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Abstract
In this work, we introduce XCOMPS, a mul-
tilingual conceptual minimal pair dataset that
covers 17 languages. Using this dataset, we
evaluate LLMs’ multilingual conceptual un-
derstanding through metalinguistic prompt-
ing, direct probability measurement, and neu-
rolinguistic probing. We find that: 1) LLMs
exhibit weaker conceptual understanding for
low-resource languages, and accuracy varies
across languages despite being tested on the
same concept sets. 2) LLMs excel at distin-
guishing concept-property pairs that are vis-
ibly different but exhibit a marked perfor-
mance drop when negative pairs share sub-
tle semantic similarities. 3) More morpho-
logically complex languages yield lower con-
cept understanding scores and require deeper
layers for conceptual reasoning. The dataset
is publicly available at: https://github.com/
LinyangHe/XCOMPS/.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across various natural lan-
guage understanding (NLU) tasks. Recent ad-
vances, such as GPT-4 (Achiam et al., 2023) and
Llama 3 (Dubey et al., 2024), have shown that
LLMs can produce human-like outputs and handle
complex linguistic phenomena. However, whether
LLMs genuinely understand semantics or merely
rely on shallow statistical correlations is disputable
(Lake and Baroni, 2018; Elazar et al., 2021; Huang
et al., 2023). One fundamental aspect of human
conceptual understanding is that it is not dependent
on specific linguistic forms or modalities (Carey,
2000; Mandler, 2004). When humans learn and
reason about concepts, they do not require the
knowledge to be tied to a particular medium, such
as text, images, or video, nor do they rely on a spe-
cific language. This raises an important question:

* Equal contribution.
† Corresponding authors.

Does LLMs’ conceptual-property reasoning remain
stable across languages, or is it language-specific?

To explore this, Misra et al. (2023) introduced
the COMPS dataset, designed to probe the seman-
tic reasoning abilities of LLMs through minimal
pairs in English. However, COMPS only evaluates
monolingual conceptual-property reasoning, leav-
ing open the question of whether LLMs generalize
such reasoning across languages. In this work, we
introduce XCOMPS, a multilingual extension of
COMPS, to assess whether LLMs’ semantic rea-
soning is universally consistent across languages.
XCOMPS covers 17 languages, including analytic,
inflectional, and agglutinative languages, ensuring
a broad representation of linguistic structures.

Beyond dataset expansion, evaluating LLMs’
reasoning abilities has increasingly relied on
prompt engineering, often referred to as metalin-
guistic prompting (Hu and Levy, 2023). How-
ever, recent work (Hu and Levy, 2023; He et al.,
2024b) suggests that metalinguistic prompting pri-
marily assesses performance—that is, how well a
model produces correct outputs—rather than its
underlying competence in conceptual understand-
ing. This distinction is crucial, as models may
perform well on explicit prompts but lack true
conceptual representations (Piantadosi and Hill,
2022). To investigate LLMs’ multilingual capabili-
ties and determine whether they genuinely encode
conceptual knowledge across languages, we adopt
a three-pronged evaluation approach: Metalinguis-
tic prompting, Neurolinguistic probing, and Direct
probability measurement. Our experimental results
reveal several insights into the multilingual concep-
tual reasoning capabilities of LLMs: 1) Conceptual
understanding is not consistently maintained across
languages. Even when models perform well in
English, their reasoning ability deteriorates signifi-
cantly in low-resource languages; the extent of de-
terioration also varies across different low-resource
languages. 2) Models perform well when concep-
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Type Language Acceptable Sentence Unacceptable Sentence

Taxonomic Spanish
Tostadora se utiliza para calentar alimentos.
(A toaster is used for heating food.)

Cafetera se utiliza para calentar alimentos.
(A coffee maker is used for heating food.)

Overlap Vietnamese
Máy nướng bánh mì được sử dụng để hâm nóng thực phẩm.
(A toaster is used for heating food.)

Tủ lạnh được sử dụng để hâm nóng thực phẩm.
(A refrigerator is used for heating food.)

Co-occurrence Hungarian
Kenyérpirító ételek melegítésére használják.
(A toaster is used for heating food.)

Vízforraló ételek melegítésére használják.
(A kettle is used for heating food.)

Random Dutch
Broodrooster wordt gebruikt om voedsel te verwarmen.
(A toaster is used for heating food.)

Winterkoning wordt gebruikt om voedsel te verwarmen.
(A wren is used for heating food.)

Table 1: XCOMPS examples, illustrating each linguistic variant pairs an acceptable sentence (positively matched property) with
an unacceptable counterpart (negatively matched property).

tual relationships are highly distinct but struggle
with subtle semantic distinctions. 3) Languages
with higher morphological complexity (agglutina-
tive > inflected > analytic) yield lower concept-
reasoning scores. These results suggest that LLMs’
semantic reasoning may not generalize universally
across linguistic boundaries.

2 Language Performance vs. Competence

As suggested in He et al. (2024b), LLMs can be
evaluated through three methods: metalinguistic
prompting, which assesses performance based on
explicit responses; direct probability measurement,
which provides an intermediate evaluation by com-
paring model-generated probabilities; and neu-
rolinguistic probing, which directly examines com-
petence by analyzing internal activation patterns1.

Metalinguistic Prompting for Performance
This method involves explicitly querying the model
about linguistic expressions, often in a comparative
or multiple-choice format. By asking the model to
choose between minimal pairs (e.g., “Which sen-
tence is more grammatically correct?”), researchers
can evaluate how well the model retrieves and ver-
balizes knowledge. Using prompting, researchers
have revealed new classes of emergent abilities
such as arithmetic, instruction-following, grounded
conceptual mappings, and sentence acceptability
judgments (Brown et al., 2020; Wei et al., 2022;
Patel and Pavlick, 2021; Dentella et al., 2023). Be-
cause the responses are influenced by prompt en-
gineering and surface-level cues, this method pri-
marily reflects performance rather than deep con-
ceptual competence.

Direct Probability Measurement Instead of re-
lying on explicit responses, this method examines
the model’s probability assignment to different sen-
tences within minimal pairs. For example, a model

1For simplicity, we refer to these three methods as Meta,
Direct, Neuro.

should assign a higher probability to ‘A robin can
fly’ than to ‘A penguin can fly’. This approach of-
fers a more objective evaluation than metalinguis-
tic prompting and captures implicit model prefer-
ences, placing it between performance and compe-
tence. Researchers have designed syntactic, seman-
tic/conceptual, and discourse inference tasks using
the probability assignment method, offering differ-
ent insights into LLMs’ capabilities compared to
metalinguistic prompting (Futrell et al., 2019; Gau-
thier et al., 2020; Hu et al., 2020; Warstadt et al.,
2020; Beyer et al., 2021; Misra et al., 2023; Kauf
et al., 2023). However, it still relies on external
outputs and does not fully reveal how the model
internally represents concepts.

Neurolinguistic Probing for Competence This
approach goes beyond external outputs by analyz-
ing internal activation patterns across different lay-
ers of the model (He et al., 2024a,b). Using diag-
nostic classifiers, researchers can probe whether
LLMs inherently encode conceptual-property rela-
tionships or simply rely on statistical correlations.
Since it provides a direct measure of competence,
neurolinguistic probing is more reliable for assess-
ing the depth of linguistic understanding.

3 XCOMPS

3.1 Concept Selection
To ensure that XCOMPS maintains conceptual
alignment with COMPS while extending its scope
to multiple languages, we use the same 521 con-
cepts and their negative samples from COMPS.
As shown in Table 1, these negative samples can
be categorized into three types. Taxonomy-based
negative samples are selected based on hierarchical
relationships among concepts. Negative samples
come from the same broad category as the posi-
tive concept but differ in key property attributions.
Property norm-based (overlap) negative samples
are chosen based on shared semantic properties
with the positive concept while lacking the specific
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property under evaluation. Co-occurrence-based
samples are selected from concepts that frequently
appear in similar contexts but do not share the tar-
get property. XCOMPS also has additional random
negative concepts from the set of concepts that do
not possess the property of the original positive
concept.

3.2 Properties of Concepts
In XCOMPS, the properties assigned to concepts
are inherited from COMPS, ensuring alignment
across languages while maintaining the original
conceptual-property relationships. These proper-
ties in COMPS were originally derived from the
XCSLB dataset, an extended version of the CSLB
property norm dataset (Devereux et al., 2014),
which captures human-annotated perceptual, func-
tional, and categorical attributes of concepts. Ad-
ditionally, taxonomic relationships from resources
like WordNet (Miller, 1995) were used to infer
properties through hierarchical inheritance, ensur-
ing that general category attributes (e.g., “mam-
mals have fur”) are systematically applied to their
subcategories. Some properties also reflect real-
world associations observed in corpus-based co-
occurrence statistics.

3.3 Multilingual Data Construction
To construct XCOMPS, which covers 17 languages
(Table 2 in Appendix A), we adopted a human-
LLM interactive translation pipeline, leveraging
both human expertise and the multilingual gen-
eration capabilities of LLMs. The language set
for XCOMPS aligns with the prior knowledge
probing benchmarks, such as BMLAMA-17 (Qi
et al., 2023) and KLAR (Wang et al., 2025), en-
suring consistency in multilingual evaluation. The
highly structured nature of conceptual minimal pair
datasets, where positive and negative sentences pri-
marily consist of two components–concepts and
properties–enabled us to design a multi-step trans-
lation process that ensures high-quality multilin-
gual data.

The construction process consists of four stages.
We use the GPT-4o model (GPT-4o-2024-08-06)
via the OpenAI API as the translation assistant in
the pipeline. In the first stage, we manually trans-
lated the original concepts and properties from En-
glish into German and Chinese using language ex-
perts. We used German and Chinese as additional
seed languages to further reduce ambiguity, This
multilingual seed data helped disambiguate con-

cepts that might otherwise be unclear in translation.
For example, the English word “bat” could refer to
either the flying animal or the sports equipment.
By including the German term “Schläger” and the
Chinese term “球拍”, which both unambiguously
refer to the sports equipment, we ensured that the
intended concept was accurately captured during
translation.

In the second stage, we used LLMs to expand
the seed data into the remaining 15 languages.
LLMs were tasked with translating the concepts
and properties, leveraging their multilingual ma-
chine translation capabilities. By providing seed
data in three languages (English, German, and Chi-
nese), we enhanced the LLMs’ ability to generate
accurate translations, as the additional context re-
duced the likelihood of semantic errors.

In the third stage, human experts for each tar-
get language manually reviewed and corrected the
translated concepts and properties. This step en-
sured that the translations were accurate, culturally
appropriate, and semantically aligned with the orig-
inal dataset. Human intervention was particularly
critical for low-resource languages, where LLMs
often struggle with semantic precision in transla-
tion tasks.

Finally, in the fourth stage, LLMs were employed
to generate complete sentences based on the ver-
ified concepts and properties. This step involved
formulating positive and negative sentence pairs,
which can be viewed as a straightforward language
manipulation task. By providing the translated
concepts and properties as input, we enabled the
LLMs to focus on generating fluent and grammati-
cally correct sentences, leveraging their strengths
in multilingual text generation. This approach en-
sured that the most challenging aspect of the task–
accurate translation of concepts and properties–was
already resolved, allowing the LLMs to produce
high-quality outputs.

By splitting the process into property translation
and sentence generation, using multilingual seed
data to reduce ambiguity, and combining human
expertise with LLM capabilities, we ensured the
quality and consistency of the XCOMPS dataset.
This human-LLM interactive translation pipeline
demonstrates how LLMs’ multilingual understand-
ing and generation capabilities can be effectively
harnessed to construct high-quality multilingual
benchmarks.
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Figure 1: Metalinguistic prompting (meta), direct probabil-
ity measurement (direct), and minimal pair probing (neuro)
results on XCOMPS. The meta method evaluates LLMs’ lan-
guage performance; the neuro method evaluates LLMs’ lan-
guage competence, and the direct method falls in between.
Languages are grouped according to morphological typology.
Neuro-probing is a layer-wise method, and here we use the
max value across all layers to compare with Meta and Direct.

4 Experiment Setup

4.1 Model

We use meta-llama/Llama-3.1-8B-Instruct
from Hugging Face in our experiment, which
applies instruction tuning to the base model for
more intuitive user-prompt handling. During
the inference, we adopt float16 precision to
minimize computational resource consumption
while maintaining model performance.

4.2 Evaluation

For Meta, we present both sentences of a mini-
mal pair within a single prompt. We convert the
target property into a question and compare the
probabilities assigned to acceptable vs. unaccept-
able concepts. Figure 2 in Appendix A shows the
prompts used in the experiment. For Direct, we
compute sentence probabilities directly from the
model’s logits. A prediction is considered correct if
the model assigns a higher probability to the valid
sentence within each minimal pair. For Neuro, we
adopt last-token pooling to represent each sentence,
extracting the final token’s hidden state from every
layer. This approach ensures coverage of all pre-
ceding tokens (Meng et al., 2024). We then apply a
logistic regression classifier for probing, using the
F1 score (averaged over five cross-validation folds)
as our primary evaluation metric.

4.3 Results and Analysis

Cross-linguistic variability in conceptual rea-
soning. From Figure 1, we observe that the model
can perform relatively well on English conceptual
tasks but show marked declines for low-resource
languages. Notably, some languages with lim-
ited training data (e.g., Hungarian, Catalan) ex-
hibit greater deterioration than others, indicating
that cross-linguistic generalization of conceptual
understanding is far from uniform. Even within
the low-resource category, the degree of perfor-
mance drop varies, underscoring that LLMs’ se-
mantic reasoning is neither universally stable nor
equally supported by existing multilingual corpora.
These patterns reinforce the idea that conceptual
capabilities learned in English do not necessarily
transfer seamlessly to languages that differ typo-
logically or have weaker representations in training
data.

Models excel at distinct conceptual contrasts but
falter with subtler differences. High scores all
appear in Random rows, where the negative con-
cept is clearly distinct (e.g., “toaster” vs. “wren”),
and the model easily detects mismatches. In Taxo-
nomic, Overlap, or Co-occurrence rows, however,
performance drops because the negative concepts
share subtle semantic similarities (e.g., “toaster”
vs. “coffee maker”). This indicates that the mod-
els may rely on conspicuous cues rather than true
conceptual reasoning.

Direct and neuro convergence. By comparing
direct and neuro results in Figure 1, and from Fig-
ure 3 in Appendix A, we see high correlations
across all negative types, indicating that direct mea-
surements closely track the models’ internal repre-
sentations.

Higher morphological complexity, lower concep-
tual reasoning. Figure 4 in Appendix A shows
that languages with greater morphological com-
plexity (moving from Analytic to Inflected to Ag-
glutinative) tend to yield lower concept-reasoning
scores. This indicates that, as linguistic structure
becomes more complex, it becomes harder for the
models to capture concept-property relationships
consistently.

5 Conclusion

In this work, we introduce the XCOMPS bench-
mark, which provides a multilingual conceptual
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minimal pair dataset for evaluating the language
model’s semantic understanding across 17 lan-
guages. This work reveals that while LLMs demon-
strate surface-level multilingual capabilities, they
lack a universal semantic reasoning mechanism that
transcends language boundaries.

Limitation

While XCOMPS significantly advances the eval-
uation of multilingual conceptual understanding,
certain limitations remain. First, although the
dataset covers 17 typologically diverse languages,
it does not encompass all linguistic families or low-
resource languages, which may limit its general-
izability to underrepresented languages. Second,
the reliance on human-LLM interaction for data
construction ensures high quality but introduces
potential inconsistencies due to variations in hu-
man expertise and model outputs. Lastly, while
XCOMPS focuses on conceptual understanding,
it does not explicitly address other challenges in
multilingual NLP, such as pragmatics or contextual
reasoning. Despite these limitations, XCOMPS
provides a robust foundation for assessing and im-
proving LLMs’ multilingual capabilities, and future
work can extend its scope to address these areas.
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A Appendix

Table 2 shows the detailed information of the lan-
guages covered by XCMOPS. Figure 2 displays the
prompt templates of different languages used for
metalinguistic prompting evaluation. Figures 3 and
4 show detailed experimental results.

lid language Typology Family

ar Arabic Inflectional Semitic
ca Catalan Inflectional Indo-European (Romance)
de German Inflectional Indo-European (Germanic)
el Greek Inflectional Indo-European (Hellenic)
es Spanish Inflectional Indo-European (Romance)
fa Persian Inflectional Indo-European (Iranian)
fr French Inflectional Indo-European (Romance)
he Hebrew Inflectional Semitic
hu Hungarian Agglutinative Uralic
ja Japanese Agglutinative Isolate
ko Korean Agglutinative Isolate
nl Dutch Inflectional Indo-European (Germanic)
ru Russian Inflectional Indo-European (Slavic)
tr Turkish Agglutinative Turkic
uk Ukrainian Inflectional Indo-European (Slavic)
vi Vietnamese Analytic Austroasiatic
zh Chinese Analytic Sino-Tibetan

Table 2: Detailed information of the languages covered
by XCOMPS.
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Figure 2: Prompt templates of different languages used for metalinguistic prompting.

Figure 3: Linear correlation among meta, direct, and neuro evaluation results for all four tasks.

Figure 4: Averaged results across different language types.
English results are dropped to make the comparison more
reliable among low-resource languages.
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