features appropri-
ate in one context and these are (prob-
ably automatically) propagated to con-
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texts where they are linguistically unmo-
tivated.

2. Data omission errors: These occur when fea-
tures that do exist in a language (or structure)
are inconsistently or incompletely annotated.
Sources include:

• Annotation fatigue: Manual annotation
of features that are not morphologically
marked may be inconsistent due to hu-
man error or oversight.

• Implicit vs. explicit marking: Dis-
agreement among annotators regarding
whether features should be annotated
only when explicitly marked or also
when implicitly present through other
patterns.

3.1 Implications for Typological Universals
These annotation inconsistencies have direct impli-
cations for the identification and validation of typo-
logical universals and, even, linguistic (structural)
complexity. In the context of UD-based typology,
we will use as example a revisitation Greenberg
(1963) universals.

Specifically, we examine how annotation errors
may affect the validity of linguistic type knowledge
based on three universals we select for exemplify-
ing:

• Universal 30: If the verb has categories of
person-number or if it has categories of gen-
der, it always has tense-mode categories.

• Universal 31: If either the subject or object
noun agrees with the verb in gender, then the
adjective always agrees with the noun in gen-
der.

• Universal 42: All languages have pronominal
categories involving at least three persons and
two numbers.

We consider that both types of er-
rors—overgeneration and data omission—can
artificially strengthen or weaken the evidence
for these universals. Overgeneration errors may
create false examples supporting a universal, while
data omission may obscure examples that would
contradict it. The combined effect can significantly
distort our understanding of cross-linguistic
patterns or how we can characterize the studied
languages.

In the following sections, we present empirical
evidence of these error types from Spanish and
Dutch treebanks and demonstrate their impact on
the universals listed above.

4 Methodology

Our investigation of annotation inconsistencies in
UD treebanks follows a systematic methodology
designed to identify, categorize, and assess the im-
pact of annotation errors on typological general-
izations. This section describes our data selection,
query methods, and analytical approach. We an-
alyzed all available treebanks from UD (version
2.15) quering information contained in Greenberg
(1963) universals.

4.1 Query Methodology
To systematically identify annotation inconsisten-
cies, we utilized Grew-Match (Guillaume, 2021), a
query tool specifically designed for UD treebanks.
Grew-Match allows for precise pattern matching
across morphosyntactic features and dependencies,
making it ideal for cross-treebank comparison.

We formulated targeted queries to detect poten-
tial annotation errors related to the universals under
investigation. For example, some of the formalisa-
tions used in connection with Greenberg universals
that have allowed us to uncover errors are:

pattern {A[upos=ADJ,!Gender]}
pattern {A[upos=VERB,Gender=Masc]}
pattern {A[upos=PRON, Person=1, !Number]}

The first pattern identifies adjectives lacking gen-
der feature, which may indicate data omission er-
rors relevant to Universal 31. The second pattern
identifies verbs with masculine gender in agree-
ment with masculine nominal subjects, which may
represent overgeneration errors affecting Universal
31. The third pattern locates first-person pronouns
without number annotation, potentially impacting
Universal 42.

For each query, we:

1. Executed the pattern across all selected tree-
banks.

2. Counted matches to quantify the prevalence
of each pattern.

3. Extracted contextual examples for qualitative
analysis.

4. Compared results across different treebanks
of the same language.
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4.2 Analytical Framework
Our analysis proceeded in two stages:

Stage 1: Identification of Candidate Errors
We first identified candidate errors by looking for

patterns that: (1) appeared inconsistently across dif-
ferent treebanks of the same language; (2) contra-
dicted known typological features of the language;
(3) showed signs of automatic conversion artifacts,
such as systematic misapplication of features.

Stage 2: Impact Assessment
Then, we assessed the impact of confirmed er-

rors on typological universals by: (1) quantifying
how the error affects statistical generalizations; (2)
determining whether the error would lead to mis-
classification of a language with respect to a uni-
versal; (3) estimating the potential cascade effect
on related typological claims.

4.3 Reproducibility
To ensure reproducibility of our findings, we pro-
vide all Grew-Match queries used in our analysis.
They are available in GitHub.

5 Case Studies

This section presents detailed analyses of specific
annotation inconsistencies identified in our inves-
tigation and their implications for typological re-
search. We focus on three representative cases that
illustrate both overgeneration and data omission
errors across different morphological features.

5.1 Gender in Spanish Verbs: An
Overgeneration Error

Our analysis revealed a systematic overgeneration
error in Spanish treebanks, where perfect partici-
ples in compound verb forms are incorrectly an-
notated with gender features. For example, in
the AnCora treebank, sentences like "Microsoft
ha cometido repetidamente graves violaciones
legales" (‘Microsoft has repeatedly committed seri-
ous legal violations’), show the participle cometido
annotated with Gender=Masc, as can be seen in
figure 1.

Figure 1: Annotation of "ha cometido" in Spanish-
AnCora treebank

This pattern of marking a gender is not limited to
AnCora but appears across multiple Spanish tree-

banks, as evidenced by examples such as "He dicho
con una botella" (‘I have said with a bottle’) from
COSER, "Han muerto todos" (‘They have all died’)
from GSD, and "Hemos pedido a otros países"
(‘We have asked other countries’) from PUD.

The error appears to stem from an overgeneral-
ization of specific contexts where gender marking
on participles is linguistically motivated (such as
in passive constructions like "fue cometida" - ‘it
was committed’). In compound tenses with haber,
however, the participle functions purely as a verbal
element without nominal or adjectival properties,
making gender marking inappropriate in these con-
texts, as Spanish does not express gender in verbs.

Impact on Typological Universals This incon-
sistency directly affects Universal 31, which con-
cerns patterns of gender agreement. When analyz-
ing Spanish based on these treebanks, we would
incorrectly conclude that Spanish exhibits gender
marking on verbs in all perfect constructions, poten-
tially classifying it with languages that genuinely
mark gender on verbs. Thus, we could also wrongly
conclude that there is gender agreement between
subjects and verbs. This misclassification could
skew cross-linguistic patterns and lead to incorrect
typological generalizations about the distribution
of gender features across different parts of speech.

5.2 Gender in Roman Languages Adjectives:
Implicit vs. Explicit Marking

We identified a systematic data omission problem
regarding gender features in invariant adjectives
across Spanish treebanks. In the AnCora treebank,
noun phrases like "La admisión oficial" (‘The offi-
cial admission’), the adjective oficial lacks gender
annotation, as can be seen in figure 2.

Figure 2: Annotation of "la admisión oficial" in Spanish-
AnCora treebank

This contrasts with other Spanish treebanks,
which show inconsistent approaches to the same
adjective. For example, in GSD we find "Es el
segundo oficial organizado por" (‘It is the second
official [event] organized by’) with the adjective ofi-
cial marked as Gender=Masc, while in PUD "Las
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fotos oficiales" (‘The official photos’) shows ofi-
ciales with Gender=Fem annotation, as can be seen
in figure 3.

Figure 3: Annotation of "las fotos oficiales" in Spanish-
PUD treebank

This inconsistency extends beyond Spanish.
Comparing with closely related languages reveals
that Portuguese systematically annotates gender on
invariant adjectives, as in "O nome oficial" (’The
official name’) from the Bosque treebank, which in-
cludes Gender=Masc. Similarly, Italian treebanks
show the same inconsistency pattern, with ISDT
containing examples of "ufficiale" without gender
feature while PUD consistently includes the fea-
ture.

The omission appears to stem from the lack of
overt morphological marking for gender in invari-
ant adjectives like oficial, which has the same form
for both masculine and feminine. That is why we
consider this to be a problem of disparity of an-
notators, who in an uncoordinated way interpret
whether the morphological marking on the adjec-
tive takes precedence in order to decide not to mark
the gender of that adjective which is in agreement
with the noun it modifies.

Impact on Typological Universals This incon-
sistency affects Universal 31 , which address adjec-
tival agreement patterns. The inconsistent annota-
tions would suggest that Spanish is from one spe-
cific type of language depending on the corpus the
researcher uses. Additionally, the cross-linguistic
inconsistency makes comparative analysis of gen-
der agreement patterns difficult across related Ro-
mance languages.

5.3 Number in Dutch Pronouns: A Data
Omission Error

Analysis of Dutch treebanks revealed a systematic
omission of number features in pronouns across
both Alpino and LassySmall treebanks. For ex-
ample, the first-person plural pronoun we (‘we’)
in sentences like "We hebben een concept" (‘We

have a concept’) from Alpino consistently lacks the
Number=Plur feature. Similarly, the third-person
plural pronoun zij (‘they’) in "schamen voor wat
zij" (‘ashamed of what they’) from LassySmall is
annotated without number, and the first-person sin-
gular ik (‘I’) in "Ik geloof niet" (‘I don’t believe’)
from Alpino lacks the Number=Sing feature.

Figure 4: Annotation of "ik" in Duch-Alpino treebank

This pattern extends to all personal pronouns in
both Dutch treebanks, creating a systematic gap
in the annotation of a fundamental morphological
feature. The omission makes it difficult to compare
Dutch pronominal systems with those of other lan-
guages, where number is consistently annotated on
pronouns.

Impact on Typological Universals This fact of
not marking number has significant implications
for Universal 42, which deals with pronominal
number distinctions. Based on Dutch treebanks
alone, one might incorrectly conclude that Dutch
pronouns lack explicit number marking, placing
Dutch typologically with languages that genuinely
lack such distinctions. This would represent a sub-
stantial mischaracterization of the Dutch pronom-
inal system, which clearly distinguishes singular
from plural forms both morphologically and syntac-
tically. Furthermore, the systematic nature of this
omission across all pronouns could significantly
distort typological comparisons involving pronomi-
nal systems.

6 Discussion

Our investigation into annotation inconsistencies
in UD treebanks reveals several important implica-
tions for typological research. This section exam-
ines the broader significance of our findings and
proposes approaches to mitigate the impact of an-
notation errors on typological generalizations.

6.1 Implications for Typological Research
6.1.1 Reliability of Treebank-Based Typology
The systematic errors identified in our case stud-
ies raise legitimate concerns about the reliability
of typological generalizations derived solely from
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treebank data. However, this does not invalidate
treebank-based approaches to typology. Rather,
it highlights the need for methodological caution
when using these resources for cross-linguistic
comparison.

Our qualitative analysis suggests that annotation
inconsistencies vary across treebanks, with con-
verted resources generally showing more problem-
atic patterns than natively UD-annotated corpora.
This is particularly evident in the contrast between
AnCora and PUD for Spanish, where PUD exhibits
more linguistically motivated annotation of gender
on adjectives. This may suggest that typological
studies should account for the origin of treebanks
when evaluating evidence.

6.1.2 Impact on Specific Universals
Our findings have varying implications for the uni-
versals under examination:

Universal 30 (Verbal Features) Universal 30 fo-
cuses on verbal tense-mood-aspect systems and is
affected by two contrasting error types in Span-
ish treebanks. First, we observed undergeneration
where some verbs receive incomplete tense-mood-
aspect annotation while others show complete fea-
ture attribution. This inconsistent annotation makes
it difficult to accurately characterize the Spanish
verbal system in cross-linguistic analysis. Second,
we identified an overgeneration problem where ver-
bal participles in perfect constructions are incor-
rectly assigned gender features. This error conflates
verbal and adjectival properties, making Spanish
appear to have gender-marking on verbs in contexts
where such marking is linguistically unmotivated.
Together, these inconsistencies distort the typolog-
ical classification of Spanish verbal morphology,
potentially placing it incorrectly in relation to other
languages based on both features it lacks and fea-
tures it falsely appears to have.

Universal 31 (Gender Agreement) Universal
31 addresses patterns of gender agreement and is
significantly impacted by the annotation errors we
identified. The spurious assignment of gender to
verbs in Spanish compound tenses, observed across
multiple treebanks (AnCora, COSER, GSD, PUD),
creates the false impression that Spanish typolog-
ically aligns with languages that genuinely mark
gender on verbs. This overgeneration error artifi-
cially expands the scope of gender agreement in
Spanish. Conversely, the omission of gender fea-
tures on invariant adjectives could underrepresent

the extent of gender agreement in the language.
The cross-linguistic inconsistency in handling in-
variant adjectives, as seen in our comparison be-
tween Spanish, Portuguese, and Italian treebanks,
further complicates typological comparisons, as
the same linguistic phenomenon receives different
treatments across related languages.

Universal 42 (Pronominal Number) Universal
42 concerns pronominal number distinctions and is
undermined by the systematic omission of number
features on pronouns in Dutch treebanks. Our anal-
ysis revealed that both all pronouns, like we (’we’)
or ik (’I’), as well as third-person pronouns like
zij (’they’), consistently lack number annotation
in both Alpino and LassySmall treebanks. This
pervasive omission could lead to the misclassifi-
cation of Dutch as having a pronominal system
without number distinctions, which would be a
fundamental mischaracterization. This is particu-
larly problematic for typological studies that rely
on pronoun features to establish diachronic or areal
patterns. The systematic nature of this omission
across all pronouns in both treebanks suggests a
guideline interpretation issue rather than random
annotation errors, potentially affecting how Dutch
relates typologically to other Germanic and Euro-
pean languages.

6.1.3 Methodological Implications
Our findings suggest that computational typolo-
gists should implement several methodological
safeguards when working with UD data:

1. Multi-treebank verification: When multiple
treebanks exist for a language, researchers
should compare annotation patterns across re-
sources to identify potential inconsistencies,
as demonstrated by our comparison of differ-
ent Spanish treebanks, even if they are not
interested in all textual tipologies.

2. Conversion awareness: Studies should ex-
plicitly account for whether treebanks were
natively annotated in UD or converted from
legacy formats, as conversion artifacts repre-
sent a significant source of errors.

3. Cross-linguistic consistency checks: Re-
searchers should verify whether similar lin-
guistic phenomena receive consistent anno-
tation across related languages, as shown in
our comparison of invariant adjectives across
Romance languages.
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4. Annotation guideline consultation: When
discrepancies are found, reference to the UD
guidelines can help determine which approach
better reflects the intended annotation stan-
dard.

6.2 Improving UD for Typological Research

While our study identifies several challenges, we
believe that UD remains an invaluable resource for
computational typology. Based on our findings,
we propose several improvements to enhance the
reliability of UD for typological research:

6.2.1 Clearer Guidelines for Implicit Features

Many of the data omission errors identified stem
from ambiguity regarding whether features should
be annotated only when morphologically marked
or also when syntactically relevant but not overtly
marked. The UD guidelines could be enhanced
with more explicit guidance on:

• Annotation of agreement features on invariant
forms, as seen in the case of Spanish adjec-
tives.

• Systematic annotation of inherent features on
pronouns, as highlighted by the Dutch exam-
ples.

6.3 Balancing Universality and Accuracy

The tension between universal application and
language-specific accuracy represents a funda-
mental challenge for cross-linguistic annotation
projects. Our case studies illustrate how this ten-
sion can manifest in specific annotation decisions,
such as whether to annotate gender on invariant
adjectives or number on pronouns.

7 Conclusion

This study has identified and analyzed systematic
annotation inconsistencies in UD treebanks that af-
fect typological generalizations, with a focus on ex-
emplifying it by morphological features in Spanish
and Dutch. Our investigation revealed two primary
categories of errors: overgeneration, where features
are incorrectly applied to elements that should not
have them, and data omission, where features are
inconsistently or incompletely annotated. These
errors have direct implications for the validity of
typological universals derived from UD data.

7.1 Summary of Findings
Our case studies demonstrated specific instances of
annotation inconsistencies with typological conse-
quences:

• Incorrect assignment of gender features to ver-
bal participles in Spanish compound tenses
across multiple treebanks, creating a false im-
pression that Spanish verbs carry gender mark-
ing.

• Inconsistent annotation of gender on invariant
adjectives across Spanish treebanks, creating
artificial variation within the same language.

• Cross-linguistic inconsistency in handling in-
variant adjectives across Romance languages.

• Systematic omission of number features on
pronouns in Dutch treebanks, potentially lead-
ing to incorrect characterization of Dutch
pronominal number distinctions.

7.2 Implications for Typology and Linguistic
Complexity

These annotation inconsistencies significantly im-
pact both typological research and linguistic com-
plexity studies. As Brosa-Rodríguez et al. (2024)
state, the relationship between typological univer-
sals and linguistic complexity is inversely propor-
tional—languages sharing more universal features
are generally considered less complex to learn as
second languages.

The inconsistencies we identified distort com-
plexity metrics by artificially inflating or deflating
the morphological complexity of language systems.
For instance, spurious gender assignments to Span-
ish verbs increase the apparent verbal complexity,
while omitted number features in Dutch pronouns
potentially underestimate pronominal complexity.
Such distortions compromise cross-linguistic com-
parisons and may lead to incorrect predictions
about second language acquisition challenges.

These implications underscore the need for re-
searchers to carefully account for annotation incon-
sistencies when using UD data for both typological
research and complexity measurements.

7.3 Contributions
This research makes several contributions to the
field of computational typology:

• A typology of annotation errors that affect
typological generalizations.
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• Empirical evidence of specific inconsistencies
in widely used UD treebanks.

• Methodological recommendations for typo-
logical research using UD.

7.4 Future Directions
Building on our findings, several promising direc-
tions for future research emerge:

• Development of validation procedures to iden-
tify typologically relevant annotation incon-
sistencies.

• Expansion of this analysis to other languages
and language families.

• Investigation of how annotation inconsisten-
cies affect typological metrics, language clas-
sification, and complexity measurements.

• Collaboration with the UD community to re-
fine annotation guidelines.

7.5 Final Remarks
Despite the challenges identified, we remain op-
timistic about the value of UD for typological re-
search and complexity studies. By acknowledging
and addressing annotation inconsistencies, the com-
putational linguistics community can enhance the
reliability of treebank-based analyses, ultimately
leading to more accurate characterizations of lin-
guistic diversity, universals, and complexity. As
multilingual NLP advances, improved consistency
in linguistic annotations will strengthen both our
theoretical understanding and the foundation for
truly multilingual language technologies.

8 Limitations

While our study provides valuable insights into
annotation inconsistencies in UD treebanks, several
limitations should be acknowledged.

Our investigation relied primarily on an initial
explorative qualitative analysis of specific exam-
ples rather than comprehensive quantitative assess-
ment. This approach allowed for detailed linguistic
analysis but limits our ability to make broad gen-
eralizations about the overall prevalence of these
inconsistencies across UD treebanks.

The study focused on exemplifying in Spanish,
Italian, Portuguese, and Dutch, Indo-European lan-
guages with similar typological profiles. This lim-
ited language sample may not capture the full range

of annotation challenges present across typologi-
cally diverse languages. Additionally, our analysis
concentrated on morphology, leaving other syntac-
tic features unexplored.

We have theorized about potential effects on uni-
versals 30, 31, and 42, but, due to lack of space, we
have not empirically validated how correction of
these errors would alter cross-linguistic generaliza-
tions in practice. This makes it difficult to assess
the practical significance of these inconsistencies
for typological research.

Our study offers limited insight into the under-
lying causes of these inconsistencies beyond the
broad distinction between conversion artifacts and
manual annotation variability. A more detailed un-
derstanding of annotation decision processes would
provide valuable context for addressing these is-
sues.

Finally, in some cases, multiple theoretically jus-
tified annotation approaches may exist for certain
features. We did not systematically explore where
annotation differences might reflect legitimate the-
oretical disagreements rather than errors, nor did
we propose mechanisms for accommodating such
variation within the UD framework.
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Abstract

Computational phylogenetics has become an
established tool in historical linguistics, with
many language families now analyzed using
likelihood-based inference. However, standard
approaches rely on expert-annotated cognate
sets, which are sparse, labor-intensive to pro-
duce, and limited to individual language fami-
lies. This paper explores alternatives by com-
paring the established method to two fully au-
tomated methods that extract phylogenetic sig-
nal directly from lexical data. One uses auto-
matic cognate clustering with unigram/concept
features; the other applies multiple sequence
alignment (MSA) derived from a pair-hidden
Markov model. Both are evaluated against ex-
pert classifications from Glottolog and typolog-
ical data from Grambank. Also, the intrinsic
strengths of the phylogenetic signal in the char-
acters are compared. Results show that MSA-
based inference yields trees more consistent
with linguistic classifications, better predicts
typological variation, and provides a clearer
phylogenetic signal, suggesting it as a promis-
ing, scalable alternative to traditional cognate-
based methods. This opens new avenues for
global-scale language phylogenies beyond ex-
pert annotation bottlenecks.

1 Introduction
Originally developed in computational biology,
quantitative methods for phylogenetic reconstruc-
tion using likelihood-based inference frameworks
have now gained widespread acceptance in com-
parative linguistics. This is evident from the grow-
ing number of computational phylogenies pro-
posed for some of the world’s largest language
families, including Dravidian (Kolipakam et al.,
2018), Sino-Tibetan (Sagart et al., 2019), and
Indo-European (Heggarty et al., 2023). Moreover,
fully automated approaches — where even cog-
nate identification is performed algorithmically —
have demonstrated a surprising degree of robust-

ness (Rama et al., 2018). In contrast to the pre-
computational era of historical linguistics, where
such detailed reconstructions were rare, the gen-
eration of fully resolved phylogenies with branch
lengths and, in some cases, estimated divergence
dates has now become a standard practice in stud-
ies of language evolution.

Despite the increasing recognition of compu-
tational language phylogenies as a useful addi-
tion to the comparative linguistics toolkit, skep-
ticism remains prevalent. A key concern raised
by critics is that phylogenetic analyses are often
based on cognate sets—groups of historically re-
lated words—extracted from semantically aligned
word lists. Since these cognate sets are based on
expert annotations, they are sparse, labor-intensive
to acquire, and raise concerns regarding replicabil-
ity.

Another limitation of phylogenetic inference
based on cognate classes is that it is by definition
constrained to individual language families. There
is legitimate interest in automatically inferred trees
spanning larger collections of languages, perhaps
from the entire world. Such trees provide infor-
mation about the strength of evidence for putative
macro-families (Jäger, 2015; Akavarapu and Bhat-
tacharya, 2024). Furthermore, they are useful for
downstream tasks such as the statistical modeling
of global language evolution (Bentz et al., 2018;
Bouckaert et al., 2022).

The literature contains several proposed work-
flows for extracting character matrices from word
lists without cognate annotations, which can then
used as input for likelihood-based phylogenetic
inference. This paper presents a comparison of
cognate-based phylogenetic inference with two
such proposals, the one by Jäger (2018) and the
one by Akavarapu and Bhattacharya (2024). These
methods are evaluated in three ways: (1) by com-
paring the inferred phylogenies with the Glottolog
expert classification (Hammarström et al., 2024),
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(2) how well the inferred phylogenies fit to the ty-
pological features from (Skirgård et al., 2023), and
(3) an estimation of the strength of the phylogenetic
signal in the data, which is inferred with the soft-
ware PyPythia (Haag et al., 2022).

2 Materials and Methods

2.1 Materials
Word lists were obtained from Lexibank1; List
et al. 2023). These datasets contain lexical entries,
including the language they belong to, their mean-
ing, form in IPA transcription, and often a man-
ual cognate annotation. The datasets are curated
by the Lexibank community and are available in
a standardized format, which makes them suitable
for computational analyses.

In a first step, 135 Lexibank dataset were se-
lected. In total, this amounts to 2,486,845 lexical
entries from 6,845 languages (identified by glot-
tocodes).

For the purpose of evaluation, typological fea-
tures were obtained from Grambank2. This results
in 355,097 binary entries from 2,467 languages
and 195 typological features.

A subset of Lexibank data was selected accord-
ing to the following criteria:

• The entry comes from a language with a Glot-
tocode that is present in the Grambank data.

• The entry has an entry for its meaning
(Concepticon_Gloss) and a manual cog-
nate annotation (Cognateset_ID).

• The meaning comes from the 110 concepts
with the largest coverage.

This leaves 113,671 entries from 928 languages.
For further processing, the IPA transcriptions were
converted to the ASJP alphabet using the python
package lingpy (List and Forkel, 2024).

Constraining the Grambank data to these 928
languages leaves 138,878 binary data points from
all 195 features.

The gold standard tree was obtained from Glot-
tolog.3

1https://github.com/lexibank
2https://github.com/grambank/grambank
3https://zenodo.org/records/10804582/files/

glottolog/glottolog-cldf-v5.0.zip

2.2 Methods
The overall workflow consists of the following
steps:

1. Phylogenetic inference

(a) Generate a binary character matrix from
the Lexibank data.

(b) Infer a phylogenetic tree from this char-
acter matrix.

2. Evaluation

(a) Compare the inferred phylogenetic tree
with the Glottolog expert classification.

(b) Compare the inferred phylogenetic tree
with the Grambank typological features.

(c) Assess the strength of the phylogenetic
signal in the data.

Three different methods were used to generate
a binary character matrix: (1) binarized expert-
annotated cognate classes, (2) a combination of
automatic cognate clustering and unigram/concept
features as described in Jäger (2018), and (3) a
variant of the method developed by Akavarapu
and Bhattacharya (2024) using multiple sequence
alignment.

2.2.1 Expert-annotated cognate classes (cc)
Here we use the method introduced by Ringe et al.
(2002) and Gray and Atkinson (2003). Each cog-
nate class is treated as a character. A language is
coded as 1 if it has a cognate in the class, 0 if it
has a different cognate class for the same concept,
and missing if it has no cognate for the concept.
This results in a matrix with 928 rows and 25,913
columns.

Since each cognate class is, by definition, con-
fined to a single language family, this character ma-
trix contains no signal beyond the family level.

In the tables and figures below, this method is
referred to as cc (for cognate classes).

2.2.2 Automatic cognate clustering and
unigram/concept features (PMI)

The workflow proposed by Jäger (2018) was repli-
cated. This approach uses two types of characters.

• Binarized cognate classes obtained via auto-
matic cognate clustering. This involves (1)
supervised training of a Support Vector Ma-
chine classifier which takes a pair of words
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and predicts the labels 1 (cognate) or 0 (non-
cognate), using manual cognate classification
for supervision, (2) creating a distance matrix
for all entries for a given concept from the 100
concepts defined above, and (3) clustering the
distance matrix using the label propagation
algorithm (Raghavan et al., 2007).

• Unigram/concept characters. For each combi-
nation of a concept c and an ASJP sound class
s, a language is coded as 1 if it has a word for
concept c that contains sound class s, missing
if it has no word for concept c, and 0 other-
wise.

This resulted in a matrix with 928 rows and
41,013 columns.

Since the pointwise mutual information between
sound classes plays an essential role in this work-
flow, the method is referred to as PMI.

2.2.3 Multiple sequence alignment (MSA)
The method by Akavarapu and Bhattacharya
(2024) was used as starting point, but the present
approach differs in various aspects. The method is
based on the following steps:

In a first step, pairwise distances between lan-
guages in the full lexibank dataset were computed
using the Levenshtein distance on the ASJP tran-
scriptions and aggregating according to the method
described in (Jäger, 2018). Language pairs with
a distance below 0.7 were considered as probably
related, using the same heuristics as Jäger (2018).
There are 172,681 such language pairs. All word
pairs from such a language pair sharing their mean-
ing are treated as potential cognates. There are
90,565,486 such word pairs. An equal number of
random word pairs were sampled as probable non-
cognates. Potential cognates were assigned the la-
bel 1 and probable non-cognate the label 0.

In a second step, a classifier was trained on the
potential cognates and non-cognates. The clas-
sifier consists of a pair-Hidden Markov Model
(pHMM) (Durbin et al., 1998) and a logistic-
regression layer. The classifier was trained for one
epoch using the Adam optimizer. The resulting pa-
rameters of the pHMM were used in the next step.

A pHMM defines a probability distribution over
pairs of aligned sequences of sound classes. This
involves (1) emission probabilities for all pairs of
sound classes that are matched in the alignment, (2)
emission probabilities for individual sound classes
if they are aligned with a gap, and (3) transition

probabilities between the hidden states match, gap
in string 1, gap in string 2, and final state.

It is instructive to inspect the emission proba-
bilities in the trained model. In Table 1 the ten
sound classes with the highest probability of be-
ing matched with /p/ are shown for illustration, to-
gether with their log-probabilities. This ranking is
in good agreement with linguistic intuitions about
potential sound correspondences.

Sound class Log-probability
p −2.39
f −16.35
b −18.85
v −23.26
h −24.03
L −25.11
g −27.67
7 −29.74
C −29.95
I −30.78

Table 1: The ten sound classes with the highest proba-
bility of being matched with /p/ in the trained pHMM,
along with their log-probabilities.

Sound class Log-probability
c -0.86
j -1.17
L -1.54
1 -2.94
I -8.06
h -9.37
7 -9.60
i -10.14
y -10.24
T -10.33

Table 2: The ten sound classes with the highest proba-
bility of being matched with a gap in the trained pHMM,
along with their log-probabilities.

A high probability here is to be interpreted as
a high likelihood that instances of these sound
classes participate either in insertion or deletion.

The trained pHMM assigns a probability to each
pair of aligned sequences. Via the forward algo-
rithm, the probability of a pair of sequences is com-
puted as the sum of the probabilities of all possible
alignments between these sequences.

Following Durbin et al. (1998), a null-model
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was trained additionally that assigns individual
probabilities to both sequences, disregarding the
order of sound classes. The log-odds ratio of a pair
of words of being generated by the pHMM vs. the
null model can interpreted as a measure of the sim-
ilarity of the two words.

To illustrate this, a collection of ten words were
chosen at random from the dataset which all have
an edit distance of 1 to the word baba, and their log-
odds ratios with respect to baba were computed.
The results are shown in Table 3.

word log-odds
babae 98.26
babau 96.31
bIba 95.73
bawa 87.55
zaba 85.51
raba 74.58
maba 73.52
eaba 73.50
xaba 71.78
naba 70.94

Table 3: Ten randomly chosen words with an edit dis-
tance of 1 from baba, alongside with the predicted log-
odds to baba.

This ranking illustrates that the log-odds pre-
dicted by the trained pHMM are consistent with
linguistic intuitions about potential cognacy.

In a third step, the trained pHMM was used
in combination with the Viterbi algorithm to ob-
tain pairwise sequence alignments for all synony-
mous word pairs from different languages within
the smaller dataset of 928 languages and 110 con-
cepts.

In a fourth step, the pairwise sequence align-
ments were aggregated to a multiple sequence
alignment (MSA) using the T-Coffee algorithm
(Notredame et al., 2000).

Note that all reflexes of a given concept are
aligned within a single MSA, regardless of cog-
nacy. Such an MSA implicitly contains informa-
tion both about cognacy and about sound corre-
spondences.

An example (for a much smaller dataset) is
shown in Table 4 for illustration. These are the re-
flexes of the concept louse from the Tungusic lan-
guages in the dataset.4

4The data are taken from https://zenodo.org/

As can be seen from this example, the MSA con-
tains information about cognacy, but also about
sound correspondences. For example, a t in
the first column is a proxy for the cognate class
16_lousen-38. The sound classes k and q, on
the other hand, both correspond to the cognate
class 16_lousen-37, and they additionally reflect
a sound change. In column 4, however, the cog-
nate class 16_lousen-38 is split into two sound
classes, k and q, reflecting a sound change. The
presence of a sound class, as opposed to a gap, is
a proxy of that cognate class. Put differently, bi-
nary characters corresponding to a gap are flipped
by switching 0s and 1s.

In a fifth step, the MSA was converted to a bi-
nary matrix. Two binarization methods were used
simultaneously. For a given column in an MSA, a
character was created for the presence of a sound
class. For column 4 in Table 4, e.g., this character
has value 1 for Nanai, Orok and Ulch, and 0 for
the other languages. Additionally, for each sound
class type in a column, a different character was
created. In the example, there are two such char-
acters, one for k and one for q. The first has value
1 for Nanai and Orok and 0 otherwise, while the
second has value 1 for Ulch and 0 otherwise. Lan-
guages for which the data do not contain a reflex for
a given concept are coded as missing for all rele-
vant characters. If a language has multiple reflexes
for a given concept, the maximum value is chosen.

Applying this workflow to all concepts and con-
catenating the resulting matrices yields the final
character matrix 928 rows and 46,409 columns.

As mentioned above, this workflow builds on the
method by Akavarapu and Bhattacharya (2024),
but differs in various aspects. The mentioned
work (1) uses Dolgopolsky sound classes instead
of ASJP, (2) finds the MSA using CLUSTALW2
(Larkin et al., 2007) instead of T-Coffee, and (3)
omits the binarization steps, working with a multi-
state model of evolution for phylogenetic infer-
ence.

In the tables and figures this method is referred
to as MSA.

2.2.4 Phylogenetic inference
We performed phylogenetic inference using raxml-
ng (Kozlov et al., 2019), which implements
maximum-likelihood estimation. The GTR+G
model (generalized time-reversible model with

records/13163376, which is based on (Oskolskaya et al.,
2021).
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Language Cognateset_ID 1 2 3 4 5 6 7 8
Even 16_lousen-37 k - u - m - k e
Kilen 16_lousen-37 q h u - m I k I
Negidal 16_lousen-37 k - u - m - k I
Oroch 16_lousen-37 k - u - m - - I
Udihe 16_lousen-37 k - u - m u x I
Nanai 16_lousen-38 t - i k t - - I
Orok 16_lousen-38 t - i k t - - I
Ulch 16_lousen-38 t - i q t - - I

Language sound class k q
Even 0 0 0
Kilen 0 0 0
Negidal 0 0 0
Oroch 0 0 0
Udihe 0 0 0
Nanai 1 1 0
Orok 1 1 0
Ulch 1 0 1

Table 4: Example of a multiple sequence alignment. Alignment cells are shaded to indicate different cognate sets.
(left) Binarized version of column 4. (right)

gamma-distributed rates) was used for all analyses.
This means that gain rates and loss rates can be dif-
ferent, and that the mutation rates of the different
characters can differ but are drawn from the same
gamma distribution. The parameters of this distri-
bution are estimated from the data.

Using the standard settings of raxml-ng, 20 max-
imum likelihood tree searches were performed, ten
of them starting from random trees and ten from
maximum-parsimony trees. The tree with the high-
est likelihood was chosen as the final result.

2.2.5 Evaluation
Evaluation was conducted on three types of
datasets:

• the full dataset of 928 languages,

• 100 samples of 100 languages each, which are
drawn at random without replacement from
the full dataset, and

• a collection of 14 language families, each
with at least 10 languages.

For each of these groups of datasets, the follow-
ing evaluations were performed:

Comparison with Glottolog The Glottolog clas-
sification of the languages in a dataset can be rep-
resented as a phylogenetic tree with polytomies,
i.e., with nodes containing more than two daugh-
ters. This Glottolog tree serves as gold standard.
To assess the degree of agreement between the gold
standard and the inferred phylogenies, the general-
ized quartet distance (GQD) was deployed, as first
proposed by Pompei et al. (2011). This distance
is defined as the fraction of quartets (i.e., sets of
four languages) that are (a) resolved in both trees,
and (b) resolved differently in the two trees. The

GQD ranges from 0 (perfect agreement) to 0.67
(chance level). The GQD was computed using
the software QDist, which can be obtained from
https://birc.au.dk/software/qdist/.

Fit with Grambank The hypothesis is assumed
that the values of the Grambank features evolve
along a phylogeny in the same way as the lex-
ical characters described earlier in this section.
The degree of fit of the inferred phylogenies with
the Grambank features was assessed by (1) us-
ing the inferred phylogeny and estimating the
branch lengths, mutation rates and rate heterogene-
ity via Maximum Likelihood, and (2) computing
the Akaike Information Criterion (AIC). A lower
AIC value indicates a better fit.

ML inference and AIC computation were also
performed with raxml-ng.

For the groups of random samples and of lan-
guage families, AIC values were normalized to
mean 0 to facilitate comparison.

Phylogenetic difficulty The strength of the phy-
logenetic signal in the data was assessed using the
software PyPythia (Haag et al., 2022). The au-
thors define a measure of signal strength that uses
100 maximum likelihood tree searches and quanti-
fies the degree of agreement between the inferred
trees. The software PyPythia implements a ma-
chine learning algorithm that predicts this diffi-
culty from various properties of the character ma-
trix, such as entropy and sites-over-taxa ratio, and
maximum-parsimony tree inference, with high pre-
cision and comparatively low computational cost.
The measure ranges from 0 (little difficulty, i.e.,
strongest signal) to 1 (very difficult, i.e., no signal).
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Method GQD (Glottolog) AIC (Grambank) difficulty
Cognate classes 0.188 105.340 0.59
PMI 0.062 104.903 0.63
MSA 0.042 104,752 0.45

Table 5: Evaluation of the full dataset. GQD = Generalized Quartet Distance (lower is better; ranges from 0 for
perfect fit to 0.67 for chance level); AIC = Akaike Information Criterion for typological model fit (lower is better;
absolute values are not interpretable in isolation but differences are meaningful); difficulty = phylogenetic difficulty
estimated by PyPythia (lower is better; ranges from 0 for strong phylogenetic signal to 1 for absent signal).

Method μ GQD σ GQD μ AIC σ AIC μ difficulty σ difficulty
Cognate classes 0.227 0.077 151 115 0.486 0.030
PMI 0.095 0.030 −28 69 0.326 0.032
MSA 0.048 0.015 −123 66 0.294 0.021

Table 6: Evaluation of the 100 random samples (μ: sample mean; σ: sample standard deviation).

Method μ GQD σ GQD μ AIC σ AIC μ difficulty σ difficulty
Cognate classes 0.223 0.130 –1.73 17.01 0.401 0.164
PMI 0.221 0.109 3.42 20.43 0.280 0.187
MSA 0.218 0.109 −1.69 14.30 0.203 0.159

Table 7: Evaluation of the 14 largest language families (μ: sample mean; σ: sample standard deviation).
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Figure 1: Left panel: Comparison of methods across three evaluation metrics for the 100 random samples. The
boxplots show distribution per method, while the overlaid points represent individual samples. Right panel: Com-
parison of methods across three evaluation metrics for the 14 largest language families. The boxplots show distri-
bution per method, while the overlaid points represent individual samples.

3 Results
The evaluation results for the entire dataset are
shown in Table 5. Table 6 shows the aggregated
results for the 100 random samples. They are visu-

alized in the left panel of Figure 1.

The aggregated evaluation results for the 14
largest language families are shown in Table 7.
They are visualized in the right panel of Figure 1.
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The results for the individual families are given in
Table 8.

When focusing on phylogenetic inference at the
level of individual families, we find a considerable
variation between families. This applies both to
the numerical evaluation results and the relative
ranking of the three methods considered here. The
MSA method tends to produce the lowest phyloge-
netic difficulty, while there is no discernible trend
regarding the fit to Glottolog and to Grambank.

This picture changes considerably when we fo-
cus on datasets covering languages from many dif-
ferent families. Here, the MSA method consis-
tently outperforms the other two methods. This is
particularly evident in the comparison with Glot-
tolog, where the MSA method yields the lowest
GQD values. The MSA method also leads to the
lowest AIC values, indicating a better fit to the
Grambank typological features. The phylogenetic
difficulty is also lowest for the MSA method.

4 Discussion

These findings suggest that the MSA method is a
promising alternative to traditional cognate-based
methods. It is competitive with the more labor-
intensive method based on manual cognate anno-
tations, as well as the method using automatically
detected cognate classifications, when considering
individual language families. For global datasets,
the MSA method clearly outperforms the other two
methods. This is particularly evident in the com-
parison with Glottolog, where the MSA method
yields the lowest GQD values. The MSA method
also tends to produce the lowest AIC values, indi-
cating a better fit to the Grambank typological fea-
tures. The phylogenetic difficulty is also lowest for
the MSA method.

Limitations

The two evaluation methods that quantify the fit of
the inferred trees to empirical data only assess the
quality of the inferred tree topologies. Future work
will need to address the question how well the in-
ferred branch lengths and divergence dates corre-
spond to the true values. This is a challenging task,
as the true values are unknown. It is expected that
the usefulness for downstream tasks is a suitable
proxy.

Data and Code Availability
The code used in this study is available at
https://codeberg.org/profgerhard/
sigtyp2025_code/.
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PhyDiff 0.280 0.310 0.280
AIC 11.338 -16.115 4.777

Austronesian GQD 0.161 0.200 0.194
PhyDiff 0.670 0.600 0.470
AIC -31.419 65.299 -33.880

Chibchan GQD 0.118 0.332 0.310
PhyDiff 0.350 0.360 0.110
AIC -0.168 -3.895 4.063

Dravidian GQD 0.312 0.242 0.242
PhyDiff 0.390 0.170 0.100
AIC 1.196 -0.862 -0.334

Indo-European GQD 0.031 0.014 0.005
PhyDiff 0.320 0.210 0.140
AIC 1.065 -19.079 18.015

Pama-Nyungan GQD 0.178 0.359 0.299
PhyDiff 0.540 0.420 0.360
AIC -17.375 13.601 3.774

Sino-Tibetan GQD 0.230 0.318 0.279
PhyDiff 0.590 0.300 0.280
AIC 32.455 -13.239 -19.216

Tucanoan GQD 0.421 0.274 0.400
PhyDiff 0.270 0.030 0.010
AIC -1.364 0.758 0.607

Tupian GQD 0.353 0.294 0.266
PhyDiff 0.390 0.200 0.160
AIC -0.187 -0.280 0.467

Turkic GQD 0.249 0.117 0.117
PhyDiff 0.350 0.230 0.170
AIC -1.266 0.647 0.618

Uto-Aztecan GQD 0.126 0.084 0.083
PhyDiff 0.120 0.050 0.050
AIC 2.098 -2.485 0.388

Table 8: Evaluation of the 14 largest language families. The best value for each family is highlighted in bold.
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Abstract

This paper addresses the critical need for high-
quality evaluation datasets in low-resource lan-
guages to advance cross-lingual transfer. While
cross-lingual transfer offers a key strategy
for leveraging multilingual pretraining to ex-
pand language technologies to understudied
and typologically diverse languages, its effec-
tiveness is dependent on quality and suitable
benchmarks. We release new sense-annotated
datasets of sentences containing polysemous
words, spanning ten low-resource languages
across diverse language families and scripts.
To facilitate dataset creation, the paper presents
a demonstrably beneficial semi-automatic an-
notation method. The utility of the datasets is
demonstrated through Word-in-Context (WiC)
formatted experiments that evaluate transfer
on these low-resource languages. Results high-
light the importance of targeted dataset creation
and evaluation for effective polysemy disam-
biguation in low-resource settings and transfer
studies. The released datasets and code aim to
support further research into fair, robust, and
truly multilingual NLP.

1 Introduction

Cross-lingual transfer is a key strategy in mod-
ern NLP, particularly for low-resource languages,
where training data is scarce. By leveraging mul-
tilingual pretraining, models can transfer task-
specific abilities from high-resource languages to
low-resource ones, expanding access to language
technologies for underrepresented communities
(He et al., 2021; Ponti et al., 2018; Wei et al., 2021).

Despite its promise, transfer learning is not uni-
versally effective across tasks or languages. Stud-
ies on tasks like POS tagging, NER, NLI, QA, and
sentiment analysis (Pires et al., 2019; Dolicki and
Spanakis, 2021; Srinivasan et al., 2021; Lauscher
et al., 2020; Ahuja et al., 2023), as well as polysemy
disambiguation (Raganato et al., 2020; Dairkee
and Dubossarsky, 2024), show that cross-lingual

transfer can be inconsistent and, in some cases,
fail entirely. This is also true for generative mod-
els (Robinson et al., 2023; Shaham et al., 2024;
Chirkova and Nikoulina, 2024), with particularly
poor performance in low-resource languages, high-
lighting the need for more robust and language-
inclusive transfer.

A main obstacle for transfer is the lack of high-
quality datasets in low-resource and typologically
diverse languages. Without these benchmarks, as-
sessing transfer performance, let alone training
models on target languages, remains a formidable
challenge. This lacking is largely due to the scarcity
of linguistic resources in low-resource languages.
For instance, Wiktionary contains over a million
entries for German, English, French, Chinese, and
Russian, but fewer than 100,000 for Punjabi and
Marathi (Wikimedia Foundation, 2025).

This lack of resources underscores the urgent
need for dedicated datasets to evaluate and refine
transfer techniques for underrepresented languages,
which this work addresses by developing a semi-
automatic method for sense annotation in polysemy
and generating resources in ten languages.

We focus on the task of polysemy disambigua-
tion, as it particularly challenges cross-lingual
transfer by revealing structural and semantic dif-
ferences between languages. While some NLP
tasks, like sentiment analysis, rely on meaning
preservation across languages, where direct transla-
tion can maintain performance, polysemy is highly
language-specific (Rzymski et al., 2020), making
it a rigorous test of a model’s ability to general-
ize across languages. For example, the English
word "movement" refers to both physical motion
and a political or social movement. However, its
Polish translation, "ruch", also encompasses these
two meanings, but additionally means "traffic", a
sense not covered by the English word. Conversely,
"movement" in English can also refer to a section
of a musical composition.
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Polysemy disambiguation has long been con-
sidered a hallmark of human cognition and a cen-
tral challenge in NLP (Navigli, 2009; Bevilacqua
et al., 2021). A model that can accurately distin-
guish between different senses of a word must
capture linguistic subtleties, metaphorical mean-
ings, and even emerging word usages, much like
human speakers. Thus, success in cross-lingual
polysemy disambiguation would suggest a model’s
ability to generalize deep semantic understanding,
beyond surface-level patterns in a single language.
While many high-resource languages already ben-
efit from sense-annotated datasets (see §2), low-
resource languages remain largely unrepresented in
this area. Existing contextualized models can pro-
cess polysemous words within downstream tasks
(Loureiro et al., 2021; Ushio et al., 2021), but
sense disambiguation remains a major challenge
across dozens of languages (Pilehvar and Camacho-
Collados, 2019a; Raganato et al., 2020; Martelli
et al., 2021; Liu et al., 2021).

Beyond NLP, polysemy also presents difficulties
in multimodal models, such as object detection
systems, where the same word can refer to multiple
visual categories (Calabrese et al., 2020). This
suggests that solving polysemy is not just beneficial
for language tasks but has broader implications for
AI reasoning and multimodal understanding.

Our Contributions Despite extensive work on
polysemy disambiguation in high-resource lan-
guages, datasets for low-resource languages remain
scarce. We address this gap with the following con-
tributions:

• Sense-annotated datasets: We release both
WSD-style sense-annotated corpora and WiC-
style evaluation datasets for ten low-resource
languages.1 The WiC format supports direct
comparison with existing experiments in other
languages, enabling strong cross-lingual base-
lines.

• Annotation tool: To facilitate further re-
source development, we release a hybrid semi-
automated annotation tool.2

Together, these contributions represent a crucial
step toward advancing fair, robust, and truly mul-
tilingual NLP by enabling evaluation and develop-
ment in languages that have been largely neglected.

1available at DOI: 10.5281/zenodo.15493005
2available at github.com/roksanagow/projecting_sentences

2 Related Work

2.1 Transfer Studies

Zero-shot cross-lingual transfer has been widely
studied, with mixed findings on its effectiveness,
particularly in polysemy disambiguation. While
some studies highlight transfer potential across lan-
guages, others expose significant limitations, espe-
cially in tasks that depend on fine-grained semantic
distinctions.

Lauscher et al. (2020) examined zero-shot trans-
fer performance across 17 languages and five NLP
tasks (excluding polysemy), evaluating XLM-R
(Conneau et al., 2020) and mBERT (AI, 2018).
They found that zero-shot performance drops sig-
nificantly compared to full-shot settings and that
transfer success correlates with factors like pre-
training corpus size and linguistic similarity. These
findings suggest that cross-lingual transfer is far
from universal and is highly dependent on language
resources and pretraining coverage.

Focusing specifically on polysemy disambigua-
tion, Raganato et al. (2020) conducted the first
large-scale cross-lingual transfer study for this task,
training a model on English and evaluating on 12
other languages. While they observed some zero-
shot transferability, models trained on English un-
derperformed models trained on the target language
by 10-20% when tested on German, French, and
Italian, indicating that polysemy disambiguation
remains language-sensitive and benefits from in-
language supervision.

In contrast, Dairkee and Dubossarsky (2024)
challenged the feasibility of cross-lingual transfer
for polysemy disambiguation altogether. Studying
English and Hindi, they found a complete lack of
zero-shot transfer, suggesting that word sense dis-
tinctions may be too language-specific for direct
transfer without explicit in-language supervision.

These conflicting results emphasize the need for
more comprehensive transfer studies in polysemy
disambiguation, particularly in low-resource lan-
guages where transfer learning is often the only vi-
able approach due to the lack of labeled data. How-
ever, without high-quality evaluation datasets in
these languages, assessing and improving transfer
learning for polysemy remains an open challenge.

2.2 Polysemy Disambiguation

Word Sense Disambiguation (WSD) datasets are
sense-annotated corpora consisting of sentences
containing polysemous words, labeled according
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to their contextual meanings. WSD is inherently
complex, as words vary in the number of possi-
ble senses, and the list of words differs across lan-
guages. To address this, Pilehvar and Camacho-
Collados (2019a) introduced the Word in Context
(WiC) formulation, which reformulated the original
WSD problem, which was a multi-class classifica-
tion task, into a binary classification one. Instead of
assigning specific sense labels, WiC pairs two sen-
tences containing the same word and labels them 1
(same) or 0 (different). For example:

A bat flew out of the cave as the sun set.
He swung the bat with all his strength.

This approach enables models to be trained di-
rectly on polysemy disambiguation by adjusting
embeddings so that words with the same sense
cluster together, while those with different senses
are pushed apart in the resulting embedding space.

2.3 Existing Datasets

2.3.1 WSD Datasets
Word Sense Disambiguation (WSD) research has
been supported by several key sense-annotated cor-
pora and lexical resources:
SemCor (Miller et al., 1993) is a foundational En-
glish corpus containing over 226,000 sense annota-
tions across 352 documents.
OntoNotes (Hovy et al., 2006) offers a multi-genre
corpus with extensive annotations, including word
senses linked to a refined sense inventory for En-
glish, Chinese and Arabic.
Senseval/SemEval Datasets have been instru-
mental in standardizing WSD evaluation. No-
tably, Senseval-2 (Edmonds and Cotton, 2001) and
SemEval-2007 Task 17 (Pradhan et al., 2007) pro-
vided all-words WSD tasks, challenging systems
to disambiguate every content word in given texts.
These competitions have included data in multiple
languages, such as English, Chinese, Basque, and
others (Navigli et al., 2013).
CoarseWSD-20 (Loureiro et al., 2021) is a coarse-
grained sense disambiguation dataset derived from
Wikipedia, focusing on 20 ambiguous nouns, each
with 2 to 5 senses, all in English.
FEWS (Few-shot Examples of Word Senses)
(Blevins et al., 2021) addresses the challenge of dis-
ambiguating rare senses. Automatically extracted
from Wiktionary, FEWS provides a large training
set covering numerous senses and an evaluation
set with few- and zero-shot examples, facilitating

research in low-shot WSD scenarios in English.
WordNet (Miller, 1995) serves as a comprehen-
sive lexical database grouping words into synsets
representing distinct concepts. Each synset is inter-
connected through various semantic relations, of-
fering a structured sense inventory integral to WSD
tasks. It primarily focuses on English, but various
projects have extended it to other languages.
BabelNet (Navigli and Ponzetto, 2012) extends
WordNet by integrating it with Wikipedia and other
resources, forming a multilingual semantic net-
work. As of version 5.3 (December 2023), Ba-
belNet covers 600 languages, containing almost 23
million synsets and around 1.7 billion word senses
(Navigli et al., 2023). This expansive resource con-
nects concepts across languages, supporting cross-
lingual WSD and enriching the sense inventory
beyond monolingual constraints.

2.3.2 WiC Datasets
The Word-in-Context (WiC) framework has been
instrumental in evaluating context-sensitive word
embeddings through binary classification tasks.
Several notable datasets have been developed
within this framework:

WiC (Pilehvar and Camacho-Collados, 2019b)
is the pioneering English dataset that introduced the
WiC framework. It consists of sentence pairs where
a target word appears in both contexts, and the task
is to determine whether the word carries the same
meaning in both sentences. This dataset has set the
standard for subsequent WiC-based evaluations.

XL-WiC (Raganato et al., 2020) extends the
WiC framework to a multilingual setting, encom-
passing 12 languages: Bulgarian, Danish, German,
Estonian, Farsi, French, Croatian, Italian, Japanese,
Korean, Dutch, and Chinese. This expansion fa-
cilitates cross-lingual evaluation of semantic con-
textualization and enables research into zero-shot
transfer capabilities of multilingual models.

MCL-WiC (Martelli et al., 2021) offers datasets
in English, Arabic, French, Russian, and Chinese.
These were constructed by annotating sentences
from native corpora, including BabelNet (Navigli
and Ponzetto, 2012), the United Nations Parallel
Corpus (Ziemski et al., 2016), and Wikipedia. The
dataset achieved inter-annotator agreements of 0.95
and 0.9 for English and Russian, respectively, indi-
cating high annotation quality.

AM2iCo (Liu et al., 2021) presents a multilin-
gual dataset pairing English with 14 target lan-
guages. Compiled from Wikipedia dumps of each
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language, it selects words with at least two distinct
pages, indicating ambiguity in both the target lan-
guage and English. The dataset reports an overall
human accuracy of 90.6% and an inter-annotator
agreement of 88.4%.

WiC-TSV (Breit et al., 2021) introduces a multi-
domain evaluation benchmark for WiC, indepen-
dent of external sense inventories, but only in En-
glish. Covering various domains, WiC-TSV pro-
vides flexibility for evaluating diverse models and
systems both within and across domains.

Despite these advancements, there remains a
significant gap in resources for low-resource lan-
guages. Our dataset aims to address this defi-
ciency by providing sense-annotated data in both
WSD and WiC formats for underrepresented lan-
guages, thereby facilitating research in polysemy
disambiguation and cross-lingual transfer across a
broader spectrum of linguistic contexts.

3 Methods

3.1 Dataset Curation

We follow the below method for the curation of
sense-annotated datasets, adjusted for language-
specific considerations. These are detailed in sec-
tion §4.1, along with the resources used for the
curation of the dataset in each language.

1. Identification of Polysemous Words Publicly
available dictionaries (online and offline) were sur-
veyed. By searching for words with more than a
single dictionary entry, lists of hundreds of can-
didate polysemous words were compiled. Where
available, lists of polysemous words were added.

2. Corpus Selection and Sentence Sampling
Native corpora of sufficient size were chosen to
ensure diverse contextual representation of target
words. Candidate polysemous words were fil-
tered based on corpus frequency, removing low-
frequency terms, and manually reviewed for sense
granularity. From these corpora, large samples of
sentences (typically 100-1000 per word) were ran-
domly extracted for further analysis.

3. Embedding-Based Analysis Word embed-
dings were generated for target words in the sam-
pled sentences, and dimensionality reduction meth-
ods and clustering techniques were applied to these
to create interactive 2D visualizations (see §3.2).

Figure 1: Example of interactive embedding-based sen-
tence selection for the Azerbaijani word ‘qeyd’.

4. Manual Annotation of Sentences: In the
2D visualization, presented in Figure 1, annota-
tors could hover over points representing sentences
and click to assign them to different sense groups,
for one word at a time. Sentences were selected
based on their distribution in the embedding space
or automatic clustering labels, with priority given
to those that were more dispersed to ensure broad
semantic coverage and enhance the representation
of rare senses.

3.2 Semi-Automatic Annotation Tool

Our annotation process is semi-automatic, using
vector representations for efficient sentence selec-
tion while ensuring manual verification.

To represent sentences in a structured way, we
embed usages of the target word in all candidate
sentences using pretrained transformer-based mod-
els such as mBERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020), or language-specific mod-
els. These embeddings capture contextual seman-
tics, making them suitable for sense-based clus-
tering. We then apply K-Means or agglomerative
clustering to group sentences into distinct senses,
followed by dimensionality reduction techniques
(e.g., UMAP, MDS) to visualize their distribution
in 2D space (see Figure 1).

This visualization allowed annotators to inter-
act with embeddings, exploring clusters and select-
ing diverse sentences that represent different word
senses. This is essential for identifying sentences
that correspond to rare word senses, as manually
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searching through randomly sampled sentences
would be time-consuming and often ineffective,
requiring the review of an extensive number of sen-
tences to find relevant sentences.

3.3 Evaluating Annotation Efficiency
Annotating subordinate senses in polysemy is in-
herently time-consuming due to their rarity. Since
these senses occur infrequently, manually identi-
fying them requires scanning a large number of
sentences before encountering a relevant instance.

The exact effort depends on the prior probability
of the subordinate sense: the rarer it is, the more
sentences need to be reviewed. To establish these
priors, we randomly sampled 100 sentences for
manual inspection to determine sense distributions.
We then assessed how well model-based sentence
selection captures each sense by comparing the
proportion of automatically selected sentences cor-
rectly assigned to a sense against the baseline prob-
ability of encountering that sense in the corpus.

Our results demonstrate that computational
methods significantly reduce this burden. We evalu-
ate their effectiveness using adjusted Lift, a metric
from Data Mining that measures improvement over
random selection:

Lift(sense) =
Precision(sense)

Prior(sense)

where Precision(sense) is the proportion of cor-
rectly classified sentences for the sense, and
Prior(sense) their probability of occurrence in the
dataset. Higher Lift values indicate a greater effi-
ciency gain in selecting rare senses.

For example, in Kannada, identifying the word
in its subordinate ‘religion’ sense yielded a

Lift of 900%, meaning that the likelihood of finding
relevant sentences increased ninefold compared to
random selection. Given a prior distribution of
96:4 favoring the dominant sense, manual selection
would require reviewing 25 sentences on average
to find one relevant case. With automatic selection
achieving 36% precision, only three selections are
needed—an 8× reduction in effort.

This efficiency boost translates directly into time
and cost savings. If manual annotation takes 30
seconds per sentence, annotating 1,000 examples
of a rare sense would traditionally require 8 hours
of labor. With our automated method, this drops
to about an hour, dramatically reducing annotation
costs and making large-scale sense labeling more
feasible. In Table 4, we present the Lift scores

for the senses of two words in each of the four
languages. Additional results, covering five words
for each of these languages, are provided in Table
B in the Appendix, covering all words selected for
this evaluation.

Lang Word Sense Definitions Lift (%)
1 2 1 2

KN Foot Under 269 141
Opinion Religion 104 900

MR Juice Interest 128 188
Answer North 121 125

PA Bullet Pill 107 1364
Thought Intention 235 884

UR Gold Sleep 161 232
Thanks Sugar 106 1414

Table 1: Measured improvement over random chance
(Lift) in semi-automated sentence selection.

4 Sense-annotated Datasets

We introduce a sense-annotated corpus of sentences
containing polysemous words covering ten low re-
source languages that span different language fam-
ilies and use different scripts: Azerbaijani (Turkic),
Kannada and Telugu (Dravidian), Punjabi, Marathi
and Urdu (Indo-Aryan), Polish (Slavic), Swahili
(Afro-semitic), Vietnamese (Austroasiatic) and Ko-
rean (Koreanic). Statistics for each language are
presented in Table 2.

4.1 Language Specific Treatment

For each language, the dataset was compiled and
annotated by native speakers with the support of
computational methods described above.

Azerbaijani: Polysemous words were se-
lected from Azerbaycan Dilinin Omonimler Lugeti
(Hesenov, 2007), and sentences containing selected
target words were sampled from AzCorpus, the
largest open-source NLP corpus for Azerbaijani
(Kishiyev et al.). Three models were used to em-
bed sentences: XLM-R, BERT-Turkish (DBMDZ,
2025), and XL-LEXEME (Cassotti et al., 2023).

Kannada: Polysemous words were selected
from the online Kannada dictionary (Venkatasubba-
iah et al., 1981). Kakwani et al. (2020a) was used
as a corpus, which was preprocessed to remove
extraneous characters, symbols, non-linguistic pat-
terns, excessively long or single-word sentences,
and duplicate entries. Initially, sentences for five
words were annotated manually. Next, Claude 3.5
Sonnet (Anthropic, 2024) was used to pre-label
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Language (ISO) Words Sentences Senses Avg. Senses/Word Avg. Sentences/Sense

Azerbaijani (AZ) 60 4214 119 1.98 ± 0.13 35.55 ± 6.09
Kannada (KN) 59 4446 127 2.15 ± 0.45 35.01 ± 14.07
Korean (KO) 28 1013 58 2.07 ± 0.54 17.81 ± 4.73
Marathi (MR) 63 3766 125 1.98 ± 0.13 30.16 ± 2.72
Polish (PL) 66 2877 158 2.39 ± 0.68 18.28 ± 5.22
Punjabi (PA) 55 4969 127 2.31 ± 0.54 39.25 ± 1.89
Swahili (SW) 22 1376 46 2.09 ± 0.29 29.91 ± 4.39
Telugu (TE) 51 4534 100 1.96 ± 0.28 45.37 ± 7.83
Urdu (UR) 39 2674 90 2.31 ± 0.52 29.72 ± 1.06
Vietnamese (VI) 11 1021 29 2.64 ± 0.81 36.14 ± 19.20

Table 2: Statistics and ISO codes for the Multilingual WSD Sense-Annotated Dataset.

sentences after demonstrating reliable performance
on the manually annotated data. The model, given
Kannada and English meanings for each word, clas-
sified sentences containing the remaining target
words. This streamlined human annotation, as an-
notators selected 30-40 sentences per sense from
Claude’s labels, rather than relying on clustering
or embeddings for sentence selection. Finally, an
independent reviewer verified all annotations.

Korean: The Korean Dictionary of National In-
stitute of Korean Language (NIKL) (2025) was
used to extract list of polysemous words. Two
corpora were used for sampling sentences: the Ko-
rean Wikipedia Dataset (Lee, 2024) and KoWiki-
Text (Kim, 2020). A Korean contextualized model
(Ham et al., 2020) was used to embed sentences.

Marathi: The Marathi-English Dictionary
from the Digital South Asia Library (DSAL)
(Molesworth, 1857) was used to select polysemous
words. For sampling sentences, three corpora were
used: The Full Marathi Corpus (Joshi et al., 2022),
and Marathi portions of two Indic corpora (Kak-
wani et al., 2020b; Kumar et al., 2023). MuRIL
(Khanuja et al., 2021), mBERT, IndicBERT (Kak-
wani et al., 2020b), XLM-R, and XL-LEXEME
were used for embedding sentences.

Polish: Polysemous words were identified by
reviewing native texts, verified using the Polish
Online Dictionary (Wydawnictwo Naukowe PWN,
2025), and selected if they had distinct senses.
Three corpora covering distinct domains—national
corpus, news, and literature—were used to sam-
ple sentences (Degórski and Przepiórkowski, 2012;
Collection, 2018; Lebedev, 2023). XL-LEXEME
and a Polish BERT (Kłeczek, 2020) were used for
embedding sentences. Given Polish’s high degree
of inflection-where nouns, adjectives, and verbs

vary by case, number, gender, and aspect across
seven grammatical cases-all corpora were lemma-
tized to find sentences with target words in their
base form for sentence selection and then restored
to their original form for manual annotation.

Punjabi: Only text in Gurmukhi script was con-
sidered. Polysemous words were selected from
previous work on WSD in Punjabi (Singh and Ku-
mar, 2018, 2019, 2020; Singh and Singh, 2015) as
well as from dictionaries (Joshi, 2009; Goswami,
2000; Brothers, 2006). Sentences were sampled
from Metatext (Conneau et al., 2020), Samanantar
(Ramesh et al.) and Sangraha (Khan et al.). MuRIL,
IndicBERT, mBERT, XLM-R and XL-LEXEME
were used to embed the sentences.

Swahili: The Swahili Dictionary (Chuo Kikuu
cha Dar es Salaam, Taasisi ya Taaluma za
Kiswahili, 2013) was used to identify polysemous
words, while the Swahili Corpus by Masua and
Masasi (2024) provided sentences. Multiple mod-
els were used for embedding (XLM-R, BERT and
mBERT), but SwahBERT (Martin et al., 2022) out-
performed them on the initial annotated dataset and
was used to aid further annotation.

Telugu: Three corpora were used for selecting
polysemous words, two Indic corpora (Kunchukut-
tan et al., 2020; Kakwani et al., 2020b) and the cor-
responding Wikipedia Dump (Wikimedia Founda-
tion, 2024). The same Indic corpus (Kunchukuttan
et al., 2020) was used for sentence selection, along
with the Leipzig Telugu Corpus (Leipzig Corpora
Collection, 2017). For embeddings, TeluguBERT
(Joshi, 2022) and MuRIL were compared, with the
former outperforming.

Urdu: Two word sense-annotated corpora
(Saeed et al., 2019b,a), the Urdu Wiktextract (Ylo-
nen, 2022), and a publicly available vocabulary
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book (Bruce, 2021) were used to select polysemous
words. The Urdu Monolingual Corpus (UrMono)
(Jawaid et al., 2014) was used to sample sentences.
For embedding, mBERT, XLM-R, MuRIL, and XL-
LEXEME were tested with the latter outperforming
the rest. Given Urdu’s complex inflectional mor-
phology and honorific system, a list of up to six
inflected forms was generated for each noun, con-
sidering variations in number, gender, and case to
ensure a diverse sentence selection.

Vietnamese: Polysemous words were se-
lected from the Tuttle Concise Vietnamese Dic-
tionary (Giuong, 2014), while sentences contain-
ing target words were sampled from the English-
Vietnamese Parallel Corpus (EVBCorpus) (Ngo
et al., 2013). For embedding, XL-LEXEME, XLM-
R, mBERT, as well as two Vietnamese-specific
models, PhoBERT (Nguyen and Tuan Nguyen,
2020) and ELECTRA (Nguyen, 2025) were evalu-
ated. As with other languages, PhoBERT emerged
as the best model, highlighting the need for
language-specific methods and resources.

4.2 WiC Pairing

For model training we convert the sense-annotated
data in each language to the WiC format (see §2.2).

To guarantee that the train-dev-test splits con-
tain well-representative samples of words and sen-
tences, and ensure sentences appear only in a single
split, we use the following steps to convert sense-
annotated sentences to WiC sentence pairs:

1. Word Splitting 70% of the words are ran-
domly allocated to the training set, while 15% each
are allocated to validation and test sets.

2. Sentence Redistribution 30% of words from
the training set are randomly selected to appear in
all three splits (each sentence appearing only in
one of the splits). For these words, 25% of their
sentences are reallocated to the validation and test
sets, ensuring: (1) Equal distribution between sets;
(2) No sentence overlap across splits; and (3) The
distribution of senses remains unchanged.

3. Pairing Sentences into WiC Pairs Within
each split, each sentence is paired with up to 16
different sentences, ensuring a balanced mix of
same-sense and different-sense pairs.
The amounts were selected to approximate a 70-
15-15 dataset split. This approach ensures a repre-
sentative, well-distributed, and balanced dataset for
WiC training and testing, although it’s important

to note that different random seeds for sampling
can result in different results, especially for smaller
datasets. Descriptive statistics of the resulting WiC
datasets can be found in Table 5 in the Appendix.
All sets are approximately balanced, setting chance
performance close to 50%.

5 Experiments

To assess the quality of the datasets we created, and
to demonstrate the need for proper evaluation in
low-resource languages, we tested transfer in three
transfer conditions, full-shot, zero-shot and mixed.
The full-shot condition is mainly a sanity-check,
and serves to evaluate the quality of the training
set, as it does not test for transfer. In zero-shot, a
model is fine-tuned on English (combined training
data taken from the MCL (Martelli et al., 2021)
and XL (Raganato et al., 2020) datasets, totaling
13.4k sentence pairs) and evaluated on each of our
ten languages, which it was not fine-tuned on. In
the mixed condition, a model is first fine-tuned on
English, and then on the target language training
data, evaluating on the target language. This allows
us to investigate whether leveraging large amounts
of data in a high-resource language can enhance
full-shot performance on low-resource corpora.

We use XLM-RoBERTa (Conneau et al., 2020)
due to its strong multilingual capabilities. The
model is pretrained on 100 languages, including all
those in our novel datasets. It has proven highly ef-
fective in embedding both high- and low-resource
languages and is widely studied in cross-lingual
transfer research (Philippy et al., 2023), particu-
larly in the context of polysemy disambiguation
(Raganato et al., 2020; Dairkee and Dubossarsky,
2024; Cassotti et al., 2023).

For model fine-tuning, we follow Cassotti et al.
(2023) and use a bi-encoder architecture that in-
dependently processes the two sentences contain-
ing the polysemous target word using a Siamese
network to generate two distinct vector representa-
tions (embeddings). The model outputs the cosine
distance between the output embeddings of the
two inputs, and, to collapse this to a binary label,
a threshold is applied to decide if the words are
classified as having the same sense. The model is
trained to adapt embeddings and increase this dis-
tance when the target word has different meanings
and decrease it when the meanings are the same in
the two sentences by minimising contrastive loss.
After training, we set the threshold for each model
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Condition
Test Lang

AZ KN KO MR PL PA SW TE UR VI Avg.

Full-shot 65.9 65.9 56.4 83.2 72.3 65.9 59.5 63.8 68.8 57.2 65.9
Zero-shot 66.3 72.3 64.2 82.2 79.1 70.5 68.6 62.4 74.0 70.6 71.0
Mixed 71.9 71.0 66.5 88.1 65.4 81.6 76.9 65.4 64.8 68.4 72.0

Table 3: Accuracies of XLM-R models evaluated on the test sets of our WiC datasets. Full-shot refers to models
trained exclusively on the target language’s training data. Zero-shot results correspond to XLM-R trained only on
English WiC data. Mixed models are first trained on English, then fine-tuned on the target language.

by maximising accuracy on the corresponding val-
idation set. During training, as well as inference,
special tokens, <t> and </t>, are placed around the
target word in each sentence to signal what word
the model should focus on.

6 Results

Our semi-automatic annotation method works
The transfer results (Table 3) demonstrate that we
were able to produce high-quality datasets in ten
low-resource languages. The low performance in
Korean, Swahili, and Vietnamese is only observed
in the full-shot condition. These are most likely
due to their smaller training size rather than quality
issues; otherwise, low performance would have
been observed also in the zero-shot condition.

Evaluating on all target languages is essential
Transfer effects are not uniform, as seen in the zero-
shot performance that varies from 62.4% in Telugu
to 82.2% in Marathi. Interestingly, zero-shot out-
performs full-shot in 8 out of 10 languages, and
gets comparable accuracy in the remaining 2, likely
due to the small training data size of full-shot mod-
els and strong transfer from English. These results
emphasize the unpredictability of transfer from one
side, but also stress the need for a comprehensive
multilingual benchmark to accurately assess cross-
lingual transfer and ensure models perform reli-
ably across diverse languages. With our efficient
semi-automatic annotation method, curating such
datasets is also much cheaper in annotation efforts.

Mixed training improves transfer For most lan-
guages, mixed-training improves upon either full-
shot or zero-shot conditions. This hybrid strat-
egy leverages large-scale training data in English
with language-specific details from the target lan-
guage for effective polysemy resolution. This fur-
ther highlights the importance of datasets in low-
resource languages, where even small amounts of
labeled data can lead to marked improvements.

7 Discussion

In this work we present sense-annotated datasets
across a diverse range of language families, pro-
viding valuable resources for linguistic and com-
putational studies. Punjabi, Marathi, and Urdu be-
long to the Indo-Aryan branch, enabling research
on linguistic relatedness alongside the Hindi WiC
dataset (Dairkee and Dubossarsky, 2024). Telugu
and Kannada represent the Dravidian family, while
Azerbaijani, Swahili, Vietnamese, Polish, and Ko-
rean extend coverage to additional linguistic groups.
The dataset includes Arabic-based (Punjabi, Urdu),
Devanagari (Marathi), Latin-based (Azerbaijani,
Polish, Swahili, Vietnamese), Hangul (Korean),
and Brahmic scripts (Kannada, Telugu), facilitating
research on script variation and its impact on NLP.

By encompassing a broad linguistic spectrum,
our dataset supports studies on linguistic related-
ness, historical evolution, and polysemy disam-
biguation in low-resource settings. It serves as
a foundation for evaluating and improving multilin-
gual and cross-lingual transfer, particularly in tasks
requiring deep semantic understanding.

Our experiments highlight the importance of
language-specific resources. The unexpected find-
ing that zero-shot XLM-R trained only on English
outperformed full-shot models trained on the tar-
get language challenges assumptions about cross-
lingual transfer stability, emphasizing the need for
dedicated evaluation datasets.

Manual annotation is essential yet labor-
intensive, particularly for low-resource languages.
We introduce an automated method to iden-
tify sentences across all word senses, even
when certain senses are sparsely represented.
Our quantitative results demonstrate the effec-
tiveness of this approach in enhancing annota-
tion efficiency and supporting sense-annotated
dataset development. To encourage further
research, we release our code on GitHub:
github.com/roksanagow/projecting_sentences.
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8 Limitations

The dataset remains relatively small, which may
limit the generalizability of findings, particularly
for full-shot experiments, where additional training
data would likely improve performance. Addition-
ally, data imbalance across languages makes di-
rect comparisons challenging without subsampling,
which in turn reduces overall performance. Even
within a single language, the number of senses and
sentences per word varies, further complicating
evaluation. Moreover, each language was sourced
from different corpora, leading to potential incon-
sistencies in text style, domain coverage, and anno-
tation quality.

The evaluation setup also has certain constraints.
Train-dev-test splits were generated randomly (ac-
cording to the algorithm specified in §4.2), and
the prevalence of sentences corresponding to dif-
ferent words across splits could impact the results.
Furthermore, zero-shot evaluation was conducted
only from English, leaving open questions about
transfer from other high-resource languages and
cross-lingual settings beyond English-centric trans-
fer.
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A Example visualization of annotated
sentences

Figure 2: Word embeddings of the Polish word ’ruch’ in
sense-annotated sentences, visualized in 2D with UMAP.
Interestingly, the resulting shape resembles a walking
figure.
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B Evaluating Annotation Efficiency

Lang Word Sense Definitions Lift (%)
1 2 3 1 2 3

KN

Foot Under - 269 141 -
Opinion Religion - 104 900 -
Pit/Hole Bullet - 269 141 -
Market Knee - 167 223 -
Word Conversation - 289 128 -

MR

Juice Interest - 228 288 -
Answer North - 221 225 -
Respect Approval - 218 235 -
Room Depth - 147 124 -

Necklace Defeat - 106 149 -

PA

Bullet Pill - 107 1364 -
Thought Intention - 235 884 -

North Response Descend 210 438 156
Khan (name) Mine - 128 211 -

Defeat Necklace - 129 ∞ (prior = 0) -

UR

Gold Sleep - 161 232 -
Thanks Sugar - 106 1414 -

Language Tongue - 119 358 -
Thorn Fork - 108 808 -

Opportunity Agreement Coincidence 685 155 364

Table 4: Measured improvement over random chance (Lift) in semi-automated sentence selection over all evaluated
words.

C WiC sentence pairing

Language AZ KN KO MR PL PA SW TE UR VI
Sent Pairs (Train) 20,409 20,298 5,703 19,368 13,516 26,237 7,312 23,115 14,018 5,153
Sent Pairs (Dev) 5,649 5,627 1,018 5,175 3,562 7,025 2,165 5,861 3,450 751
Sent Pairs (Test) 5,434 4,809 656 4,194 3,103 5,749 1,100 5,500 3,210 1,397
Words (Train) 42 42 20 45 47 39 16 36 28 8
Words (Dev) 22 22 11 24 25 21 9 19 15 5
Words (Test) 22 21 9 22 24 19 7 18 14 4
Words in All Splits 13 13 6 14 15 12 5 11 9 3

Table 5: Amounts of sentence pairs and unique polysemous target words in the train-dev-test splits of our constructed
WiC datasets.
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Abstract
In this work, we introduce XCOMPS, a mul-
tilingual conceptual minimal pair dataset that
covers 17 languages. Using this dataset, we
evaluate LLMs’ multilingual conceptual un-
derstanding through metalinguistic prompt-
ing, direct probability measurement, and neu-
rolinguistic probing. We find that: 1) LLMs
exhibit weaker conceptual understanding for
low-resource languages, and accuracy varies
across languages despite being tested on the
same concept sets. 2) LLMs excel at distin-
guishing concept-property pairs that are vis-
ibly different but exhibit a marked perfor-
mance drop when negative pairs share sub-
tle semantic similarities. 3) More morpho-
logically complex languages yield lower con-
cept understanding scores and require deeper
layers for conceptual reasoning. The dataset
is publicly available at: https://github.com/
LinyangHe/XCOMPS/.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across various natural lan-
guage understanding (NLU) tasks. Recent ad-
vances, such as GPT-4 (Achiam et al., 2023) and
Llama 3 (Dubey et al., 2024), have shown that
LLMs can produce human-like outputs and handle
complex linguistic phenomena. However, whether
LLMs genuinely understand semantics or merely
rely on shallow statistical correlations is disputable
(Lake and Baroni, 2018; Elazar et al., 2021; Huang
et al., 2023). One fundamental aspect of human
conceptual understanding is that it is not dependent
on specific linguistic forms or modalities (Carey,
2000; Mandler, 2004). When humans learn and
reason about concepts, they do not require the
knowledge to be tied to a particular medium, such
as text, images, or video, nor do they rely on a spe-
cific language. This raises an important question:

* Equal contribution.
† Corresponding authors.

Does LLMs’ conceptual-property reasoning remain
stable across languages, or is it language-specific?

To explore this, Misra et al. (2023) introduced
the COMPS dataset, designed to probe the seman-
tic reasoning abilities of LLMs through minimal
pairs in English. However, COMPS only evaluates
monolingual conceptual-property reasoning, leav-
ing open the question of whether LLMs generalize
such reasoning across languages. In this work, we
introduce XCOMPS, a multilingual extension of
COMPS, to assess whether LLMs’ semantic rea-
soning is universally consistent across languages.
XCOMPS covers 17 languages, including analytic,
inflectional, and agglutinative languages, ensuring
a broad representation of linguistic structures.

Beyond dataset expansion, evaluating LLMs’
reasoning abilities has increasingly relied on
prompt engineering, often referred to as metalin-
guistic prompting (Hu and Levy, 2023). How-
ever, recent work (Hu and Levy, 2023; He et al.,
2024b) suggests that metalinguistic prompting pri-
marily assesses performance—that is, how well a
model produces correct outputs—rather than its
underlying competence in conceptual understand-
ing. This distinction is crucial, as models may
perform well on explicit prompts but lack true
conceptual representations (Piantadosi and Hill,
2022). To investigate LLMs’ multilingual capabili-
ties and determine whether they genuinely encode
conceptual knowledge across languages, we adopt
a three-pronged evaluation approach: Metalinguis-
tic prompting, Neurolinguistic probing, and Direct
probability measurement. Our experimental results
reveal several insights into the multilingual concep-
tual reasoning capabilities of LLMs: 1) Conceptual
understanding is not consistently maintained across
languages. Even when models perform well in
English, their reasoning ability deteriorates signifi-
cantly in low-resource languages; the extent of de-
terioration also varies across different low-resource
languages. 2) Models perform well when concep-
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Type Language Acceptable Sentence Unacceptable Sentence

Taxonomic Spanish
Tostadora se utiliza para calentar alimentos.
(A toaster is used for heating food.)

Cafetera se utiliza para calentar alimentos.
(A coffee maker is used for heating food.)

Overlap Vietnamese
Máy nướng bánh mì được sử dụng để hâm nóng thực phẩm.
(A toaster is used for heating food.)

Tủ lạnh được sử dụng để hâm nóng thực phẩm.
(A refrigerator is used for heating food.)

Co-occurrence Hungarian
Kenyérpirító ételek melegítésére használják.
(A toaster is used for heating food.)

Vízforraló ételek melegítésére használják.
(A kettle is used for heating food.)

Random Dutch
Broodrooster wordt gebruikt om voedsel te verwarmen.
(A toaster is used for heating food.)

Winterkoning wordt gebruikt om voedsel te verwarmen.
(A wren is used for heating food.)

Table 1: XCOMPS examples, illustrating each linguistic variant pairs an acceptable sentence (positively matched property) with
an unacceptable counterpart (negatively matched property).

tual relationships are highly distinct but struggle
with subtle semantic distinctions. 3) Languages
with higher morphological complexity (agglutina-
tive > inflected > analytic) yield lower concept-
reasoning scores. These results suggest that LLMs’
semantic reasoning may not generalize universally
across linguistic boundaries.

2 Language Performance vs. Competence

As suggested in He et al. (2024b), LLMs can be
evaluated through three methods: metalinguistic
prompting, which assesses performance based on
explicit responses; direct probability measurement,
which provides an intermediate evaluation by com-
paring model-generated probabilities; and neu-
rolinguistic probing, which directly examines com-
petence by analyzing internal activation patterns1.

Metalinguistic Prompting for Performance
This method involves explicitly querying the model
about linguistic expressions, often in a comparative
or multiple-choice format. By asking the model to
choose between minimal pairs (e.g., “Which sen-
tence is more grammatically correct?”), researchers
can evaluate how well the model retrieves and ver-
balizes knowledge. Using prompting, researchers
have revealed new classes of emergent abilities
such as arithmetic, instruction-following, grounded
conceptual mappings, and sentence acceptability
judgments (Brown et al., 2020; Wei et al., 2022;
Patel and Pavlick, 2021; Dentella et al., 2023). Be-
cause the responses are influenced by prompt en-
gineering and surface-level cues, this method pri-
marily reflects performance rather than deep con-
ceptual competence.

Direct Probability Measurement Instead of re-
lying on explicit responses, this method examines
the model’s probability assignment to different sen-
tences within minimal pairs. For example, a model

1For simplicity, we refer to these three methods as Meta,
Direct, Neuro.

should assign a higher probability to ‘A robin can
fly’ than to ‘A penguin can fly’. This approach of-
fers a more objective evaluation than metalinguis-
tic prompting and captures implicit model prefer-
ences, placing it between performance and compe-
tence. Researchers have designed syntactic, seman-
tic/conceptual, and discourse inference tasks using
the probability assignment method, offering differ-
ent insights into LLMs’ capabilities compared to
metalinguistic prompting (Futrell et al., 2019; Gau-
thier et al., 2020; Hu et al., 2020; Warstadt et al.,
2020; Beyer et al., 2021; Misra et al., 2023; Kauf
et al., 2023). However, it still relies on external
outputs and does not fully reveal how the model
internally represents concepts.

Neurolinguistic Probing for Competence This
approach goes beyond external outputs by analyz-
ing internal activation patterns across different lay-
ers of the model (He et al., 2024a,b). Using diag-
nostic classifiers, researchers can probe whether
LLMs inherently encode conceptual-property rela-
tionships or simply rely on statistical correlations.
Since it provides a direct measure of competence,
neurolinguistic probing is more reliable for assess-
ing the depth of linguistic understanding.

3 XCOMPS

3.1 Concept Selection
To ensure that XCOMPS maintains conceptual
alignment with COMPS while extending its scope
to multiple languages, we use the same 521 con-
cepts and their negative samples from COMPS.
As shown in Table 1, these negative samples can
be categorized into three types. Taxonomy-based
negative samples are selected based on hierarchical
relationships among concepts. Negative samples
come from the same broad category as the posi-
tive concept but differ in key property attributions.
Property norm-based (overlap) negative samples
are chosen based on shared semantic properties
with the positive concept while lacking the specific
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property under evaluation. Co-occurrence-based
samples are selected from concepts that frequently
appear in similar contexts but do not share the tar-
get property. XCOMPS also has additional random
negative concepts from the set of concepts that do
not possess the property of the original positive
concept.

3.2 Properties of Concepts
In XCOMPS, the properties assigned to concepts
are inherited from COMPS, ensuring alignment
across languages while maintaining the original
conceptual-property relationships. These proper-
ties in COMPS were originally derived from the
XCSLB dataset, an extended version of the CSLB
property norm dataset (Devereux et al., 2014),
which captures human-annotated perceptual, func-
tional, and categorical attributes of concepts. Ad-
ditionally, taxonomic relationships from resources
like WordNet (Miller, 1995) were used to infer
properties through hierarchical inheritance, ensur-
ing that general category attributes (e.g., “mam-
mals have fur”) are systematically applied to their
subcategories. Some properties also reflect real-
world associations observed in corpus-based co-
occurrence statistics.

3.3 Multilingual Data Construction
To construct XCOMPS, which covers 17 languages
(Table 2 in Appendix A), we adopted a human-
LLM interactive translation pipeline, leveraging
both human expertise and the multilingual gen-
eration capabilities of LLMs. The language set
for XCOMPS aligns with the prior knowledge
probing benchmarks, such as BMLAMA-17 (Qi
et al., 2023) and KLAR (Wang et al., 2025), en-
suring consistency in multilingual evaluation. The
highly structured nature of conceptual minimal pair
datasets, where positive and negative sentences pri-
marily consist of two components–concepts and
properties–enabled us to design a multi-step trans-
lation process that ensures high-quality multilin-
gual data.

The construction process consists of four stages.
We use the GPT-4o model (GPT-4o-2024-08-06)
via the OpenAI API as the translation assistant in
the pipeline. In the first stage, we manually trans-
lated the original concepts and properties from En-
glish into German and Chinese using language ex-
perts. We used German and Chinese as additional
seed languages to further reduce ambiguity, This
multilingual seed data helped disambiguate con-

cepts that might otherwise be unclear in translation.
For example, the English word “bat” could refer to
either the flying animal or the sports equipment.
By including the German term “Schläger” and the
Chinese term “球拍”, which both unambiguously
refer to the sports equipment, we ensured that the
intended concept was accurately captured during
translation.

In the second stage, we used LLMs to expand
the seed data into the remaining 15 languages.
LLMs were tasked with translating the concepts
and properties, leveraging their multilingual ma-
chine translation capabilities. By providing seed
data in three languages (English, German, and Chi-
nese), we enhanced the LLMs’ ability to generate
accurate translations, as the additional context re-
duced the likelihood of semantic errors.

In the third stage, human experts for each tar-
get language manually reviewed and corrected the
translated concepts and properties. This step en-
sured that the translations were accurate, culturally
appropriate, and semantically aligned with the orig-
inal dataset. Human intervention was particularly
critical for low-resource languages, where LLMs
often struggle with semantic precision in transla-
tion tasks.

Finally, in the fourth stage, LLMs were employed
to generate complete sentences based on the ver-
ified concepts and properties. This step involved
formulating positive and negative sentence pairs,
which can be viewed as a straightforward language
manipulation task. By providing the translated
concepts and properties as input, we enabled the
LLMs to focus on generating fluent and grammati-
cally correct sentences, leveraging their strengths
in multilingual text generation. This approach en-
sured that the most challenging aspect of the task–
accurate translation of concepts and properties–was
already resolved, allowing the LLMs to produce
high-quality outputs.

By splitting the process into property translation
and sentence generation, using multilingual seed
data to reduce ambiguity, and combining human
expertise with LLM capabilities, we ensured the
quality and consistency of the XCOMPS dataset.
This human-LLM interactive translation pipeline
demonstrates how LLMs’ multilingual understand-
ing and generation capabilities can be effectively
harnessed to construct high-quality multilingual
benchmarks.
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Figure 1: Metalinguistic prompting (meta), direct probabil-
ity measurement (direct), and minimal pair probing (neuro)
results on XCOMPS. The meta method evaluates LLMs’ lan-
guage performance; the neuro method evaluates LLMs’ lan-
guage competence, and the direct method falls in between.
Languages are grouped according to morphological typology.
Neuro-probing is a layer-wise method, and here we use the
max value across all layers to compare with Meta and Direct.

4 Experiment Setup

4.1 Model

We use meta-llama/Llama-3.1-8B-Instruct
from Hugging Face in our experiment, which
applies instruction tuning to the base model for
more intuitive user-prompt handling. During
the inference, we adopt float16 precision to
minimize computational resource consumption
while maintaining model performance.

4.2 Evaluation

For Meta, we present both sentences of a mini-
mal pair within a single prompt. We convert the
target property into a question and compare the
probabilities assigned to acceptable vs. unaccept-
able concepts. Figure 2 in Appendix A shows the
prompts used in the experiment. For Direct, we
compute sentence probabilities directly from the
model’s logits. A prediction is considered correct if
the model assigns a higher probability to the valid
sentence within each minimal pair. For Neuro, we
adopt last-token pooling to represent each sentence,
extracting the final token’s hidden state from every
layer. This approach ensures coverage of all pre-
ceding tokens (Meng et al., 2024). We then apply a
logistic regression classifier for probing, using the
F1 score (averaged over five cross-validation folds)
as our primary evaluation metric.

4.3 Results and Analysis

Cross-linguistic variability in conceptual rea-
soning. From Figure 1, we observe that the model
can perform relatively well on English conceptual
tasks but show marked declines for low-resource
languages. Notably, some languages with lim-
ited training data (e.g., Hungarian, Catalan) ex-
hibit greater deterioration than others, indicating
that cross-linguistic generalization of conceptual
understanding is far from uniform. Even within
the low-resource category, the degree of perfor-
mance drop varies, underscoring that LLMs’ se-
mantic reasoning is neither universally stable nor
equally supported by existing multilingual corpora.
These patterns reinforce the idea that conceptual
capabilities learned in English do not necessarily
transfer seamlessly to languages that differ typo-
logically or have weaker representations in training
data.

Models excel at distinct conceptual contrasts but
falter with subtler differences. High scores all
appear in Random rows, where the negative con-
cept is clearly distinct (e.g., “toaster” vs. “wren”),
and the model easily detects mismatches. In Taxo-
nomic, Overlap, or Co-occurrence rows, however,
performance drops because the negative concepts
share subtle semantic similarities (e.g., “toaster”
vs. “coffee maker”). This indicates that the mod-
els may rely on conspicuous cues rather than true
conceptual reasoning.

Direct and neuro convergence. By comparing
direct and neuro results in Figure 1, and from Fig-
ure 3 in Appendix A, we see high correlations
across all negative types, indicating that direct mea-
surements closely track the models’ internal repre-
sentations.

Higher morphological complexity, lower concep-
tual reasoning. Figure 4 in Appendix A shows
that languages with greater morphological com-
plexity (moving from Analytic to Inflected to Ag-
glutinative) tend to yield lower concept-reasoning
scores. This indicates that, as linguistic structure
becomes more complex, it becomes harder for the
models to capture concept-property relationships
consistently.

5 Conclusion

In this work, we introduce the XCOMPS bench-
mark, which provides a multilingual conceptual
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minimal pair dataset for evaluating the language
model’s semantic understanding across 17 lan-
guages. This work reveals that while LLMs demon-
strate surface-level multilingual capabilities, they
lack a universal semantic reasoning mechanism that
transcends language boundaries.

Limitation

While XCOMPS significantly advances the eval-
uation of multilingual conceptual understanding,
certain limitations remain. First, although the
dataset covers 17 typologically diverse languages,
it does not encompass all linguistic families or low-
resource languages, which may limit its general-
izability to underrepresented languages. Second,
the reliance on human-LLM interaction for data
construction ensures high quality but introduces
potential inconsistencies due to variations in hu-
man expertise and model outputs. Lastly, while
XCOMPS focuses on conceptual understanding,
it does not explicitly address other challenges in
multilingual NLP, such as pragmatics or contextual
reasoning. Despite these limitations, XCOMPS
provides a robust foundation for assessing and im-
proving LLMs’ multilingual capabilities, and future
work can extend its scope to address these areas.
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A Appendix

Table 2 shows the detailed information of the lan-
guages covered by XCMOPS. Figure 2 displays the
prompt templates of different languages used for
metalinguistic prompting evaluation. Figures 3 and
4 show detailed experimental results.

lid language Typology Family

ar Arabic Inflectional Semitic
ca Catalan Inflectional Indo-European (Romance)
de German Inflectional Indo-European (Germanic)
el Greek Inflectional Indo-European (Hellenic)
es Spanish Inflectional Indo-European (Romance)
fa Persian Inflectional Indo-European (Iranian)
fr French Inflectional Indo-European (Romance)
he Hebrew Inflectional Semitic
hu Hungarian Agglutinative Uralic
ja Japanese Agglutinative Isolate
ko Korean Agglutinative Isolate
nl Dutch Inflectional Indo-European (Germanic)
ru Russian Inflectional Indo-European (Slavic)
tr Turkish Agglutinative Turkic
uk Ukrainian Inflectional Indo-European (Slavic)
vi Vietnamese Analytic Austroasiatic
zh Chinese Analytic Sino-Tibetan

Table 2: Detailed information of the languages covered
by XCOMPS.
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Figure 2: Prompt templates of different languages used for metalinguistic prompting.

Figure 3: Linear correlation among meta, direct, and neuro evaluation results for all four tasks.

Figure 4: Averaged results across different language types.
English results are dropped to make the comparison more
reliable among low-resource languages.
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Abstract

This study investigates the impact of pitch flat-
tening on automatic speech recognition (ASR)
performance across tonal and non-tonal lan-
guages. Using vocoder-based signal processing
techniques, we created pitch-flattened versions
of speech recordings and compared ASR per-
formance against original recordings. Results
reveal that tonal languages experience substan-
tially larger performance degradation than non-
tonal languages. Analysis of tone confusion
matrices shows systematic patterns of misiden-
tification where contour tones collapse toward
level tones when pitch information is removed.
Calculation of tone’s functional load at sylla-
ble and word levels demonstrates that syllable-
level functional load strongly predicts ASR vul-
nerability to pitch flattening, while word-level
patterns reflect each language’s morphological
structure. These findings illuminate the differ-
ential importance of pitch information across
languages and suggest that ASR systems for
languages with high syllable-level functional
load require more robust pitch modeling.

1 Introduction

Lexical tone, where pitch distinctions signal dif-
ferences in word meaning, is a core feature of over
half the world’s languages (Yip, 2002). While tonal
contrasts rely primarily on fundamental frequency
(f0), they also interact with duration, intensity, and
voice quality. These complexities pose unique chal-
lenges for automatic speech recognition (ASR),
particularly in tonal languages where pitch plays a
central role in lexical identity.

Recent ASR models implicitly encode tonal in-
formation, but it remains unclear how critical pitch
actually is for recognition across language types. To
investigate this, we apply pitch flattening—a signal
processing technique that removes f0 contours—to
speech recordings and compare ASR performance
with and without flattened pitch contours across

both tonal (Thai, Vietnamese, Mandarin) and non-
tonal (Uzbek, Indonesian, Turkish) languages.

We find that tonal languages experience signifi-
cantly larger degradation in ASR performance un-
der pitch flattening, with systematic tone confusion
patterns revealing that contour tones (e.g., falling,
rising) tend to collapse toward level tones when f0
contours are removed. To explain these differences,
we compute the functional load of tone and show
that syllable-level functional load is a strong predic-
tor of ASR vulnerability, capturing cross-linguistic
differences in tone dependency more effectively
than word-level metrics.

2 Background and Related Work

2.1 Tone

Tone refers to the use of pitch patterns to distin-
guish lexical or grammatical meanings, and it ap-
pears in over half of the world’s languages (Yip,
2002). At its core, tone is related to fundamen-
tal frequency (f0), often supplemented by sec-
ondary cues such as duration or phonation type
(e.g., creaky or breathy voice) (Garellek et al.,
2013; Zhang and Kirby, 2020). While languages
like Thai, Vietnamese, and Mandarin all employ
pitch contrasts, each does so differently: Thai tra-
ditionally has five tones, Vietnamese features six,
and Mandarin typically has four plus a neutral tone
(Yip, 2002; Thurgood, 2002). The functional im-
portance of tone also varies cross-linguistically;
in some systems, pitch shapes nearly every sylla-
ble, whereas others use additional cues for lexical
contrasts.

From a linguistic perspective, these pitch con-
trasts often evolve through tonogenesis—the histor-
ical development of tone from segmental distinc-
tions such as voicing (Haudricourt, 1954). Once
established, tone can become as critical as vowels
or consonants in signaling word meaning (Suren-
dran and Levow, 2004). This high informational
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load means that even small shifts in f0 may yield
major changes in lexical interpretation. Yet tone is
not always “standalone”: interactions with intona-
tion, stress, or morphology can influence its role
within the broader phonological system.

2.2 Tone and ASR

The significance of pitch in tone perception poses
unique challenges for ASR technology. Early sys-
tems for Chinese and Thai explicitly modeled pitch
tracks alongside spectral features (Fu et al., 1998;
Lei et al., 2006), while modern end-to-end frame-
works often rely on learned representations (e.g.,
XLS-R (Babu et al., 2021)) to capture tonal nu-
ances. Even so, how effectively these systems han-
dle pitch remains an open question—particularly
for low-resource tonal languages, where sparse
training data compound recognition errors (Coto-
Solano, 2021; Qin et al., 2022).

2.3 Pitch Manipulation

One way to isolate pitch’s contribution is pitch flat-
tening, which systematically removes f0 contours
while preserving segmental and temporal infor-
mation (Valbret et al., 1992). This technique has
informed both psycholinguistic studies—showing
how listeners rely on other cues like duration or
context when pitch is lost (Wang et al., 2013)—and
ASR research, where drops in recognition accuracy
can reveal a system’s reliance on pitch. Related
work has compared natural speech against flat-
tened or synthesized stimuli for languages such as
Mandarin and Thai (Liu and Samuel, 2004; Zsiga
and Nitisaroj, 2007), demonstrating substantial per-
formance declines in human perception when f0
cues are removed or distorted.

2.4 Functional Load

To quantify how critical pitch distinctions are in
any given language, researchers often invoke func-
tional load (Hockett, 1967; Surendran and Levow,
2004). This information-theoretic metric captures
the extent to which a contrast (e.g., a particular
tone versus no tone) contributes to lexical distinc-
tions. Languages with a high tonal load—where
a substantial portion of the semantic space hinges
on pitch—are predictably more vulnerable when
pitch cues degrade. In contrast, languages whose
words can be distinguished by segmental or mor-
phological features may be less affected by pitch
flattening.

2.5 Tone and Typology

Because tone systems vary dramatically, from heav-
ily monosyllabic languages like Vietnamese to
those where multisyllabic words dilute the bur-
den on pitch (Thurgood, 2002; Brunelle and Kirby,
2016), cross-linguistic experimentation is pivotal
for robust ASR design. Studies have shown that,
in some languages, phonation features may help
compensate for reduced f0 (Brunelle and Kirby,
2016), while in others, listeners (and ASR systems)
default to level or “unmarked” tones when pitch is
unavailable (Francis et al., 2003). By comparing
both tonal and non-tonal languages under pitch-
flattened conditions, we can pinpoint how differ-
ent phonological structures handle the loss of f0
cues and where ASR systems might fail. Insights
from such comparisons suggest which modeling
strategies, e.g., explicit pitch tracking, tone-based
lexicons, or phonation-sensitive acoustic features,
offer the most gains for languages heavily reliant
on pitch.

3 Methods

We designed experiments to evaluate how pitch ma-
nipulation influences ASR performance across ty-
pologically diverse languages. Specifically, we in-
vestigate how removing lexical pitch cues via pitch
flattening affects recognition accuracy in tonal ver-
sus non-tonal languages. By comparing ASR per-
formance on original and pitch-flattened versions
of the same utterances, we aim to quantify the im-
portance of pitch information for recognition and
identify the linguistic and structural factors that
predict vulnerability to pitch manipulation.

3.1 Data

We selected six languages for our study: three tonal
languages (Thai, Vietnamese, and Mandarin Chi-
nese) and three non-tonal languages (Uzbek, In-
donesian, and Turkish). Our selection of tonal lan-
guages was primarily constrained by data avail-
ability in the speech corpora and is typologically
biased toward East and Southeast Asian tone sys-
tems. While these languages represent important
tone types, they do not capture the full typological
diversity of tone systems found worldwide, such as
register tone languages of Africa or pitch-accent
systems, which will be discussed in Section 7. All
data were drawn from the Common Voice 17.0 cor-
pus (Ardila et al., 2020). For each language, we
used 2 hours of speech data for training and 30
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Language Original Text Processed Text
Thai phoom4 rak1 thoe0
Vietnamese Tôi yêu bạn tôi1 yêu1 ban6
Mandarin 我爱你 wo3 ai4 ni3

Table 1: Text preprocessing examples for “I love you”
in the three tonal languages, showing original text and
preprocessed text.

minutes for testing. All audio data were resampled
at 16 kHz.

3.2 Preprocessing

For non-tonal languages, we applied minimal pro-
cessing (standardized case and removed punctu-
ation). For tonal languages, we applied specific
preprocessing to ensure consistent transcription for
tones. Table 1 shows examples of this preprocess-
ing for each language.

For Thai, we used pythainlp.transliterate with
engine=tltk_g2p, which converts Thai script to
Latin characters with explicit tone marking (num-
bers 0–4). The numeric tone markers correspond
to: 0 = mid tone, 1 = low tone, 2 = falling tone, 3 =
high tone, and 4 = rising tone. Note that tone num-
bers used here follow a phonological convention
rather than pitch height, where, for example, rak1
(“love”) is a mid-tone syllable (not high), resulting
from a low-class consonant with a dead syllable
and no tone mark. In Vietnamese, we mapped dia-
critics denoting tone to numeric tone labels while
keeping other diacritics for vowel contrast intact.
Our mapping converted Vietnamese diacritics to
numeric tone labels as follows: 1 = ngang (level/no
diacritic), 2 = huyền (falling/grave accent), 3 = sắc
(rising/acute accent), 4 = hỏi (dipping/hook), 5 =
ngã (creaky/tilde), and 6 = nặng (heavy/dot be-
low). For Mandarin Chinese, we used the pypinyin
package with style=Style.TONE3. The numeric
markers correspond to: 1 = high level tone (āi), 2
= rising tone (áí), 3 = falling-rising tone (ǎi), 4 =
falling tone (ài), without explicitly including the
neutral tone.

3.3 Pitch Flattening

Pitch flattening was performed using Praat’s Pitch-
Synchronous OverLap and Add (PSOLA) algo-
rithm (Valbret et al., 1992). This procedure effec-
tively neutralizes lexical tone cues while maintain-
ing other speech properties, including duration, in-
tensity, and spectral envelope. In our implementa-
tion, the f0 contour of each utterance was replaced

with the utterance’s mean f0 value. Figure 1 il-
lustrates the process on a sample Thai utterance,
showing the original and flattened pitch contours.

We should note that flattening the contour
does not eliminate every trace of pitch, as micro-
periodicity cues remain in the harmonic spectrum.
Therefore, our results are a conservative estimate
of tone dependence; a future experiment that addi-
tionally uses the interharmonic energy of low-pass
filters would provide an even “cleaner” ablation.

Figure 1: Example of pitch flattening on a Thai utterance
"This kind of weather makes me feel sleepy." The top
panel shows the original spectrogram overlaid with pitch
contour; the bottom panel shows the flattened version
of the same audio.

3.4 ASR Model Training

We fine-tuned individual XLS-R 300m models
(Babu et al., 2021) for each language. Specifically,
we trained the model on 2 hours of speech from
Common Voice 17.0 and tested on 30 minutes. Ad-
ditionally, for each tonal language, we ran the ASR
model on pitch flattened test data too. Hyperpa-
rameters and training details are included in the
Appendix (see Appendix A.1 for complete hyper-
parameter settings).

3.5 Evaluation Metrics

We evaluated ASR performance using multiple
metrics to capture different aspects of recognition
accuracy. In addition to WER (Word Error Rate)
and CER (Character Error Rate), we also use addi-
tional metrics given in Table 2.
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Metric Description
TER Tone Error Rate: percentage of syllables with

correctly recognized segments but incorrectly
identified tones

ConER Consonant Error Rate: errors in consonant
recognition

VER Vowel Error Rate: errors in vowel recognition
WER-T Modified version of WER where tone markers

were ignored
CER-T Modified version of CER where tone markers

were ignored
∆ Absolute difference between pitch-flattened

and original speech for each metric

Table 2: Evaluation metrics used to assess ASR perfor-
mance across languages.

3.6 Tone Confusion Analysis
For tonal languages, we constructed tone confu-
sion matrices to analyze specific patterns of tone
misidentification when pitch information was re-
moved. These matrices recorded the counts of each
reference tone (true label) being recognized as each
possible tone (predicted label) in both original and
pitch-flattened conditions. We then calculated dif-
ference matrices (flattened minus original) to iden-
tify which tonal confusions increased most dramat-
ically after pitch flattening.

3.7 Functional Load Calculation
To quantify the information-theoretic contribution
of tone in each language, we calculated the func-
tional load (FL) of tonal contrasts at both sylla-
ble and word levels, following the methodology of
Surendran and Levow (2004):

FL =
Hwith −Hwithout

Hwith
(1)

where Hwith represents the Shannon entropy of
the distribution with tonal contrasts maintained,
and Hwithout represents the entropy after neutral-
izing tonal distinctions.

For syllable-level calculations, we extracted syl-
lable frequencies from our corpus, maintaining
or neutralizing tone distinctions to compute the
respective entropies. For word-level calculations,
we employed language-specific tokenization tools:
PyThaiNLP with the newmm engine for Thai,
Jieba for Mandarin, and underthesea for Viet-
namese. These tools provided morphological seg-
mentation used for analyzing the relationship be-
tween tone and word structure.

We also calculated the average number of sylla-
bles per word for each language to understand how
morphological characteristics might influence the

relationship between syllable-level and word-level
functional loads. These calculations allowed us to
quantitatively assess whether languages with higher
functional load of tone would show greater vulner-
ability to pitch flattening in ASR performance.

4 Results

4.1 Impact of Pitch Flattening on ASR
Performance

Table 3 presents our baseline ASR outcomes for
six languages (three tonal, three non-tonal), com-
paring recognition on the original recordings vs.
pitch-flattened audio that removes f0 contours. As
expected, the tonal languages (Vietnamese, Man-
darin, Thai) experience substantially larger per-
formance drops than the non-tonal ones (Uzbek,
Indonesian, Turkish), confirming that pitch serves
as a crucial contrastive cue for tone-based systems.

In particular, Thai displays the highest jump in
WER upon flattening (+0.232), with Mandarin and
Vietnamese also incurring significant degradations
(+0.194 and +0.118). By contrast, pitch removal
in Uzbek, Indonesian, and Turkish increases WER
by only 5–8 points, indicating that segmental cues
alone largely suffice for lexical discrimination in
these atonal settings.

4.2 Tone Dependence and Detailed Phonetic
Metrics

To examine tone-dependence in further detail, Ta-
ble 4 shows additional metrics for the three tonal
languages, including tone error rate (TER), conso-
nant error rate (ConER), vowel error rate (VER),
and error rates when ignoring tone markers (WER-
T, CER-T). Thai exhibits the largest TER increase
(+0.2543), reflecting its strong reliance on f0 cues.
Mandarin and Vietnamese also display pronounced
TER jumps of +0.2009 and +0.1837, respectively.

Although consonant and vowel error rates in-
crease less dramatically, they still reveal that pitch
flattening affects the broader phonetic structure,
not only the tonal dimension. When ignoring tone,
i.e., disregarding tone output in error rate calcula-
tion, the error rates CER-T and WER-T of the three
tonal languages are very similar to the non-tonal
languages in Table 3.

4.3 Tone Confusion

Figure 2 illustrates the changes in tone confusion
patterns after pitch flattening. More details about
the values can be found in Appendix A.2. Each
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Language WER (orig.) WER (flat.) ∆WER CER (orig.) CER (flat.) ∆CER

Tonal
Vietnamese 0.715 0.833 0.118 0.312 0.380 0.068
Mandarin 0.478 0.672 0.194 0.209 0.283 0.074
Thai 0.288 0.520 0.232 0.082 0.154 0.072
Non-Tonal
Uzbek 0.782 0.857 0.075 0.247 0.288 0.041
Indonesian 0.599 0.668 0.069 0.193 0.232 0.039
Turkish 0.743 0.816 0.073 0.240 0.292 0.052

Table 3: WER and CER results under original vs. pitch-flattened conditions, grouped by tonal and non-tonal
categories. The ∆ columns show (Flattened - Original).

Language Version TER ∆TER ConER ∆ConER VER ∆VER WER-T ∆WER-T CER-T ∆CER-T

Vietnamese original 0.3954 0.3525 0.3739 0.6430 0.3063
flattened 0.5791 0.1837 0.3929 0.0404 0.4199 0.0460 0.6932 0.0502 0.3408 0.0345

Mandarin original 0.3430 0.4300 0.3287 0.6169 0.4646
flattened 0.5439 0.2009 0.4658 0.0358 0.3686 0.0399 0.6838 0.0669 0.5066 0.0420

Thai original 0.1266 0.0981 0.0864 0.2465 0.0810
flattened 0.3809 0.2543 0.1279 0.0298 0.1205 0.0341 0.3099 0.0634 0.1087 0.0277

Table 4: Comparison of tone error rate (TER), consonant error rate (ConER), vowel error rate (VER), and ignoring-
tone WER/CER for Vietnamese, Mandarin, and Thai.

heatmap plots the difference (flattened minus orig-
inal counts), where red regions indicate increased
confusion and blue regions show decreased con-
fusion. Analysis of these patterns reveals specific
directional shifts in tone recognition after f0 re-
moval.

Across all three languages, diagonal elements
(representing correct tone identification) show sub-
stantial negative values, indicating significantly re-
duced accuracy. Thai exhibits the largest average
diagonal decrease (-146.40 per tone), followed by
Mandarin (-232.25) and Vietnamese (-94.50). Con-
versely, off-diagonal elements show positive val-
ues (Thai: +29.28, Vietnamese: +15.36, Mandarin:
+56.75), reflecting increased confusion between
different tones.

The most pronounced confusion patterns are
highly directional. In Thai, flattened audio led to
falling tone being misidentified as mid tone (+246
instances), followed by rising tone confused with
mid tone (+111). This suggests that without f0
contours, the distinctive falling and rising patterns
collapse toward the perceptually less marked mid
tone. Thai’s falling tone showed the largest propor-
tional decrease in correct identification (-55.2%),
followed by rising tone (-43.1%).

Vietnamese exhibited a striking trend where
multiple tones were confused with ngang (level)
tone after flattening: huyền (falling) → ngang

(+312), sắc (rising) → ngang (+259), hỏi (dipping)
→ ngang (+92), and nặng (heavy) → ngang (+56).
This systematic shift toward the unmarked ngang
tone demonstrates how pitch flattening neutral-
izes the distinctive contour features of Vietnamese
tones. The huyền tone showed the most dramatic
reduction in correct identification (-46.9%), while
the ngang tone was least affected.

For Mandarin, the most significant confusion
was falling tone misidentified as high tone (+306),
followed by rising tone confused with high tone
(+129). Without pitch cues, distinctive contour
tones (falling, rising, fall-rise) are increasingly con-
fused with the level high tone. The falling tone
experienced the largest decrease in accuracy (-
30.6%), consistent with its heavily pitch-dependent
contour.

These directional confusions reveal a general
pattern: in the absence of f0 contrast, contour
tones (those with dynamic pitch movements such
as falling, rising, or complex contours) collapse to-
ward level tones (mid tone in Thai, ngang in Viet-
namese, and high tone in Mandarin). While the
results are consistent with the idea that level tones
function as unmarked defaults, they could equally
reflect an artefact of the acoustic manipulation: the
loss of dynamic contour cues renders rising, falling,
and dipping tones indistinguishable. We caution,
however, that flattened utterances are acoustically
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Language Syllable FL Word FL Avg. Syll./Word ∆WER ∆TER
Thai 0.1243 0.0189 1.86 0.232 0.2543
Mandarin 0.0597 0.0336 1.15 0.194 0.2009
Vietnamese 0.0530 0.0517 0.99 0.118 0.1837

Table 5: Functional load (FL) of tone at syllable and
word levels, with average syllables per word and ASR
performance degradation metrics.

atypical for any training distribution. Some of the
observed errors may thus reflect domain mismatch
rather than pure loss of lexical information.

Figure 2: Confusion matrices based on tone count dif-
ference comparing flattened to original audio for Thai,
Vietnamese, and Mandarin. Red cell marks increased
prediction in that category, and blue cell marks de-
creases. Off-diagonal hotspots reveal a consistent drift
of contour tones toward each language’s level tone (mid,
ngang, and high, respectively) in the left column.

4.4 Functional Load and Tone Dependency
To better understand the relationship between tone
importance and ASR degradation, we calculated
the functional load (FL) of tone at both sylla-
ble and word levels across the three tonal lan-
guages based on 32k tokens from the transcripts of
the same Common Voice database, with the data
scarcity of Vietnamese as the lower bound. Ta-
ble 5 summarizs the results and reveals an inter-
esting pattern: syllable-level functional load aligns
remarkably well with ASR performance degrada-
tion. Thai exhibits the highest syllable-level FL
(0.1243), followed by Mandarin (0.0597) and Viet-
namese (0.0530), a ranking that precisely mirrors
the order of WER increase under pitch flatten-
ing (Thai: +0.232, Mandarin: +0.194, Vietnamese:
+0.118) and TER increase (Thai: +0.2543, Man-
darin: +0.2009, Vietnamese: +0.1837). This strong
correlation (Pearson’s r = 0.91 for syllable FL
vs. WER degradation) suggests that syllable-level
functional load effectively predicts a language’s
ASR vulnerability to pitch flattening.

Interestingly, word-level functional load presents
a different pattern. Vietnamese maintains nearly all
of its tonal information at the word level (word FL:
0.0517, 97.5% of its syllable FL), while Mandarin
preserves about half (word FL: 0.0336, 56.3% of
syllable FL), and Thai retains only 15.2% (word

FL: 0.0189). These proportions directly reflect each
language’s morphological structure: Vietnamese’s
predominantly monosyllabic words (average 0.99
syllables per word) necessitate tone distinctions for
lexical identity, whereas Thai’s higher proportion
of multisyllabic words (average 1.86 syllables per
word) allows tone to function more as one feature
among many for word identification.

This morphological analysis complements our
earlier confusion matrix findings. In Vietnamese,
where tone information remains critical at the word
level, confusion patterns show tones collapsing to-
ward the less marked ngang (level) tone, but overall
ASR degradation is less severe than in languages
with higher syllable-level functional load. Thai,
despite maintaining less tone information at the
word level, experiences the largest performance
drop precisely because its syllable-level tone dis-
tinctions carry substantial information that cannot
be compensated for by other features when pitch is
removed.

The pattern of flattening-induced confusion
(contour tones collapsing toward level tones) ob-
served in Figure 2 offers additional insight into why
languages with higher syllable-level functional load
suffer greater ASR degradation. Languages where
tone carries more syllable-level information typi-
cally employ more distinctive contour tones, which
are particularly vulnerable to pitch flattening. This
vulnerability manifests in the dramatic decreases
in recognition accuracy for falling (-55.2%) and
rising (-43.1%) tones in Thai.

Taken together, these findings suggest that
syllable-level functional load offers a more effec-
tive predictor of ASR vulnerability to pitch degra-
dation than word-level measures. This has impor-
tant implications for speech technology develop-
ment across tonal languages: systems for languages
with high syllable-level functional load will require
more robust pitch modeling and may benefit from
explicit tone-specific accommodations, while those
for languages with lower tone dependency might
be more resilient to noisy pitch environments.

5 Discussion

Our results reveal significant differences in how
the ASR results of tonal and non-tonal languages
respond to pitch flattening, with systematic pat-
terns that illuminate the relationship between tone,
speech perception, and ASR performance. These
findings have important implications for both lin-
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guistic theory and speech technology development.

5.1 Differential Impact of Pitch Flattening
The substantially larger ASR performance degra-
dation observed in tonal languages (Thai: +23.2%,
Mandarin: +19.4%, Vietnamese: +11.8% WER)
compared to non-tonal languages (5-8% WER in-
crease) confirms the critical role of f0 informa-
tion in tonal language processing. However, the
non-zero impact on non-tonal languages indicates
that pitch also contributes to speech recognition
even when not lexically contrastive, likely through
prosodic cues that help segment and identify words.

The varying degrees of degradation among tonal
languages suggest differences in tone dependency.
Thai showed the highest vulnerability to pitch flat-
tening. This could be explained by our functional
load analysis revealed Thai has a higher syllable-
level tonal information density. These results align
with Surendran and Levow (2004), who found
language-specific differences in tone’s functional
load, but extend their work by demonstrating a di-
rect relationship between this information-theoretic
measure and ASR vulnerability.

The relatively smaller impact on Vietnamese
(+11.8% WER) despite its complex six-tone system
suggests that Vietnamese ASR benefits from addi-
tional disambiguating cues. As noted by Brunelle
and Kirby (2016), Vietnamese tones involve sub-
stantial phonation contrasts (creaky, breathy voice)
that may provide redundant information when pitch
cues are removed. This phonation-based redun-
dancy appears to partially compensate for the loss
of f0 information in Vietnamese, unlike in Thai
and Mandarin where pitch plays a more singular
role.

5.2 Tone Confusion Patterns and Perceptual
Structure

The tone confusion analysis revealed striking di-
rectional patterns across all three tonal languages.
In Thai, falling and rising tones were frequently
confused with mid tone; in Vietnamese, multiple
tones collapsed toward ngang (level) tone; and in
Mandarin, contour tones were often misidentified
as high tone. This systematic shift of confusion
from contour tones toward level tones suggests that
with neutralized f0 cues, ASR systems default to
perceptually unmarked tonal categories, a finding
that parallels observations in human speech per-
ception studies (Francis et al., 2003; Khouw and
Ciocca, 2007).

It should be noted that pitch-flattened syllables
are not strictly equivalent to natural ’level tones’
in these languages. Natural level tones in East and
Southeast Asian languages also include pitch move-
ments, such as a slight fall or rise at the end, and are
produced with specific phonation characteristics
(Yip, 2002). Despite this distinction, our results
show that when pitch information is neutralized
through flattening, ASR systems consistently de-
fault to categorizing these flattened stimuli as level
tones, suggesting that level tones serve as defaults
in the absence of distinctive pitch movement.

These directional confusions have both acoustic
and phonological implications. Acoustically, con-
tour tones (with dynamic pitch movements) are
more dependent on f0 information than level tones.
Phonologically, the patterns align with markedness
theory: level tones typically function as unmarked
categories in tonal systems (Yip, 2002), serving as
defaults when distinctive features are unavailable.
Importantly, this pattern is not simply a frequency
effect, such as evident in our Mandarin data (see
Appendix A.2) where the falling tone (4) is actually
the most frequent in our dataset, yet confusion still
predominantly shifts toward the high level tone (1)
rather than following raw frequency distributions.

The diagonal values in the confusion matrices
(representing correct identification) showed the
largest decreases for tones with substantial pitch
movement: falling tone in Thai (-55.2%), huyền
tone in Vietnamese (-46.9%), and falling tone in
Mandarin (-30.6%). This suggests that the percep-
tual distance between tones is not uniform but de-
pends on their phonetic realization, with contour
tones being perceptually more distant from other
categories and thus more vulnerable to pitch flat-
tening.

5.3 Functional Load and Language Structure
Our functional load analysis provides a quantita-
tive framework for understanding cross-linguistic
differences in tone dependency. The strong cor-
relation between syllable-level functional load
and ASR degradation (Thai: 0.1243/+23.2%
WER, Mandarin: 0.0597/+19.4% WER, Viet-
namese: 0.0530/+11.8% WER) suggests that this
information-theoretic measure effectively predicts
a language’s vulnerability to pitch flattening.

The differences between syllable-level and word-
level functional load reflect each language’s mor-
phological structure. Vietnamese maintained nearly
all its tonal information at the word level (97.5%
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of syllable-level FL), consistent with its predomi-
nantly monosyllabic nature. By contrast, Thai pre-
served only 15.2% of its tonal information at the
word level, reflecting its higher proportion of mul-
tisyllabic words where tone distinctions on individ-
ual syllables become less critical for overall word
identification.

These patterns highlight an important insight:
a language’s dependency on tone is not solely de-
termined by the number of tonal contrasts or their
acoustic properties, but also by the information-
theoretic role of tone within the broader phono-
logical and morphological system. Languages
with high syllable-level functional load, especially
those with significant proportions of monosyllabic
words, are inherently more vulnerable to pitch per-
turbations.

5.4 Implications for ASR Development
Our findings have several practical implications
for ASR system development. First, they suggest
that pitch modeling requirements differ substan-
tially across languages, even among those classi-
fied as tonal. Languages with high syllable-level
functional load (like Thai) would benefit from ex-
plicit modeling of pitch contours, while those with
redundant cues (like Vietnamese) might achieve ac-
ceptable performance with less sophisticated pitch
representations.

Second, the systematic tone confusion patterns
identified could inform error correction strategies
in ASR systems. By understanding the likely confu-
sion directions when pitch information is degraded
(e.g., contour tones being misidentified as level
tones), post-processing algorithms could apply tar-
geted corrections based on contextual and acoustic
cues.

Third, our results suggest that ASR robustness
for tonal languages could be improved through ex-
plicit modeling of phonation cues, particularly for
languages like Vietnamese where voice quality pro-
vides redundant information. Integrating both pitch
and phonation features would create systems more
resilient to acoustic degradations affecting either
dimension.

Fourth, language modeling capabilities could
potentially compensate for degraded tonal infor-
mation. Our experiments used a basic CTC-based
approach without additional language modeling,
but we hypothesize that stronger language models
could help recover tone information from context
in pitch-degraded scenarios. This could be particu-

larly effective in languages with higher word-level
redundancy, where contextual cues might disam-
biguate tonally similar syllables.

Finally, the functional load framework offers a
principled approach for predicting a priori which
languages will require more sophisticated tone
modeling in ASR systems. Rather than treating all
tonal languages uniformly, developers could allo-
cate resources based on information-theoretic mea-
sures of tone’s importance in each language.

6 Conclusion

This study investigated the impact of pitch flatten-
ing on ASR performance across tonal and non-tonal
languages, revealing several key insights about the
role of pitch in speech recognition. Our findings
demonstrate that tonal languages experience sub-
stantially greater performance degradation when
pitch information is removed, but with significant
variations that correlate with the functional load
of tone in each language. The systematic patterns
of tone confusion observed—where contour tones
collapse toward level tones—highlight fundamental
aspects of tonal perceptual structure.

Beyond documenting these effects, we es-
tablished a quantitative relationship between
information-theoretic measures of tone impor-
tance and ASR vulnerability. Languages with high
syllable-level functional load proved most suscepti-
ble to pitch flattening, while word-level functional
load patterns reflected each language’s morpholog-
ical characteristics. This framework offers a princi-
pled approach for predicting which languages will
require more sophisticated tone modeling in speech
technology applications.

Our findings have implications for both linguis-
tic theory and ASR system development. Theo-
retically, they support models of tone perception
where unmarked level tones serve as default cat-
egories when distinctive pitch information is un-
available. Practically, they suggest that ASR sys-
tems for tonal languages should be designed with
language-specific considerations of tone’s func-
tional load and the availability of redundant acous-
tic cues.

Future work could extend this analysis to a wider
typological range of tone systems. For instance,
examining Cantonese, which features a more com-
plex inventory of level tones, could test whether our
observed pattern of confusion toward level tones
holds in languages where multiple level tones must
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be distinguished. Similarly, investigating Bantu lan-
guages, which feature tonal contrasts that are often
analyzed differently from East Asian systems de-
spite having contour properties, would broaden our
typological understanding of how different tone
systems respond to pitch degradation.

7 Limitations

While providing valuable insights, our study has
several limitations that suggest directions for future
research. First, our analysis focused on ASR per-
formance rather than human perception. Parallel
studies with human listeners would clarify whether
the confusion patterns observed are specific to ma-
chine learning systems or reflect broader perceptual
principles.

Second, our pitch flattening approach, while ef-
fective at isolating the contribution of f0, represents
an extreme case of pitch degradation. Future work
could explore more nuanced manipulations, such as
partial flattening or targeted disruption of specific
pitch features, to identify which aspects of the pitch
contour are most critical for recognition.

Third, our functional load calculations were lim-
ited to tone’s contribution and did not address in-
teractions with other phonological features. Ex-
panding this analysis to include phonation, vowel
quality, and other features would provide a more
comprehensive understanding of how different di-
mensions contribute to lexical contrasts across lan-
guages.

Fourth, our ASR system used basic CTC-based
decoding without sophisticated language modeling.
A stronger language model would likely improve
overall performance and might partially compen-
sate for pitch flattening through contextual predic-
tion. Future work should investigate the degree to
which language modeling can mitigate the effects
of degraded tonal information in various languages.

Finally, while we included three major tonal lan-
guages, our study does not capture the full typolog-
ical diversity of tone systems. Extending this work
to include languages with different tonal invento-
ries (e.g., Cantonese with its multiple level tones),
register tone languages (e.g., Hmong), pitch-accent
languages (e.g., Japanese), and languages with dif-
ferent tone systems like those found in Bantu lan-
guages would provide a more complete picture of
how pitch information contributes to speech recog-
nition across language types.
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A Appendix

This appendix provides additional details on our
fine-tuning hyperparameters for XLS-R 300m in
both experiments.

A.1 XLS-R Fine-Tuning Hyperparameters
All training runs (for both Common Voice and
TIBMD@MUC data) used the same set of essential
hyperparameters, with only minor adjustments for
batch size depending on GPU memory:

• Model: facebook/wav2vec2-xls-r-300m

• Batch Size: 8

• Learning Rate: 3× 10−4

• Warmup Steps: 500

• Max Steps: 2000

• Vocabulary Size: based on unique characters
in the training corpus (including space or | as
word delimiter).

A.2 Tone Confusion Results
The results of tone confusion are as follows:

0 1 2 3 4 none
0 912 25 25 33 13 3
1 36 473 17 16 15 1
2 35 10 496 14 3 0
3 35 12 15 287 3 0
4 12 23 5 12 274 1

none 0 0 0 0 0 0

Table 6: Thai tone confusion (Original). Rows = ref-
erence tone (0 = Mid, 1 = Low, 2 = Falling, 3 = High,
4 = Rising, none = no assigned tone), columns = pre-
dicted tone.

0 1 2 3 4 none
0 862 21 65 49 9 3
1 130 309 30 81 6 3
2 281 24 188 54 9 3
3 82 25 21 218 5 1
4 123 19 19 30 133 3

none 0 0 0 0 0 0

Table 7: Thai tone confusion (Flattened). Rows = refer-
ence tone (0=Mid, 1=Low, 2=Falling, 3=High, 4=Ris-
ing, none=no tone), columns = predicted tone.

1 2 3 4 5 6 none
1 751 32 172 16 11 25 10
2 188 354 42 23 4 46 6
3 73 20 440 68 20 34 7
4 33 58 18 99 21 40 3
5 10 2 29 21 71 7 3
6 35 30 60 26 24 184 4

none 0 0 0 0 0 0 0

Table 8: Vietnamese tone confusion (Original). Tones:
1 = mid, 2 = huyền (falling), 3 = sắc (rising), 4 = hỏi
(dipping), 5 = ngã (creaky), 6 = nặng (heavy), none =
no tone. Rows = reference, columns = predicted.
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1 2 3 4 5 6 none
1 815 7 135 14 13 15 9
2 500 43 78 14 6 13 6
3 332 9 260 13 12 29 5
4 125 3 49 68 14 11 3
5 49 1 14 21 41 16 2
6 91 9 109 22 20 105 5

none 0 0 0 0 0 0 0

Table 9: Vietnamese tone confusion (Flattened).
Tones: 1=mid, 2=falling, 3=rising, 4=dipping, 5=creaky,
6=heavy, none=no tone. Rows = reference, columns =
predicted.

1 2 3 4 none
1 678 64 42 164 13
2 78 700 97 163 34
3 56 99 434 104 22
4 145 130 97 1192 34

none 12 31 14 26 121

Table 10: Mandarin Chinese tone confusion (Original).
Tones: 1=high-level, 2=rising, 3=dipping, 4=falling,
none=no tone. Rows = reference, columns = predicted.

1 2 3 4 none
1 553 163 66 154 21
2 207 529 85 200 40
3 130 126 290 134 29
4 451 252 140 703 52

none 26 25 9 25 116

Table 11: Mandarin Chinese tone confusion
(Flattened). Tones: 1=high-level, 2=rising, 3=dipping,
4=falling, none=no tone. Rows = reference, columns =
predicted.
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Abstract

Synlexification is the pattern of crosslinguis-
tic lexical semantic variation whereby what
is expressed in a single word in one lan-
guage, is expressed in multiple words in an-
other (e.g., French monter vs. English go+up).
We introduce a computational method for auto-
matically extracting instances of synlexification
from a parallel corpus at a large scale (many
languages, many domains). The method in-
volves debiasing the seed language by splitting
up synlexifications in the seed language where
other languages consistently split them. The
method was applied to a massively parallel cor-
pus of 198 Bible translations. We validate it on
a broad sample of cases, and demonstrate its
potential for typological research.

1 Introduction

Languages vary in how they ‘package’ the same
conceptual content in words. Variation in colexifi-
cation – a word in one language having two or more
(partial) translation equivalents in another (e.g., En-
glish blue translating to Russian sinij ‘dark blue’
and goluboj ‘light blue’), has been widely studied
(François, 2008; Östling, 2016; Kemp et al., 2018).
Another kind of variation occurs when a word in
one language is, on the same occasion, translated as
two or more words in another language. For exam-
ple, French monter translates to English go and up.
Here, the complex concept expressed by a single
lexical item in one language is split into two con-
stituent concepts in another language – i.c. English
go expressing ‘motion’, and up the ‘vertically ele-
vated’ nature of the goal location. While this kind
of variation has been studied for individual cases,
its generalization was only recently explicated by
Haspelmath (2023), who dubbed the phenomenon
‘synlexification’, and its inverse ‘circumlexifica-
tion’ (e.g., French monter synlexifies what English
go+up circumlexifies).

Parallel corpora have been successfully used to
investigate crosslinguistic patterns of colexification
(Wälchli, 2014; Liu et al., 2023; Beekhuizen et al.,
2024). However, extant computational approaches
are by design unable to find cases of synlexifica-
tion. Furthermore, existing corpus-based studies
for individual cases do not allow for general dis-
covery across semantic domains, which would be
desirable to better understand the determinants of
the typological variation in synlexification patterns.
Our procedure aims to overcome these challenges.

In this paper, we first review corpus-based stud-
ies of synlexification across several semantic do-
mains, motivating a more systematic approach.
We then introduce a two-step model for automati-
cally extracting synlexification patterns from par-
allel corpora. We validate the extracted patterns
through comparison with documentary resources
(grammars and dictionaries), and show that our
method captures both many known and novel cases
of synlexification. Finally, we present an initial
exploration of the typological variation. Code
and (shareable) data are available through https:
//github.com/dnrb/synlexification.

2 Background

2.1 Synlexifciation across domains

Motion verbs provide a well-established domain
for studying synlexification, as languages vary in
how they encode the manner of motion (‘walking’,
‘rolling’, ‘going’) and the path (‘up’, ‘out’, ‘back’).
Central here is Talmy (1991)’s distinction between
satellite-framed and verb-framed languages. In
the former (e.g., Germanic), manner is expressed
through the verb and path through a particle, while
verb-framed languages (e.g., Romance) encode the
path directly in the verb, such as French monter,
corresponding to go and up in English. Verkerk
(2013) used a parallel corpus of Indo-European
languages to examine crosslinguistic variation in
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motion event expression.
Causatives are another domain in which typo-

logical differences in synlexification are prevalent
(Levshina, 2015). Languages vary in whether lex-
icalize caused events as single verbs (e.g., show
‘cause to see’) or express them analytically (e.g.,
with one element expressing ‘cause’ and another
‘see’). It has been found, using parallel and compa-
rable corpora, that there is variation in the degree
to which languages express different types of cau-
sation (e.g., ‘making’ vs ‘letting’; Levshina, 2016)
and different kinds of events (Haspelmath et al.,
2014).

Light verbs form a third domain. Samardžić
and Merlo (2010) use parallel corpora and word
alignment procedures to investigate how English
light verb constructions (e.g., have a laugh) align
with single verbs in German (e.g., lachen ‘laugh’).
Their results reveal that such English constructions
frequently map to one-word expressions in Ger-
man. Nagy T. et al. (2020) extend this approach
by automatically detecting cross-linguistic equiv-
alents of light verb constructions in 4 languages.
Both papers demonstrate that parallel corpora and
word alignment techniques with automated deci-
sion procedures can highlight systematic variation
in synlexification patterns across languages.

Negative verbs Different strategies for express-
ing negation have been found in the world’s lan-
guages (Miestamo, 2007). One way to express
negation is to combine a verb with a separate neg-
ative marker (e.g., not+know), another is to incor-
porate the negative meaning in a single word such
as Tundra Nenets yexara- ‘not know’ (Nikolaeva,
2014, p. 285), and some words are inherently nega-
tive like lack and refuse (Miestamo, 2007). Some
languages have been noted to deploy such synlexi-
fying forms more than others (e.g., Ainu; Kwong,
2017), and some semantic domains are more likely
to have synlexifying negative verbs (e.g. existen-
tials; Veselinova, 2013).

Compounding, finally, is the morphological
strategy of forming new lexical items from other
lexical items. Languages vary in the extent to
which they apply this strategy or instead choose to
‘label’ the concept (Štekauer et al., 2012), thus syn-
lexifying what the compounding language circum-
lexifies. A notable case studied through parallel
corpora are co-compounds, which consist of nouns
that frequently occur in similar contexts (Wälchli,
2005, 2007), such as hand-foot meaning limbs.

These studies demonstrate the prevalence of syn-

lexification across domains and languages, and val-
idate the use of parallel corpus methods for identi-
fying such patterns. However, these approaches fo-
cused on specific constructions or lexical domains,
with top-down methods for detecting instances of
the variation. Our approach proposes a bottom-up,
scalable extraction method that identifies synlexifi-
cation patterns across many languages and domains
simultaneously, enabling both replication of known
patterns and discovery of novel ones.

2.2 Explanations of synlexification patterns
Although explanations of the cross-linguistic vari-
ation in synlexification patterns has not been stud-
ied systematically, Haspelmath (2023) suggests
Mańczak (1966)’s law of differentiation as a can-
didate explanation. This ‘law’ states that more
frequently used meanings are more likely to be
differentiated. The intuition is that more frequent
groups of concepts are more likely to be synlex-
ified, while less frequent groups of concepts are
expected to remain circumlexified. While colexifi-
cation patterns have been studied along these lines
(e.g., Kemp et al., 2018), only initial evidence for
the application of this idea to synlexification has
been found in the form of the lexical vs. analytic
causatives (Haspelmath et al., 2014).

Synlexification patterns are also expected to vary
between languages. Ullmann (1966) notes that Ger-
man tends to use more circumlexified forms than
English or French. Aranovich and Wong (2023) dis-
tinguish between ‘lexicological languages’, such
as Chinese, which tend to use more lexical items
to express complex concepts, and ‘grammatical
languages’, such as Sanskrit, which rely more on
grammatical constructions. Seiler (1975) presents a
similar distinction, but draws attention to the nature
of the semantic operation, with some languages ‘de-
scribing’ (circumlexifying) complex concepts (e.g.,
Swedish morbror ‘mother brother’ and farbror ‘fa-
ther brother’) and others ‘labelling’ (synlexifying)
them (e.g. English uncle). Our approach can shed
light on the extent to which languages as a whole
tend to follow certain strategies.

2.3 Goals
To study patterns of synlexification at scale (many
languages, many lexical fields), an automated ex-
traction procedure is necessary. Existing automated
procedures, all focussing on colexification patterns,
include Wälchli (2014); Liu et al. (2023); Viech-
nicki et al. (2024) and Beekhuizen et al. (2024).
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(a) Initial seed-target language alignments (b) Retrieving token-level backtranslations

(c) Alignments with the granularized seed language (d) Identifying synlexifications (purple)

Figure 1: Schematic illustration of the synlexification detection model

However, presumably as a means to restrict the
search space, none of these procedures consider
the alignment of one element in one language with
multiple elements in another language, which is
the goal of the current study. As such, this paper
presents a novel approach that allows for the detec-
tion of instances of synlexification in a massively
parallel corpus, i.e., a corpus where one text is
translated into many languages.

By operationalizing a typological insight about
the variable expression of ‘the same’ meanings
through formal means, this paper further aims to
contribute to the emerging field of (corpus-based)
algorithmic typology (Wälchli, 2014; Wälchli and
Sjöberg, 2024), in which typological concepts are
investigated through formalization and quantifica-
tion. This paper explores the notion of synlexifica-
tion as proposed by Haspelmath (2023) by looking
at the linguistic patterns that emerge when it is
fairly directly applied to translated text.

After validating the output of this method, we
present initial explorations of the kinds of insights
this method can lead to: the nature of the variation
of the occurrence of synlexification across lexi-
cal domains and languages, the discovery of novel
domains of synlexification, and the functional de-
terminants of the likelihood of synlexification.

3 A synlexification detection model

To find instances of variation in the lexification of
the same concepts, we first have to identify such
concepts. Given that translations of the same mes-
sage can be expected to express more or less the
same lexical-semantic content, we can use a bitext
Bt between a seed language s and a target lan-
guage t to provide us with comparison concepts
(i.e., analytic concepts that allow us to compare lan-
guages without making a claim as to their language-
specific validity; Haspelmath, 2018), and apply

word alignment techniques (Tiedemann, 2011) to
determine if there are recurrent many-to-one map-
pings between multiples of words in s and singleton
words in t. This, then allows us to compare across
target languages if the same multiples are aligned
to singletons across target languages. Step 2 of the
method describes this procedure.

However, a seed language may synlexify what
target languages circumlexify, and one-to-many
alignments from a seed language to a target lan-
guage are not comparable: if English enter aligns
with Dutch ga+binnen and German tritt+ein, we
have no way of knowing whether Dutch and Ger-
man circumlexify the complex concept expressed
by enter similarly. To maintain the set-up of Step 2
(i.e., finding many-to-one s-to-t mappings), Step 1
creates a synthesized version of the seed language
corpus in which seed language words are artificially
circumlexified if other languages reliably do so.

3.1 Preliminaries

Several definitions will be used throughout. We
define a bitext to a target language t as Bt =
[⟨u1s, u1t ⟩, ⟨u2s, u2t ⟩, . . . , ⟨uns , unt ⟩], where uis is a
seed language utterance and uit a sentence-aligned
target language utterance. Word types in a (seed
or target) language l are denoted vs ∈ Vs while
word tokens are denoted ws ∈ Ws. (Types and
tokens need to be kept separate for several defini-
tions). The function type(wi) retrieves the type v
associated with a word token wi.

Given a set of word alignments between to-
kens of s and t, derived through some alignment
procedure, the function align(wl, l

′), then, re-
trieves the word alignments between a token wl ∈
ul and a set of tokens {wi

l′ , w
j
l′ , . . . , w

n
l′} ⊆ u′l

for a language pair ⟨l, l′⟩. A further function,
uniqalign(wl, l

′, Q) retrieves tokens aligned to
wl that themselves align exclusively to words
in some set Q consisting of word tokens of l.
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|{ws|type(ws) = vs ∧ P ⊆ backtrans(ws, t)}| |{ws|type(ws) = vs ∧ P ̸⊆ backtrans(ws, t)}|
|{ws|type(ws) ̸= vs ∧ P ⊆ backtrans(ws, t)}| |{ws|type(ws) ̸= vs ∧ P ̸⊆ backtrans(ws, t)}|

Table 1: Four quantities going into the Fisher Exact test to determine association(vs, P, t).

Formally, uniqalign(wl, l
′, Q) = {wl′ |wl′ ∈

align(w, l′) ∧ align(wl′ , l)/Q = ∅}. Two further
functions build on the alignment functions. First,
modalign(vl, l

′) (‘modal alignments’) returns the
word type in l′ that is most commonly (modally)
aligned with vl. Formally, modalign(vl, l

′) =

argmax
vl′∈Vl′

|{wl|

type(wl) = vl∧
∃wl′ .type(wl′) = vl′ ∧ wl′ ∈ uniqalign(wl, l

′)}|.

Second, backtrans(wl, l
′) returns the set

of modal alignments of the word tokens
{wi

l′ , . . . , w
n
l′} given by uniqalign(wl, l

′, {wl}),
or: the most-common backtranslations into l of wl,
given its alignments to tokens in l′ that only align
to wl themselves. To exemplify, given a set of s-t
alignments (Figure 1a), the backtrans function
(Figure 1b) retrieves the most-commonly aligned
word of the target word tokens aligned with each
of the seed language tokens.

3.2 Synthesizing a circumlexified seed corpus

We propose that cross-linguistically recurrent, and
statistically reliable one-to-many alignments be-
tween the seed language s and the various target
languages t ∈ T allow us to replace synlexified
concepts in s by synthesized circumlexifications.
This procedure requires us to define what align-
ments are reliable and how to determine which
tokens are replaced by a circumlexification.

First, for every seed language word type vs ∈ Vs

with lexical meaning (here: nouns, adjectives and
verbs) we retrieve all significantly associated poten-
tial circumlexifications, or: paraphrases, where
a paraphrase P = {vis, . . . , vns }, that is: a set of
seed language word types (possibly including vs
itself), requiring |P | ≥ 2 so that the paraphrase
is into more words than the original. A para-
phrase P is significantly associated with vs given t,
or: association(P, vs, t) = ⊤, if a Fisher-Exact
test over the 2 × 2 table in Table 1 yields a p-
value below a pre-set threshold θfe ∈ (0, 1), and
association(P, vs, t) = ⊥ otherwise.

Concretely, the Fisher Exact test assesses
whether the association between vs and P given
a target language t is significant if the number of

tokens of vs whose modal backtranslations into s
include P (top-left cell) is higher than expected
by chance, that is: compared to (1) the set of to-
kens of vs whose backtranslations do not include
P (bottom-left cell), and (2) the set of tokens of
other types whose backtranslations do include P
(top-right cell). Following the example of Figure
1, if for Spanish the backtranslation {king,chair}
occurs across many tokens of English throne, and
{king,chair} infrequently occurs as the backtrans-
lation of other English word types, the association
between vs = throne and P = {king,chair} is
likely significant. Note that we use the inclusion of
P in the backtranslation of ws rather than the iden-
tity of P and backtrans(ws, t), because spurious
backtranslations may occur in noisy alignments,
thus weakening the ⟨vs, P ⟩ associations.

Retrieving significant ⟨vs, P ⟩ associations
across target languages allows us, then, to lever-
age the crosslinguistic frequency of such associ-
ation. If many target languages circumlexify vs
in the same way (i.e., backtranslating to the same
paraphrase P ), we have evidence that relevant to-
kens of vs should be replaced by P , so that we
would be able to identify that those languages cir-
cumlexify what other languages (including the seed
language) synlexify. We approach this issue by it-
eratively replacing the seed language tokens whose
types show significant vs, P associations across the
greatest number of target languages, as follows.

First, let T⟨vs,P ⟩ be the set of target languages for
which association(vs, P, t) = ⊤. We define the
best word type and paraphrase pair ⟨vmax

s , Pmax⟩ =
argmax⟨vs,P ⟩ |Tvs,P |, that is: the pair with the
greatest number of languages for which it is signifi-
cant. (Ties between ⟨vs, P ⟩ pairs are broken by the
average p-value of the Fisher-Exact tests given the
languages in Tvs,P , prioritizing lower p-values).

Next, given ⟨vmax
s , Pmax⟩, the set of replaced to-

kens is defined as {ws|type(ws) = vmax
s ∧∃t.(t ∈

T⟨vmax
s ,Pmax⟩ ∧ P ⊆ backtranslate(ws, t))}, or:

the set of tokens of vs that backtranslate for at least
one target language t ∈ T⟨vmax

s ,Pmax⟩ to a set of seed
language types that include Pmax. These tokens
are then replaced by Pmax in a new corpus of the
granularized seed language s′, and removed from
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Ws, after which the association mappings are re-
computed. The procedure then repeats, calculating
a novel ⟨vmax

s , Pmax⟩, until |T⟨vmax
s ,Pmax⟩| < θbt, i.e.,

the set of languages for which the ⟨vmax
l , Pmax⟩ as-

sociation is significant is smaller than some pre-set
threshold θbt ∈ [1..∞].

3.3 Finding reliable synlexification patterns
Next, the circumlexified seed language is word-
aligned with each of the target languages (Figure
1c), and Step 2 involves finding reliable alignments
between word pairs in s and words in t. To con-
strain the search space, we only consider pairs of
seed language word tokens that meet two require-
ments. First, the pair contains one member with
a lexical part of speech (here: nouns, adjectives,
verbs, adpositions) and one member with either
such a part of speech or a contentful satellite el-
ement (derivational affix, adverb, particle, proper
noun). Second, the pair consists of elements of the
same paraphrase P (blue line in Figure 1d for king
and chair), or stand in a head-dependent relation
to each other in a dependency parse (red lines; e.g.,
sit and down), including a second-order relation
linking heads to the nominal dependents of any ad-
positions headed by the heads (orange lines; e.g., sit
and chair). The first criterion restricts the search
space to only parts of speech expressing lexical
content, which is what we are centrally interested
in. Second, all attested cases of synlexification
(cf. §2) involve elements in a grammatical head-
dependency relation to each other in circumlexify-
ing languages, suggesting that this is a reasonable
restriction of the search space.

For each pair of word tokens in the granu-
larized seed language ⟨wi

s′ , w
j
s′⟩ meeting these

criteria, we now retrieve the alignments in
t using uniqalign(wi

s′ , l
′, {wi

s′ , w
j
s′}). The

lexification function, defined formally as

lexification(wi
s′ , w

j
s′) =




synlexified if ua(wi
s′ , t, S) ∩ ua(wj

s′ , t, S) ̸= ∅,
unlexified if ua(wi

s′ , t, S) = ∅ ∧ ua(wj
s′ , t, S) = ∅,

i-lexified if ua(wi
s′ , t, S) = ∅ ∧ ua(wj

s′ , t, S) ̸= ∅,
j-lexified if ua(wi

s′ , t, S) ̸= ∅ ∧ ua(wj
s′ , t, S) = ∅,

circumlex. otherwise,

(where ua = uniqalign, S = {wi
s′ , w

j
s′} and ‘cir-

cumlex.’ is short for ‘circumlexified’) determines
the lexification category. A pair of tokens is said
to be synlexified if both tokens are uniqalign-ed
to the same token(s) in t, unlexified if both tokens
uniqalign to no words in t, i-lexified if wj

s′ has no

alignments but wi
s′ does, j-lexified if, conversely,

wi
s′ has no alignments but wj

s′ does, and circumlex-
ified otherwise (i.e., both tokens have alignments
in ut but these sets do not overlap).

4 Experimental set-up

Corpus We test our model on a corpus of Bible
translations gathered through the bible.is API.
While this corpus has issues of ecological validity
owing to the nature of the concepts expressed (be-
ing exogenous to many cultures) and the frequent
production of these texts by non-native speakers
(Pinhanez et al., 2023; Domingues et al., 2024), it
has been used extensively in successfully identify-
ing patterns of crosslinguistic lexical semantic vari-
ation that align with observations based on other
data sources (Wälchli, 2014; Asgari and Schütze,
2017; Liu et al., 2023). Recognizing the non-
identity between the translated, religion-oriented
variety of a language and other, more ecologically
valid, genres, we use the term doculect (Cysouw
and Good, 2013) to refer to the variety of a lan-
guage documented through translation. With these
caveats, we treat the results as a lower-bound esti-
mate of the real variation.

Preprocessing A sample of 198 doculects
was derived through diversity sampling (Miestamo
et al., 2016) ensuring areal and genetic diversity
(see Appendix A for a list of doculects). The
seed doculect, not part of the sample, was set to
be the World English Bible translation. The text
of this doculect was preprocessed by lemmatiz-
ing, PoS-tagging, and dependency-parsing it with
SpaCy (Honnibal and Montani, 2017) and sub-
sequently splitting derivationally complex words
(e.g. un-believe-able) through CELEX2 (Baayen
et al., 1996), as these reflect complex meanings
that may be synlexified in other doculects. Target
doculects were preprocessed by removing punctua-
tion and segmented with VORM, a state-of-the-art
unsupervised canonical morphological segmenta-
tion model (Beekhuizen, 2025b), which segments
words into stems and affixes. Alignments for both
s and s′ were subsequently derived with Eflomal
(Östling and Tiedemann, 2016), using the ‘grow-
diag-final-and’ heuristic. The alignment in Step 1
was done with stems in the target doculects only
(as inclusion of affixes at this state led to noise in
the procedure), whereas the alignment for Step 2
also included affixes.

Parameters The significance threshold θfe was
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set at 1e−6 and the minimum number of languages
for which a the ⟨vs, P ⟩ association was significant
was set as θbt = 3. Both values were based on post-
hoc assessment of the extraction quality and more
complete parameter tuning on a benchmark set will
be left for future research. Among the valid circum-
lexified seed language word pairs, only those that
occurred ≥ 10 times throughout the circumlexified
seed data were kept for further analysis.

5 Validating the model

Step 1 of the method splits 896 vocabulary types
in the seed language, including some cases that are
very frequently split among the target doculects,
such as answer=say+answer (100 doculects) and
smoke=smoke+fire (60 doculects). Notably, most
splits involve splitting a word type into the word
type itself and an additional element, though cases
like sail=go+boat (34 doculects) are found as well.
A larger sample is presented in Appendix B with
the full data being available in the repository.

Based on the circumlexified seed doculect cor-
pus, a total of 2, 563 comparison meaning pairs
with a frequency ≥ 10 were found, and align-
ment patterns into the 198 target doculects were
extracted with Step 2 of the extraction algorithm.
While the next section demonstrates what can be
done with these data, here we first provide a post-
hoc validation of the model.

5.1 Validating extracted synlexifications

Given that no evaluation set is available, we val-
idate the model by inspecting its extractions for
several well-known cases, alongside several hand-
picked ones representing frequently and infre-
quently synlexified meanings.1 For each case,
we selected one doculect whose predicted most-
common strategy was to synlexify the meanings,
one that most commonly circumlexified them, and
one that most commonly left one meaning un-
derspecified (i or j-lexified). For each doculect,
we compared the extracted markers against gram-
mars and dictionaries, referring to the translation
tokens to validate. The fields and a qualitative
description of the assessment can be found in Ap-
pendix C, while Table 2 summarizes the results.
Although we had equal numbers of each predicted

1Notably, this validation step provides more evidence for
the quality of the extraction than most other computational
methods (e.g. Liu et al., 2023; Beekhuizen et al., 2024),
though see Beekhuizen (2025a) and Beekhuizen (2025c) for
thoroughly evaluated extraction algorithms.

predicted strategy correct uncert. incorrect

Synlexified (13) 0.85 0.15 0.00
Circumlexified (15) 0.80 0.00 0.20
x-lexified (16) 0.63 0.06 0.31

Table 2: Results of manual validation. ‘un-
cert.’=uncertain; (N) = number of cases.

strategy initially, we conducted the evaluation mul-
tiple times as we implemented improvements to
the model, which lead to a new strategy predic-
tion for some cases. In addition, the model labeled
3/47 inspected pairs as dominantly ‘unlexified’,
which means no prediction regarding the modal
type could be made. Overall, 80% of the 41 cases
that were determined with certainty were correctly
labeled by the model.

Among the accurate cases, we find the pair en-
ter+in, synlexified as natt in Fulfulde (cf. McIntosh,
1984, p. 125: natt-ay ‘enter’), circumlexified as
go+iin in Jamaican English (cf. Bailey, 1968, p.
227), and j-lexified in Karkar as mek (cf. Rigden,
n.d., p. 112, 116: mek ‘in’). The majority of errors
were i or j-lexifications which should have been
labeled as cases of circumlexification. For instance,
the pair to+world was labeled as underspecified
in Bora because the pair frequently aligns only to
ííñuj1́ (land) and in other cases to -vu (a spatial
goal marker; Thiesen and Weber, 2012, p. 156),
but the pair should have been aligned to both of
these words to indicate circumlexification – an er-
ror attributable to the strictness of the uniqalign
procedure, as many instances of these markers were
found to have spurious alignments. Another type of
error involved doculects synlexifying a concept but
predicted to circumlexify. For instance, Ndyuka
synlexifies the pair un-+clean with the word takuu
meaning ’evil’ (Huttar and Huttar, 1994, p. 62),
but the model defines the tokens as circumlexified
because in many instances, takuu is aligned with
only one member of the pair ⟨un-, clean⟩, and other
Ndyuka words with the other member.

6 Exploring synlexification patterns

The validation suggests that the method is a reason-
able first attempt at extracting patterns of synlexi-
fication at a lexicon-wide scale and for a typologi-
cally diverse sample of doculects. Next, we explore
applications of the extracted data, to demonstrate
the linguistic use of the method.
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part of speech pair N % syn. top-3 most frequently synlexified (N doculects)

Adposition+Noun 461 18% mountain+on (116) before+foot (80) in+peace (72)
Adposition+Verb 460 19% rise+up (107) get+up (104) down+fall (95)
Noun+Verb 408 38% bread+eat (173) law+write (164) apostle+send (163)
Verb+Verb 245 20% deceive+lie (162) suffer+torment (146) persecute+suffer (120)
Noun+Noun 198 81% boat+ship (186) boat+sea (186) horse+soldier (184)
Adjective+Noun 87 68% blind+eye (179) blood+dead (178) famine+hungry (172)
Affix+Verb 86 90% teach+-er (142) serve+-ant (105) pray+-er (105)
Proper Noun+Verb 84% 10% Peter+answer (2) Jesus+answer (1) Christ+die (1)

Table 3: Synlexification across PoS pairs. N= number of pairs, % syn.= % of pairs synlexified in ≥ 1 doculect.

Distribution across the lexicon. Most
(1715/2563, or 67%) comparison concept pairs
are not dominantly lexified in any doculect (where
‘dominant’ means ‘applied in ≥ 50% of the tokens
of that pair’). This suggests that synlexification hap-
pens in select areas of the lexicon. Breaking down
the pairs by their grammatical categories (Table 3;
a larger sample is given in Table 10 in App. D), we
find substantial variation: combinations of proper
nouns and verbs are for instance rarely synlexi-
fied (9%). Conversely, many of the noun+noun,
adjective+noun, and affix+noun pair have at least
one doculect synlexifying them, possibly due to
such combinations building complex categories
that can variably be ‘described’ or ‘labelled’ (cf.
Seiler, 1975) for communication to succeed.

Motion verb synlexification, part of the preposi-
tion+verb combinations, can be found among the
most frequently dominantly synlexified preposi-
tion+verb pairs – e.g., rise+up or down+fall, but
other preposition+verb combinations reflect more
‘accidental’ combinations of verbs and prepositions,
making preposition+verb pairs have a low number
of synlexifying doculects. While looking at the
level of grammatical categories is likely too coarse
a subdivision, the variation across grammatical cat-
egories suggests that some of the uneven distribu-
tion across the lexicon may be related to the types
of concepts they denote.

Areal distribution. Secondly, not all doculects
are equally likely to synlexify, as discussed in
§2. There are substantial areal patterns, with
the average number of comparison meaning pairs
dominantly synlexified ranging from 122 (Aus-
tralian doculects), and 150 (South-America), over
173 (North-America) and 190 (Papunesia), to 215
(Africa) and 228 (Eurasian). Figure 2 plots the
number of dominantly synlexified pairs across the
198 doculects. These areal patterns are open to
multiple interpretations. The high numbers for the

European doculects (Basque, Dutch, Finnish, Hun-
garian, Greek) might reflect the extended exposure
of these cultures to the cultural concepts of Chris-
tianity (‘pray’, ‘temple’, ‘prophet’, . . . ), leading to
short, synlexifying forms. However, not all varia-
tion can be attributed to cultural factors, as there
is substantial variation between other macro-areas
where the dissemination of these religious concepts
is more recent. Moreover, the clearly religious
concepts form only a small subset of all variably
synlexified concepts.

Potential for case studies. Synlexification pat-
terns have mostly been studied for specific seman-
tic domains (cf. §2). The proposed procedure al-
lows us to study such cases by retrieving matching
comparison concept pairs. The well-studied case
of motion events can for instance be studied by
looking for motion verbs (go, fall, sit, put, . . . ) and
particles (in, out, up, down, . . . ). For most such
pairs, which are presented in Table 11 in Appendix
E, doculects do not synlexify. Most frequently syn-
lexified are five pairs of motion along the vertical
axis: rise+up (N = 107), get+up (N = 104), fall
+ down (N = 95), sit + down (N = 81), and stand
+ up (N = 67). Notably, in some of these cases
the direction of movement is already implicated
by the manner of motion verb. These cases raises
interesting questions about the concept of synlex-
ification per se. If one language l circumlexifies
this complex concept into a pair of lexical items
vfall
l , vdown

l , aligning with ‘fall’ and ‘down’, and an-
other language l′ synlexifies them with one lexical
item vl′ , which dictionaries define as ‘fall’, does
this mean that the meanings of vfall

l and vl′ are dif-
ferent with the former underspecifying the ‘down’
component? This seems counterintuitive: after all,
even in a synlexifying language like English, He
fell (as opposed to He fell down) at least implicates
and perhaps entails ‘down’.

Conversely, several of the cases for which sub-
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Figure 2: Areal distribution of the number of comparison meanings that are dominantly synlexified, per doculect

stantial typological variation is expected (enter +
in and go + out) were dominantly synlexified only
rarely across doculects (N = 3 resp. N = 2).
While further validation and linguistic analysis is
necessary, these data suggest that matters are more
complex than the simple path vs. satellite-framing
typology lets on.

The bottom-up discovery procedure further al-
lows us to explore new domains involving variation
in the synlexification patterns. Speech events form
one such domain: manner of speech verbs, such
as promise, lie, answer and ask are often found
synlexified, like in English, but more frequently
(across doculects) circumlexified into an element
translating to English say and another to the man-
ner (i.c., promise, false, answer, ask). Table 12
in Appendix E presents an overview. While typo-
logical observations about speech verbs have been
made for small sets of languages (Caballero and
Paradis, 2017), the method presented here supports
a larger-scale typological comparison.

Mańczak’s law of differentiation. Finally, we
explore the hypothesis that more frequent meaning
pairs are more likely to be synlexified, due to com-
municative efficiency. We evaluate this hypothesis
with the following logistic regression model:

synlexified ∼ log pair.frequency + pos+

macroarea + (1|doculect) + (1|pair)

That is: for each doculect and for each pair, we
predict whether the doculect dominantly synlexi-
fies the pair on the basis of the log-frequency of
the comparison meaning pair, as derived in Step
2, the part of speech (‘pos’; dummy-coded for the
5 most frequent parts of speech pairs, with other
pos-pairs coded as ‘other’), and the macroarea
(dummy-coded). Random intercepts were added
for doculects and pairs, reflecting biases of individ-

ual doculects or pairs that should be included to
constrain the inferred effects of the target variables.

Table 13 in App. F presents full regression re-
sults. Critically, over and above significant effects
of ‘pos’ and ‘macroarea’, the frequency of the
meaning pair significantly predicts the likelihood
of that pair being synlexified, with the positive di-
rection being in line with Mańczak’s law of differ-
entiation. The effect size is furthermore substantial:
the observed log Odds Ratio of 1.203 means that
for every unit increase in log frequency (e.g, go-
ing from logN = 3 to logN = 4, or: N ≈ 20 to
N ≈ 54), the the likelihood of synlexifying the pair
increases more than threefold (exp 1.203 ≈ 3.330).
Two concerns here are whether the variably-lexified
comparison concepts have enough ecological va-
lidity and whether the counts of the English-based
comparison meaning pairs are a valid measure of
meaning frequency. Addressing these would be
paramount to further research.

7 Conclusion

This paper introduced a novel method for extract-
ing patterns of synlexification from a parallel cor-
pus at the scale of 198 languages and the full lex-
icon and validated it on over 40 cases. While the
model performed generally well, substantial room
for improvement remains. First, replacing seed lan-
guage words by other seed language words in Step
1 means that the (co)lexification pattern of the seed
language still affects what alignments are likely to
be made. Explorations of methods that infer latent
discrete n-tuples (e.g., through topic modelling,
cf. Blei and Lafferty, 2009) prove difficult to tune
to yield desired results. In future work, we hope to
develop such improvements, create more rigorous
methods of evaluation, and apply the method to
more ecologically valid corpora.
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2012. Word-formation in the world’s languages: A
typological survey. Cambridge University Press.

103

https://aclanthology.org/W10-2108/
https://aclanthology.org/W10-2108/
https://aclanthology.org/W10-2108/
https://aclanthology.org/W10-2108/
http://www.sil.org/pacific/png/abstract.asp?id=47683
http://www.sil.org/pacific/png/abstract.asp?id=47683
https://www.degruyterbrill.com/database/COGBIB/entry/cogbib.11712/html
https://www.degruyterbrill.com/database/COGBIB/entry/cogbib.11712/html
https://drive.google.com/open?id=1y_v5VN-tC-TQPcQ7XcurOkA3NRPirJeB
https://doi.org/10.1163/22105832-13030202
https://doi.org/10.1163/22105832-13030202
https://doi.org/10.1163/22105832-13030202
https://aclanthology.org/2024.eacl-long.66/
https://aclanthology.org/2024.eacl-long.66/
https://aclanthology.org/2024.eacl-long.66/
https://doi.org/10.1515/9783110317558.355
https://doi.org/10.1515/9783110317558.355
https://doi.org/10.1515/9783110317558.355
https://www.creedictionary.com/index.php
https://www.creedictionary.com/index.php
https://doi.org/doi:10.1515/9783110198904.2.153
https://doi.org/doi:10.1515/9783110198904.2.153


A Data overview

Tables 4-7 present the 198 doculects, along with
their affiliation and macro-area.

B Results from Step 1

Table 8 presents a selection form the output of Step
1 of the model as applied to the sample of Bible
data. The first 20 extractions (⟨vs, P ⟩ pairs) and ev-
ery 30th extraction are printed, along with the num-
ber of doculects for which this pair was found to
be significantly associated (association(vs, P, t),
their average p-value (negative-logn transformed),
the number of tokens in the corpus this applies to,
and the proportion of all tokens of vs this number
makes up.

C Detailed validation

This section includes details of all the extracted
cases of synlexification, circumlexification, and un-
derspecification that we inspected manually using
dictionaries and grammars. Table 9 shows each of
the pairs of seed words that we looked at, and the
strategy that the model predicts for each language,
along with the most frequently extracted tokens for
the pair and the glosses.

D Fuller table with extracted cases

Table 10 presents a larger set of examples of syn-
lexifications of the different pairs of grammatical
categories.

E Typological frequencies for two
semantic domains

This section reports on the frequency with which
doculects dominantly synlexify sets of compari-
son meaning pairs. Table 11 shows instances of
(caused) motion events. These were based on all
cases where one of the verbs get, rise, sit, go, come,
enter, put, throw, stand, depart, ascent, fall, cast,
or pour was combined with an adposition/particle
from among in, out, on, off, from, to, back, up,
down. Table 12 shows instances of speech events,
based on all pairs where one of the four main
speech verbs (Dirven et al., 1982) say, tell, speak,
talk was combined with any other element. Note
that the N − 175 instances of comparison meaning
pairs including one of those verbs but not synlexi-
fied in any language were omitted from the table.

F Regression analysis of synlexification

This section provides further experimental detail on
the logistic regression reported in Section 6. Table
13 presents the output of a mixed effects logistic
regression (using the glmer library in R).
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ISO 639-3 name family macroarea

AAUWBT Abau Sepik Papunesia
ACMAS3 Gilit Mesopotamian Arabic Afro-Asiatic Eurasia
ACUTBL Achuar-Shiwiar Chicham South America
AGGPNG Angor Senagi Papunesia
AGMWBT Angaataha Angan Papunesia
ALYXXX Alyawarr Pama-Nyungan Australia
AMFSIM Hamer-Banna South Omotic Africa
AMKWBT Ambai Austronesian Papunesia
AMMWBT Ama (Papua New Guinea) Left May Papunesia
AMNPNG Amanab Border Papunesia
AMPWBT Alamblak Sepik Papunesia
AMRTBL Amarakaeri Harakmbut South America
AMUMVR Guerrero Amuzgo Otomanguean North America
AOJFIL Mufian Nuclear Torricelli Papunesia
ARLTBL Arabela Zaparoan South America
AVAANT Avar Nakh-Daghestanian Eurasia
AVTWBT Au Nuclear Torricelli Papunesia
AZZTBL Highland Puebla Nahuatl Uto-Aztecan North America
BBOBSM Northern Bobo Madaré Mande Africa
BDHWBT Baka (South Sudan) Central Sudanic Africa
BFDWBT Bafut Atlantic-Congo Africa
BIBWBT Bissa Mande Africa
BKLLAI Berik Tor-Orya Papunesia
BOATBL Bora Boran South America
BORWYI Bororo Bororoan South America
BRUNXB Eastern Bru Austroasiatic Eurasia
BSCWBT Bassari-Tanda Atlantic-Congo Africa
BVRXXX Burarra Maningrida Australia
BVZYSS Bauzi Geelvink Bay Papunesia
BYRWBT Baruya Angan Papunesia
BYXWBT Qaqet Baining Papunesia
CABNVS Garifuna Arawakan North America
CAPSBB Chipaya Uru-Chipaya South America
CASNTM Mosetén-Chimané isolate South America
CAXSBB Lomeriano-Ignaciano Chiquitano Chiquitano South America
CBITBL Cha’palaa Barbacoan South America
CBTTBL Shawi Cahuapanan South America
CCOTBL Comaltepec Chinantec Otomanguean North America
CHEIBT Chechen Nakh-Daghestanian Eurasia
CHRPDV Cherokee Iroquoian North America
CJPTJV Cabécar Chibchan North America
CMEWBT Cerma Atlantic-Congo Africa
CONWBT Cofán isolate South America
CRHIBT Crimean Tatar Turkic Eurasia
CRKWCV Plains Cree Algic North America
CRNWBT El Nayar Cora Uto-Aztecan North America
CRXWYI Central Carrier Athabaskan-Eyak-Tlingit North America
CSKATB Jola-Esulalu Atlantic-Congo Africa

Table 4: Overview of doculects used, along with their affiliation and macro-area (Table 1/4).

105



ISO 639-3 name family macroarea

CTGBSB Chittagonian Indo-European Eurasia
DESWBT Desano Tucanoan South America
DIDWBT Didinga Surmic Africa
DIFXXX Dieri Pama-Nyungan Australia
DJKWBT Aukan Indo-European South America
DTSABM Toro So Dogon Dogon Africa
DUDWYI Hun-Saare Atlantic-Congo Africa
ELLELL Modern Greek Indo-European Eurasia
ESEE06 Ese Ejja Pano-Tacanan South America
ESSWYI Central Siberian Yupik Eskimo-Aleut Eurasia
EUSNLT Basque isolate Eurasia
FRDWBT Fordata Austronesian Papunesia
FUVLTBL Hausa States Fulfulde Atlantic-Congo Africa
GAHPNG Alekano Nuclear Trans New Guinea Papunesia
GBILAI Galela North Halmahera Papunesia
GHSPNG Guhu-Samane Nuclear Trans New Guinea Papunesia
GRTBBS Garo Sino-Tibetan Eurasia
GUCTBL Wayuu Arawakan South America
GUHWBT Sikuani Guahiboan South America
GUKBSE Northern Gumuz Gumuz Africa
GUPXXX Bininj Kun-Wok Gunwinyguan Australia
HADLAI Hatam Hatam-Mansim Papunesia
HAKTHV Hakka Chinese Sino-Tibetan Eurasia
HTOWBT Minica Huitoto Huitotoan South America
HUNK90 Hungarian Uralic Eurasia
HUVTBL San Mateo del Mar Huave Huavean North America
HWCWYI Hawai’i Creole English Indo-European Papunesia
IANPNG Iatmul Ndu Papunesia
IBATIV Iban Austronesian Papunesia
IFBTBL Batad Ifugao Austronesian Papunesia
INDASV Standard Indonesian Austronesian Papunesia
IRKBST Iraqw Afro-Asiatic Africa
ITAR27 Italian Indo-European Eurasia
IZZTBL Izi Atlantic-Congo Africa
JAMBSW Jamaican Creole English Indo-European North America
JAVNRF Javanese Austronesian Papunesia
JBUIBS Jukun Takum Atlantic-Congo Africa
JICWBT Tol Jicaquean North America
KABCEB Kabyle Afro-Asiatic Africa
KBHWBT Camsá isolate South America
KERABT Kera Afro-Asiatic Africa
KFBNTA Northwestern Kolami Dravidian Eurasia
KGRLAI Abun isolate Papunesia
KHGNTV Khams Tibetan Sino-Tibetan Eurasia
KHQBIV Koyra Chiini Songhay Songhay Africa
KIAWBT Kim Atlantic-Congo Africa
KMOWBT Kwoma Sepik Papunesia
KMSPNG Kamasau Nuclear Torricelli Papunesia
KNJSBI Akateko Mayan North America
KORSYS Korean Koreanic Eurasia

Table 5: Overview of doculects used, along with their affiliation and macro-area (Table 2/4).
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ISO 639-3 name family macroarea

KPVIBT Komi-Zyrian Uralic Eurasia
KPWPNG Kobon Nuclear Trans New Guinea Papunesia
KRLNEW Karelian Uralic Eurasia
KRSWYI Kresh-Woro Kresh-Aja Africa
KTOWBT Kuot isolate Papunesia
KYCPNG Kyaka Nuclear Trans New Guinea Papunesia
LEFTBL Lelemi Atlantic-Congo Africa
LMEABT Peve Afro-Asiatic Africa
MAKLAI Makasar Austronesian Papunesia
MBCWBT Macushi Cariban South America
MCAWBT Maca Matacoan South America
MDYBSE Male (Ethiopia) Ta-Ne-Omotic Africa
MEJTBL Meyah East Bird’s Head Papunesia
MFEBSM Morisyen Indo-European Africa
MFYWBT Mayo Uto-Aztecan North America
MHIBSU Ma’di Central Sudanic Africa
MHRIBT Eastern Mari Uralic Eurasia
MIFWBT Mofu-Gudur Afro-Asiatic Africa
MILTBL Peñoles Mixtec Otomanguean North America
MIQSBN Mískito Misumalpan North America
MLPTBL Bargam Nuclear Trans New Guinea Papunesia
MOPWBT Mopán Maya Mayan North America
MORBSS Moro Heibanic Africa
MPMTBL Yosondúa Mixtec Otomanguean North America
MPTWBT Mian Nuclear Trans New Guinea Papunesia
MSYPNG Aruamu Ramu Papunesia
MTOTBL Totontepec Mixe Mixe-Zoque North America
MWWHDV Hmong Daw Hmong-Mien Eurasia
MZMWBT Mumuye Atlantic-Congo Africa
NABWBT Southern Nambikuára Nambiquaran South America
NAFWBT Nabak Nuclear Trans New Guinea Papunesia
NASPNG Naasioi South Bougainville Papunesia
NHXNFB Isthmus-Mecayapan Nahuatl Uto-Aztecan North America
NIAIBS Nias Austronesian Papunesia
NIJLAI Ngaju Austronesian Papunesia
NLDHSV Dutch Indo-European Eurasia
NOAWBT Woun Meu Chocoan South America
NTJXXX Ngaanyatjarra Pama-Nyungan Australia
NTPTBL Northern Tepehuan Uto-Aztecan North America
NUYXXX Wubuy Gunwinyguan Australia
OPMTBL Oksapmin Nuclear Trans New Guinea Papunesia
OTQTBL Querétaro Otomi Otomanguean North America
PADWBT Paumari Arawan South America
PAMPBS Pampanga Austronesian Papunesia
PAONAB Northern Paiute Uto-Aztecan North America
PAUPAL Palauan Austronesian Papunesia
PBBDYU Páez isolate South America
PJTXXX Pitjantjatjara Pama-Nyungan Australia
POEWBT San Juan Atzingo Popoloca Otomanguean North America
POIWBT Highland Popoluca Mixe-Zoque North America

Table 6: Overview of doculects used, along with their affiliation and macro-area (Table 3/4).
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PPOWBT Folopa Teberan Papunesia
PRKBSM South Wa Austroasiatic Eurasia
PUIABC Puinave isolate South America
QUBPBS Huallaga Huánuco Quechua Quechuan South America
RAWBIB Rawang Sino-Tibetan Eurasia
RELBTL Rendille Afro-Asiatic Africa
ROOWBT Rotokas North Bougainville Papunesia
SABWBT Buglere Chibchan North America
SGWBSE Sebat Bet Gurage Afro-Asiatic Africa
SHKBSS Shilluk Nilotic Africa
SPPTBL Supyire Senoufo Atlantic-Congo Africa
SRNBSS Sranan Tongo Indo-European South America
SSDWBT Siroi Nuclear Trans New Guinea Papunesia
SURIBS Mwaghavul Afro-Asiatic Africa
SXNLAI Sangir Austronesian Papunesia
TABIBT Tabasaran Nakh-Daghestanian Eurasia
TACPBC Western Tarahumara Uto-Aztecan North America
TBGWBT North Tairora Nuclear Trans New Guinea Papunesia
TCATBL Ticuna Ticuna-Yuri South America
TCCBST Barabayiiga-Gisamjanga Nilotic Africa
TCSWYI Torres Strait-Lockhart River Creole Indo-European Australia
TEETBL Huehuetla Tepehua Totonacan North America
TEOBSU Teso Nilotic Africa
TFRWBT Teribe Chibchan North America
THATSV Thai Tai-Kadai Eurasia
TIHBSM Timugon Murut Austronesian Papunesia
TIKWYI Tikar Atlantic-Congo Africa
TLJWBT Talinga-Bwisi Atlantic-Congo Africa
TOPTBL Papantla Totonac Totonacan North America
TPIPNG Tok Pisin Indo-European Papunesia
TPTTBL Tlachichilco Tepehua Totonacan North America
TQOTQO Toaripi Eleman Papunesia
TRCWBT Copala Triqui Otomanguean North America
TUFWYI Central Tunebo Chibchan South America
URATBL Urarina isolate South America
URBWBT Urubú-Kaapor Tupian South America
VIELHG Vietnamese Austroasiatic Eurasia
WBABIV Warao isolate South America
WIMWYI Wik-Mungkan Pama-Nyungan Australia
XALIBT Oirad-Kalmyk-Darkhat Mongolic-Khitan Eurasia
XAVTBL Xavánte Nuclear-Macro-Je South America
XSUMEV Sanumá Yanomamic South America
YADTBL Yagua Peba-Yagua South America
YLEWBT Yele isolate Papunesia
YSSYYV Yessan-Mayo Sepik Papunesia
YUJWBT Karkar-Yuri Pauwasi Papunesia
YUZNTM Yuracaré isolate South America
YVATBL Yawa Yawa-Saweru Papunesia
ZNEZNE Zande Atlantic-Congo Africa
ZPMTBL Mixtepec Zapotec Otomanguean North America

Table 7: Overview of doculects used, along with their affiliation and macro-area (Table 4/4).
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rank vs P N doculects avg. -log p N tokens token coverage

1 write say+write 110 122.27 196 0.92
2 answer answer+say 100 inf 240 0.97
3 heal heal+sick 100 39.65 65 0.81
4 scribe law+scribe 91 282.37 66 1.00
5 forgive sin+forgive 91 56.45 64 0.98
6 repent sin+repent 83 88.26 57 1.00
7 vinegar wine+vinegar 81 30.01 6 1.00
8 widow widow+woman 80 56.93 27 0.96
9 raise dead+raise 78 53.38 79 0.84

10 faith believe+faith 77 inf 279 0.91
11 come to+come 75 64.33 802 0.66
12 loaf bread+loaf 75 42.05 27 1.00
13 prostitute prostitute+woman 67 36.82 13 1.00
14 bread eat+bread 65 39.65 73 0.85
15 cup wine+cup 65 31.98 20 0.61
16 drink wine+drink 63 31.06 61 0.61
17 prophet write+prophet 60 47.11 125 0.70
18 read read+write 60 36.69 28 0.88
19 knock knock+door 60 33.37 9 1.00
20 smoke smoke+fire 60 29.15 13 1.00
30 life life+eternal 54 56.87 142 0.68
60 branch tree+branch 40 29.66 18 0.90
90 silver money+silver 32 25.06 17 0.81

120 language language+word 27 49.97 40 1.00
150 endure suffer+endure 23 28.48 30 0.73
180 barrack house+soldier 20 31.32 6 1.00
210 milk child+milk 18 21.75 4 0.80
240 n’t n’t+not 16 19.94 54 0.22
270 naked garment+naked 14 23.81 14 0.78
300 key key+door 13 23.05 6 1.00
330 tithe priest+tithe 12 18.70 6 0.67
360 roll tomb+roll 11 17.41 6 0.46
390 tax money+tax 9 40.09 22 0.81
420 hypocrite hypocrite+good 8 56.52 20 0.67
450 wave wave+water 8 20.06 6 0.67
480 gentle gentle+peace 7 29.58 14 0.78
510 hospitality receive+house 7 20.28 3 1.00
540 doctrine teach+true 6 24.29 9 0.56
570 reconcile peace+with 5 40.68 10 0.62
600 muzzle bind+mouth 5 20.65 2 1.00
630 divide divide+self 4 36.37 14 0.41
660 star star+heaven 4 23.53 11 0.38
690 ring finger+ring 4 19.53 2 0.67
720 married marry+married 4 16.43 4 0.40
750 summer new+summer 3 26.52 3 1.00
780 spring spring+water 3 21.59 6 0.12
810 laugh ridicule+laugh 3 20.05 2 1.00
840 slaughter bring+kill 3 18.35 3 0.60
870 resist resist+write 3 16.74 3 0.33

Table 8: Select output of Step 1 (top-20 extractions and every 30th extraction after)
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PoS pair least and most often modally synlexified (N languages per pair)

Adposition+Noun
(N=461; 18%)

bottom = about+thing (1) accord+with (1) voice+with (1) before+man (1) book+of
(1) of+rich (1) of+star (1) of+sign (1) country+of (1) demon+of (1)
top = mountain+on (116) before+foot (80) in+peace (72) disciple+of (46) of+son (41)
demon+in (27) of+woe (26) gold+of (18) in+world (17) city+in (14)

Adposition+Verb
(N=460; 19%)

bottom = before+fall (1) before+go (1) before+set (1) beg+to (1) owe+to (1)
over+throw (1) belong+to (1) believe+in (1) bring+up (1) bind+with (1)
top = rise+up (107) get+up (104) down+fall (95) cry+out (85) before+defile (84)
down+sit (81) stand+up (67) out+release (60) at+marvel (49) cut+off (42)

Noun+Verb
(N=408; 37%)

bottom = understand+word (1) bear+tree (1) sit+throne (1) language+speak (1)
say+woman (1) fear+speak (1) man+name (1) man+right (1) enter+place (1) eye+open
(1)
top = bread+eat (173) law+write (164) apostle+send (163) eat+food (161) steal+thief
(154) prophet+write (153) glory+worship (151) joy+rejoice (150) bondservant+serve
(150) fish+take (146)

Verb+Verb (N=245;
20%)

bottom = become+know (1) beg+say (1) bear+give (1) come+touch (1) cry+say (1)
hear+let (1) lead+stray (1) command+say (3) go+set (3) look+see (3)
top = deceive+lie (162) suffer+torment (146) persecute+suffer (120) know+understand
(109) hear+marvel (108) greet+kiss (106) eat+reap (95) come+send (95) know+see
(93) find+see (92)

Noun+Noun
(N=198; 80%)

bottom = beast+thing (1) sin+thing (1) house+master (1) fruit+wine (1) gift+sacrifice
(1) thing+work (1) man+woman (1) news+word (1) brother+mother (2) bread+piece
(3)
top = boat+ship (186) boat+sea (186) horse+soldier (184) money+stone (182) de-
mon+devil (181) month+moon (181) bird+dove (176) guard+soldier (175) fire+light
(174) cloak+garment (172)

Adjective+Noun
(N=87; 67%)

bottom = day+first (1) day+many (1) new+wine (1) sharp+sword (3) blind+man (4)
such+thing (4) body+whole (4) certain+man (6) great+multitude (7) many+people (8)
top = blind+eye (179) blood+dead (178) famine+hungry (172) afraid+fear (167)
dead+tomb (166) angry+wrath (164) eternal+life (164) money+poor (163) para-
ble+word (152) garment+naked (149)

Affix+Verb (N=86;
89%)

bottom = ation+save (1) believe+ful (1) ent+excel (2) ent+hear (2) ant+know (2)
ful+write (3) ion+suffer (3) ion+relate (4) ance+repent (4) dom+know (4)
top = er+teach (142) ant+serve (105) er+pray (105) re+turn (105) beware+self (102)
appoint+dis (100) care+ful (90) be-ed+love (90) ion+oppress (87) er+sin (82)

Proper Noun+Verb
(N=84; 9%)

bottom = Christ+die (1) God+worship (1) Isaiah+say (1) Jesus+answer (1)
Passover+eat (1) Paul+say (1) Peter+say (1) Peter+answer (2)
top = Peter+answer (2) Jesus+answer (1) Christ+die (1) Isaiah+say (1) God+worship
(1) Passover+eat (1) Paul+say (1) Peter+say (1)

AFX+Noun (N=82;
86%)

bottom = ual+woman (1) body+ion (1) ion+sin (1) ence+word (1) ent+word (1)
ly+word (1) ness+thing (1) ness+sin (1) s+side (1) flesh+ly (2)
top = et+trump (178) enemy+st (166) a-ed+shame (144) st+war (136) com+passion
(111) author+ity (93) cy+prophet (88) out+side (83) age+bond (80) fool+ish (74)

Particle+Verb
(N=79; 20%)

bottom = come+to (1) crow+not (1) destroy+to (1) enter+to (1) hear+not (1) heal+to
(1) release+to (1) love+not (1) stumble+to (1) stand+to (1)
top = to+want (25) lose+not (8) circumcise+not (4) teach+to (2) not+want (2)
crow+not (1) hear+not (1) release+to (1) come+to (1) stumble+to (1)

Table 10: Examples of most and least synlexified granularized seed doculect word pairs per part of speech (PoS)
pair. Numbers in parentheses in the first column represent the total number of pairs and the proportion of pairs for
which at least one doculect dominantly synlexifies that pair (‘% synlex’). PoS abbreviations are [n]oun, [a]djective,
[v]erb, [p]reposition, affi[x], proper na[m]e, par[t]icle
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pair N doc. frequency pair

rise + up 107 29
get + up 104 19
down + fall 95 83
down + sit 81 42
stand + up 67 21
cast + out 33 39
out + pour 29 21
depart + from 29 11
come + down 9 69
go + up 8 61
down + throw 4 15
down + go 3 29
enter + in 3 191
out + throw 3 22
get + in 3 10
on + stand 3 17
go + out 2 117
from + rise 2 31
on + sit 2 66
come + out 1 132
come + from 0 107
fall + on 0 37
fall + in 0 29
fall + from 0 12
enter + to 0 175
come + to 0 1173
come + on 0 88
come + up 0 31
depart + to 0 11
come + in 0 312
cast + in 0 52
cast + to 0 38
go + in 0 211
go + on 0 68
get + to 0 20
fall + to 0 42
from + go 0 109
in + stand 0 51
in + sit 0 75
in + rise 0 12
in + put 0 52
in + pour 0 11
go + to 0 657
on + put 0 40
on + pour 0 13
out + put 0 10
in + throw 0 31
put + to 0 59
pour + to 0 10
rise + to 0 25
sit + to 0 29
stand + to 0 17
throw + to 0 70

Table 11: (Caused) motion events, their cross-doculectal
frequency of being dominantly synlexified (N doc.), and
their corpus frequency.

pair N doc. frequency pair

promise + say 63 57
false + say 54 23
answer + say 42 279
say + thunder 27 11
ask + say 27 185
confess + say 13 16
say + speak 12 329
sin + speak 12 32
ar + say 9 10
say + write 6 266
lie + say 4 30
command + say 3 135
speak + still 2 10
say + word 2 452
prophet + speak 1 13
language + speak 1 20
fear + speak 1 10
among + say 1 10
Isaiah + say 1 11
say + to 1 1675
say + woman 1 16
Peter + say 1 48
cry + say 1 75
say + still 1 10
beg + say 1 14
Paul + say 1 23

Table 12: Speech events, their cross-doculectal fre-
quency of being dominantly synlexified (N doc.), and
their corpus frequency.
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Estimate Std. Error z value Pr(>|z|)

(Intercept) -14.57443 0.55514 -26.254 < 2e-16 ***
log.pair.freq 1.20256 0.14200 8.469 < 2e-16 ***
pos.type=ADP+VERB 0.55582 0.34499 1.611 0.107154
pos.type=NOUN+NOUN 9.23598 0.41556 22.225 < 2e-16 ***
pos.type=NOUN+VERB 3.37687 0.36528 9.245 < 2e-16 ***
pos.type=other 4.26841 0.31352 13.615 < 2e-16 ***
pos.type=VERB+VERB 1.34335 0.41376 3.247 0.001168 **
macroarea=Australia -1.06364 0.21781 -4.883 1.04e-06 ***
macroarea=Eurasia -0.02568 0.14583 -0.176 0.860197
macroarea=North America -0.51993 0.13806 -3.766 0.000166 ***
macroarea=Papunesia -0.31067 0.12234 -2.539 0.011101 *
macroarea=South America -0.68934 0.13487 -5.111 3.20e-07 ***

AIC 118693.8
residual degrees of freedom 506471

Table 13: Detailed results of the logistic regression predicting synlexification.
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Abstract

When translating into a low-resource language,
a language model can have a tendency to pro-
duce translations that are close to the source
(e.g., word-by-word translations) due to a lack
of rich low-resource training data in pretrain-
ing. Thus, the output often is translationese that
differs considerably from what native speak-
ers would produce naturally. To remedy this,
we synthetically create a training set in which
the frequency of a construction unique to the
low-resource language is artificially inflated.
For the case of Bavarian, we show that, af-
ter training, the language model has learned
the unique construction and that native speak-
ers judge its output as more natural. Our pilot
study suggests that construction-based mitiga-
tion of translationese is a promising approach.
Code and artifacts are available at https:
//github.com/cisnlp/BayernGPT.

1 Introduction

The multilingual capabilities of large language
models (LLMs) are impressive for medium- and
high-resource languages, but they are still poor for
low-resource languages for which the size of the
available text corpus is small. While LLMs have re-
cently improved their performance on low-resource
comprehension tasks, little progress has been made
on generation since the training demands for ef-
fective generation are much higher than those for
comprehension. Bavarian is a low-resource lan-
guage that instantiates this state of affair: some
large state-of-the-art models’ performance is de-
cent for comprehension of Bavarian, but this does
not carry over to generation.

Our hypothesis is that there are at least two differ-
ent problems with limited generation capabilities
of LLMs: lack of knowledge and translationese
behavior.

*Equal contribution.

Lack of knowledge mainly results in poor lexi-
cal choices. For example, our trained model (see
below) translates German “Kuchen” ‘cake’ not as
the correct Bavarian “Kuacha”, but as “Kuchel”
‘kitchen’. There is some promising work that ad-
dresses the lack of knowledge problem by prompt-
ing the LLM with relevant dictionary entries in
in-context learning.

However, apart from the lack-of-knowledge
problem, there is a second problem with the Bavar-
ian generations of language models: translationese.

Translationese is a particular problem in ma-
chine translation with language models. The LMs
tend to stick closely to the source sentence, espe-
cially when translating from a high-resource lan-
guage to a closely related low-resource language
as is the case for Standard German and Bavarian.
Bavarian and Standard German are in a state of
diglossia where Bavarian speakers produce forms
of Bavarian that are closer to Standard German in
more formal contexts and forms of Bavarian that
can be completely incomprehensible to Standard
German speakers in informal contexts.

This means that the Bavarian translationese gen-
erated by LMs is not necessarily incorrect: it may
be appropriate Bavarian for certain contexts of lan-
guage use. But clearly, the LMs do not have full
competence of the Bavarian language if all they do
is produce translationese.

In this paper, we take a small step towards ad-
dressing the translationese problem by training
LMs to generate a Bavarian construction that does
not occur in Standard German. This reduces the
translationese property of what the LM generates
because the output has clear indicators of being
“genuine” Bavarian.

Specifically, we experiment with the article redu-
plication construction in Bavarian:

Bavarian Ea woa friara a recht a fidel Buam.
Gloss He was formerly a RD-modifier a jolly boy.
translation He used to be quite a jolly boy.

114

https://github.com/cisnlp/BayernGPT
https://github.com/cisnlp/BayernGPT


With certain reduplication modifiers (RD modi-
fiers), in particular with “recht”, “so” and “ganz”,
this Bavarian construction consists of the reduplica-
tion of the indefinite article, with the RD modifier
occurring between the two indefinite articles.

We show that a model trained with data syn-
thetically generated to contain article reduplica-
tion learns to produce the construction, reducing
the translationese character of the language model
translations.

To summarize, our method translates an origi-
nally Bavarian corpus to German using a state-of-
the-art LM, resulting in an “unmodified” parallel
corpus; generates a “modified” parallel corpus by
semi-automatically editing parallel sentences (such
that the Bavarian sentence contains a Bavarian con-
struction and the German sentence is modified to
reflect that change) and trains LMs on modified and
unmodified corpora. We also create two evaluation
datasets, one for sentences, one for noun phrases.
We manually evaluate the performance of the two
trained models. We find that the model trained on
modified data successfully produces article redu-
plication and its output data is perceived as less
“translationese” than the generations of the model
trained on unmodified data.

2 Related Work

Multilingual language models have emerged as the
dominant paradigm for supporting low-resource
languages. These models range from smaller ar-
chitectures such as multilingual BERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020),
mBART (Liu et al., 2020), mT5 (Xue et al., 2021),
and Glot500 (Imani et al., 2023), to large-scale
models including BLOOM (Scao et al., 2022),
Aya (Üstün et al., 2024), MaLA500 (Lin et al.,
2024a), EMMA500 (Ji et al., 2024), and Llama
3 (Dubey et al., 2024). Trained jointly on data from
a wide range of languages, these models demon-
strate strong cross-lingual transfer and generaliza-
tion capabilities, offering a promising foundation
for low-resource language applications.

Despite this progress, generative performance on
low-resource languages remains limited – particu-
larly for tasks such as machine translation (MT),
which are highly sensitive to the quantity and qual-
ity of available training data.

MT has thus become a central benchmark for
evaluating the generative abilities of multilingual
models. In the context of large language models,

recent efforts have explored two major directions:
supervised fine-tuning on parallel corpora (Yang
et al., 2023; Xu et al., 2023, 2024; Lin et al.,
2024b; Alves et al., 2024; Rei et al., 2024), and in-
context learning methods that incorporate external
linguistic resources – such as grammar books and
bilingual dictionaries – without modifying model
weights (Lu et al., 2023; Tanzer et al., 2024; Zhang
et al., 2024b,a; Pei et al., 2025).

These challenges are particularly pronounced for
extremely low-resource languages such as Bavar-
ian. Due to very limited annotated data, Bavarian
remains largely excluded from multilingual pre-
training. Her and Kruschwitz (2024) introduced
one of the first Bavarian–German MT systems,
demonstrating that translation between closely re-
lated language varieties can yield relatively strong
BLEU scores. To further enhance translation
quality while minimizing artifacts such as transla-
tionese, they employed back-translation (Sennrich
et al., 2016) to generate a compact but effective
set of synthetic training examples. However, their
approach depends solely on WikiMatrix (Schwenk
et al., 2021), a parallel corpus known to be noisy
and dominated by simplistic sentence structures,
which limits its ability to robustly capture more
nuanced translation characteristics.

One such characteristic is translationese – a lin-
guistic phenomenon that arises when translated text
retains unnatural or non-native structures. This arti-
fact is especially problematic for low-resource lan-
guages (Graham et al., 2020). To address it, Chowd-
hury et al. (2022) proposed removing translationese
signals implicitly encoded in vector embeddings,
leading to improved performance on natural lan-
guage inference tasks. Similarly, Wein and Schnei-
der (2023) employed Abstract Meaning Represen-
tation (AMR) to abstract away surface-level fea-
tures and suppress translationese. While effective,
these techniques do not explicitly assess whether
the resulting text resembles naturally written lan-
guage. More recently, Jalota et al. (2023) evaluated
the success of style transfer techniques in mitigat-
ing translationese by analyzing classifier perfor-
mance before and after post-editing. Kunilovskaya
et al. (2024) further explored the use of GPT-4 to
mitigate translationese by incorporating linguistic
cues into the prompting context. Complementar-
ily, Kuwanto et al. (2024) introduced a storyboard-
based data collection method, in which native
speakers generate descriptions from visual prompts
without access to the source text—resulting in
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outputs that are more fluent and natural. How-
ever, these methods still fall short of enabling
large language models to directly produce fluent,
translationese-free output for truly low-resource
languages, such as Bavarian.

3 Training

3.1 Data Preparation
Due to the scarcity of high-quality Bavar-
ian–German parallel corpora, we use GPT-4 to
translate the Bavarian portion of the Wikipedia1

into English and standard German. We use lan-
guage identification (Kargaran et al., 2023) to filter
out noise, such as when the model partially trans-
lates the source or directly copies it. From the
resulting 22,564 Bavarian-English-German paral-
lel documents, we reserve 1,000 for validation and
another 1,000 for testing, with the remainder used
for training. To create a sentence-level corpus, we
segment the documents using line breaks and re-
move duplicate entries.

To reduce translationese effects and encour-
age native-sounding Bavarian output, we augment
the original corpus using a rule-based algorithm
grounded in syntactic analysis. We employ spaCy
to parse the Standard German sentences and iden-
tify noun phrase structures of the form indefinite
article + adjective + noun. These constructions
serve as reliable anchors for inserting article redu-
plication in the aligned Bavarian sentence.

The algorithm first scans each tokenized Ger-
man sentence for sequences where an indefinite
article (e.g., ein, eine) is immediately followed by
an adjective and a noun. To avoid semantically
awkward or ungrammatical insertions, the algo-
rithm filters out adjectives derived from nationali-
ties (e.g., deutsch, österreichisch). For every such
match, we check whether the corresponding Bavar-
ian sentence has an equivalent syntactic pattern
beginning with a Bavarian indefinite article (e.g., a,
oa).

If the alignment is valid, we apply a transfor-
mation that inserts a reduplicated indefinite article
separated by an RD modifier (randomly chosen
from recht, so, ganz) between the original article
and adjective. To maintain semantic alignment, the
German counterpart is modified by inserting the
intensifier sehr between the article and adjective.

This pipeline was run over sentence-aligned data
and executed only where the token count matched

1dumps.wikimedia.org/barwiki

between the Bavarian and German sides, ensuring
high-precision transformations. Table 1 shows a
representative example.

Before article reduplication transformation

Bavarian: A heiliga Lebnsbaam
German: Ein heiliger Lebensbaum

After article reduplication transformation

Bavarian: A recht a heiliga Lebnsbaam
German: Ein sehr heiliger Lebensbaum

Table 1: Example of article reduplication transformation
in Bavarian–German parallel data.

3.2 Model Training
We develop a German-to-Bavarian machine transla-
tion system by instruction-tuning the Llama 3.1
8B Chat model (Dubey et al., 2024).

To accomplish this, we design a structured
prompt format, as shown in Table 2. In this for-
mat, [DEU_TEXT] represents the input German
sentence, and [BAR_TEXT] corresponds to the ex-
pected Bavarian translation. During training, both
sentences are provided to the model, while at in-
ference time, the model generates [BAR_TEXT]
from the input German sentence.

To enable efficient fine-tuning, we use
LoRA (Hu et al., 2022). The model is fine-tuned
with a learning rate of 1× 10−4, weight decay set
to 0.1, and the LoRA rank configured to 32.

We train two machine translation models:

• m-base: Trained on the original parallel
dataset.

• m-aug: Trained on the dataset augmented
with rule-based transformations.

4 Evaluation

To assess the effectiveness of our article redupli-
cation augmentation strategy, we conducted both
sentence-level and noun phrase–level (NP) eval-
uations using human judgments from two native
Bavarian speakers (two of the authors of this pa-
per).

4.1 Sentence-Level Evaluation
We used a test set of 141 Bavarian–Standard Ger-
man sentence pairs which received the same aug-
mentation as the training data of m-aug. Standard
German inputs were translated into Bavarian by
both m-base (baseline) and m-aug (augmented).
The evaluation focused on three criteria:
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<|start_header_id|>user<|end_header_id|>
Translate the following text from German to Bavarian.
German: [DEU_TEXT]
Bavarian: <|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
[BAR_TEXT]<|eot_id|>

Table 2: Prompt format used for instruction-tuned machine translation from German to Bavarian.

• Correct application of article reduplication
– Is article reduplication used where grammat-
ically appropriate?

• Idiomatic and grammatical correctness – Is
the output of m-aug more idiomatic and gram-
matically natural and correct than m-base?

• Pragmatic appropriateness – Is article redu-
plication contextually suitable within the sen-
tence?

The importance of pragmatic appropriateness
can be illustrated by the following example.

Bavarian (with article reduplication):
In da Eingobaauffordarung kennt ma an
Untaschied zwischn Root und andan Nutzan
duach a ganz a obschliaßends Rautzeichen (#)
stott des Dollarzeichens ($).

Standard German:
In der Eingabeaufforderung erkennt man einen
Unterschied zwischen Root und anderen Nutzern
durch ein sehr abschließendes Rautezeichen (#)
anstelle des Dollarzeichens ($).

English translation:
In the command prompt, one can recognize a dif-
ference between Root and other users by a very
final hash sign (#) instead of the dollar sign ($).

The emphatic use of article reduplication (a ganz
a obschliaßends Rautzeichen) is unnatural and non-
idiomatic in this technical context. As a result, it
was evaluated as pragmatically inappropriate, even
though the grammatical structure is correct.

The resulting outputs were evaluated by two na-
tive speakers. The evaluation regarding pragmatic
appropriateness was conducted on the 70 sentences
where reduplication was applied. The overall inter-
annotator agreement was 100%, indicating high
reliability of the judgments.

m-aug failed to apply article reduplication where
grammatically possible in only 12 cases, and in just
19 cases the translation of m-base was assessed as
more grammatically correct and idiomatic. How-
ever, regarding pragmatic appropriateness, there is
a higher number of questionable cases. This is pri-
marily due to the fact that the augmented training
data was not filtered for pragmatic appropriateness,

Category Count Percentage

Reduplication correctly applied 70 49.65%
Not applicable (grammatically) 59 41.84%
Reduplication missed (applicable) 12 8.51%

Total 141 100.00%

Table 3: Sentence-level evaluation: Article reduplica-
tion accuracy.

Comparison Result Count Percentage

m-aug sentence is better 103 73.05%
Sentences are equivalent 19 13.48%
m-aug sentence is worse 19 13.48%

Total 141 100.00%

Table 4: Sentence-level evaluation: Idiomatic and gram-
matical correctness comparison (m-base vs m-aug).

potentially including instances where article redu-
plication is not suitable. As such, m-aug provides a
baseline that could be further improved with more
appropriate training data.

Evaluation Result Count Percentage

Reduplication is pragmatically correct 42 60.00%
Reduplication is questionable 28 40.00%

Total 70 100.00%

Table 5: Sentence-level evaluation: Pragmatic appropri-
ateness of reduplication.

4.2 Noun Phrase–Level Evaluation

Given that article reduplication targets noun
phrases, we conducted a focused evaluation. A
test set of 200 Standard German NPs in the struc-
ture indefinite article + intensifier + adjective +
noun was generated using random combinations of
adjective + noun from the Wikipedia corpus. The
translations of both models were evaluated by a
native speaker. This evaluation focused on whether
the article reduplication was applied accurately and
whether the idiomatic and grammatical correctness
was improved compared to the NPs produced by
the original Model A.
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Category Count Percentage

Reduplication applied 200 100%
Reduplication not applied 0 0%

Total 200 100%

Table 6: NP-level evaluation: Article reduplication ac-
curacy.

Comparison Result Count Percentage

NP of Model B is better 189 94.5%
NP of Model B is worse 11 5.5%

Total 200 100%

Table 7: NP-level evaluation: Idiomatic and grammati-
cal correctness (Model A vs. B).

These results indicate that Model B systemati-
cally learned the reduplication pattern within the
structure indefinite article + intensifier + adjective
+ noun, producing outputs that are both idiomatic
and grammatically well formed.

To assess whether the model overgeneralizes ar-
ticle reduplication, we conducted a complemen-
tary evaluation using 200 Standard German noun
phrases of the form indefinite article + adjective +
noun, i.e., without an intensifier. This test aimed to
determine if the model incorrectly applies redupli-
cation to structures where it is not licensed. Only 4
out of 200 outputs contained article reduplication
without an intensifier present. Interestingly, these
instances were all triggered by the word ganz used
adjectivally, as in the Standard German phrase ein
ganzer Ortsteil, translated in Bavarian as a ganza a
Orstei (gloss: a whole subdistrict). In these cases,
ganz, previously encountered as an RD-modifier in
the training data, was likely misinterpreted by the
model as licensing reduplication, even when used
adjectivally.

Category Count Percentage

Reduplication falsely applied 4 2%
Reduplication not applied 196 98%

Total 200 100%

Table 8: NP-level evaluation: Reduplication overgener-
alization in NPs without intensifiers.

These findings suggest that the model applies
article reduplication in a targeted and controlled
manner, largely avoiding false positives.

5 Conclusion

We propose a method to remedy the problem of
translationese when translating to low-resource lan-
guages and apply it to Bavarian. Our approach
synthetically creates a training set in which the fre-
quency of a construction unique to the low-resource
language is artificially inflated. We show that a
model trained with this synthetic data produces out-
put with this construction and that it is perceived
as being more natural than the baseline.

Limitations

Our pilot study has numerous limitations.

• We know of no linguistic studies that quantify
the impact of constructions on the “natural-
ness” of linguistic production. Other factors
may also have to be addressed to produce fully
natural output.

• For a given pair of high resource and low re-
source languages, there may be no construc-
tions that meet our selection criterion: that is,
they are relatively frequent in the low-resource
language and do not occur at all in the high-
resource language.

• The construction we chose is easy to match
and to generate. For more complex con-
structions, there is a risk that the modified
low-resource sentences would not be correct,
thereby introducing a new source of errors.

• We only implemented a baseline method for
changing source and target languages. There
are several ways this baseline method can be
improved, e.g., by trying to eliminate the prag-
matically inappropriate language we detected
in the experiments.

• Our evaluation is very basic. Due to the diffi-
culty of finding native speakers of Bavarian,
two of the authors (who are native speakers of
Bavarian) performed the annotation.
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Abstract

Large language models (LLMs) trained on mas-
sive multilingual datasets hint at the formation
of interlingual constructs–a shared region in
the representation space. However, evidence
regarding this phenomenon is mixed, leaving
it unclear whether these models truly develop
unified interlingual representations, or present
a partially aligned constructs. We explore 31
diverse languages varying on their resource-
levels, typologies, and geographical regions;
and find that multilingual LLMs exhibit incon-
sistent cross-lingual alignments. To address
this, we propose an interlingual representation
framework identifying both the shared inter-
lingual semantic region and fragmented com-
ponents, existed due to representational limita-
tions. We introduce Interlingual Local Overlap
(ILO) score to quantify interlingual alignment
by comparing the local neighborhood structures
of high-dimensional representations. We uti-
lize ILO to investigate the impact of single-
language fine-tuning on the interlingual align-
ment in multilingual LLMs. Our results indi-
cate that training exclusively on a single lan-
guage disrupts the alignment in early layers,
while freezing these layers preserves the align-
ment of interlingual representations, leading to
improved cross-lingual generalization. These
results validate our framework and metric1 for
evaluating interlingual representation, and fur-
ther underscore that interlingual alignment is
crucial for scalable multilingual learning.

1 Introduction

Interlingua, a universal language-neutral represen-
tation, is pivotal for cross-lingual generalization.
Grounded in both linguistic theories and computa-
tional practice, this concept aims to treat languages
equitably and capture universal semantic structures
independent of any specific language (Richens,
1958; Vauquois, 1968; Schubert, 1989; Rayner

1https://github.com/HLTCHKUST/interlingua
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Figure 1: Interlingual overlaps transcending familial and
regional boundaries in the intermediate layer, observed
in a t-SNE visualization on the middle layer (16) of Aya
Expanse (8B) hidden-state embeddings (HRLs in bold).

et al., 2010a; Johnson et al., 2017). The advent
of LLMs trained on extensive multilingual cor-
pora suggests the potential of interlingual con-
structs naturally emerging without any explicit ob-
jectives (Conneau et al., 2020a; Chang et al., 2022;
Moschella et al., 2023; Wendler et al., 2024). This
is attributed to their ability to map representations
from different languages into a shared multilingual
representation space (Pires et al., 2019; Libovickỳ
et al., 2020; Conneau et al., 2020b; Muller et al.,
2021; Zhao et al., 2024; Zeng et al., 2025).

However, evidence remains mixed on whether
they converge all language-specific representations
into a unified single interlingual representation
space, and raising questions about whether LLMs
can retain the interlingual representations in diverse
linguistic typology, geographical distribution, and
resource-level settings. It is unclear whether LLMs
form a unified interlingual construct or if fragmen-
tation occurs across different language groups. A
critical question persists: Do LLMs develop a uni-
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versal interlingua representation, or present a par-
tially aligned construct toward certain languages?

Our preliminary experiments reveal that LLMs
represent parallel semantic input differently across
languages. Notably, their neuron activations align
better within high-resource pairs and the same fa-
milial or regional roots, suggesting that LLMs ex-
hibit varying alignment consistencies across differ-
ing language groups. Building upon these insights,
we introduce a novel interlingual representation
framework aimed at enhancing the understanding
of how LLMs encapsulate interlingual semantics.
Our framework identifies both the core region that
captures shared semantics across languages, and
addresses fragmented components due to represen-
tational limitations underscoring the importance of
interlingual alignment across diverse linguistic con-
texts. With the framework, we introduce a novel
metric, Interlingual Local Overlap (ILO), which
quantifies intrinsic interlingual alignment consis-
tencies by comparing the local neighborhood struc-
tures of high-dimensional representations. Inspired
by graph theory (Guimera and Amaral, 2005; Free-
man et al., 2002; Borgatti and Everett, 2006), the
ILO score is derived from the harmonic mean of
two measurements, on the extent to which represen-
tations of a given language within the multilingual
space: individually neighboring diverse other lan-
guages (bridge) and collectively connect diversely
with other languages (reachability).

We demonstrate the effectiveness our framework
and metric through an in-depth analysis of LLMs’
internal states on a multilingual mathematical rea-
soning task, chosen for its language-agnostic prop-
erties. We first observe that training multilingual
LLMs on a single-language causes catastrophic
forgetting (McCloskey and Cohen, 1989; French,
1999; Biesialska et al., 2020) degrading their cross-
lingual generalization (Liu et al., 2021; Winata
et al., 2023). These degradations are correlated
with the disruption of interlingual alignment that
originate in the early layers of LLMs. To ensure the
preservation of interlingual alignments, we adopt a
strategy of selectively-freezing parameters during
the single-language fine-tuning. Evaluations using
ILO highlight that this approach effectively safe-
guards the interlingual alignments across all layers
and maintains the levels observed prior, which re-
sults in significant improvements in cross-lingual
generalization. Ultimately, our findings underscore
the pivotal role of interlingual semantic alignment
in the pursuit of scalable multilingual learning.

Properties Details

Resources High: 18 / Low: 13
Families Indo-European: 18 / Austronesian: 7 / Sino-

Tibetan: 2 / Japonic: 1 / Niger-Congo: 1 /
Dravidian: 1 / Kra-Dai: 1

Regions Europe: 14 / Southeast Asia: 8 / South
Asia: 5 / East Asia: 3 / Africa: 1

Table 1: Distribution of the 31 languages across families,
regions, and resource-levels in our analysis, sampled
from Flores-200 (see Appendix A for complete details).

2 Related Works

Syntactical Interlingua Representations Inter-
lingua has played a huge role throughout the de-
velopment of NLP. Various representations of in-
terlingua have been developed along with the ad-
vancement of NLP. In the early years, a logi-
cally formalized interlingua representation for me-
chanical translation has been proposed (Richens,
1958; Vauquois, 1968). In the early days, inter-
lingua is presented as delexicalized grammar ex-
tracted from the original text that can be mapped
to other language interlingua delexicalized gram-
mar. In this case, each language has its own in-
terlingua form which can then be mapped into
other language with a dictionary lookup (Richens,
1958; Rayner et al., 2010b). A more sophisti-
cated method involves interlingua representation
as a common abstract syntax that are shared across
all languages (Rayner et al., 2008; Kanzaki et al.,
2008). This method has been applied in various sys-
tems such as Spoken Languge Translator (Rayner,
2000), PARC’s XLE (Riezler et al., 2002), and
Verbmobil (Wahlster, 2013). Despite its advance-
ment, this method tends to be incomplete and diffi-
cult to scale to new languages (Ranta et al., 2020).

Semantic Interlingua Representations With
the rise of statistical machine translation (Brown
et al., 1990; Och et al., 1999; Lopez, 2008)
and cross-lingual alignment (Brown et al., 1991;
Och and Ney, 2003; Mikolov et al., 2013;
Miceli Barone, 2016; Artetxe and Schwenk, 2019),
methods for representing interlingua using latent
semantic vectors become more prominent (Fung
and Chen, 2004; Fung and Mckeown, 1994; Fung
and Church, 1994; Seneff, 2006). Methods involv-
ing specialized objectives to construct better se-
mantic interlingua representations have also been
proposed (Lu et al., 2018; Al-Shedivat and Parikh,
2019; Zhu et al., 2020; Wei et al., 2021; Feng et al.,
2022; Cahyawijaya et al., 2023, 2024b). In re-
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(b) Late (Layer 32)

Figure 2: Hidden-state embeddings of Aya Expanse (8B) projected in t-SNE dimensions (HRLs in bold). In these
early and late layers, the representations cluster w.r.t resource levels and linguistic features, and minimally overlap.

cent years, various studies have showcased that
current LLMs inherit such interlingua represen-
tation (Muller et al., 2021; Chang et al., 2022;
Moschella et al., 2023; Zhao et al., 2024; Wendler
et al., 2024) which enables LLMs to process sen-
tences with a single shared representation across
different languages. However, the characteristics
of this representation in LLMs remain unexplored.
This research aims to explore the extent of this inter-
lingua representation offering a novel perspective
on interlingual representation in LLMs.

3 Interlingual Representations in
Multilingual LLMs

To explore the emergence of interlingual represen-
tation in LLMs, we assess the semantic alignment
of their hidden states to understand whether the
latent structures capture universal semantics across
languages. We presume that multilingual LLMs ad-
here to a “first align, then predict” pattern (Muller
et al., 2021) and that their aligned states represent
semantically similar features across languages. Ide-
ally, these features map parallel semantic inputs
from many languages to similar vector representa-
tions that overlaps in the high-dimensional space.

Consider the high-dimensional representation
space H ⊆ Rd learned by LLMs, where d is the
model’s hidden-states dimension. For an input x
in language ℓ, the model uses language-specific
encoding functions fℓ(x) ∈ H. Here,H serves as
a shared multilingual space where different encod-

ing functions fℓ(x) align semantic and syntactic
patterns across languages. Building on this, we de-
fine semantic alignment α of representations from
parallel inputs x and x′ in languages ℓ and ℓ′ as:

α(ℓ, ℓ′) = E(x,x′)∼Dℓ,ℓ′
[
ϕ
(
fℓ(x), fℓ′(x

′)
)]

.

Here, ϕ denotes a similarity function and Dℓ,ℓ′ is
the distribution of semantically equivalent input
pairs. A higher α(ℓ, ℓ′) indicates better alignment.

3.1 Multilingual Shared Representation Space
We posit an interlingual representation framework
that incorporates an intricate internal structure in-
fluenced by inherent model representational limita-
tions. This framework highlights that the quality of
alignment among representations may vary, leading
to latent discrepancies that may stem from differ-
ences in resource availability or language-specific
properties. Formally, we conceptualize the repre-
sentations from various languages as falling into
one of two qualitative regions ofH:

H ⊃Mc ∪
⋃

ℓ∈F
Mfℓ .

The componentMc is an aligned core interlingual
region, that predominantly encapsulates shared se-
mantics across languages. In contrast, the frag-
mented Mf represent regions where alignment
withMc is challenging. This framework refines
the “first align, then predict” paradigm, that while
LLMs align inputs from languages to a shared in-
terlingual region, some remain partially aligned.
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Figure 3: Comparisons of per-layer ANC scores on Aya Expanse (8B) with highlights on pairs w.r.t their resource-
levels. Pairs of HRLs demonstrate strong correlations, while pairs involving LRLs exhibit lower ANC scores.

3.2 Core Interlingual Region

Conceptually, we defineMc as a region that pre-
dominantly encodes universal semantic structures
and syntactic abstractions. By positioning multilin-
gual representations in this shared region, LLMs
effectively learn interlingual semantic representa-
tions that facilitate multilingual performance, e.g.
through emphasizing semantics while minimizing
language signals, retaining them only for language-
specific predictions. This is where key interlingual
alignments form, enabling LLMs to leverage uni-
versal semantic patterns for multilingual tasks.

3.3 Fragmented Region

While some languages enjoy substantial overlaps
inMc, the less-aligned others occupy fragmented
regionMf as they reflect model’s representational
limitation to embed the representation from these
languages intoMc. Factors such as sparse train-
ing data, typological distance, and morphological
complexity might lead to partial alignment of these
representations. Consequently, representations in
Mf tend to be more weakly aligned to the univer-
sal semantics encoded byMc. This misalignment
can degrade multilingual performances: tasks that
rely on inputs from the less-aligned languages may
exhibit lower performance since they draw from
semantics that loosely intersects withMc.

4 Semantic Alignment of Multilingual
LLMs Representations

We explore the presence and characteristics of
the componentsMc andMf within multilingual
LLMs through assessing the semantic alignment be-
tween its hidden-states, derived from parallel inputs

on various languages. Initially, we project LLMs’
internal hidden-state embeddings into a 2D space
to broadly assess proximities of parallel language
representations and observe whether parallel in-
put pairs in different languages clusters or overlaps.
We then measure the cross-lingual alignment across
the parallel hidden-state embeddings through neu-
ron activation consistency w.r.t their resource-level,
linguistic features, and geographical region.

We sample 31 diverse language subsets of Flores-
200 (Team, 2024) varied on its resource-level, re-
gion, and family (Eberhard et al., 2024) (see Ta-
bles 1 and A1) as proxies to typological and mor-
phological features (Georgi et al., 2010). Over
experiments, we assess several multilingual LLMs:
Aya Expanse (8B) (Dang et al., 2024), Llama-3.1
(8B) (Dubey et al., 2024), Gemma-2 (9B) (Team
et al., 2024), Qwen-2.5 (7B) (Yang et al., 2024).
We observe a universal phenomenon from these
models, as described in the following sections. We
put the further comparison details in Appendix D.

4.1 Inherent Regional Clustering with
Mid-Layers High-Resource Alignment

We employ t-SNE (Van der Maaten and Hinton,
2008) to project LLMs’ hidden-state embeddings
into a 2D space and assess the proximities across
language clusters. As t-SNE retains local neighbor-
hood structures, overlaps in this 2D space imply
closeness in the original high-dimensional space.
In scenarios where representations are interlin-
gually aligned, their nearest neighbors should com-
prise of multiple languages. We visualize the cross-
lingual comparisons on the early, middle, and late
layers of Aya Expanse (8B) in Figures 1 and 2,
and others in Appendix C.2. We ran t-SNE with
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Figure 4: Comparisons of per-layer ANC scores on Aya Expanse (8B) with highlights on pairs w.r.t their linguistic
region and family. Consistently stronger alignments are observed between within-group mean correlations.

perplexity values of 5, 15, 30, 50, and observe con-
sistent trends. Results for perplexity 15 are shown
here; others are in Appendix F.1.

The t-SNE visualizations reveal distinct struc-
tural patterns across early (layer 0), intermedi-
ate (layer 16), and late (layer 32) layers (see Fig-
ures 2a, 1, 2b, respectively). In early and late lay-
ers, parallel language representations cluster ac-
cording to resource levels and linguistic features,
with minimal overlap. In contrast, the intermedi-
ate layer shows interlingual overlaps that transcend
familial and regional boundaries, such as English
and Russian overlapping with Indonesian, and Chi-
nese with French. While overlaps mainly involve
high-resource languages (HRLs), low-resource lan-
guages (LRLs) also exhibit overlaps, often due to
regional factors. Meanwhile, some parallel repre-
sentations remain fragmented outside these over-
laps. These intermediate layer observations show
that the quality of alignment varies. We further in-
vestigate the interactions in high-dimensional space
to understand the alignment properties, in order to
complement these low-dimensional observations.

4.2 Cross-lingual Alignments Depend on
Resource-level and Linguistic Properties

Measurement. We further quantify the align-
ment characteristics by measuring neuron activa-
tion alignment for semantically identical inputs
across different ℓ through Average Neuron-wise
Correlation (ANC) (Del and Fishel, 2022). The
ANC score in a certain LLM layer is defined as:

ANC(ℓ, ℓ′) =
1

d

∑

i∈d
corr

(
f i
ℓ(x), f

i
ℓ′(x

′)
)
,

with f i
ℓ(x) as the activation of i-th neuron for lan-

guage ℓ and corr denotes Pearson correlation be-
tween corresponding activations in ℓ and ℓ′. We
visualize layer-wise ANCs from Aya Expanse in
Figure 3 and 4, and others in Appendix B.

Findings. We find the “first align, then predict”
patterns varies across language pairs. Notably,
pairs of HRLs demonstrate strong correlations,
while pairs involving LRLs exhibit lower scores
(see Figure 3). Similarly, a consistent gap persists
between within- and cross-group mean correlations,
indicating stronger alignment within familial and
regional language groups. Detailed analysis in Ta-
ble A2 illustrates that most correlated pairs among
LLMs are similar on their HRLs. Despite differing
rankings, instruction-tuned LLMs exhibit similar
sets of top language pairs with its pre-trained coun-
terparts. These significant alignment gaps in cross-
lingual correlations indicates latent discrepancies
between semantically identical representations that
stem from sparse data, typological distance, and
the morphological complexity of languages.

5 Intrinsic Interlinguality of LLMs

In Section 4, we empirically demonstrated that
multilingual LLMs’ behavior aligns closely with
the theoretical framework introduced in Section 3.
Building upon these theoretical insights and empir-
ical validations, we propose the Interlingual Local
Overlap (ILO) score to measure the consistency
of interlingual alignment in multilingual LLMs.
Specifically, ILO score considers the local neigh-
borhoods of models’ hidden-state embeddings of
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Dataset Usage # Lang # Sample

Flores-200 Analysis 31 30,907
GSM8KInstruct Training 10 73,559
MGSM Evaluation 11 2,750

Table 2: Dataset statistics. “# Lang” indicates the num-
ber of languages represented in the dataset, and “# Sam-
ple” signifies the total sample size included.

linguistically-diverse semantically-parallel inputs,
to indicate and quantify their intrinsic interlingual
alignment in the high-dimensional space.

5.1 Interlingual Local Overlap Score

Given N input samples from set of languages in
L, {xℓ

i}ℓ∈L,i∈N , each sample xℓ
i is embedded in

model space H via fℓ(x). Let’s denote N (xℓ
i) as

the set of k-nearest neighboring languages of xℓ
i ,

defined as N (xℓ
i) = {ℓ′ ̸= ℓ : xℓ′

j ∈ NNk(x
ℓ
i)}.

Bridge. The bridge score Bℓ determines the de-
gree of local interlingual mixing, analogous to the
participation coefficient in graph theory, which
assesses a node’s link distribution across mod-
ules (Guimera and Amaral, 2005; Mijalkov et al.,
2017). Bridge score measures the proportion of
samples whose k-nearest neighbors in H include
at least τ unique other languages, formally:

Bℓ =
1

N

∑

i∈N
1
(
|N (xℓ

i)| ≥ τ
)

A score of ≈ 1 indicates that samples from ℓ con-
sistently neighboring with diverse other languages.

Reachability. Inspired by classical degree of cen-
trality in network analysis (Freeman et al., 2002;
Borgatti and Everett, 2006), which quantifies a
node’s connections, we define reachability score
to measure cross-lingual connectivity of ℓ repre-
sentations. We view the multilingual space H as
an undirected graph with each hidden-state embed-
dings as nodes linked to their k-nearest neighbors.
The reachability score Rℓ quantifies the connectiv-
ity degree of ℓ representations , defined as:

Rℓ =
1

|L| − 1

∣∣∣∣
⋃

i∈N
N (xℓ

i)

∣∣∣∣

Rℓ enumerates the fraction of unique languages
encountered across all samples of ℓ in L, excluding
itself. A high Rℓ suggests that ℓ representations
connect extensively within the multilingual space.

Interlingual Local Overlap (ILO). We then de-
fine an interlingual local overlap score ILOℓ to
quantify the holistic interlingual alignment of lan-
guage ℓ withinH, formally:

ILOℓ = 2 · Bℓ ·Rℓ

Bℓ +Rℓ

with the harmonic mean emphasizes the require-
ment of strong assessments in both the mixing and
connectivity for the representations of ℓ to be con-
sidered as locally overlapping with other languages.
Consequently, aggregated ¯ILOL of high ILOℓ in

¯ILOL =
1

|L|
∑

L
ILOℓ,

signals that multilingual LLMs effectively encode
all of the diverse language inputs as aligned inter-
lingual semantics within those in L.

Preserving Interlinguality of LLMs. We
demonstrate how ILO illuminate the performance
variations in cross-lingual transfer and concurrently
underscore the critical role of semantic interlingual
alignment in multilingual LLMs. Cross-lingual
transfer capitalizes on shared features to enhance
multilingual capabilities (Philippy et al., 2023),
typically involving single-language fine-tuning
on a source language and directly applying it to
target languages without further tuning. Despite
its success, LLMs can suffer from catastrophic
forgetting (McCloskey and Cohen, 1989; French,
1999; Biesialska et al., 2020), where their
cross-lingual generalization may degrade (Liu
et al., 2021; Winata et al., 2023). Research
suggests LLMs align multilingual inputs into
language-independent representations, then revert
them back to the query’s original language (Muller
et al., 2021; Zhao et al., 2024). Building on these
insights, we conduct an experiment to preserve
interlingual alignments by employing a selective
freezing strategy, where we partially freeze
parameters critical to language alignment. Our aim
is to assess the potential mitigation of cross-lingual
disruption, evaluated through ILO scores.

5.2 Experiment Design
To preserve the aligned semantics within multilin-
gual model space, we experiment on freezing the
parameters of the early layers on the first 4, 8, 12,
and 16 layers. Additionally, we keep the token em-
bedding, final layer normalization, and language
modeling head (output projection layer) fixed. We
identify these parameters as the language aligners.
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Accuracy Average
Method Training

languages ben tha* swh tel* jpn zho deu fra rus spa eng All XL

Pre-trained mixed 11.6% 12.0% 7.2% 0.0% 10.4% 8.8% 16.0% 12.4% 14.0% 11.6% 17.6% 10.3% -

Fine-tuning

ben 23.2% 4.8% 1.2% 3.2% 10.0% 9.6% 10.8% 13.6% 11.6% 14.8% 12.8% 10.5% 9.2%
tha* 1.6% 32.8% 4.4% 1.6% 14.4% 14.8% 17.2% 19.2% 18.0% 20.4% 25.6% 15.5% 13.7%
swh 3.2% 6.4% 30.8% 2.8% 11.2% 12.4% 20.4% 19.6% 14.8% 22.4% 26.8% 15.5% 14.0%
jpn 3.6% 7.2% 2.8% 1.2% 32.8% 21.6% 19.6% 18.0% 18.4% 22.4% 28.8% 16.0% 14.4%
zho 0.8% 7.2% 2.4% 1.6% 22.0% 34.8% 19.6% 19.6% 21.6% 21.2% 27.6% 16.2% 14.4%
deu 8.0% 16.4% 8.0% 4.0% 19.2% 19.6% 37.6% 34.4% 23.6% 28.8% 36.4% 21.5% 19.8%
fra 4.8% 11.6% 4.0% 3.2% 16.0% 16.8% 31.6% 34.4% 25.6% 34.4% 35.6% 19.8% 18.4%
rus 4.0% 14.0% 4.0% 1.2% 17.2% 16.4% 29.6% 28.4% 34.0% 30.0% 26.4% 18.7% 17.1%
spa 4.8% 16.0% 2.8% 2.4% 14.4% 19.6% 28.4% 30.8% 31.2% 38.4% 38.4% 20.7% 18.9%
eng 6.4% 14.4% 6.0% 2.4% 18.8% 24.4% 37.2% 27.2% 33.6% 33.2% 43.2% 22.4% 20.4%

Selective
Freezing

ben 26.4% 12.8% 11.6% 14.4% 13.6% 14.8% 19.6% 20.0% 20.0% 17.6% 17.2% 17.1% 16.2%
tha* 14.8% 34.0% 12.0% 12.4% 15.6% 21.6% 25.2% 22.0% 20.4% 24.4% 32.4% 21.3% 20.1%
swh 9.2% 16.4% 22.8% 5.6% 14.0% 12.4% 18.4% 23.6% 19.2% 20.4% 27.6% 17.2% 16.7%
jpn 16.0% 17.6% 12.0% 11.2% 27.2% 28.8% 24.4% 23.2% 24.0% 24.4% 29.6% 21.7% 21.1%
zho 17.2% 17.2% 12.4% 12.0% 22.4% 34.8% 29.6% 22.4% 27.6% 23.6% 37.2% 23.3% 22.2%
deu 12.8% 22.8% 14.4% 17.6% 20.0% 25.6% 36.0% 29.6% 27.6% 32.8% 39.2% 25.3% 24.2%
fra 14.8% 24.8% 18.4% 12.0% 21.2% 21.2% 33.6% 37.2% 32.0% 36.8% 36.8% 26.3% 25.2%
rus 20.4% 19.6% 11.6% 18.8% 22.0% 19.6% 28.8% 25.2% 38.4% 28.8% 32.0% 24.1% 22.7%
spa 20.0% 24.0% 17.6% 16.8% 18.0% 27.2% 33.6% 33.6% 29.6% 34.0% 36.4% 26.4% 25.7%
eng 20.4% 24.0% 18.0% 16.4% 20.4% 26.4% 35.2% 30.0% 43.6% 32.4% 46.8% 28.5% 26.7%

Table 3: Cross-lingual transfer performance on MGSM for Llama-3.1 (8B) without and with selective freezing. “XL”
denotes average on languages that were not fine-tuned. Diagonal entries in blue highlights correspond to source
language performances. Red highlights indicate decrease from pre-trained baseline. Bold and underline respectively
denote the best within group and within column. The (*) marks languages classified as low-resource in Flores-200.

Datasets. We attend specifically to multilingual
mathematical reasoning task, as it is inherently
language-independent. We utilize the multilingual
dataset GSM8KInstruct (Chen et al., 2024), which
extends the English mathematical reasoning dataset
GSM8K (Cobbe et al., 2021) by translating English
instructions and chain-of-thought responses into
9 non-English languages via automatic translation
and native-speaker human verification. To evaluate
the model performance in this task, we utilize the
MGSM benchmark (Shi et al., 2022). We attach the
complete dataset statistics in Table 2.

Evaluation. We evaluate the accuracy of LLM
greedy decoding zero-shot responses. Specifically,
we employ the evaluation of Zhu et al. and deter-
mine answer accuracy by verifying that the final
numerical value produced in the LLM’s output ex-
actly matches the ground-truth. In addition, we
utilize ILO to investigate how changes in train-
ing impact LLMs’ interlingual semantic alignment.
To compute the ILO scores, we define a neigh-
borhood size large enough to be informative and
small enough to respect the local structures, while
requiring each neighborhood to be rich in interlin-
gual mixing. We experimented with Euclidean and
cosine distance metric, with k, τ values of (5,3),

(10,5), (20,10) and observe consistent trends. Re-
sults using k = 10, τ = 5 and Euclidean distance
are shown here; others in App. F.2. We evaluate the
ILO scores using the same dataset from Section 4.

Models. We employ two multilingual LLMs:
Llama-3.1 (8B) and Gemma-2 (9B). We train both
LLMs using the same hyperparameters with learn-
ing rate 8e− 5, batch size 8, and gradient accumu-
lation of 16 for 3 epochs using 4 A800 GPUs.

5.3 Results and Analysis
Cross-Lingual Transfer. We present findings
from our cross-lingual transfer experiments, de-
tailed in the Tables 3 and A3 within the “fine-
tuning” rows, where we evaluated the performance
of the fine-tuned Llama-3.1 and Gemma-2 respec-
tively. Consistent with the expectations, we ob-
served substantial cross-lingual transfer signified
by improved performance in both source and target
languages, even without direct training in those lan-
guages. The transfer is notably more pronounced
in HRLs and languages within the same families
and regions, such as the Indo-European languages
in Europe: English, Spanish, Russian, French, and
German. Remarkably, in some instances, perfor-
mances on the target languages paralleled the ac-
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Figure 5: Layer-wise ¯ILOL scores for all of the source-languages in the single-language training on Llama-3.1 (8B)
in pre-trained, fine-tuning, and selective freezing modes. Decrease in alignment from single-language fine-tuning
is seen in the early layers, whereas selective freezing allows LLM to sustain its pre-trained semantic alignment.

curacies in the source language, as exemplified by
Spanish-to-English achieving 38.4%, which is on
par with the Spanish-to-Spanish performance.

Despite the transfer, performance degradations
are also observed on some of target languages. We
conjecture that this issue stems from disruptions in
the functionality of the aligner module. To investi-
gate this hypothesis, we compute per-layer aggre-
gated ¯ILOL scores, and visualize them in Figures 5
and A1, for all of the source-languages trained
on each the Llama-3.1 (8B) and Gemma-2 (9B)
models. Both figures show a notable decrease in
interlingual semantic alignment post fine-tuning
that appears as early as in the 4th layer for Llama
and the 6th layer for Gemma. Critically, the de-
gree of alignment does not recover to the height
of its pre-trained levels even after additional com-
putational stages in subsequent layers. Further-
more, the interlingual overlaps initially present in
the pretrained models become disrupted following
single-language fine-tuning, as evidenced by re-
duced overlapping centers and loosened language
clusters (Figs (b) of A14 vs A10, and A16 vs A12).

Preservation of LLMs’ Interlinguality. Here
we analyze the impact on freezing the first 12 lay-
ers, since it provides the best aggregated improve-
ments (see Appendix F.3 for details). The quanti-
tative analysis through the lens of the aggregated
¯ILOL reveals that multilingual LLMs trained with

selective-freezing mechanism sustain their prior
semantic alignment levels in the early layers, and
across all layers, as demonstrated in Figures 5 and
A1. Empirical findings in Tables 3 and A3 fur-
ther corroborate these insights, highlighting the

substantial impact of maintaining interlingual se-
mantic alignments on enhancing multilingual per-
formances. Through keeping the aligner parame-
ters unchanged, both LLMs understudy gain im-
proved cross-lingual generalization compared to
their post fine-tuning performances on source lan-
guages. Enhanced transfers can be observed on
languages within-families and within-regions, with
improvements and nearly no degradation towards
the low-resource, cross-family, and cross-regional
languages. Additionally, models fine-tuned with
selective freezing effectively retain their original
interlingual alignment, with overlapping centers
largely preserved and clusters remaining tight (see
Figs (b) of A15 vs A10, A17 vs A12, and App. E).
These findings indicate that preserving the interlin-
gual alignment in LLMs is essential for scalable
multilingual learning. They emphasize the critical
role of interlingual representation alignments in
enhancing the multilingual capabilities of LLMs.

6 Conclusion

The emergence of multilingual LLMs demonstrates
that interlingual constructs naturally arise, even
in the absence of explicit objectives. We intro-
duce a conceptual framework to understand inter-
lingual representations, identifying both the core
interlingual region that captures shared semantics,
and fragmented components that reveal representa-
tional limitations in aligning with this core region.
To advance the understanding of interlingual se-
mantic alignment, we propose the Interlingual Lo-
cal Overlap (ILO) score which quantifies alignment
in the local neighborhood structures of interlingual
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high-dimensional representations. Our proposed
framework and metric illuminates the critical role
of semantic alignment, offering a quantitative view
into the high-dimensional alignment of multilin-
gual representations. This study emphasizes inter-
lingual semantic alignment and provides critical
insights to optimize multilingual LLMs in the con-
text of diverse linguistic tasks.

Limitations

Bias on linguistic family. In our analysis of in-
terlingual regions, we sample 31 diverse languages
from the Flores-200 set, representing various re-
source levels, geographical regions, and language
families. We note, however, that there is a pre-
dominance of Indo-European languages within our
HRLs subset. This distribution reflects the broader
availability of linguistic data, as evidenced by web
crawl statistics from CommonCrawl, where Indo-
European languages are disproportionately repre-
sented. This imbalance is not intentional but rather
an inherent limitation arising from existing data
availability. Consequently, the observed stronger
correlations among HRLs may partially reflect this
underlying bias. We encourage future works to ac-
count for this, since observed correlations among
HRLs may partially reflect this underlying bias.

Broader multilingual evaluations. Additionally,
our study of cross-lingual transfer primarily uti-
lizes multilingual mathematical reasoning task due
to their largely language-agnostic nature. Such
task allow us to simultaneously asses the linguistic
understanding and logical reasoning capabilities
of multilingual LLMs. We argue that the cross-
lingual transfer capabilities evaluated within this
work offer significant insights into general multi-
lingual performance. Nonetheless, we encourage
future studies to broaden evaluations to other tasks
to extend the insights into interlingual alignment.

Expanding the core interlingual region. Our
works presumes the existence of the core interlin-
gual region where semantically aligned represen-
tations shared across languages, and others that
only partially aligned to this core. Future works
could explore on expanding this core interlingual
region to encompass a broader range of languages,
i.e. to introduce learning techniques that explic-
itly encourage deeper and more diverse interlingual
mixing. Incorporating a larger, more heterogeneous
multilingual datasets and leveraging linguistic pri-

ors might further strengthen the core region, and in
turn, enhancing the universality of the core interlin-
gual representations.

Bridging fragmented regions. A significant lim-
itation of existing multilingual LLMs is that cer-
tain languages, particularly the underrepresented
or typologically distant ones, most likely form frag-
mented region rather than being integrated fully
with the core cluster. To address this, future work
could aim to develop targeted strategies to encour-
age the integration of these regions and to narrow
these gaps, i.e. under conditions of extremely lim-
ited data. Such interventions could facilitate the
alignments of interlingual representation, thereby
improving overall inclusivity and richness in lin-
guistic diversity of the multilingual LLMs.

Predicting cross-lingual transfer. Although our
work provides valuable insights into the local
alignment of multilingual embeddings, it does not
predict downstream cross-lingual transfer perfor-
mance. One key limitation, for example, is that
our proposals captures generic interlingual mixing
of hidden-states representations and not the align-
ments of task vectors (Ilharco et al., 2022) that
might be integral for effective transfer. This discon-
nect may arise when models achieve strong inter-
lingual alignment while simultaneously losing crit-
ical nuances required for task performance. Future
work could explore the integration of our proposals
with task-aware signals, to develop quantifiers that
are more designed to predict cross-lingual transfer.

Towards pure semantic representations. While
our current work focuses solely on textual em-
beddings, a major frontier for future research lies
in extending the framework of quantifying align-
ment via the local neighborhood structures of
high-dimensional representations, to multimodal
settings. Considering information from another
modalities, it may be beneficial to disentangle
and measure pure semantic content from modality-
specific biases effectively. Exploring this direc-
tion not only hints promises to elucidate and im-
prove modality-transfer but also potentially ad-
vance our understanding of how different forms
of information interact to shape a universal seman-
tic space. We envision our work, upon many oth-
ers (e.g. Cahyawijaya et al. (2024a); Engels et al.
(2025); Ji et al. (2024); Liu et al. (2024); Grosse
et al. (2023)), to foster explorations towards the
study of LLMs’ semantic space.
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Ethical Considerations

The exploration of interlingual representation in
multilingual LLMs presents a unique opportunity
to foster diversity and inclusivity in the field of NLP.
Our work introduces framework and metrics to in-
spect interlingual representations in multilingual
LLMs. They enable the analysis of interlingual
alignment of different languages in the naturally
emerging interlingual constructs within LLMs. We
use publicly available parallel corpora and adhere
to best practices in data handling, ensuring that
no sensitive or personally identifiable information
is involved. While our proposals help reveal dis-
parities in representation, through this work, we
instead leverage these insights to drive proactive
interventions—ensuring future multilingual LLMs
are not only more inclusive but also more reflective
of the rich linguistic diversity they aim to serve.
We hope our results contributes to more equitable
model development and encourages further inves-
tigation into mitigating potential representational
gaps across underrepresented languages.

Embracing Language Diversity Our work aims
to create a universal representation that respects
and preserves the unique characteristics of each
language. Our findings highlight the importance of
consistent interlingual alignments. By recognizing
and capturing shared semantic structures through
interlingua representations, LLMs can contribute
to the preservation of linguistic diversity, ensuring
that no single language or language group domi-
nates the representation space. We envision LLMs
to effectively represent and understand diverse lan-
guages, to be truly inclusive in language technol-
ogy (e.g. Cahyawijaya (2024)). This is particularly
crucial for underrepresented languages and com-
munities, enabling them to have their voices heard
and enabling them equal access of information, for
example to their language-agnostic applications.

Addressing Bias and Fairness The study’s ob-
servation of varying alignment consistencies across
language groups underscores the need for careful
consideration of bias. By identifying and address-
ing fragmented components due to representational
limitations, we can work towards creating fairer
representations. This is essential to prevent the
reinforcement of existing biases and ensure equi-
table treatment of all languages. When LLMs ef-
fectively bridge the gap between languages, they
enable seamless communication and understand-

ing, benefiting diverse communities and fostering
a more inclusive digital information systems.
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Appendix

A Details on Linguistic Properties

We provide the detail of the region and linguistic
properties of the language subsets sampled from
Flores-200 in A1. Here, while most of them are
extracted from Team (2024), we refer to (Eberhard
et al., 2024) for the details on linguistic families.

Code Language Script Region Family Res.

ban_Latn Balinese Latin Southeast Asia Austronesian Low
ben_Beng Bengali Bengali South Asia Indo-European High
bjn_Latn Banjar Latin Southeast Asia Austronesian Low
ces_Latn Czech Latin Europe Indo-European High
dan_Latn Danish Latin Europe Indo-European High
deu_Latn German Latin Europe Indo-European High
eng_Latn English Latin Europe Indo-European High
fra_Latn French Latin Europe Indo-European High
gle_Latn Irish Latin Europe Indo-European Low
hin_Deva Hindi Devanagari South Asia Indo-European High
ind_Latn Indonesian Latin Southeast Asia Austronesian High
jav_Latn Javanese Latin Southeast Asia Austronesian Low
jpn_Jpan Japanese Japanese East Asia Japonic High
min_Latn Minangkabau Latin Southeast Asia Austronesian Low
nld_Latn Dutch Latin Europe Indo-European High
pol_Latn Polish Latin Europe Indo-European High
rus_Cyrl Russian Cyrillic Europe Indo-European High
sin_Sinh Sinhala Sinhala South Asia Indo-European Low
slv_Latn Slovenian Latin Europe Indo-European High
spa_Latn Spanish Latin Europe Indo-European High
srp_Cyrl Serbian Cyrillic Europe Indo-European Low
sun_Latn Sundanese Latin Southeast Asia Austronesian Low
swe_Latn Swedish Latin Europe Indo-European High
swh_Latn Swahili Latin Africa Niger-Congo High
tel_Telu Telugu Telugu South Asia Dravidian Low
tgl_Latn Tagalog Latin Southeast Asia Austronesian Low
tha_Thai Thai Thai Southeast Asia Kra-Dai Low
ukr_Cyrl Ukrainian Cyrillic Europe Indo-European High
urd_Arab Urdu Arabic South Asia Indo-European Low
yue_Hant Yue Chinese Han (Traditional) East Asia Sino-Tibetan Low
zho_Hans Chinese (Simplified) Han (Simplified) East Asia Sino-Tibetan High

Table A1: Complete distribution of the 31 languages
across families, regions, and resource-levels in our anal-
ysis, sampled from Flores-200

B Further Details on ANC Scores

Here we provide a detailed view on the ANC com-
parison of the language pairs for all the model un-
derstudy. We compute aggregate peak score for
each language pair as the mean over the peak lay-
ers. We identify the peak layer by computing the
75th percentile of ANCs for each layer and select
the top 3 layers as the peak layers. We denote all
the top correlated language pairs from the layers
with peak ANC scores and the unique languages
from the top language pairs in Table A2. We find
that the top correlated pairs with high ANCs among
the LLMs are similar on their HRLs. Instruction-
tuned LLMs exhibit similar sets of top language
pairs with its pre-trained counterparts, despite the
differing rankings of them.

C Visualization and Comparisons For
Other Multilingual LLMs

C.1 ANC Comparisons from Other LLMs
We attach the complete visualization on ANC
scores derived from the hidden-state embeddings
of Aya Expanse (8B), Llama-3.1 (8B), Llama-
3.1-Instruct (8B), Gemma-2 (9B), Gemma-2-
Instruct (9B), and Qwen (9B), respectively in Fig-
ures A2, A3, A4, A5, A6, and A7.

C.2 T-SNE Visualizations from Other LLMs
We attach the complete t-SNE visualization
projected from the hidden-state embeddings
of Aya Expanse (8B), Qwen (9B), Llama-3.1
(8B), Llama-3.1-Instruct (8B), Gemma-2 (9B),
and Gemma-2-Instruct (9B), respectively in Fig-
ures A8, A9, A10 A11, A12, and A13.

C.3 Reports on Cross-Lingual Transfer
Experiments for Gemma-2 (9B)

We attach the cross-lingual transfer performance
on MGSM and the layer-wise ¯ILOL scores, for
Gemma-2 (9B) in its pre-trained, fine-tuning, and
selective-freezing modes, in Table A3 and Fig-
ure A1.

D Interlingual alignments of various
multilingual LLMs

In this work, we observe a universal phenomenon
that various multilingual LLMs, irrespective of
their specific architecture or training data, exhibit
a common behavior in constructing an interlingual
representation region within their middle layers.
However, amongst these similar general trend, we
observe that there are different alignment levels
across different LLMs in App B, C.1, and C.2)

For example, the t-SNE visualization of LLMs
intermediate layers in Figures A12 and A8 shows
that Gemma-2 (9B) exhibits more overlapping and
closer clustering of language centers compared
to Aya Expanse (8B). This observation is further
supported by our neuron-wise correlation anal-
ysis, showcased in Figures A5 and A2, where
the intermediate layers of Gemma-2 consistently
show mean cross-lingual correlations exceeding
0.5, whereas in the intermediate layers of Aya Ex-
panse, only the mean HRLs-HRLs and in-region
records the correlations above 0.5. We conjecture
that these variatons on alignment levels stem from
the differences in the model architecture and train-
ing details of the LLMs.
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Models Gemma-2 (9B) Gemma-2 It (8B) Aya Expanse (8B) Llama-3.1 (8B) Llama-3.1 It (8B) Qwen-2.5 (7B)

Top
language
pairs

dan_Latn - swe_Latn eng_Latn - fra_Latn rus_Cyrl - ukr_Cyrl yue_Hant - zho_Hans yue_Hant - zho_Hans yue_Hant - zho_Hans

eng_Latn - fra_Latn dan_Latn - swe_Latn eng_Latn - fra_Latn rus_Cyrl - ukr_Cyrl rus_Cyrl - ukr_Cyrl dan_Latn - swe_Latn

rus_Cyrl - ukr_Cyrl rus_Cyrl - ukr_Cyrl yue_Hant - zho_Hans dan_Latn - swe_Latn dan_Latn - swe_Latn rus_Cyrl - ukr_Cyrl

yue_Hant - zho_Hans deu_Latn - eng_Latn eng_Latn - ind_Latn eng_Latn - fra_Latn eng_Latn - fra_Latn fra_Latn - spa_Latn

dan_Latn - eng_Latn yue_Hant - zho_Hans fra_Latn - spa_Latn fra_Latn - spa_Latn fra_Latn - spa_Latn eng_Latn - fra_Latn

eng_Latn - swe_Latn eng_Latn - swe_Latn deu_Latn - eng_Latn deu_Latn - swe_Latn deu_Latn - swe_Latn fra_Latn - rus_Cyrl

deu_Latn - eng_Latn dan_Latn - eng_Latn ces_Latn - rus_Cyrl deu_Latn - fra_Latn deu_Latn - fra_Latn rus_Cyrl - spa_Latn

deu_Latn - swe_Latn deu_Latn - fra_Latn ces_Latn - ukr_Cyrl deu_Latn - eng_Latn deu_Latn - eng_Latn deu_Latn - fra_Latn

deu_Latn - fra_Latn deu_Latn - swe_Latn deu_Latn - fra_Latn deu_Latn - nld_Latn eng_Latn - swe_Latn ces_Latn - pol_Latn

dan_Latn - deu_Latn dan_Latn - deu_Latn fra_Latn - ind_Latn ces_Latn - rus_Cyrl eng_Latn - spa_Latn deu_Latn - nld_Latn

Unique
languages

swe, dan, fra,
eng, ukr, rus,
zho, yue, deu,

spa

fra, eng, swe,
dan, rus, ukr,
deu, zho, yue,

spa

rus, ukr, fra,
eng, zho, yue,
ind, spa, deu,

ces

yue, zho, ukr,
rus, swe, dan,
fra, eng, spa,

deu

zho, yue, rus,
ukr, dan, swe,
fra, eng, spa,

deu

yue, zho, dan,
swe, ukr, rus,
spa, fra, eng,

deu

Table A2: Top correlated language pairs from the layers with peak ANC scores and the unique languages from
the top language pairs. Most correlated pairs among LLMs are similar on their HRLs. Despite differing rankings,
instruction-tuned LLMs exhibit similar sets of top language pairs with its pre-trained counterparts.

E Observation of Interlingual Alignment
Preservation in T-SNE Projections

Through our single-language training experiments
in the multilingual mathematical reasoning task,
we observe that the visual projections using t-SNE,
also support that ILO score effectively captures the
same interlingual alignment phenomenon, albeit
in a projected lower-dimensional dimensions. In
other words, layers with high ILO scores consis-
tently exhibits interlingual overlaps in the t-SNE di-
mensions that hints at strong interlingual alignment,
whereas those with lower scores tend to be more
fragmented. This correspondence validates ILO as
a robust quantitative measure that reflects the lo-
cal structure of the multilingual shared embedding
space. We attach the complete t-SNE visualization
projected from the hidden-states of the models un-
derwent single-language training on English in the
fine-tuning vs selective freezing modes, frozen
on their first 8 layers, the token embedding, final
layer normalization, and the language modeling
head (output projection layers), of Llama-3.1 (8B)
and Gemma-2 (9B) respectively in Figures A14 vs
A15, and A16 vs A17.

F Ablation Studies

Here we provide comprehensive ablations to all of
the hyperparameters in our study and thoroughly
analyzes the impact on each of them.

F.1 t-SNE perplexity

We conducted additional t-SNE analysis using per-
plexity values of 5, 30, and 50, on early, middle,

and late layers of Aya Expanse (8B), and visualize
them in Figures A18, A19, A20, and A21. Through-
out the various perplexity settings, we similarly
observe that in the early and late layers, language
representations exhibit a minimal overlap, while
they cluster according to resource levels and lin-
guistic features. There are different overlaps in
the early layer, between Germany and English in-
stead of Japanese and Chinese, when the perplex-
ity is set to 50; additional overlaps between pairs
of Bengali, Sinhala, and Czech, Polish in the late
layer, with the perplexity set to 5; and no overlap
at all in the early layer when the perplexity is set
to 30. We also observed similar interlingual over-
laps in the intermediate layer that mainly involve
high-resource languages with some representations
consistently remaining fragmented outside these
overlaps, and that low-resource languages overlap
due to regional factors. The same set of languages
overlaps, with minor differences: the languages of
Danish, Swedish, and Ukrainian are added to the
overlap with the perplexity set to 5, 30, and 50, and
with Yue Chinese missing in the overlaps when the
perplexity is set to 50.

These observations substantiate the findings that
the interlingual overlapping patterns remain consis-
tent in all cases regardless of the perplexity values
used. These additional analyses reinforce the no-
tion that these representational patterns are inherent
to the model’s learned structure rather than artifacts
of a specific t-SNE configuration.
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Accuracy Average
Method Training

languages ben tha* swh tel* jpn zho deu fra rus spa eng All XL

Pre-trained mixed 13.2% 12.0% 9.2% 16.0% 10.0% 17.6% 16.8% 16.8% 10.8% 15.2% 17.6% 11.2% -

Fine-tuning

ben 27.6% 4.4% 2.0% 4.4% 11.6% 12.8% 6.8% 10.4% 10.0% 14.4% 18.4% 11.2% 9.5%
tha* 5.6% 32.4% 6.0% 2.8% 10.4% 14.4% 14.8% 16.8% 12.0% 20.0% 26.0% 14.7% 12.9%
swh 5.6% 5.6% 32.4% 0.8% 10.4% 9.6% 15.6% 14.8% 10.8% 21.2% 26.4% 13.9% 12.1%
jpn 2.4% 6.0% 2.8% 2.4% 26.8% 19.6% 13.2% 10.8% 14.4% 18.0% 26.0% 12.9% 11.6%
zho 2.0% 6.4% 1.6% 0.8% 16.8% 32.0% 17.6% 10.4% 16.4% 18.0% 28.0% 13.6% 11.8%
deu 4.4% 9.2% 5.2% 6.8% 16.0% 18.4% 32.8% 23.6% 23.2% 26.4% 34.4% 18.2% 16.8%
fra 5.6% 10.8% 6.0% 0.8% 17.6% 18.8% 29.2% 30.8% 21.6% 29.6% 31.6% 18.4% 17.2%
rus 4.8% 4.8% 5.2% 1.2% 13.2% 16.8% 30.0% 24.4% 32.8% 29.2% 29.2% 17.4% 15.9%
spa 7.2% 7.6% 4.8% 4.4% 17.6% 22.0% 26.8% 27.6% 28.4% 33.2% 37.6% 19.7% 18.4%
eng 8.0% 10.4% 8.0% 6.0% 17.6% 20.8% 28.0% 24.4% 25.2% 29.6% 39.2% 19.7% 17.8%

Selective
Freezing

ben 36.0% 13.2% 17.2% 20.0% 22.8% 19.6% 19.6% 22.0% 21.2% 18.0% 26.8% 21.5% 20.0%
tha* 14.4% 34.4% 14.0% 13.6% 16.8% 21.6% 20.0% 22.8% 21.2% 24.8% 27.2% 21.0% 19.6%
swh 13.2% 14.4% 30.4% 11.2% 15.2% 20.4% 26.8% 25.2% 20.8% 29.6% 29.6% 21.5% 20.6%
jpn 12.8% 14.8% 19.2% 13.2% 27.6% 26.8% 22.0% 21.6% 23.6% 21.6% 26.4% 20.9% 20.2%
zho 12.8% 19.2% 15.6% 13.6% 22.0% 34.8% 26.4% 27.2% 22.4% 24.8% 31.2% 22.7% 21.5%
deu 11.2% 17.6% 18.8% 14.0% 20.0% 21.2% 33.6% 26.0% 26.8% 28.0% 35.2% 22.9% 21.9%
fra 20.4% 17.6% 22.4% 20.0% 23.6% 24.0% 30.4% 35.6% 28.4% 33.2% 32.8% 26.2% 25.3%
rus 15.2% 17.6% 24.0% 17.2% 18.4% 18.4% 28.8% 26.0% 36.4% 27.6% 32.4% 23.8% 22.6%
spa 18.4% 21.2% 26.4% 18.8% 22.0% 26.4% 36.4% 31.6% 29.2% 35.6% 38.8% 27.7% 26.9%
eng 22.4% 25.6% 26.8% 22.4% 24.8% 26.0% 34.4% 36.0% 34.0% 39.2% 41.6% 30.3% 29.2%

Table A3: Cross-lingual transfer performance on MGSM for Gemma-2 (9B) w/ and w/o selective freezing. “XL”
denotes average on languages that were not fine-tuned. Diagonal entries in blue highlights correspond to source
language performances. Red highlights indicate decrease from pre-trained baseline. Bold and underline respectively
denote the best within group and within column. The (*) marks languages classified as low-resource in Flores-200.

F.2 k-NN parameters of the ILO score
We further conducted ablation studies over differ-
ent settings of k and τ—specifically, [(5,3), (10,5),
(20,10)]—using both cosine and Euclidean dis-
tances. We report the results in Table A22 and A23.
Our results indicate that a lower k (k = 5, τ = 3)
leads to a modest increase in the overall aggregated
ILO across all layers by about 0.03–0.05, whereas
a higher k (k = 20, τ = 10) results in a reduction of
roughly 0.1–0.15 relative to our main illustration
in Figure 5. Nonetheless, we find that all the trends
remain consistent with our findings. When ablating
a different distance metric, i.e, cosine distance, we
find that the influence of varying k values is slightly
less pronounced, with the aggregated ILO scores
remaining within a similar range.

In summary, despite the different selection of the
k-NN parameters and distance metric, observations
using ILO score consistently highlight similar trend
on the decrease of alignment degree in the same
layers, and that the model trained with the selective-
freezing mechanism sustains their prior semantic
alignment levels in all layers.

F.3 Layer selection for selective freezing
We perform experiments on selective freezing of
the first 4, 8, 12, and 16 layers of Llama-3.1 (8B).

Our motivation stems from prior works that have
demonstrated that multilingual language models
tend to align their representations in the early lay-
ers (Muller et al., 2021; Zhao et al., 2024), which
guided our decision to focus on these layers. We
denote the aggregated results in Table A4, the com-
plete results in Table A5, and visualize the aggre-
gated ILO scores in Figures A24. In general, fine-
tuning with freezing the early layers enhances the
cross-lingual generalization. Notably, the best over-
all performance was achieved when freezing the
first 12 layers. Throughout the experiments, analy-
sis of interlingual alignment using ILO reveal that
freezing the first 4, 8, and 12 layers maintains and
improves the semantic alignment across layers. In
contrast, while freezing the first 16 layers preserves
alignment in the frozen layers, the subsequent lay-
ers exhibit lower alignments compared to the fine-
tuned models.

Furthermore, across all settings, we observed
improved transfer on languages within families and
regions, with negligible degradation—and some-
times even improvements—in low-resource, cross-
family, and cross-regional scenarios. When com-
paring the trade-offs between freezing the first 8
layers versus the first 12 layers, we found that
the performance gain in the source language is
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Figure A1: Layer-wise ¯ILOL scores for Gemma-2 (9B) in pre-trained, fine-tuning, and selective freezing modes.
Notable decrease in alignment from single-language training is seen in the early layers on fine-tuning, whereas the
selective freezing mechanism allows the model to sustain its pre-trained semantic alignment across layers.

Method Frozen Layers
Average

All XL

Fine-tuning - 17.7% 16.0%

Selective
Freezing

First 4 21.6% 20.2%
First 8 22.4% 21.2%

First 12 23.1% 22.1%
First 16 19.0% 18.0%

Table A4: Aggregated results on the ablation study on
the cross-lingual transfer performance on MGSM for
Llama-3.1 (8B) fine-tuned with the selective freezing
strategy varied on the frozen layers. Freezing the first
4, 8, 12, and 16 layers enhanced the cross-lingual gen-
eralization, with the best performance achieved when
freezing the first 12 layers.

mixed. In the latter setting, the task performances
in languages such as English, Russian, French, Ger-
man, and Bengali improved, while in Spanish, Chi-
nese, Japanese, Swahili, and Thai, they instead de-
creased. Moreover, the multilingual performance
from fine-tuning with English mostly dropped, ex-
cept for certain gains in English, Russian, Thai, and
Bengali. Lastly, the aggregate multilingual perfor-
mance when freezing the first 16 layers is closer to
that of fine-tuning, showcasing the impact of lower
interlingual alignment previously indicated from
the observation on the analysis using ILO.
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Accuracy Average
Method Training

languages ben tha* swh tel* jpn zho deu fra rus spa eng All XL

Pre-trained mixed 11.6% 12.0% 7.2% 0.0% 10.4% 8.8% 16.0% 12.4% 14.0% 11.6% 17.6% 10.3% -

ben 23.2% 4.8% 1.2% 3.2% 10.0% 9.6% 10.8% 13.6% 11.6% 14.8% 12.8% 10.5% 9.2%
tha* 1.6% 32.8% 4.4% 1.6% 14.4% 14.8% 17.2% 19.2% 18.0% 20.4% 25.6% 15.5% 13.7%
swh 3.2% 6.4% 30.8% 2.8% 11.2% 12.4% 20.4% 19.6% 14.8% 22.4% 26.8% 15.5% 14.0%
jpn 3.6% 7.2% 2.8% 1.2% 32.8% 21.6% 19.6% 18.0% 18.4% 22.4% 28.8% 16.0% 14.4%
zho 0.8% 7.2% 2.4% 1.6% 22.0% 34.8% 19.6% 19.6% 21.6% 21.2% 27.6% 16.2% 14.4%
deu 8.0% 16.4% 8.0% 4.0% 19.2% 19.6% 37.6% 34.4% 23.6% 28.8% 36.4% 21.5% 19.8%
fra 4.8% 11.6% 4.0% 3.2% 16.0% 16.8% 31.6% 34.4% 25.6% 34.4% 35.6% 19.8% 18.4%
rus 4.0% 14.0% 4.0% 1.2% 17.2% 16.4% 29.6% 28.4% 34.0% 30.0% 26.4% 18.7% 17.1%
spa 4.8% 16.0% 2.8% 2.4% 14.4% 19.6% 28.4% 30.8% 31.2% 38.4% 38.4% 20.7% 18.9%

Fine-tuning

eng 6.4% 14.4% 6.0% 2.4% 18.8% 24.4% 37.2% 27.2% 33.6% 33.2% 43.2% 22.4% 20.4%

ben 22.8% 8.8% 8.0% 12.4% 14.8% 10.0% 12.0% 12.4% 14.4% 16.4% 14.8% 13.3% 12.4%
tha* 10.4% 31.2% 5.2% 9.2% 17.2% 20.0% 19.6% 18.4% 15.2% 19.6% 28.8% 17.7% 16.4%
swh 9.6% 15.2% 38.4% 11.2% 11.6% 17.6% 26.0% 23.2% 16.4% 28.0% 26.4% 20.3% 18.5%
jpn 14.4% 12.0% 10.4% 11.2% 36.4% 24.8% 23.2% 19.2% 24.8% 19.6% 25.2% 20.1% 18.5%
zho 11.6% 15.6% 10.8% 6.8% 20.0% 36.0% 27.6% 26.0% 19.6% 29.2% 29.2% 21.1% 19.6%
deu 14.8% 20.8% 10.4% 10.4% 14.8% 19.6% 38.8% 32.0% 27.2% 31.2% 38.4% 23.5% 22.0%
fra 14.8% 18.8% 8.8% 10.0% 20.8% 23.6% 34.4% 38.0% 31.6% 35.6% 37.6% 24.9% 23.6%
rus 15.6% 16.4% 10.0% 10.4% 21.2% 20.8% 27.6% 26.8% 38.0% 26.0% 37.6% 22.8% 21.2%
spa 15.6% 17.2% 11.2% 8.0% 20.4% 21.6% 31.6% 32.8% 34.4% 38.0% 35.6% 24.2% 22.8%

Selective Freezing
First 4 Layers

eng 17.2% 25.6% 13.2% 13.2% 23.6% 28.0% 36.0% 34.8% 38.8% 36.4% 41.2% 28.0% 26.7%

ben 23.2% 9.2% 8.8% 10.0% 17.6% 11.6% 18.0% 16.4% 17.6% 18.4% 20.8% 15.6% 14.8%
tha* 14.0% 35.2% 12.4% 12.4% 16.4% 20.8% 24.8% 20.8% 16.8% 18.0% 28.0% 20.0% 18.4%
swh 8.4% 13.6% 30.0% 8.4% 15.2% 12.8% 20.8% 19.2% 16.8% 24.8% 29.2% 18.1% 16.9%
jpn 15.6% 15.2% 12.0% 14.0% 30.0% 27.2% 24.8% 22.8% 23.2% 24.0% 28.0% 21.5% 20.7%
zho 15.6% 21.2% 10.4% 10.4% 22.0% 40.8% 23.6% 20.4% 21.6% 25.2% 34.8% 22.4% 20.5%
deu 18.0% 18.4% 8.4% 16.0% 22.4% 24.0% 34.0% 31.2% 27.6% 32.0% 38.4% 24.6% 23.6%
fra 23.2% 19.2% 13.2% 14.0% 18.8% 20.0% 30.4% 35.2% 30.8% 33.2% 37.6% 25.1% 24.0%
rus 17.2% 18.4% 10.8% 14.4% 15.2% 18.0% 29.6% 24.4% 38.0% 29.6% 36.8% 22.9% 21.4%
spa 17.2% 18.4% 11.6% 14.0% 20.4% 22.8% 31.6% 31.6% 28.8% 38.0% 36.4% 24.6% 23.3%

Selective Freezing
First 8 Layers

eng 18.8% 23.2% 19.6% 17.6% 26.4% 29.6% 36.8% 32.4% 36.4% 40.0% 42.0% 29.3% 28.1%

ben 26.4% 12.8% 11.6% 14.4% 13.6% 14.8% 19.6% 20.0% 20.0% 17.6% 17.2% 17.1% 16.2%
tha* 14.8% 34.0% 12.0% 12.4% 15.6% 21.6% 25.2% 22.0% 20.4% 24.4% 32.4% 21.3% 20.1%
swh 9.2% 16.4% 22.8% 5.6% 14.0% 12.4% 18.4% 23.6% 19.2% 20.4% 27.6% 17.2% 16.7%
jpn 16.0% 17.6% 12.0% 11.2% 27.2% 28.8% 24.4% 23.2% 24.0% 24.4% 29.6% 21.7% 21.1%
zho 17.2% 17.2% 12.4% 12.0% 22.4% 34.8% 29.6% 22.4% 27.6% 23.6% 37.2% 23.3% 22.2%
deu 12.8% 22.8% 14.4% 17.6% 20.0% 25.6% 36.0% 29.6% 27.6% 32.8% 39.2% 25.3% 24.2%
fra 14.8% 24.8% 18.4% 12.0% 21.2% 21.2% 33.6% 37.2% 32.0% 36.8% 36.8% 26.3% 25.2%
rus 20.4% 19.6% 11.6% 18.8% 22.0% 19.6% 28.8% 25.2% 38.4% 28.8% 32.0% 24.1% 22.7%
spa 20.0% 24.0% 17.6% 16.8% 18.0% 27.2% 33.6% 33.6% 29.6% 34.0% 36.4% 26.4% 25.7%

Selective Freezing
First 12 Layers

eng 20.4% 24.0% 18.0% 16.4% 20.4% 26.4% 35.2% 30.0% 43.6% 32.4% 46.8% 28.5% 26.7%

ben 24.0% 13.6% 6.4% 10.4% 11.2% 7.6% 16.8% 16.0% 15.2% 13.6% 16.0% 13.7% 12.7%
tha* 11.6% 27.2% 9.6% 10.4% 12.4% 15.6% 19.6% 14.4% 21.2% 19.6% 27.6% 17.2% 16.2%
swh 10.8% 10.8% 20.4% 8.0% 11.6% 10.4% 18.0% 20.4% 14.8% 19.6% 21.2% 15.1% 14.6%
jpn 14.8% 13.6% 9.6% 6.0% 26.4% 22.4% 23.2% 17.2% 14.8% 22.0% 26.8% 17.9% 17.0%
zho 12.8% 15.2% 6.0% 8.0% 15.6% 27.2% 23.2% 16.0% 24.0% 21.6% 31.6% 18.3% 17.4%
deu 10.4% 19.6% 9.2% 9.6% 15.6% 20.4% 34.0% 23.6% 24.4% 25.2% 34.8% 20.6% 19.3%
fra 18.4% 14.8% 12.0% 12.8% 14.4% 20.4% 25.6% 35.6% 27.6% 30.4% 32.4% 22.2% 20.9%
rus 12.0% 18.0% 10.0% 12.4% 13.2% 20.0% 26.4% 22.8% 27.6% 23.6% 29.2% 19.6% 18.8%
spa 11.2% 22.0% 14.0% 14.8% 12.8% 20.4% 25.6% 29.2% 30.0% 30.8% 32.0% 22.1% 21.2%

Selective Freezing
First 16 Layers

eng 16.0% 16.8% 12.4% 10.4% 17.6% 25.6% 31.2% 30.0% 34.0% 26.0% 40.4% 23.7% 22.0%

Table A5: Ablation study on the cross-lingual transfer performance on MGSM for Llama-3.1 (8B) fine-tuned
with the selective freezing strategy varied on the frozen layers. “XL” denotes average on languages that were not
fine-tuned. Diagonal entries in blue highlights correspond to source language performances. Red highlights indicate
decrease from pre-trained baseline. Bold and underline respectively denote the best within group and within column.
The (*) marks languages classified as low-resource in Flores-200.
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(b) Highlights on pairs w.r.t their linguistic region
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(c) Highlights on pairs w.r.t their linguistic family

Figure A2: Comparisons of per-layer ANC scores on Aya Expanse (8B) with highlights on pairs w.r.t their resource
levels, linguistic region and family. Consistently stronger alignments are observed between HRLs pairs and within-
group mean correlations.
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(b) Highlights on pairs w.r.t their linguistic region
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(c) Highlights on pairs w.r.t their linguistic family

Figure A3: Comparisons of per-layer ANC scores on Llama-3.1 (8B) with highlights on pairs w.r.t their resource
levels, linguistic region and family. Consistently stronger alignments are observed between HRLs pairs and within-
group mean correlations.
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(b) Highlights on pairs w.r.t their linguistic region
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(c) Highlights on pairs w.r.t their linguistic family

Figure A4: Comparisons of per-layer ANC scores on Llama-3.1-Instruct (8B) with highlights on pairs w.r.t their
resource levels, linguistic region and family. Consistently stronger alignments are observed between HRLs pairs
and within-group mean correlations.
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(b) Highlights on pairs w.r.t their linguistic region
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(c) Highlights on pairs w.r.t their linguistic family

Figure A5: Comparisons of per-layer ANC scores on Gemma-2 (9B) with highlights on pairs w.r.t their resource
levels, linguistic region and family. Consistently stronger alignments are observed between HRLs pairs and within-
group mean correlations.
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(b) Highlights on pairs w.r.t their linguistic region
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(c) Highlights on pairs w.r.t their linguistic family

Figure A6: Comparisons of per-layer ANC scores on Gemma-2-Instruct (9B) with highlights on pairs w.r.t their
resource levels, linguistic region and family. Consistently stronger alignments are observed between HRLs pairs
and within-group mean correlations.
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(b) Highlights on pairs w.r.t their linguistic region
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Figure A7: Comparisons of per-layer ANC scores on Qwen-2.5 (7B) with highlights on pairs w.r.t their resource
levels, linguistic region and family. Consistently stronger alignments are observed between HRLs pairs and within-
group mean correlations.
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Figure A8: Hidden-state embeddings of Aya Expanse
(8B) projected in t-SNE dimensions, with HRLs in bold.
Interlingual overlaps transcending familial and regional
boundaries are observed in the intermediate layer rep-
resentations. In the early and late layers, language rep-
resentations cluster w.r.t resource levels and linguistic
features, with minimal overlap.
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Figure A9: Hidden-state embeddings of Qwen-2.5 (7B)
projected in t-SNE dimensions, with HRLs in bold. In-
terlingual overlaps transcending familial and regional
boundaries are observed in the intermediate layer rep-
resentations. In the early and late layers, language rep-
resentations cluster w.r.t resource levels and linguistic
features, with minimal overlap.

146



60 40 20 0 20 40 60
t-SNE Projection (Dimension 1)

60

40

20

0

20

40

60

t-S
NE

 P
ro

je
ct

io
n 

(D
im

en
sio

n 
2)

ban_Latn (AU)

ben_Beng (IE)

bjn_Latn (AU)

ces_Latn (IE)

dan_Latn (IE)

deu_Latn (IE)

eng_Latn (IE)

fra_Latn (IE)

gle_Latn (IE)

hin_Deva (IE)

ind_Latn (AU)

jav_Latn (AU)

jpn_Jpan (JP)

min_Latn (AU)

nld_Latn (IE)

pol_Latn (IE)

rus_Cyrl (IE)

sin_Sinh (IE)
slv_Latn (IE)

spa_Latn (IE)
srp_Cyrl (IE)

sun_Latn (AU)

swe_Latn (IE)

swh_Latn (NC)

tel_Telu (DR)

tgl_Latn (AU)

tha_Thai (KD)

ukr_Cyrl (IE)

urd_Arab (IE)

yue_Hant (ST)
zho_Hans (ST)

Overlapping Center
bjn_Latn, min_Latn
yue_Hant, zho_Hans

Region
Europe
Southeast Asia
South Asia
East Asia
Africa

Linguistic Family
IE: Indo-European
AU: Austronesian
JP: Japonic
NC: Niger-Congo
DR: Dravidian
KD: Kra-Dai
ST: Sino-Tibetan

Linguistic Family
IE: Indo-European
AU: Austronesian
JP: Japonic
NC: Niger-Congo
DR: Dravidian
KD: Kra-Dai
ST: Sino-Tibetan

(a) Early (layer 0)

80 60 40 20 0 20 40 60
t-SNE Projection (Dimension 1)

80

60

40

20

0

20

40

60

80

t-S
NE

 P
ro

je
ct

io
n 

(D
im

en
sio

n 
2)

ban_Latn (AU)

ben_Beng (IE)

bjn_Latn (AU)

ces_Latn (IE)dan_Latn (IE)deu_Latn (IE)eng_Latn (IE)fra_Latn (IE)

gle_Latn (IE)

hin_Deva (IE)

ind_Latn (AU)

jav_Latn (AU)

jpn_Jpan (JP)

min_Latn (AU)

nld_Latn (IE)
pol_Latn (IE)

rus_Cyrl (IE)

sin_Sinh (IE)

slv_Latn (IE)spa_Latn (IE)srp_Cyrl (IE)

sun_Latn (AU)

swe_Latn (IE)

swh_Latn (NC)

tel_Telu (DR)

tgl_Latn (AU)

tha_Thai (KD)

ukr_Cyrl (IE)

urd_Arab (IE)

yue_Hant (ST)zho_Hans (ST)

Overlapping Center
ban_Latn, bjn_Latn, jav_Latn, min_Latn, sun_Latn
ces_Latn, dan_Latn, deu_Latn, eng_Latn, fra_Latn, nld_Latn, pol_Latn, rus_Cyrl
slv_Latn, spa_Latn, srp_Cyrl, swe_Latn, ukr_Cyrl
yue_Hant, zho_Hans

Region
Europe
Southeast Asia
South Asia
East Asia
Africa

Linguistic Family
IE: Indo-European
AU: Austronesian
JP: Japonic
NC: Niger-Congo
DR: Dravidian
KD: Kra-Dai
ST: Sino-Tibetan

Linguistic Family
IE: Indo-European
AU: Austronesian
JP: Japonic
NC: Niger-Congo
DR: Dravidian
KD: Kra-Dai
ST: Sino-Tibetan

(b) Intermediate (layer 16)

60 40 20 0 20 40 60
t-SNE Projection (Dimension 1)

60

40

20

0

20

40

60

t-S
NE

 P
ro

je
ct

io
n 

(D
im

en
sio

n 
2)

ban_Latn (AU)

ben_Beng (IE)

bjn_Latn (AU)

ces_Latn (IE)

dan_Latn (IE)

deu_Latn (IE)

eng_Latn (IE)

fra_Latn (IE)

gle_Latn (IE)
hin_Deva (IE)

ind_Latn (AU)jav_Latn (AU)

jpn_Jpan (JP) min_Latn (AU)

nld_Latn (IE)

pol_Latn (IE)

rus_Cyrl (IE)

sin_Sinh (IE)

slv_Latn (IE)

spa_Latn (IE)srp_Cyrl (IE)

sun_Latn (AU)

swe_Latn (IE)

swh_Latn (NC)

tel_Telu (DR)

tgl_Latn (AU)

tha_Thai (KD)

ukr_Cyrl (IE)

urd_Arab (IE)

yue_Hant (ST)

zho_Hans (ST)

Overlapping Center
nld_Latn, slv_Latn
swh_Latn, tgl_Latn

Region
Europe
Southeast Asia
South Asia
East Asia
Africa

Linguistic Family
IE: Indo-European
AU: Austronesian
JP: Japonic
NC: Niger-Congo
DR: Dravidian
KD: Kra-Dai
ST: Sino-Tibetan

Linguistic Family
IE: Indo-European
AU: Austronesian
JP: Japonic
NC: Niger-Congo
DR: Dravidian
KD: Kra-Dai
ST: Sino-Tibetan

(c) Late (layer 32)

Figure A10: Hidden-state embeddings of Llama-3.1
(8B) projected in t-SNE dimensions, with HRLs in bold.
Interlingual overlaps transcending familial and regional
boundaries are observed in the intermediate layer rep-
resentations. In the early and late layers, language rep-
resentations cluster w.r.t resource levels and linguistic
features, with minimal overlap.
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Figure A11: Hidden-state embeddings of Llama-3.1-
Instruct (8B) projected in t-SNE dimensions, with HRLs
in bold. Interlingual overlaps transcending familial and
regional boundaries are observed in the intermediate
layer representations. In the early and late layers, lan-
guage representations cluster w.r.t resource levels and
linguistic features, with minimal overlap.
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Figure A12: Hidden-state embeddings of Gemma-2
(9B) projected in t-SNE dimensions, with HRLs in bold.
Interlingual overlaps transcending familial and regional
boundaries are observed in the intermediate layer rep-
resentations. In the early and late layers, language rep-
resentations cluster w.r.t resource levels and linguistic
features, with minimal overlap.
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Figure A13: Hidden-state embeddings of Gemma-2-
Instruct (9B) projected in t-SNE dimensions, with HRLs
in bold. Interlingual overlaps transcending familial and
regional boundaries are observed in the intermediate
layer representations. In the early and late layers, lan-
guage representations cluster w.r.t resource levels and
linguistic features, with minimal overlap.
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Figure A14: Hidden-state embeddings of Llama-31 (8B)
fine-tuned on single-language dataset on English, pro-
jected in t-SNE dimensions, with HRLs in bold. The
decline in interlingual semantic alignment is evident
from the reduced interlingual overlaps in the projected
embeddings within the model’s intermediate layer, com-
pared to the observations in Figure A10.
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Figure A15: Hidden-state embeddings of Llama-31 (8B)
fine-tuned on single-language dataset on English, with
selective freezing strategy, projected in t-SNE dimen-
sions, with HRLs in bold. This approach preserved
interlingual alignment, as indicated by high ILO scores
that correlate with observed preservation of interlingual
overlaps.
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(c) Late (layer 42)

Figure A16: Hidden-state embeddings of Gemma-2
(9B) fine-tuned on single-language dataset on English,
projected in t-SNE dimensions, with HRLs in bold. The
decline in interlingual semantic alignment is evident
from the reduced interlingual overlaps in the projected
embeddings within the model’s intermediate layer, com-
pared to the observations in Figure A12.
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(c) Late (layer 42)

Figure A17: Hidden-state embeddings of Gemma-2
(9B) fine-tuned on single-language dataset on English,
with selective freezing strategy, projected in t-SNE di-
mensions, with HRLs in bold. This approach preserved
interlingual alignment, as indicated by high ILO scores
that correlate with observed preservation of interlingual
overlaps.
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(a) Early (layer 0), perplexity = 5
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(b) Intermediate (layer 16), perplexity = 5
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(c) Late (layer 32), perplexity = 5

Figure A18: Hidden-state embeddings of Aya Expanse
(8B) projected in t-SNE dimensions, with HRLs in bold.
The t-SNE visualizations are derived using the perplex-
ity value of 5.

60 40 20 0 20 40 60
t-SNE Projection (Dimension 1)

40

20

0

20

40

t-S
NE

 P
ro

je
ct

io
n 

(D
im

en
sio

n 
2)

ban_Latn (AU)

ben_Beng (IE)

bjn_Latn (AU)

ces_Latn (IE)

dan_Latn (IE)

deu_Latn (IE)

eng_Latn (IE)

fra_Latn (IE)

gle_Latn (IE)

hin_Deva (IE)

ind_Latn (AU)

jav_Latn (AU)

jpn_Jpan (JP)

min_Latn (AU)

nld_Latn (IE)

pol_Latn (IE)rus_Cyrl (IE)

sin_Sinh (IE)

slv_Latn (IE)

spa_Latn (IE)

srp_Cyrl (IE)

sun_Latn (AU)

swe_Latn (IE)

swh_Latn (NC)

tel_Telu (DR)

tgl_Latn (AU)

tha_Thai (KD)

ukr_Cyrl (IE)

urd_Arab (IE)

yue_Hant (ST)

zho_Hans (ST)

Overlapping Center
jpn_Jpan, zho_Hans
rus_Cyrl, ukr_Cyrl

Region
Europe
Southeast Asia
South Asia
East Asia
Africa

Linguistic Family
IE: Indo-European
AU: Austronesian
JP: Japonic
NC: Niger-Congo
DR: Dravidian
KD: Kra-Dai
ST: Sino-Tibetan

Linguistic Family
IE: Indo-European
AU: Austronesian
JP: Japonic
NC: Niger-Congo
DR: Dravidian
KD: Kra-Dai
ST: Sino-Tibetan

(a) Early (layer 0), perplexity = 15
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Figure A19: Hidden-state embeddings of Aya Expanse
(8B) projected in t-SNE dimensions, with HRLs in bold.
The t-SNE visualizations are derived using the perplex-
ity value of 15.
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(b) Intermediate (layer 16), perplexity = 30
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(c) Late (layer 32), perplexity = 30

Figure A20: Hidden-state embeddings of Aya Expanse
(8B) projected in t-SNE dimensions, with HRLs in bold.
The t-SNE visualizations are derived using the perplex-
ity value of 30.
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Figure A21: Hidden-state embeddings of Aya Expanse
(8B) projected in t-SNE dimensions, with HRLs in bold.
The t-SNE visualizations are derived using the perplex-
ity value of 50.
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(b) ILO scores are derived using k = 10, τ = 5, and cosine distance metric
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(c) ILO scores are derived using k = 20, τ = 10, and cosine distance metric

Figure A22: Layer-wise ¯ILOL scores for all of the source languages in the single-language training on Llama-3.1
(8B) in pre-trained, fine-tuning, and selective freezing modes, with freezing the first 8 layers. Here, the ILO
scores derived using cosine distance metric with variations of the k-NN parameters.
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(b) ILO scores are derived using k = 10, τ = 5, and Euclidean distance metric
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(c) ILO scores are derived using k = 20, τ = 10, and Euclidean distance metric

Figure A23: Layer-wise ¯ILOL scores for all of the source languages in the single-language training on Llama-3.1
(8B) in pre-trained, fine-tuning, and selective freezing modes, with freezing the first 8 layers. Here, the ILO
scores derived using Euclidean distance metric with variations of the k-NN parameters.
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(a) Fine-tuned with the first 4 layers being frozen
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(b) Fine-tuned with the first 8 layers being frozen
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(c) Fine-tuned with the first 12 layers being frozen
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(d) Fine-tuned with the first 16 layers being frozen

Figure A24: Ablation study on frozen layer selections, analyzed through layer-wise ¯ILOL scores for all of the
source-languages in the single-language training on Llama-3.1 (8B) in pre-trained, fine-tuning, and selective
freezing modes. Decrease in alignment from single-language fine-tuning is seen in the early layers. On the contrary,
freezing the first 4, 8, and 12 layers maintains and improves the semantic alignment across layers. However, while
freezing the first 16 layers preserves alignment in the frozen layers, the subsequent layers exhibit lower alignments
compared to the fine-tuned models.
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Abstract

This paper introduces a domain-adapted ap-
proach for verb-order prediction across general
and specialized texts (financial/blockchain),
combining Universal Dependencies syntax
with novel features (AVAR, DLV) and dynamic
threshold calibration. We evaluate on 53 lan-
guages from UD v2.11, 12K financial sentences
(FinBench), and 1,845 blockchain whitepapers
(CryptoUD), outperforming four baselines by
6-19% F1. Key findings include: (1) 62% SOV
prevalence in SEC filings (+51% over general
English), (2) 88% technical whitepaper align-
ment with Solidity’s SOV patterns, and (3) 9%
gains from adaptive thresholds. The system
processes 1,150 sentences/second - 2.4× faster
than XLM-T - while maintaining higher accu-
racy, demonstrating that lightweight feature-
based methods can surpass neural approaches
for domain-specific syntactic analysis.

1 Introduction

The study of linguistic typology has long provided
critical insights into the structural diversity of hu-
man languages, with verb position (e.g., SOV vs.
SVO) being a cornerstone of cross-linguistic re-
search (Dryer, 2013). Recent advances in com-
putational linguistics, particularly the Universal
Dependencies (UD) project (Nivre et al., 2020),
have enabled data-driven predictions of such fea-
tures. However, these methods are rarely applied to
domain-specific texts—despite evidence that gen-
res like legal or technical writing exhibit systematic
syntactic biases (Biber and Gray, 2016). This paper
bridges that gap by investigating verb-order predic-
tion in two understudied domains: financial reports
and blockchain whitepapers.

Problem Definition. We address two key chal-
lenges: (1) the lack of typological adaptation to
specialized genres, where formulaic syntax (e.g.,
passive constructions in contracts) may distort stan-
dard verb-argument order; and (2) the absence of

benchmarks for evaluating syntactic divergence in
emerging domains like blockchain, where hybrid
natural-language/programming syntax occurs. For
instance, Ethereum whitepapers often mix SVO
clauses ("The protocol enables...") with SOV-like
technical specifications ("Tokens are transferred by
the contract..."), but no study has quantified this
variation.

Contributions. Our work:

• Replicates and extends verb-order prediction
using UD treebanks, achieving 87% accuracy
on 50+ languages (Section 3).

• Reveals that financial texts exhibit 12% higher
head-finality than general language (p <
0.01), while whitepapers show hybrid patterns
(Section 4).

• Releases the first domain-annotated dataset
for financial/blockchain syntax typology (Sec-
tion 5).

2 Related Work

2.1 Computational Typology
Recent advances in computational typology have
demonstrated the feasibility of predicting verb-
order universals from syntactic data. Smith et al.
(2018) showed that unsupervised features like
Mean Dependency Direction (MDD) can classify
SOV/SVO languages with 85% accuracy using
Universal Dependencies (UD) treebanks. Subse-
quent work by Malaviya et al. (2020) extended this
through graph-based propagation for low-resource
languages, while Bjerva and Augenstein (2023)
revealed that multilingual LLMs implicitly en-
code typological patterns. However, these ap-
proaches share two key limitations that our work
addresses: (1) they assume genre homogeneity,
treating all texts within a language as syntactically
uniform despite evidence of domain-specific varia-
tion (Hämäläinen et al., 2022), and (2) they rely on
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WALS/Grambank labels that exclude specialized
domains like finance or blockchain documentation.

2.2 Domain-Specific NLP

The NLP community has increasingly focused on
domain adaptation, particularly for financial and
legal texts. Alvarado et al. (2021) developed spe-
cialized embeddings for financial entity recogni-
tion, and Ortigosa-Hernández et al. (2022) opti-
mized BERT for sentiment analysis in earnings
reports. Parallel work in blockchain NLP has prior-
itized smart contract code analysis (Bartoletti et al.,
2021), with limited attention to natural-language
documentation. We have also studied similar ap-
proaches from (Wang et al., 2025; Yan et al., 2025).
Chen et al. (2022) analyzed whitepaper surface fea-
tures (e.g., lexical complexity), while Liao et al.
(2023) studied semantic roles in crypto announce-
ments. Crucially, none of these works examine syn-
tactic typology as a domain adaptation factor—a
gap our methodology fills by introducing:

• Genre-adjusted MDD thresholds (Section 3)

• Cross-domain evaluation against expert-
annotated financial/blockchain texts (Sec-
tion 4)

2.3 Predicting Verb Order in Specialized
Domains

INSERTION POINT: While verb-order predic-
tion has been largely confined to general-language
corpora, emerging work has begun exploring
domain-specific syntactic patterns. Wang and Hale
(2021) demonstrated that legal English exhibits
higher rates of SOV-like constructions (e.g., "the
agreement shall be governed by law") compared
to newswire texts, attributing this to prescriptive
drafting conventions. In blockchain documentation,
Zhang et al. (2022) identified systematic mixing of
SVO (marketing content) and SOV (technical spec-
ifications) within individual whitepapers, though
their study relied on manual annotation rather than
automated dependency parsing. Most relevant to
our work, Lee et al. (2023) fine-tuned dependency
parsers on SEC filings, reporting a 15% increase in
attachment accuracy when incorporating domain-
specific verb-position features. These studies col-
lectively suggest that verb order is both a stylis-
tic and functional marker in specialized texts—a
hypothesis we rigorously test through large-scale
UD-based analysis.

2.4 Gaps From Past Research To Be
Addressed

Our work bridges three understudied intersections
in prior literature. First, while Gerdes and Ka-
hane (2021) proposed entropy-based metrics for
syntactic diversity, they did not account for the for-
mulaic constructions prevalent in financial texts
(e.g., passive-voice legalese). Second, despite Ko-
rnai et al. (2023)’s findings on legal syntax uni-
versals, no study has quantified how blockchain
documentation hybridizes natural language with
programming-language verb orders. Third, exist-
ing typology prediction models (Smith et al., 2018)
lack validation on genre-stratified corpora—an
omission we rectify through systematic compar-
ison of general vs. domain-specific treebanks.

3 Methodology

Our methodology advances prior work in com-
putational typology by addressing three critical
gaps: (1) the assumption of syntactic homogeneity
across domains (Malaviya et al., 2020), (2) static
thresholds for verb-order classification (Smith et al.,
2018), and (3) manual feature engineering for spe-
cialized texts (Zhang et al., 2022). As illustrated
in Figure 1, our system integrates treebank prepro-
cessing, domain-aware feature extraction, adaptive
thresholding, and ensemble prediction. Below, we
detail each component with mathematical formula-
tions and algorithmic improvements.

Figure 1 illustrates our end-to-end system for
verb-order prediction, designed to address limita-
tions in prior work. Stage 1 (Treebank Prepro-
cessing) applies domain-specific tokenization and
clause detection to handle financial/blockchain jar-
gon, resolving Lee et al. (2023)’s observation of
UD tokenizer failures on specialized texts. Stage 2
(Feature Extraction) computes three linguistically
motivated metrics (MDD, AVAR, DLV), extend-
ing Smith et al. (2018)’s work with argument-verb
distance modeling. Stage 3 (Domain Adaptation)
dynamically adjusts classification thresholds using
genre bias coefficients, overcoming Wang and Hale
(2021)’s static legal-English threshold approach.
Finally, Stage 4 (Ensemble Prediction) combines
statistical and rule-based methods to handle edge
cases like VSO questions in whitepapers, a weak-
ness of pure neural models noted by Bjerva and
Augenstein (2023).
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Treebank Preprocessing
(Tokenization, POS Tagging)

Feature Extraction
(MDD, AVAR, DLV)

 Raw UD Parses 

Domain Adaptation
(Threshold Calibration)

 Syntactic Features 

Ensemble Prediction
(Logistic Regression + Rules)

 Adapted Features 

Figure 1: Workflow for verb-order prediction

3.1 Treebank Preprocessing
The input to our system is a dependency treebank
D in CONLL-U format, comprising n sentences
{S1, ..., Sn} with Universal Dependencies (UD)
annotations. For financial and blockchain texts,
we first apply domain-specific tokenization rules
to handle frequent constructs like monetary values
(e.g., "$12.5M") and smart contract addresses (e.g.,
"0x71C7..."). This addresses Lee et al. (2023)’s
observation that standard UD tokenizers underper-
form on financial jargon. We then augment the UD
tags with:

• Domain labels: Automatically assigned us-
ing a pretrained FastText classifier (Joulin
et al., 2016), trained on the FinText corpus
(Shah et al., 2021) and CryptoNews dataset
(Nadarzynski et al., 2021).

• Clause boundaries: Identified using a CRF
model with features from Persson et al. (2016),
critical for isolating matrix clauses in long
legal sentences.

3.2 Feature Extraction
We extend the traditional Mean Dependency Di-
rection metric with two novel features designed to
capture domain-specific verb positioning:

3.2.1 Mean Dependency Direction (MDD)
For each sentence Si, we compute the proportion
of head-initial dependencies:

MDD(Si) =
|{h→ d ∈ Si : h < d}|

|Si|
(1)

where h → d denotes a head-dependent relation,
and h < d indicates the head precedes the depen-
dent. The corpus-level MDD is the mean across all
sentences (Eq. 1). Unlike Liu (2010), we exclude
punctuation dependencies to reduce noise.

3.2.2 Argument-Verb Attachment Ratio
(AVAR)

To address Zhang et al. (2022)’s finding of mixed
word orders in blockchain texts, we introduce
AVAR, which quantifies the tendency for arguments
(subjects/objects) to precede verbs:

AVAR(D) =
|{(nsubj, obj, iobj) < verb}|+ ϵ

|{(nsubj, obj, iobj) > verb}|+ ϵ
(2)

where ϵ = 0.1 is a smoothing factor for low-count
relations. The window size k = 5 tokens accounts
for non-projective dependencies common in finan-
cial legalese.

3.2.3 Dependency Length Variance (DLV)
Inspired by Futrell et al. (2019), we measure the
variance in arc lengths for core arguments:

DLV(D) = Var({len(h→ d) :

h→ d ∈ {nsubj, obj, obl}}) (3)

SOV languages typically exhibit higher DLV due
to discontinuous constituents (Hawkins, 1994).

The domain-adapted verb-order prediction algo-
rithm (Algorithm 1) operationalizes our method-
ological innovations to address limitations identi-
fied in Section 2. Building on Smith et al. (2018)’s
static feature extraction, we introduce dynamic
threshold calibration (Lines 16–19) to handle genre-
induced syntactic variation (Hämäläinen et al.,
2022). The preprocessing stage (Lines 1–8) in-
corporates domain-specific tokenization rules and
clause detection, resolving Lee et al. (2023)’s ob-
servation of UD parser failures on financial jargon.
Feature extraction (Lines 9–15) extends beyond tra-
ditional MDD with AVAR and DLV metrics, cap-
turing argument-verb distance patterns that Zhang
et al. (2022) manually annotated. Crucially, the
ensemble prediction (Lines 20–25) combines statis-
tical modeling with domain-aware rules, mitigating
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Algorithm 1 Domain-Adapted Verb-Order Predic-
tion
Require: Treebank D in CONLL-

U format, domain label l ∈
{financial, blockchain, general}

Ensure: Predicted verb-order class
ŷ ∈ {SOV,SVO,VSO}

1: Preprocessing:
2: Tokenize text with domain-specific rules (han-

dling currencies, addresses)
3: Annotate clauses using CRF model (Persson

et al., 2016)
4: Assign domain label l via FastText classifier
5: Feature Extraction:
6: Compute MDD(D) per Eq. 1, excluding punc-

tuation
7: Calculate AVAR(D) with k = 5 token window
8: Derive DLV(D) for core arguments
9: Domain Adaptation:

10: Retrieve base threshold τl from domain lookup
table

11: Adjust τl ← τl + α · GenreBias(Dtrain) where
α = 0.15

12: Clip τl ∈ [0.4, 0.8] to prevent extreme values
13: Prediction:
14: Extract UD features x = [MDD,AVAR,DLV]
15: Compute P (SOV|x) = σ(wTx + b) with w

from logistic regression
16: Apply rule-based post-processing:
17: if AVAR > 2.0 and l = blockchain then
18: Override ŷ ← SOV (for technical specs)
19: end if
20: return ŷ

Bjerva and Augenstein (2023)’s finding that pure
neural approaches underperform on rare construc-
tions. This hybrid design enables robust verb-order
classification across general and specialized texts
while maintaining interpretability—a key require-
ment for typological analysis.

3.3 Domain Adaptation
Prior work (Wang and Hale, 2021) used fixed
thresholds for legal texts, ignoring cross-domain
variation. We propose dynamic threshold calibra-
tion:

τl = τbase + α ·


 1

|Dl|
∑

S∈Dl

MDD(S)− µgenre




(4)

where µgenre is the mean MDD for the domain’s
training set Dl, and α = 0.15 controls adjustment
sensitivity. This outperforms Smith et al. (2018)’s
static τ = 0.5 by 12% F1 on financial texts (Table
6).

3.4 Ensemble Prediction
The final classifier combines logistic regression
with rule-based heuristics:

ŷ =





SOV if P (SOV|x) > τl and DLV > 1.5

VSO if AVAR < 0.3 and l ̸= financial
SVO otherwise

(5)
This hybrid approach addresses Bjerva and Augen-
stein (2023)’s finding that pure statistical models
fail on rare constructions (e.g., VSO in questions).

3.5 Implementation Details
The system is implemented in Python using Stanza
(Qi et al., 2020) for parsing and scikit-learn for
classification. Hyperparameters were tuned on a
validation set of 10k sentences from:

• Financial: SEC filings (EN), EU regulatory
texts (DE/FR)

• Blockchain: Ethereum/EOS whitepapers

• General: UD test sets (20 languages)

Training takes 3.2 hours on an NVIDIA V100 GPU,
with inference at 1.2k sentences/second.

4 Experiments and Results

4.1 Datasets and Baselines
Our experimental framework employs six care-
fully curated datasets to evaluate the proposed
method’s effectiveness across general and domain-
specific contexts. The Universal Dependencies
(UD) v2.11 corpus (Nivre et al., 2020) serves as
our primary general-language benchmark, compris-
ing treebanks from 53 languages representing seven
major linguistic families (Indo-European, Uralic,
Turkic, etc.). Each treebank contains manually
annotated dependency trees with an average inter-
annotator agreement of 0.85 Fleiss’ κ, ensuring
high-quality syntactic annotations. We specifi-
cally selected languages exhibiting diverse verb-
order patterns, including 15 SOV-dominant (e.g.,
Japanese, Hindi), 28 SVO-dominant (e.g., English,
Chinese), and 10 VSO-dominant (e.g., Irish, Clas-
sical Arabic) languages.
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For financial text analysis, we introduce Fin-
Bench, a proprietary corpus aggregating 12,000
sentences from SEC EDGAR filings (2015–2023)
and ECB regulatory documents. This dataset ex-
tends the English Financial PhraseBank (Malaviya
et al., 2020) with three critical enhancements: (1)
verb-order annotations following Wang and Hale
(2021)’s legal syntax taxonomy, (2) clause-type la-
bels distinguishing matrix clauses from subordinate
constructions, and (3) domain-specific syntactic
flags for passive-voice legalese and notwithstand-
ing clauses. The annotation process involved three
trained linguists achieving 0.82 Cohen’s κ on verb-
order classification.

The BlockchainDoc corpus contains 1,845 tech-
nical whitepapers from Ethereum and EOS projects,
collected from arXiv and ICO archives (Nadarzyn-
ski et al., 2021). Each document is annotated for:
(1) section type (technical vs. marketing), (2) hy-
brid natural-language/code syntax patterns, and
(3) verb-position categories adapted from Zhang
et al. (2022)’s framework. A novel aspect is the
alignment of 400 parallel Solidity smart contract
snippets with their natural language descriptions,
enabling direct comparison of verb-order distribu-
tions.

We compare against four baselines representing
state-of-the-art approaches:

• Smith-2018: Static MDD threshold method
(Smith et al., 2018)

• LegalBERT: Domain-tuned transformer
(Chalkidis et al., 2020)

• XLM-T: Multilingual LM probing (Conneau
et al., 2020)

• UD-Probe: Syntax-aware classifier (Bjerva
and Augenstein, 2023)

4.2 Implementation Details
The system is implemented in Python 3.9 using
Stanza (Qi et al., 2020) for dependency parsing and
scikit-learn for classification. All experiments run
on NVIDIA V100 GPUs with the following key
configurations:

• Tokenization: Domain-specific rules for finan-
cial amounts/crypto addresses

• Feature extraction: k = 5 token window for
AVAR, ϵ = 0.1 smoothing

• Training: 5-fold cross-validation with
80/10/10 splits

4.3 Results and Analysis

Table 1: Cross-language verb-order prediction accuracy
(%)

Language
Family

Our
Method

Smith-
2018

XLM-T

Indo-
European

92.3± 0.7 85.1± 1.2 88.7± 0.9

Uralic 89.7± 1.1 82.4± 1.5 84.2± 1.3
Turkic 94.1± 0.5 88.9± 0.8 86.5± 1.0

Table 1 demonstrates our method’s superior per-
formance across language families, particularly in
Turkic languages where it achieves 94.1% accu-
racy compared to 88.9% for Smith-2018. This 5.2
percentage point improvement stems from our en-
hanced feature set capturing morphological cues
that pure MDD approaches miss.

Table 2: Financial text performance (F1)

Feature Our
Method

LegalBERT UD-Probe

Passive
Clauses

0.91 ±
0.02

0.85 ±
0.03

0.72 ±
0.04

Mixed Or-
ders

0.87 ±
0.03

0.68 ±
0.05

0.59 ±
0.06

In financial texts (Table 2), our domain adapta-
tion yields 0.91 F1 on passive clauses versus Legal-
BERT’s 0.85. The 0.19 F1 gain on mixed-order
sentences proves particularly significant for real-
world contract analysis.

Table 3: Blockchain whitepaper analysis

Section
Type

Precision Recall F1 Solidity
Align.

Technical 0.93 ±
0.01

0.89 ±
0.02

0.91 ±
0.01

88%

Marketing 0.88 ±
0.02

0.92 ±
0.01

0.90 ±
0.01

42%

Table 3 reveals the stark contrast between
technical (88% Solidity alignment) and market-
ing sections (42%), empirically validating Zhang
et al. (2022)’s qualitative observations about code-
influenced syntax.
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4.4 Domain-Specific Treebanks with
Financials and Blockchain

The financial text analysis builds upon two spe-
cialized treebanks that address critical gaps in ex-
isting resources. The English Financial Phrase-
bank (Malaviya et al., 2020), while not originally
in UD format, was converted to CONLL-U through
a rigorous annotation process involving three post-
doctoral linguists over six months. This conver-
sion enabled direct comparison with general UD
treebanks while preserving the original sentiment
labels and financial entity annotations. The re-
sulting treebank contains 8,742 sentences with en-
hanced dependency labels for legal-financial con-
structions, including passive-voice clauses (e.g.,
"The dividend shall be paid") and complex prepo-
sitional phrases (e.g., "notwithstanding any provi-
sion herein"). Inter-annotator agreement reached
0.81 Fleiss’ κ for dependency relations and 0.89
for verb-order classification, exceeding standard
UD annotation reliability thresholds.

For blockchain text analysis, we developed the
CryptoUD corpus through systematic crawling of
1,845 whitepapers from arXiv and ICO archives
(Nadarzynski et al., 2021), followed by parsing
with Stanza’s customized English model trained on
technical documentation. This corpus introduces
three novel annotation layers beyond standard UD:
(1) code-natural language boundary markers (e.g.,
inline Solidity snippets), (2) technical vs. mar-
keting section tags, and (3) verb-order patterns in
mathematical notation explanations. The annota-
tion process revealed that 38% of technical sec-
tions contain hybrid constructions where natural
language verb positions directly mirror adjacent
smart contract code (e.g., "Tokens are transferred
[Solidity: tokens.transfer()]"), empirically val-
idating Zhang et al. (2022)’s hypothesis about code-
influenced syntax.

4.5 SOV Prevalence Across Domains

Our investigation of verb order as a stylistic marker
in specialized domains yielded three principal find-
ings. First, quantitative analysis of SEC filings
demonstrates a 62% SOV rate compared to 11% in
general English (Table 4), confirming that legalese
financial texts strongly favor SOV-like structures
for precision. This preference manifests most
prominently in contractual obligations (78% SOV)
and disclaimer sections (84% SOV), while exhibit-
ing more variability in narrative portions (45%

SOV). Second, the technical/marketing dichotomy
in blockchain whitepapers shows striking diver-
gence: technical sections align 88% with Solid-
ity’s SOV patterns, while marketing content resem-
bles general SVO English (42% alignment). Third,
smart contract languages exhibit even stronger SOV
tendencies (89%) than their natural language coun-
terparts, suggesting a programming-language effect
on technical writing syntax.

Table 4: SOV prevalence across domains (%)

Domain SOV Rate ∆ from Gen-
eral

SEC Filings 62 ± 2 +51 ± 3
Whitepapers
(Technical)

57 ± 3 +46 ± 4

Whitepapers
(Marketing)

19 ± 2 +8 ± 3

Solidity Contracts 89 ± 1 N/A
General English 11 ± 1 Baseline

The Solidity-natural language syntactic align-
ment study required innovative methodology to
ensure valid comparisons. We developed a parallel
corpus of 400 Solidity function definitions paired
with their whitepaper descriptions, then applied
three analysis techniques: (1) manual verb-order
classification by five annotators (0.87 agreement),
(2) automated UD parsing of natural language por-
tions, and (3) abstract syntax tree analysis of So-
lidity code. This tripartite approach revealed that
73% of function descriptions maintain identical
verb-order patterns to their code implementations
(e.g., both SOV), while only 12% show complete
divergence (e.g., code SOV vs. text SVO). The
remaining 15% exhibit mixed patterns, typically
when describing multiple operations in a single
paragraph. This approach is similar to what used in
(Yan et al., 2023), (Hu et al., 2025) and (Freedman
et al., 2024).

4.6 Threshold sensitivity analysis

Table 5: Threshold sensitivity analysis (F1)

τ Range Financial F1 Blockchain F1

0.4–0.5 0.82 ± 0.03 0.78 ± 0.04
0.5–0.6 0.89 ± 0.02 0.85 ± 0.03
0.6–0.7 0.91 ± 0.01 0.88 ± 0.02
0.7–0.8 0.90 ± 0.02 0.86 ± 0.03

161



The threshold sensitivity analysis (Table 5)
demonstrates why previous approaches underper-
formed in specialized domains. While static thresh-
olds between 0.4–0.5 yield only 0.82 F1 in financial
texts, our adaptive method achieves peak perfor-
mance at 0.6–0.7 (0.91 F1). This 9 percentage point
improvement directly results from the dynamic cal-
ibration mechanism described in Equation 4, which
automatically adjusts for genre-specific syntactic
biases. The blockchain domain shows similar pat-
terns but with slightly lower optimal thresholds
(0.55–0.65), reflecting the more heterogeneous na-
ture of technical documentation.

4.7 Ablation Study Analysis

Table 6: Ablation study (F1 ∆)

Model
Variant

Financial Blockchain General

Full
Model

– – –

w/o Do-
main
Adapt

-12% -9% -4%

w/o AVAR -9% -6% -3%
w/o DLV -7% -11% -2%

The comprehensive ablation study presented in
Table 6 systematically quantifies the contribution
of each architectural component across our three
evaluation domains. For financial texts, removing
domain adaptation triggers the most severe perfor-
mance drop (−12% F1), empirically validating our
hypothesis in Section 3 that legal drafting conven-
tions require explicit genre-aware threshold cali-
bration. This effect is particularly pronounced in
passive-voice constructions (e.g., “The dividend
shall be paid”), where static thresholds misclas-
sify 38% of cases versus our adaptive method’s 9%
error rate.

Conversely, blockchain text analysis shows
greater dependence on Dependency Length Vari-
ance (DLV), with its removal causing −11% F1
degradation—a finding that aligns with Futrell et al.
(2019)’s cognitive theory of discontinuity mini-
mization in technical documentation. The asym-
metric impacts reflect fundamental linguistic dif-
ferences: financial texts demand prescriptive genre
adaptation to handle rigid legal formulae, while
blockchain content benefits from structural discon-

tinuity detection to parse hybrid code-natural lan-
guage constructs.

Notably, general-language performance exhibits
remarkable stability (−2% to −4% across abla-
tions), confirming that our AVAR and DLV exten-
sions specifically address domain-induced syntac-
tic variation rather than overfitting to Universal
Dependencies patterns. This domain-specific spe-
cialization explains why our method outperforms
monolithic architectures like LegalBERT (Table 2)
and XLM-T (Table 1). While their uniform ap-
proaches struggle with cross-genre transfer, our
modular design enables targeted optimization.

The ablation results further reveal an unexpected
synergy: combining domain adaptation with AVAR
yields 14% greater improvement than their individ-
ual effects would predict, suggesting legal-financial
texts exhibit both genre-specific thresholds and
argument-verb distance patterns that jointly signal
verb position.

4.8 Runtime and Scalability

Table 7: Runtime comparison

Method Training (hr) Inference
(sent/sec)

Our Method 2.1 1,150
LegalBERT 8.7 620
XLM-T 12.4 480
UD-Probe 3.5 890

Table 7 demonstrates our method’s practical effi-
ciency. At 1,150 sentences/second inference speed,
it outperforms LegalBERT by 1.9× and XLM-T
by 2.4× while maintaining higher accuracy. This
stems from the lightweight feature-based architec-
ture, which requires only 2.1 hours training versus
12.4 for XLM-T. The UD-Probe baseline shows
competitive speed but lower accuracy, highlighting
our AVAR/DLV extensions’ value.

4.9 Discussion
Our results demonstrate that domain-adapted typo-
logical analysis offers substantial benefits over both
general-purpose and specialized NLP approaches.
The 6-19% F1 improvements over LegalBERT in
financial texts (Table 2) prove that explicit syn-
tactic modeling outperforms pure neural methods
for domain-specific constructions. The blockchain
findings (Table 3) provide the first quantitative ev-
idence of code-language syntactic transfer, with

162



technical sections showing 88% alignment with
Solidity patterns.

The threshold sensitivity results (Table 5) ex-
plain prior approaches’ limitations: static thresh-
olds cannot handle domain-induced syntactic vari-
ation. Our dynamic calibration method addresses
this while maintaining efficiency (Table 7), proving
that accurate domain adaptation need not sacrifice
speed.

Future work should address the error cases
through three enhancements: (1) integrated seman-
tic parsing for clause ambiguity resolution, (2) joint
natural/code syntax modeling for hybrid texts, and
(3) discourse-aware preprocessing for elliptical con-
structions. These extensions would further bridge
the gap between computational typology and real-
world NLP applications.

5 Conclusion

Our method advances computational typology by
bridging general and domain-specific verb-order
analysis. The 6-19% improvements over base-
lines validate that explicit syntactic modeling with
domain adaptation outperforms pure neural ap-
proaches for financial/blockchain texts. We empiri-
cally demonstrate code-language syntactic transfer
(88% technical whitepaper alignment with Solidity)
and quantify legal SOV preferences (62% in SEC
filings). While current limitations include handling
elliptical constructions and hybrid code-natural lan-
guage syntax, the system’s efficiency (1,150 sen-
tences/second) and accuracy make it practical for
real-world applications. Future work should inte-
grate discourse features and joint code-language
modeling to address remaining edge cases.
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Abstract

This paper presents a computational method
for token-level lexical semantic comparative
research in an original text setting, as opposed
to the more common massively parallel setting.
Given a set of (non-massively parallel) bitexts,
the method consists of leveraging pre-trained
contextual vectors in a reference language to in-
duce, for a token in one target language, the lex-
ical items that all other target languages would
have used, thus simulating a massively paral-
lel set-up. The method is evaluated on its ex-
traction and induction quality, and the use of
the method for lexical semantic typological re-
search is demonstrated.

1 Introduction

Lexical semantic typology has benefited im-
mensely from the availability of massively parallel
corpora. Having the same message translated from
a reference language into many different target lan-
guages affords linguists a basis to study variation in
word meanings (cf. Haspelmath, 2018) at the fine-
grained level of corpus tokens (Levshina, 2016).

The massively parallel set-up (Figure 1, top) al-
lows us to determine, for instance, that Spanish and
German both split the meaning of English know
similarly into ‘know someone’ (conozco, kenne),
and ‘know something’ (sabe, weiss). Studies using
massively parallel corpora have challenged prior
conceptions of semantic variation, showing that lan-
guages vary continuously rather than discretely in
where they mark lexical boundaries (e.g., Verkerk,
2014 for motion events) and revealing novel factors
explaining such lexical boundaries (e.g.,Wälchli,
2016 for verbs of visual perception).

Massively parallel corpora do, however, have
methodological downsides (see Levshina, 2021 for
a review). They tend to reflect literary genres and
have conceptual content that may be foreign to the
culture into whose language the text is translated
(Domingues et al., 2024; Pinhanez et al., 2023).

Figure 1: Massively parallel corpora vs. original corpora

Moreover, languages differ in how they habitually
formulate, i.e., what conceptual contents speakers
typically bring up when they engage in ‘the same’
linguistic activities, such as telling a story (Tannen,
1980) or making a request (Terkourafi, 2011). Fi-
nally, translated text displays transfer effects, where
properties of a source language are transferred to
a target language, thus making the target language
look more like the source language (Johansson and
Hofland, 1994, though see Levshina, 2017).

These issues could in part be circumvented by
using original text corpora with translations from
the (untranslated) target languages into a shared
reference language, as in Figure 1, bottom panel.
In comparative linguistics, such corpora are com-
monly used (McEnery and Xiao, 2007; Enghels
et al., 2020). However, under this set-up, the trans-
lations are not massively parallel. The loss of mas-
sive parallelism impacts the comparability: without
it, we can, for instance, no longer directly infer that
Spanish conozco covers (approximately) the same
meanings as German kenne, and ditto for sabe and
weiss. Moreover, it affects the downstream ana-
lytic techniques we can use: many studies rely on
dimensionality reduction over the translations of
the seed language tokens into all target languages,
a situation unavailable with an original text set-up.

The use of original text data thus calls for a
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method to make these data comparable at the token
level. Multilingual contextualized representation
spaces, such as Multilingual BERT (Devlin et al.,
2019) could be considered here, but given the small
amounts of data available for most languages, as
well as challenges to the ‘true’ multilingual nature
of Multilingual BERT (Pires et al., 2019), this ap-
proach does not seem feasible.

Instead, this paper proposes a method that lever-
ages pre-trained contextual vectors for the refer-
ence language to induce, for a token in one tar-
get language, the lexical items that all other tar-
get languages would have used. Doing so, the
proposed method simulates a massively parallel
set-up. Pre-trained vectors for one language in a
translation pair have been succesfully used to im-
prove word alignment quality in bitexts (Dou and
Neubig, 2021), and as such we can expect further
translation-oriented applications to similarly bene-
fit from the more substantial training data available
for resource-rich languages like English.

After describing the method (§2) and introduc-
ing the corpora (§3), I will report on three exper-
iments validating the method (§4), and showcase
the use of the method for lexical semantic typo-
logical research (§5). Code is available at https:
//github.com/dnrb/no-parallel-corpus.

2 A method for inferring lexification

Here, I propose a method to simulate a massively
parallel setting when such parallelism is not avail-
able. The method takes as its input raw bitexts with
translations from a target language t into a refer-
ence language r for which contextual vectors are
available or can feasibly be trained. The method
uses these contextual vectors to induce a classifi-
cation model predicting lexical choice in t. This
model can then be applied to translations of another
target language t′ into r, to infer the lexical choice
that t would have made if asked to translate a word
token in t′. Doing so for all languages lets us to
infer a token-by-language table like those used in
studies based on massively parallel corpora.

2.1 Alignment step

To induce a lexical classification model in a target
language t on the basis of contextualized vectors
in r, we need to know, for a particular token wt of
t, which token wr of r is translation equivalent, so
that an association between wt and the contextual-
ized vector of wr can be learned. At the same time,

lexical semantic typology tends to be interested in
the lexical choice of lemmas (e.g., believe) rather
than the inflected forms (e.g., believe, believes, be-
lieving, believed), and as such, the alignment proce-
dure would ideally also identify the shared lemma
form in the target languages.

An approach affording both at the same time
is Liu et al. (2023)’s Conceptualizer model. As-
suming a bitext U , consisting of paired utterances
⟨ur, ut⟩ in the reference and target language, we de-
fine Uv ⊆ U as the set of bitext utterances in which
reference language word type v occurs. Given a ref-
erence language seed word v, the procedure then
considers each possible substring l in t, and re-
trieves the set of bitext utterances Ul ∈ U in which
l occurs. The most strongly associated substring
lmax is the substring whose Fisher Exact score over
the following 2× 2 table has the lowest p-value:

|Uv ∩ Ul| |Uv/Ul|
|Ul/Uv| |U/(Uv ∪ Ul)|

Intuitively, lmax is a substring of target language
words that frequently occur in the same utterances
as v and infrequently occur in utterances where v is
not present. The search space over all possible l is
further reduced by assuming that |Uv∩Ul|

|Uv | ≥ θt and

that |Uv∩Ul|
|Ul| ≥ θb, with θt = 0.01 and θb = 0.10,

i.e. that the union of utterances containing v and
l should make up 1% or more or all utterances
containing v and that the same union should make
up 10% or more of all utterances containing l.

When lmax is found, Ulmax is removed from Uv,
and the process is repeated on the updated set Uv,
until a pre-set threshold of coverage over the tokens
of v is reached (here: 0.95× |Uv|).

In subsequent steps, the model will need to re-
trieve the word tokens associated with lmax. It does
so through the function tokens(lmax), which goes
through all u ∈ Uv ∩ Ulmax and retrieves, per u, the
target language word token that contains lmax. If
multiple tokens in some ut contain lmax, the one
that occurs in the largest number of utterances in
Uv ∩ Ulmax is selected.

2.2 Lemma merger step
Exploration reveals that the Liu et al. (2023) proce-
dure often extracts spurious unique lemmas for a
seed word. For instance, both ˆsepara and ˆsepare
(carets denote the start of a string) might be ex-
tracted in Spanish as target language lemmas given
the seed word separate. These are obvious variants
of the same lemma (separar). Similarly, identical
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language (glottocode, family, area: reference) n tokens language (glottocode, family, area: reference) n tokens

Anal (anal1239, Sino-Tibetan, Eurasia: Ozerov) 14026 N||ng (nngg1234, Tuu, Africa: Güldemann et al., 2024) 27035
Yali (Apahapsili) (apah1238, Nuclear Trans New Guinea, Papunesia: Riesberg, 2024) 15243 Northern Kurdish (Kurmanji) (nort2641, Indo-European, Eurasia: Haig et al., 2024) 9657
Arapaho (arap1274, Algic, North America: Cowell, 2024) 10279 Northern Alta (nort2875, Austronesian, Papunesia: Garcia-Laguia, 2024) 11137
Baïnounk Gubëeher (bain1259, Atlantic-Congo, Africa: Cobbinah, 2024) 12522 Fanbyak (orko1234, Austronesian, Papunesia: Franjieh, 2024) 18928
Beja (beja1238, Afro-Asiatic, Africa: Vanhove, 2024) 15454 Pnar (pnar1238, Austroasiatic, Eurasia: Ring, 2024) 20485
Cabécar (cabe1245, Chibchan, North America: Quesada et al., 2024) 17528 Daakie (port1286, Austronesian, Papunesia: Krifka, 2024) 11880
Cashinahua (cash1254, Pano-Tacanan, South America: Reiter, 2024) 9655 Ruuli (ruul1235, Atlantic-Congo, Africa: Witzlack-Makarevich et al., 2024) 8255
Dolgan (dolg1241, Turkic, Eurasia: Däbritz et al., 2024) 18694 Sadu (sadu1234, Sino-Tibetan, Eurasia: Xu and Bai, 2024) 11752
Evenki (even1259, Tungusic, Eurasia: Kazakevich and Klyachko, 2024) 8366 Sanzhi Dargwa (sanz1248, Nakh-Daghestanian, Eurasia: Forker and Schiborr, 2024) 5140
Goemai (goem1240, Afro-Asiatic, Africa: Hellwig, 2024) 24039 Savosavo (savo1255, Isolate, Papunesia: Wegener, 2024) 11383
Gorwaa (goro1270, Afro-Asiatic, Africa: Harvey, 2024) 19988 Nafsan (South Efate) (sout2856, Austronesian, Papunesia: Thieberger, 2024) 25204
Gurindji (guri1247, Pama-Nyungan, Australia: Meakins, 2024) 6116 Sümi (sumi1235, Sino-Tibetan, Eurasia: Teo, 2024) 11158
Hoocąk (hoch1243, Siouan, North America: Hartmann, 2024) 7431 Svan (svan1243, Kartvelian, Eurasia: Gippert, 2024) 10318
Jahai (jeha1242, Austroasiatic, Eurasia: Burenhult, 2024) 8087 Tabasaran (taba1259, Nakh-Daghestanian, Eurasia: Bogomolova et al., 2024) 5057
Jejuan (jeju1234, Koreanic, Eurasia: Kim, 2024) 9359 Teop (teop1238, Austronesian, Papunesia: Mosel, 2024) 12134
Kakabe (kaka1265, Mande, Africa: Vydrina, 2024) 46634 Texistepec Popoluca (texi1237, Mixe-Zoque, North America: Wichmann, 2024) 8468
Kamas (kama1351, Uralic, Eurasia: Gusev et al., 2024) 37861 Totoli (toto1304, Austronesian, Papunesia: Bardají i Farré, 2024) 11798
Tabaq (Karko) (kark1256, Nubian, Africa: Hellwig et al., 2024) 9318 Mojeño Trinitario (trin1278, Arawakan, South America: Rose, 2024) 17421
Komnzo (komn1238, Yam, Papunesia: Döhler, 2024) 33773 Asimjeeg Datooga (tsim1256, Nilotic, Africa: Griscom, 2024) 8782
Light Warlpiri (ligh1234, Mixed Language, Australia: O’Shannessy, 2024a) 8685 Urum (urum1249, Turkic, Eurasia: Skopeteas et al., 2024) 18797
Movima (movi1243, Isolate, South America: Haude, 2024) 10243 Vera’a (vera1241, Austronesian, Papunesia: Schnell, 2024) 17785
Dalabon (ngal1292, Gunwinyguan, Australia: Ponsonnet, 2024) 4046 Warlpiri (warl1254, Pama-Nyungan, Australia: O’Shannessy, 2024b) 7129

Table 1: The 44 languages in the DoReCo dataset. ‘n tokens’ is the number of target language word tokens.

target language lemmas may mismatch across seed
words: English split might yield Spanish ˆsepar
as a target language lemma. Without further pro-
cessing, this would lead to the model’s failure to
recognize that separar translates into the reference
language words separate and split.

To resolve this issue, I implement a simple
heuristic to merge target language lemmas given
the same or different seed words. In all cases, the
basic criterion is that two target language lemmas li
and lj are merged iff they have a longest-common
substring (1) whose length is ≥ 3 characters, and
(2) that is at least half as long (in characters) as
the shortest string of the two lemmas li and lj .
When merging across seed words (like ˆsepar given
split and ˆsepara given separate in the example
above), we further require that the whole word
forms (e.g., separamos, separaba) that the two lem-
mas cover overlap, as a further way to ensure that
they indeed are the same lemma. Concretely, we
retrieve the set of unique whole word forms cov-
ered by li, i.e. all unique strings from tokens(li),
and call it Wi. We do the same for lj and call
it Wj . Next, we define the two lemmas to have
sufficient overlap in the word forms they cover if
|Wi ∩Wj | ≥ max(|Wi|, |Wj |) × 0.5, or: the in-
tersection of their word forms is at least half the
size of the largest of the two sets. All lemma pairs
are considered, and an undirected graph is induced
with edges between all pairs of mergeable lemmas,
after which all lemmas in each connected compo-
nent are merged.

2.3 Induction step

With the inferred mapping between seed words in
the reference language t and merged lemmas in the

target language t, we can now train a classifier to
induce the merged lemma given a seed word token
in the bitext between r and t. In particular, the
classifier learns a mapping between contextualized
vector representations −→wr of each token wr, and
the merged lemmas Lt, as obtained through the
previous steps.

This, then, allows for the inference of what a
target language t would have used in the case of a
token of some other target language t′. For every
token wr ∈ Br

t′ , that is: in the bitext between r
and t′, the contextualized vector −→wr is retrieved,
and classify(−→wr, t) predicts the lemma in t for the
translation of a token in t′. As such, we now
know that t uses classify(−→wr, t) for wr, and t′ uses
classify(−→wr, t

′) for the same token, thus making
the reference language token a comparable cate-
gory. Doing so for all t ∈ T yields one row in
a comparison table as obtained from a massively
parallel corpus, except that most lexical labels are
now inferred instead of observed. Doing so for all
word tokens wr in any bitext allows us to create
the full table. I will explore the insights that can be
derived from such a table in §5, but first validate
the quality of this procedure.

3 Experimental set-up and materials

This paper uses the DoReCo corpus (Seifart et al.,
2024), a collection of data gathered by documen-
tary linguists for a typologically diverse sample of
languages. The individual language resources form
free-standing contributions that should be individu-
ally cited as part of the usage agreement. Table 1
presents the 44 languages used, along with meta-
data about affiliation and location and the number
of (translated) words in each language.
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Figure 2: Mean extraction accuracy (blue) vs. random baseline (orange).

w melo bo lo ghavilighue.
m melo bo lo ghavi -li -ghu =e
g tuna go 3SG.M paddle -3SG.M.O -NMLZ

=EMPH
f “he went and fished bonito with it.”
l go fish bonito

Table 2: Interlinear Gloss; Savosavo (Wegener, 2024)

The structure of the components of the DoReCo
corpora is given in Table 2, for the language
Savosavo. All languages have the [w]ord and [f]ree
translation layer, and a select subset of languages
is interlinearly glossed with a [m]orphological seg-
mentation layer and a [g]loss layer. Subsequently,
the lexical [l]emma layer was derived from the f
layer, by selecting all lemmatized words from the
f layer whose PoS was one of Noun, Adjective, or
Verb, using spacy for both lemmatization and PoS
tagging (Honnibal and Montani, 2017).

Finally, in the induction step, BERT (Devlin
et al., 2019) was used, using the bert-base-cased
model of the transformers library.

4 Validation experiments

This section validates the quality of the model. As
the extraction of high-quality translation equiva-
lence relations between tokens in the target and
reference language is paramount for the validity
of subsequent steps, I first evaluate the Liu et al.
(2023) model, which provides us with such trans-
lation equivalences, in two ways: by assessing if
reference language items are aligned with the cor-
rect target language tokens (§4.1), and by assessing
if the extracted ‘lemmas’ accurately lemmatize the
target language (§4.2). Next, I consider the accu-
racy of the lexification induction step (§4.3).

4.1 Quality of lemma extractions

To evaluate whether the correct target language
tokens are aligned with the reference language
word tokens, I use the glosses, available for 32/44
DoReCo corpora. Given that the target language
tokens are associated with a morphological seg-
mentation and a corresponding gloss in English
(cf. Table 2 for an example), we can assess whether
the target language token aligned with a seed lan-
guage item contains the seed language item as
part of its gloss. For the example in Table 2, the
lemma go (on the [l]exical lemma line) might be
aligned with Savosavo bo, which is indeed glossed
as ‘go’ (cf. the [g]loss line). Only reference lan-
guage words that are present in at least one gloss
in the target language are considered. For instance,
the verb fish might be aligned with ghaviligue, but
this word does not have ‘fish’ in one of its glosses,
but rather ‘paddle’. Since no other word in the
target language has ‘fish’ in one of its glosses, the
item is not counted as correct or incorrect.

We compare the scores of the Conceptualizer
mode against a weak baseline of picking a word
from the target language sentence at random, and
a stronger baseline of a simple extraction proce-
dure in which the alignments over word align-
ments obtained through either Awesome Align
(Dou and Neubig, 2021) or Eflomal (Östling and
Tiedemann, 2016) combined with the ‘grow-diag-
final-and’ heuristic were used (for both models,
default settings were used). The procedure further-
more involved resolving cases where one reference
language word token was mapped onto multiple
target language tokens, as the evaluation proce-
dure requires a single target language form. For
such cases, only the target language token that
was most frequently aligned with the reference
language word type across the whole bitext was
kept.
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Figure 3: Entropy of lemmas given glosses. Blue: lemma-H without merging; orange: with merging.

Figure 4: Entropy of glosses given lemmas. Blue: gloss-H without merging; orange: with merging.

Figure 2 reports the macro-averaged scores, i.e.,
averaged over all tokens of seed language items
per language. For the Conceptualized model, the
median language gets 91.1% of alignments cor-
rect, against median accuracy scores of the three
baseline models of 19.7% (random), 15.5% (Awe-
some Align), and 25.4% (Eflomal). The variation
between languages is relatively small, with an in-
terquartile range of 88.2%-94.4%, a worst case of
81.0% (Jejuan) and a best case of 97.2% (Toto).
Notably, these results substantially support the su-
periority of the Liu et al. (2023) Conceptualizer
model over alignment-based procedures in low-
resource scenarios such as the one studied here.

4.2 Effect of lemma merging

While the previous analysis supports the accuracy
of the alignments between seed words and target
language tokens, it does not yet validate whether
the extracted lemmas, to be used in the subsequent
induction step, are accurate. It may be that all target
language tokens are correctly aligned, but this is
done through several lemmas that all correspond to
one ‘true’ lemma as given in the gloss. This would
lead to an artificial inflation of the lexical bound-
aries in the language, which in turn reduces the
quality of the inferred representations of crosslin-
guistic variation. The merger step discussed in §2.2
intends to pre-empt this situation.

It is difficult to assess the quality of the extracted
lemmas directly, due to variation in how the glosses
are assigned. Because of that, I approach the as-
sessment indirectly, by considering the uncertainty
in two conditional probability distributions: of ex-
tracted lemmas given annotated glosses, and, vice
versa, of glosses given lemmas. I only consider
gloss-lemma pairs found to be correctly aligned in
the previous evaluation step.

For a target language t, let Gt be the set of all
glosses that contain a seed word, i.e., the glosses
used to determine the correctness of the alignment
in the previous set, and Lt the set of induced lem-
mas (either as-is from the Liu et al. (2023) proce-
dure, or after the merging step) found in cases of
correct alignments. Primarily, I propose to mea-
sure the quality through the weighted average un-
certainty of the probability of the lemmas given
a gloss, or P (Lt|g), for all glosses g ∈ Gt, as
weighted by the frequency of occurrence of the
gloss among correctly aligned cases, or N(g). In
an ideal case, for every gloss, there is just a single
induced lemma that aligns to it. If multiple lemmas
are found, aligning to the same gloss, the model
might have inferred spurious lemmas. Formally,
lemma-H(t) =

∑

g∈Gt

(
H(P (Lt|g))×N(g)

)
× 1∑

g∈Gt
N(g)

(1)
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Figure 5: Accuracy on classifying the lemma for held-out data; blue: MLP-100 classifier, orange: most-frequent
lemma per seed word baseline.

The inverse relation, of glosses given lemmas,
similarly has an expectation of one-to-one map-
pings: given a lemma, we expect it to align with
one unique gloss only. For this relation, however, a
qualification applies: for many of the languages in
the corpus, the individuable glosses contain more
than just the lemma, and as such individual lemmas
frequently align with multiple unique glosses, with
substantial variation between the languages owing
to the different approaches to writing the glosses
that the documentary linguists applied. Nonethe-
less, the gloss entropy given the lemmas is a useful
measure when assessing the effect of the merging
step: if applying the merging step leads to erro-
neous mergers, i.e., cases where two induced lem-
mas are merge that should not be merged, the un-
certainty over the glosses given the lemmas should
go up, as the original lemmas that were erroneously
merged can be expected to have rather different sets
of glosses. As such, it can be expected that if the
merging is accurate, the entropy over the glosses
given the lemmas should not go up relative to the
application of the model without the merging step.
Formally, the gloss-H measure is defined as:

∑

l∈Lt

(
H(P (Gt|l))×N(l)

)
× 1∑

l∈Lt
N(l)

(2)

Figure 3 shows that across languages the
lemma-H goes down with the addition of the merg-
ing step for each individual language, with some
positive outliers being Kakabe and Kamas, where
most of the uncertainty over the glosses is removed
by adding the merging step (lemma-H values go-
ing from 0.109 to 0.032 for the former and 0.109
to 0.040 for the latter). On average, the lemma-H
was found to decrease from 0.072 when the merg-
ing step is not applied, to 0.053 when it is applied.

model accuracy ERR

baseline 0.739 -
KNN-3 0.862 0.491

SVC 0.890 0.594
MLP 0.898 0.624

MLP-100 0.900 0.631

Table 3: Induced lexification results across all lan-
guages; ERR = error rate reduction.

Conversely, the merging step does not introduce
substantial new uncertainty in the P (Gt|l) distribu-
tions due to erroneous lemma mergers. Compared
to the magnitude of the gloss-H values when no
merging step is applied, the gloss-H values when
merging is change relatively little, as Figure 4 il-
lustrates on a language-by-language basis. Only
in 6 cases does the gloss-H value go up with the
addition of the merging step, compared to 19 cases
where it goes down, meaning that on the whole,
adding the step in fact reduces the uncertainty over
the glosses given the lemmas.

4.3 Quality of induced lexification

The two validation experiments suggest that the
inferred lemmas align reasonably well with the lin-
guistic annotations provided in the corpus. While
the goal of the induction procedure is to infer the
target language lemmas given contextualized us-
ages of target words for other target languages, we
can assess the quality of the induction procedure
by assessing the classification accuracy on a held-
out sample of the same language. For each of the
44 languages, all seed words occurring with a fre-
quency of 10 or more were considered, and K-fold
cross-validation (here: K = 20) over the entire
lexicon of some target language t was carried out.
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(a) Seed words (b) Dolgan (dolg1241) (c) Cashinahua (cash1254)

(d) Sümi (sumi1235) (e) Teop (teop1238) (f) Urum (urum1249)

Figure 6: t-SNE plots with various colour coding. For the five languages, only the observed tokens are shown.

The accuracy of this procedure was then com-
pared against a baseline of always predicting the
most common lemma given a reference language
seed word, reflecting a scenario in which a model
only knows the input word in the reference lan-
guage. I assessed four classifiers implemented in
the sklearn library, a k-nearest neighbours clas-
sifier with k = 3 (KNN-3), an Support Vector
Classifier with the default settings (SVC), and two
Multi-Layer Perceptron, one with no hidden layers
(MLP), and the other with one hidden layer of 100
units and ReLU activation (MLP-100).

Table 3 presents the results. Seed words tend to
be associated with few lemmas, one of which is typ-
ically very dominant (cf. the low entropy of the lem-
mas given the glosses in Figure 3, which supports
this observation). As such predicting the modal
lemma given a reference language seed word forms
a competitive baseline. All classifiers, however,
provide substantial improvement over the baseline,
reducing the error by between 49% (KNN-3) and
63% (MLP-100). Figure 5 shows the results per
language for the best-performing MLP-100 model,
showing that the classifier surpasses the baseline
and generally performs well for all languages.

5 Application

The previous section demonstrated that the model
extracts generally valid target language representa-
tions (lemmas) and is reasonably well able to clas-

sify these lemmas on the basis of contextual vector
representations of the seed language. The goal of
this approach, however, is to provide a method for
typologists to obtain massively comparable data in
the absence of a massively parallel corpus. This
section demonstrates how known insights can be
replicated, and how novel insights can be obtained
with the method.

To explore the comparability afforded by the
model, here, we briefly explore the domain of vi-
sual perception verbs, translation equivalents of
English see, look, and watch. A main lexical dis-
tinction between Experiencer and Activity verbs
(English see vs. look) – with the former involving
a more passive (‘experiencing’) role for the per-
ceiver, and the latter a more active one has been
postulated (Viberg, 1983), but challenged on the
basis of parallel corpus data by Wälchli (2016). Us-
ing manually extracted instances from comparable
corpora, San Roque et al. (2018) consider the non-
literal extensions of perception verbs, noting that
discourse markers (e.g., look! to draw attention
or introduce something unexpected) are common
extensions.

To explore the distribution of visual perception
verbs in the DoReCo corpus, we can train the best
classifier from §4.3 (MLP-100) for each language
that has N ≥ 30 instances of the three most com-
mon English visual perception verbs (see, look, and
watch) in their free translations. Next, we apply
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this classifier to all instances of see, look, and watch
for all other languages, leading to a 3001 (instances
of visual perception verbs across all 29 languages
with sufficient data) by 194 (unique lemmas across
the 37 languages with sufficient data) table, with
the probability assigned by each MLP-100 model
to the lemmas as the cell values. To visualize this
table, we can apply t-SNE (Van der Maaten and
Hinton, 2008) to reduce the table to two dimen-
sions.

Figure 6 shows the t-SNE representation, with
six distinct colour-codings. The top-left subfigure
(6a) shows the distribution of the three English
seed words, which form coherent groups of visual
clusters, but with each term nonetheless covering
multiple clusters. Some languages, such as Dolgan
(6b) do not make any lexical distinctions in this
domain – a situation predicted by Viberg (1983)),
while others, such as Sümi (6d) split Activity and
Experiencer meanings more or less along the lines
of English. Two languages carve out a cluster near
the bottom of the 2D-space – Cashinahua bena
and Teop rake – these are all instances of look for,
meaning ‘search’, which many languages group
with the other ‘look’ meanings, but these two lan-
guages distinguish lexically. Finally, Urum (6f)
presents an interesting case of two main terms, but
with a split that differs from English or Sümi. Here,
we see that bah covers a region containing English
look and some of see, whereas gor covers only part
of the see tokens. The see tokens covered by bah
involve cases of modal see, like can see, will see,
in several cases in the meaning ‘find out’, like “I
will see where to go, possibly to the city”. As such,
Urum supports the argument of Wälchli (2016) that
the Activity-Experiencer split is (a) more of a con-
tinuum, and (b) governed by properties beyond the
general semantic role of the perceiver.

What the plots in Figure 6 further illustrate, is
that languages differ in how often they use visual
perception meanings. Urum uses visual perception
verbs only 21 times per 10, 000 tokens, whereas
Cashinahua shows five times that frequency at 102
tokens per 10, 000. Such usage variation is known
to be meaningful in the explanation of lexification
patterns, following the argument that a language’s
greater need to communicate about a specific con-
cept correlates with finer-grained lexical distinc-
tions (cf. Kemp et al., 2018). Original corpus data
and methods for making such data comparable can
thus be used to estimate such ‘need probabilities’

6 Conclusion

This paper introduced a novel method for making
original text corpora that are translated into the
same reference language comparable, thus allow-
ing for token-level typological study. The indepen-
dent steps of the method were found to generally
provide high-quality representations in three vali-
dation experiments, and the case study presented
the potential of the method for studying lexical
semantic variation across languages.

While generally successful in extracting transla-
tion equivalents and inducing lexical categorization
models, room for improvement remains. While the
Liu et al. (2023) approach benefits from its abil-
ity to consider substrings below the word level,
it is hampered by not considering how other tar-
get language substrings translate to the seed item,
something word alignment procedures from IBM-1
(Brown et al., 1993) onward do consider.

It should be stressed here that using original text
does not make the method bias-free, in terms of a
translationese bias from the shared reference lan-
guage. Using the free translations means all lexical
choice models are filtered through contextual vec-
tor representation of English. In the specific case of
the data used here, this English is moreover written
as a guide for the linguistically informed reader to
make sense of the target language sentence; it may,
by design given the genre of “free translations in
language documentation”, show translation effects
from the target language onto the English. Calibrat-
ing the extent of this effect would require further
testing the model on other comparable corpora.

Applications beyond the ones the method was
designed for could be explored. Related work that
considers crosslinguistic variation at a word type
level and using secondary resources, like Thomp-
son et al. (2020) and Khishigsuren et al. (2025),
could be compared against the token-level map-
pings between a shared reference language and mul-
tiple target languages. Corpora that contain both
original and translated text in comparable genres
may furthermore be of use to pinpoint the precise
effects of translationese in how lexical boundaries
are drawn, and as such be of use for practical pur-
poses in education and translation studies. Finally,
we are reminded that languages vary on a discourse-
pragmatic level, and that multilingual NLP ought to
consider such variation, for instance when working
with Large Language Models and Machine Trans-
lation systems pretrained on translated text.
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Abstract

Gradient, token-level measures of word order
preferences within a language are useful both
for cross-linguistic comparison in linguistic ty-
pology and for multilingual NLP applications.
However, such measures might not be repre-
sentative of general language use when ex-
tracted from translated corpora, due to noise
introduced by structural effects of translation.
We attempt to quantify this uncertainty in a
case study of subject/verb order statistics ex-
tracted from a parallel corpus of parliamentary
speeches in 21 European languages. We find
that word order proportions in translated texts
generally resemble those extracted from non-
translated texts, but tend to skew somewhat
toward the dominant word order of the target
language. We also investigate the potential pres-
ence of underlying source language-specific
effects, but find that they do not sufficiently
explain the variation across translations.

1 Introduction

When investigating cross-lingual transfer in mul-
tilingual language models, NLP researchers often
rely heavily on data from typological databases
such as WALS (Dryer and Haspelmath, 2013) for
quantitative measures of language distance.1 These
databases typically reduce cross-linguistic variation
to a set of categorical binary distinctions, obscur-
ing the intra-linguistic variation present in many
features (Wälchli, 2009), including word order.

This type of gradient variation is better captured
by continuous token-level measures, such as sta-
tistical distributions of specific constructions (e.g.
individual word order types) observed in annotated
corpora (Levshina et al., 2023; Baylor et al., 2024).
Corpus-based measures also allow for greater trans-
parency and reproducibility than manual categori-

1For an overview of common approaches and typologi-
cal distance measures in cross-lingual transfer research, see
Philippy et al. (2023).

cal judgments, and enable cross-linguistic compar-
isons at the potential scale of thousands of lan-
guages with maintained methodological consis-
tency (see e.g. Östling and Kurfalı, 2023).

However, care must be taken to ensure that the
selected texts are both sufficiently representative of
their respective languages and comparable across
languages, in order to control for variation result-
ing from differences between text types. Using
massively parallel texts ensures that text type and
pragmatic context will be identical across all ana-
lyzed languages, reducing the risk of misleading
cross-linguistic comparisons (Ebert et al., 2024).

Parallel texts are also inherently translational,
however, and could thus diverge structurally from
original (non-translated) texts because of artefacts
introduced in the translation process. For instance,
translated texts commonly contain less lexical and
grammatical variation than original texts in the
same language (regularization). Structural proper-
ties of the source language may also be retained in
translation, even when they are marked in the tar-
get language (source language interference). Thor-
ough descriptions of features theorized to be cross-
linguistically typical of translated text can be found
in translation studies literature (e.g. Baker, 1993).

Translational artefacts can be strong enough to
train reliable classifiers for automatic detection
of translated texts (Volansky et al., 2015), and
to accurately determine the relative genealogical
distance between different source-target language
pairs based only on cues in translations (Rabi-
novich et al., 2017). The cited studies rely heav-
ily on syntactic features (most commonly part-of-
speech n-grams), suggesting that translational arte-
facts could have a direct impact on word order
proportions – however, word order (particularly of
subject, verb and object) is not necessarily well
captured by part-of-speech sequences, and the re-
lationship between general and source-language
specific translation effects in this domain has yet to
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be systematically studied.
We therefore conduct an analysis of translational

artefacts in gradient subject/verb order extraction
from a parallel corpus of transcribed speeches with
high-quality human translations in 21 languages.
Our aim is to investigate:

• whether gradient word order statistics ex-
tracted from translations vary significantly
from those extracted from original texts, and

• whether the direction or amplitude of such
differences is influenced by word order pref-
erences in the source language.

We expect that observed variation will be stronger
in the direction of the dominant word order (as a
result of regularization), and that source language
interference will pull the word order proportions
of translations toward the proportions observed in
their source texts.

2 Data

We use CoStEP (Graën et al., 2014), a cleaned and
turn-level aligned version of the Europarl paral-
lel corpus (Koehn, 2005). Europarl consists of
transcribed speeches and human translations in 21
European languages, obtained from European Par-
liament proceedings between 1996 and 2011. Since
both the original speeches and their translations are
present in the corpus, the source language for any
given translated sentence is always known – this
quality is essential for disambiguating potential
source language-specific effects. All 420 possible
source-target language pairs occur in the corpus,
with data sizes ranging between 21 885 (Estonian–
Bulgarian) and 8 738 402 (English–French) tokens.
The corpus contains considerably more text (both
original and translated) in the 11 languages that
already had official EU language status prior to the
expansions in 2004 and 2007.

To enable syntactic analysis, all texts (both
original and translated, across all 21 languages)
have been automatically tokenized, part-of-speech
tagged and dependency parsed using the monolin-
gual Universal Dependencies (Nivre et al., 2020)
models availale through Stanza (Qi et al., 2020).
While the parsing accuracy of these models varies
somewhat across languages, noise from automatic
annotation appears to have a minimal impact on
word order proportions extracted from larger cor-
pora (Levshina et al., 2023) – in addition, cross-
linguistic performance differences do not directly

affect comparisons between translations into the
same language (regardless of source language).

3 Word order extraction

Subject/verb order can be defined and delimited in
several ways, capturing different constructions and
patterns of variation. We use a combination of part-
of-speech and dependency tags on a given token
and its direct head, operationalizing the relative or-
der of nominal subject and verb as [NOUN|PROPN]←−−−
nsubj [VERB] (i.e. a nominal subject relation be-
tween a noun or proper noun and a verb). Fol-
lowing Ebert et al. (2024), we only consider main
clauses, and in auxiliary constructions we use the
position of the finite verb (which may be an auxil-
iary) rather than the lexical verb. We include both
transitive and intransitive verbs, and both declara-
tives and interrogatives; however, we distinguish
these categories in extraction so that they can be
analyzed separately.

We split the corpus by target language and com-
pute the relative frequencies of both possible word
orders (subject-verb and verb-subject) separately
per source language.2 The resulting word order pro-
portions for each source-target pair are then com-
pared to the reference proportion extracted from
original texts in the target language.

4 General translation effects

Figure 1 displays the distributions of verb-subject
(VS) order proportions per language pair, grouped
by target language and sorted by VS proportion in
original texts in the target language. All languages
in the corpus prefer subject-verb (SV) order3, to
varying degrees. The highest VS proportions are
found in German (de), Estonian (et), Swedish (sv)
and Dutch (nl); this is expected, as their dominant
word order in main clauses is typically analyzed as
verb-second (or, for spoken Estonian, verb-third)
rather than SV (Vihman and Walkden, 2021).

Overall, the proportions observed in translated
texts are similar to original texts – the mean dif-
ference across language pairs is −0.017. However,
there is also variation between translated texts with
different source languages. Even for French (fr),
which has the lowest dispersion across translations

2Following Levshina et al. (2023), we set a minimum total
frequency threshold of 500 occurrences of the construction of
interest – 412 of 420 language pairs in the corpus meet this
threshold for nominal subject/verb constructions.

3This preference is expected for all languages in the Eu-
roparl sample; see section 6 for further discussion.
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Figure 1: Distributions of VS order proportions in trans-
lated Europarl texts with different source languages,
grouped by target language. The box plots display the
median, interquartile range and whiskers extending to
1.5 IQR, with outliers plotted as individual points. The
gray triangles indicate the VS order proportion in origi-
nal texts in the respective target language.

(nt = 20;σt = 0.0057; IQRt = [0.013, 0.023]),
grouping the original French data by year of pro-
duction (as a non-translational reference variable)
results in a distribution with slightly lower disper-
sion (nyear = 17;σyear = 0.0027; IQRyear =
[0.013, 0.017]). Similar results are found for Ger-
man (de), suggesting the presence of some unex-
plained variation specific to translated texts.

It should be noted that this variation is of a sim-
ilar scale to the differences resulting from opera-
tionalizing the word order of interest differently;

for instance, including only intransitive sentences
results in higher dispersion for both the translations
(σtIntr = 0.0077) and the reference population
(σyearIntr = 0.0038).

For 15 of 21 languages in the sample, the VS
proportion in original texts is higher than both the
median and upper quartile of VS proportions in
the population of translations into that language;
several original texts (e.g. Italian (it) and Hun-
garian (hu) would be outliers in their respective
populations. The overall population of differences
in VS proportion between translations and original
texts (across all target languages) is approximately
normally distributed, with a slight negative skew
(x̃ = −0.015, IQR = −0.034, 0.004). This ten-
dency toward SV order in translations aligns with
our hypothesis, and may be a reflection of the regu-
larization effects described in section 1.

5 Source language-specific effects

To examine the potential effects of source language
interference, VS order proportions from the set
of translated turns in a given source-target lan-
guage pair are also compared to the proportions
extracted from the same turn set in the source
language. Figure 2 plots this relationship for
all source languages, into three target languages
with different mean VS order proportions and dis-
persions across translations. We find no signifi-
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Figure 2: VS order proportions in translations (into
French (fr), English (en) and German (de)) and in orig-
inal texts for each language. The triangles indicate the
proportions in original texts in the target languages.
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cant correlations between source and target pro-
portions for any individual target language, as
would have been expected from the hypothesized
source language interference model. Across the
entire population, we find a weak positive corre-
lation between source proportion and translation
effect (the difference between proportions in trans-
lations and original texts in the target language),
but it explains very little of the variation in trans-
lation effects (β = 0.08;CI95%,β = [0.04, 0.12];
R2 = 0.04;CI95%,R2 = [0.01, 0.08]).

A potentially confounding source language ef-
fect is the proportion of different clause types in
the source texts (assuming that they are carried
over to the target language), since word order pref-
erences for different clause types vary across lan-
guages. For instance, SV order in transitive clauses
is stricter than in intransitive clauses in some Eu-
ropean languages, such as Spanish and Latvian
(Dryer, 2013) – in these languages, the proportion
of transitive clauses should have a greater impact
on the extracted word order proportion than in lan-
guages where the two clause types pattern similarly.
The Europarl data supports this claim: there is a
positive correlation between the proportion of in-
transitive clauses and VS order proportion in both
Spanish and Latvian. However, we unexpectedly
find no correlation between intransitive clause pro-
portions in source texts and translations, either for
these languages or across the entire sample. While
the turn-level alignment of CoStEP is too coarse
to meaningfully investigate this further, individual
clause-level comparison in a word-aligned parallel
corpus could verify to what extent properties of
source language clauses which may influence word
order proportions are preserved in translation.

6 Conclusions

In this study, we analyzed the general and
source language-specific effects of translation on
verb/subject order statistics extracted from Eu-
roparl. We observed a general tendency toward
rigid SV order in translations compared to original
texts, in line with the broader regularization effect
discussed in translation studies literature. Unex-
pectedly, we found that word order proportions
in the source texts do not sufficiently explain this
tendency, at least when averaged at corpus level.
This suggests that controlling for source language
factors will not reliably reduce uncertainty when
using translated texts to approximate word order

distributions in original texts.
Crucially, the issue of translational artefacts

should not disqualify good-quality translations
from use in the extraction of gradient word order
typology, assuming that the uncertainty in the ex-
tracted proportions is properly taken into account
in interpretation – as is good practice for any pa-
rameter by which syntactic properties of a text may
vary. As with text genres, including multiple dif-
ferent source languages in a corpus of translations
may reduce the risk of unrepresentativity. A well-
motivated theoretical definition (and operational-
ization) of the word order feature of interest is also
necessary in order to make valid cross-linguistic
comparisons based on extracted word order propor-
tions. With these aspects in mind, even an uncertain
estimate of gradient word order proportions will
encode considerably more fine-grained and useful
comparative information than the customary binary
word order classifications.

It is important to note the restricted scope of this
case study. We only investigate one word order fea-
ture, which is particularly prone to pragmatically
motivated variation in many languages. Addition-
ally, the language sample in Europarl is highly are-
ally and genealogically skewed. Most languages in
the sample are members of the Standard Average
European Sprachbund, and are thus likely to share
some cross-linguistically marked syntactic features
– for instance, inverted subject/verb order in polar
questions (Haspelmath, 2001). Europarl is also
unusual in other aspects, such as text genre (formal
speeches, with higher average sentence and utter-
ance length than spontaneous informal speech) and
the purpose of translation (accurate representation
of the original speeches, likely prioritizing clear
language). These properties should be kept in mind
when applying our findings to other contexts.

We hope that this study can serve as a framework
for further cross-lingual investigations of the effects
of translation on word order. In addition to analyz-
ing more word order features, future work could
cover a larger and more diverse language sample
by making use of machine translations, which are
an interesting object of analysis in their own right.
Machine translations appear to produce different
translational artefacts to human translations (Biz-
zoni et al., 2020), and – not least because of the
prevalence of machine translated text in large text
datasets – a comparison between word order extrac-
tions from human and machine translations would
be very useful.
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Limitations

In addition to the areal and genealogical bias dis-
cussed in section 6, the sample in Europarl con-
sists entirely of high-resource languages. Accurate
pre-trained parsing models are only available for
a fraction of the world’s languages (Stanza pro-
vides UD models for fewer than 100 languages),
and high quality training data for PoS tagging and
dependency parsing is similarly scarce.

Our word order extraction method is simple, and
the per-text average measure obscures the various
underlying causes of potential word order variation.
Subject/verb order preferences can vary structurally
across clause types or nominal categories, or prag-
matically for information structure or discourse
reasons – this method can only disambiguate be-
tween the structural variation sources which are
accounted for in the chosen word order operational-
ization.

Finally, the analysis of source language-specific
effects is complicated by the potential presence of
indirect translations (where an intermediate lan-
guage is used in the translation process). Us-
taszewski (2021) reports that translations in Eu-
roparl produced after the official EU language ex-
pansion in 2004 more likely use an intermediate
language (most commonly English), while earlier
translations are more likely direct. The general im-
pact of an intermediate language on the presence of
source language artefacts in translations is unclear
and warrants further investigation.
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