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Abstract

While modern language model architectures
are often assumed to be language-agnostic,
there is limited evidence as to whether these
models actually process the vast diversity of
natural languages equally well. We investigate
this question by analyzing how well LMs learn
carefully constructed artificial languages con-
taining a variety of verbal complexity, ranging
from simple paradigms to covering far more
verb classes than occur in natural languages.
Rather than learning all languages equally ef-
ficiently, models trained on these languages
show strict preferences for processing simpler
languages. Furthermore, while some observed
model preferences mimic human linguistic pri-
ors, we find that they correspond to model mem-
orization of its training data rather than general-
ization from it. This finding suggests that while
model behavior often mimics human language
understanding, the underlying causes of their
proficiencies are likely very different.

1 Introduction

Transformer-based language models (LMs) are of-
ten assumed to be language-agnostic, or to learn
all natural languages equally well. This has lead
to their widespread use for different languages
(Scheible et al., 2024; Ahmed et al., 2024, i.a.) and
multilingual modeling (e.g., Üstün et al., 2024).

However, there is immense linguistic diversity in
the world’s languages, and human learners acquire
aspects of these languages at different rates. For
example, children take longer to learn the opaque
Dutch gender system, mastering it by age six (Tsim-
pli, 2014), while children master the transparent
Spanish gender system by three and a half, if not
sooner (Lew-Williams and Fernald, 2007). It re-
mains an open question as to whether this complex-
ity similarly affects model acquisition of different
languages: previous work exploring the differences
in language modeling capabilities presents mixed

results on the effect of morphological complex-
ity on language modeling (Cotterell et al., 2018;
Mielke et al., 2019; Park et al., 2021; Arnett and
Bergen, 2024), and typological differences can im-
pact the performance of models intended to be
language-agnostic (Gerz et al., 2018). Furthermore,
there is limited evidence whether LMs are even
constrained to learning natural linguistic phenom-
ena as humans are (Kallini et al., 2024).

We address this question by testing if LMs
demonstrate human-like learning patterns when ac-
quiring new, artificial languages. Specifically, we
ask: Do LMs exhibit linguistic priors favoring
certain conjugation paradigms over others?. We
center our behavioral analysis on a single grammat-
ical feature—verb conjugation—in a wide variety
of linguistically plausible and implausible settings
as a controlled case study into the effect of linguis-
tic grammatical complexity on transformer-based
modeling of language.

To evaluate LMs for these linguistic priors, we
first construct artificial languages using a proba-
bilistic context-free grammar (PCFG). These lan-
guages cover a wide range of (plausible and implau-
sible) conjugation complexity while controlling for
other confounding variables found in natural lan-
guages. We then test how proficiently and effi-
ciently language models learn these languages by
measuring their mastery of both subject-verb agree-
ment (a commonly used linguistic test for LMs,
see Gulordava et al., 2018), as well as a novel be-
havioral experiment for verb class identification in
these languages throughout the training process.

Our experiments find that language models ac-
quire more complex languages (i.e., those with
more verb classes) more slowly. However, they
achieve close to 100% accuracy on seen verbs given
enough data, even in cases where the number of
verb classes is far larger than naturally occurs in
human languages. The models also perform signifi-
cantly worse on novel verbs than those seen during
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training, with the performance degradation increas-
ing with the number of verb classes; this indicates
that these models do not learn to generalize from
the standard conjugation patterns shown to them
during pretraining.

These findings suggest both that (1) these models
are not language-agnostic, but are instead sensitive
to the complexity of the target language, and that
(2) behavior that resembles human-like language
learning in models may actually be memorization
of the training data, rather than generalization to
the underlying linguistic rules. Put another way,
correlations between model and human behavior
do not necessarily indicate that their underlying
mechanisms are the same. In light of these find-
ings, we recommend future work analyzing model
language learning to incorporate evaluations that
disentangle these factors when probing language
model behavior.

2 Methodology

This section presents our method for generating
artificial languages with the desired characteris-
tics (Section 2.1) and our behavioral experimental
setting to test model proficiency on subject-verb
agreement in these languages (Section 2.2).

2.1 Artificial Language Generation

To evaluate how well LMs can learn languages
across different verb settings, we generate artifi-
cial languages with the desired features using a
Probabilistic Context-Free Grammar (PCFG), an
extension of context-free grammars that assigns
probabilities to transitions between states, allowing
for the stochastic generation of sentences. We focus
our analysis on these artificial languages to control
for various confounding factors found in natural
languages, including but not limited to semantics,
irregularities, ambiguity, and dialectal variation,
that make direct comparisons difficult.

We define our PCFG with a set of parameters
describing the language’s word formation, syntax,
and inflectional rules. For verb paradigms, this pa-
rameterization allows us to perform controlled abla-
tions across various experimental settings. Specif-
ically, for our experiments, we generate ten lan-
guages for each of the {1, 2, 3, 5, 8, 16, 32, 64}
verb class settings and report the average perfor-
mance and standard error in a given setting. There
is no overlap in the suffixes between any two verb
classes, and verb paradigms are fully regular.

Other parameterization of our PCFG is informed
by common natural distributions of language fea-
tures to ensure our artificial languages are as sim-
ilar to natural ones as possible. In each language,
the number of roots generated per part-of-speech
approximates 1% of English senses in Kaikki (Ylö-
nen, 2022), with nouns approximating 0.5% of
senses since jargon is often overrepresented in
nouns (Table 1). As Zipf’s Law is ubiquitous in
human language at many scales (Williams et al.,
2015), the distribution from which words are se-
lected is drawn from a Zipfian distribution. A skew
of 1.2 is used for our word distribution, based on
the empirical distribution found in the American
National Corpus (Piantadosi, 2014). The verb class
assigned to a verb is similarly drawn from a Zipfian
distribution with a skew of 1.

We also allow for features (such as nominative
for subjects) to be passed between states in the
PCFG during generation (Figure 1); this enforces
subject-verb agreement on person and number fea-
tures within each sentence. A more detailed ex-
planation of creating the artificial languages and
generating sentences is given in Appendix A.

Part of Speech Items Kaikki Senses
Adjective 2000 199759

Determiner 1 387
Noun 4000 856855

Preposition 15 1337
Pronoun 6 1053

Verb 2000 220457

Table 1: Word counts per part of speech in our artificial
languages versus Kaikki sense counts for English.

2.2 Model Training and Evaluation

When training language models on our artificial
languages, we consider three factors: the verb

Figure 1: Sample English PCFG. The nominative fea-
ture nom passes from the child of the subject noun phrase
sNP to its descendants, allowing for subject-verb agree-
ment to be enforced later in the generation pipeline.
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(a) Per-num behavioral test on GPT-2 trained from scratch (b) Per-num behavioral test on finetuned GPT-2

(c) Class behavioral test on GPT-2 trained from scratch (d) Class behavioral test on finetuned GPT-2

Figure 2: Behavioral test results for models trained on the generated languages at different training data sizes.

paradigm (or number of verb classes in a language),
the size of the training dataset, and the model
training scheme. We construct training datasets
of 102,3,4,5,6 grammatical training sentences from
each of the generated languages; the two training
schemes considered are training a randomly initial-
ized GPT-2 model from scratch versus finetuning
the pretrained GPT-2 model for English (Radford
et al., 2019), both of which have approximately
124 million parameters. We train LMs on each
combination of these settings (and across all ten
languages per verb paradigm).

We then evaluate these models on how well they
learn the artificial languages they are trained on
by testing whether they can distinguish grammati-
cal examples of the language from ungrammatical
ones.1 Specifically, we construct evaluation sets
consisting of minimal pairs of grammatical and un-
grammatical sentences and measure the perplexity
of the model on each sentence; models that are well-
fit to the training language should prefer (achieve a
lower perplexity on) the grammatical sentences.

We consider two types of behavioral tests to
probe how well the models learn subject-verb
agreement and the verb classes. These tests de-
termine the error type shown during inference in
a minimally different pair of (grammatical, un-
grammatical) sentences: the per-num test (Case
1), where the verb in the ungrammatical sentence
takes a suffix marking a different person and/or

1This is a common approach for surfacing linguistic knowl-
edge in LMs (e.g., Liu et al., 2019), particularly in the case of
subject-verb agreement (Gulordava et al., 2018).

number feature for that class:

(1) a. El perro escucha el gato.
“The dog hears the cat.”

b. *El perro escucho el gato.
“The dog hear the cat.”

and the class test (Case 2), where the ungrammat-
ical verb takes a suffix from a different verb class
agreeing with the subject’s person and number:

(2) a. El perro escucha el gato.
“The dog hears the cat.”

b. *El perro escuche el gato.
“The dog hears2 the cat.”

The evaluation sets contain 5,000 sentence pairs;
we define accuracy as the percentage of test sen-
tence pairs where the grammatically correct sen-
tence’s perplexity is less than that of the ungram-
matical sentence. Thus, we measure the cases
where the model assigns a higher likelihood to the
grammatical case as a proxy for how well it models
conjugation in the generated languages.

Testing covers three settings, varying whether
test verb roots are seen during training: seen roots,
where the model is evaluated on verb roots from the
training; unseen roots, which evaluates the model
on held-out verb roots to test model generalization;
and one-shot, where the model is given one demon-
stration using a hitherto unseen verb before being

2Note that there is no equivalent, ungrammatical En-
glish translation for the class test, as English does not have
verb classes that correspond to multiple regular conjugation
paradigms like in Spanish.
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tested on that same verb root. Given the set s of
LMs trained across each (data scale, verb paradigm,
and training scheme) combination, we evaluate s
on all described (i) test types and (ii) evaluation
settings. We report the mean performance and stan-
dard error across the ten runs for each combination.

3 Results

This section presents our language learning exper-
iments. We find that while LMs model simpler
inflectional paradigms more easily (indicating that
they are not agnostic to language complexity), they
struggle to generalize to new verbs across experi-
mental settings, including on linguistically plausi-
ble verbal paradigms found in natural languages.

3.1 Per-Num Agreement Evaluation

Figures 2a and 2b show per-num behavioral test
outcomes (where negative samples contain incor-
rect subject-verb agreement) on models trained
from scratch and finetuned GPT-2, respectively.
Across settings, adding verb classes to the gen-
erated languages generally corresponds to worse
performance on (and slower acquisition of) subject-
verb agreement by LMs.

For seen roots, all models achieve high accura-
cies of 97.5% or greater at the largest data size
(1M training sentences). However, acquisition time
varies across model and verb class settings: lan-
guages with more verb classes consistently need
more data to achieve comparable accuracies to
those with fewer classes3. Pretrained GPT-2 also
learns to prefer correctly conjugated seen verbs
slower than models trained from scratch.

Unsurprisingly, agreement accuracy on unseen
roots is lower than on seen roots across comparable
experiments.4 However, we see the same relative
trends here as on seen roots: more data improves
conjugation accuracy (though now with larger gaps
between the best- and worst-performing LMs), and
finetuned GPT-2 continues to underperform in lim-
ited data settings. For unseen verbs, though, the
performance gap between the randomly initialized
and finetuned LMs is smaller, particularly on lan-
guages with eight or more verb classes.

Finally, we find that providing the model with
one correctly conjugated demonstration does not

3E.g., Training from scratch on 100 sentences with one
verb class achieves a mean accuracy of 76.2%, while it re-
quires 10k sentences to get a similar accuracy over 64 classes.

4Limited generalization has been observed for other lin-
guistic tasks in transformers (Liu and Hulden, 2022).

consistently improve accuracy over the unseen verb
(“zero-shot”) setting. In many cases, the models
perform similarly in both settings, and high-data
regimes often perform worse when given a correct
example. This, in addition to the unseen verb re-
sults, suggests the models do not learn abstract con-
jugation patterns when trained on these languages.

3.2 Verb Class Evaluation

Figure 2c presents the class behavioral test (where
negative samples contain a verb that is correctly
conjugated, but with the wrong class pattern) re-
sults on models trained from scratch; Figure 2d
shows the corresponding results for finetuned GPT-
2. Unsurprisingly, we observe random chance per-
formance (50%) on unseen verbs for both the ran-
domly initialized and finetuned models–as the mod-
els cannot predict the correct class for verbs not
seen during training.

More surprisingly, randomly initialized models
are also unable to outperform random chance in the
one-shot setting, suggesting that these models can
not generalize knowledge about underlying verb
classes during inference. While one-shot evalu-
ations of the finetuned model outperform this in
low-data settings (achieving ∼ 68% accuracy), this
is roughly what would occur if the model always
chooses sentences where the prompt and test verb
are identical (occurring ∼ 1

6 of the time across con-
jugations), and chooses randomly otherwise; this
performance also occurs on the per-num test (Fig-
ure 2b). Thus, this behavior is likely caused by the
pretrained GPT-2 exhibiting a strong copying pref-
erence (Olsson et al., 2022), but not generalizing
beyond that.

On seen verbs, model performance again gener-
ally improves with more data, but we see smaller
performance gaps across languages with differ-
ent verb class counts, particularly at smaller data
scales. Furthermore, model accuracy with more
verb classes tends to be higher than those with
fewer classes, though with more variation than ob-
served with per-num probing. The discussion offers
a possible hypothesis for this phenomenon.

4 Discussion

This paper investigates whether LMs exhibit lin-
guistic priors for natural and unnatural conjuga-
tion paradigms. Our probing experiments find that
LMs are much more efficient at modeling person-
number agreement for languages with simpler verb
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paradigms, mirroring human learning of languages.
They also corroborate prior work indicating that
neural LMs prefer human languages to unnatural
ones (Alamia et al., 2020; Kallini et al., 2024).
However, this primarily holds for verbs seen dur-
ing training; models perform much worse at judg-
ing subject-verb agreement on novel verb roots, in
contrast with the strong generalization shown by
human speakers on this task (e.g. Berko, 1958).

Furthermore, we find that LMs adopt unnatural
verb paradigms5 almost as well, given enough train-
ing data. This result, in conjunction with degraded
performance exhibited on unseen verbs, indicates
that model learning of the generated languages is
likely heavily dependent on memorization rather
than generalization of the training data, particu-
larly in the class behavioral test setting. While this
trade-off has been documented in LMs for down-
stream NLP tasks (Tänzer et al., 2022; Zheng and
Jiang, 2022), we find that it also affects the model
when learning lower-level linguistic knowledge.

Even more unnaturally, models trained on lan-
guages with more complex paradigms are slightly
better at identifying correct verb classes, with the
best performance occurring on 32 and 64 classes.
–far beyond what appears in most natural languages.
We hypothesize that this behavior is due to how
models and their inputs are parameterized: as the
number of classes increases, the set of verb roots
a suffix can follow (according to the training data)
becomes smaller, allowing the model to be more
confident about the bigram’s conditional probabil-
ity. However, this finding contrasts sharply with
human language learning, where many unrelated
paradigms are typologically improbable due to the
unreasonable amount of memorization required for
humans to model them correctly.

Based on these results, we argue that while lan-
guage model learning of verbal paradigms may
resemble human learning, the underlying mecha-
nisms driving these behaviors are likely very dif-
ferent. Future work comparing model behavior
with humans should control for these similarities
by also looking at the underlying mechanisms driv-
ing model performance.

5 Limitations

Using carefully constructed artificial languages al-
lows us to isolate syntactic complexity’s effects
on language learnability and to consider a broad,

5I.e., more verb classes than in most natural languages.

systematic complexity distribution. However, this
means that these languages are not natural (partic-
ularly regarding the absence of semantics), which
limits the findings presented here. Future work
should replicate these experiments in a more natu-
ral setting to verify that our findings remain valid
in such conditions.

Another limitation of this work is the size of
the language models: computational limitations
and the number of models considered in our ex-
periments (800 trained LMs across experimental
settings) limited the model size considered to one
setting, GPT-2 Small (124M parameters). Finally,
there are many aspects of complexity in natural
language, with the number of verb classes being
just one aspect. Whether our findings hold for
other linguistic phenomena, such as noun classes
(i.e. gender), freedom in word order, degree of
syncretism, morphophonological alternations, etc.
remains an open area for future research.
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A Methodological Details

A.1 Artificial Language Generation

An overview of the pipeline used to generate sen-
tences is described in Figure 3.

Figure 3: Overview of Sentence Generation with Artifi-
cial Languages.

A.1.1 Morpheme Generation
The parts of speech and number of morphemes that
belong in each category are set manually. For this
experiment, about 8000 morphemes were used in
total. The number of morphemes for each part of
speech was chosen to approximate 1% of the num-
ber of Kaikki’s senses for each of English’s part
of speech (Ylönen, 2022). Approximately 0.5% of
nouns were used instead of 1% since nouns dispro-
portionately have technical vocabulary or jargon in
Kaikki’s database which we do not care to repli-
cate. Additionally, only one determiner, which
inflects for number, and six pronouns for each com-
bination of number (singular, plural) and person
(1st, 2nd, 3rd) were chosen to simplify conjugation
paradigms.

A.1.2 Probabilistic Context Free Grammar
Probabilistic context-free grammars (PCFG) are an
extension of a context-free grammar where each in-
put state’s production rules take a probability. Since
the final result of a PCFG resembles a syntactic tree,
it allows us to create sentences with customizable
linguistic structures. Pseudocode for a simplified
English grammar is provided in Figure 4. All gen-
erations start with an "S" state. Generation rules

may apply categorically, such as rule (1), which
determines that sentences produce a subject noun
phrase followed by a verb phrase with probabil-
ity 1. Other states may have two or more possible
outcomes, as demonstrated by rule (3), which de-
termines that noun phrases may produce a deter-
miner followed by a noun or a pronoun with equal
probability. All preterminal states are lowercase,
while non-preterminal and non-terminal states are
required to have at least one capital letter. This
simplified grammar does not include adjectives or
prepositions and thus is incapable of handling re-
cursion, but the full grammar for the artificial lan-
guages does.

generation_rules = [
S → [sNP, VP], 1
sNP → [NP.nom], 1
NP → [det, noun], 0.5, [pron], 0.5
VP → [verb, NP], 0.7, [verb], 0.3

]

Figure 4: Generation Rules for a simplified grammar.

In order to handle conjugation, states are as-
signed features, as demonstrated by rule (2). Not
demonstrated is the deletion of a feature and the ad-
dition of a tag feature that allows for long-distance
agreement. Unless explicitly stated by a generation
rule, a state passes all of its features to its children.
This can be seen in Figure 1, where the subject NP
with feature nom (short for nominative, i.e., subject
of a sentence) passes on the feature to all of its
children states.

Preterminal nodes are represented by the part of
speech that will beget a morpheme from the vo-
cabulary. A simplified vocabulary can be seen in
Figure 5. In order to mimic the naturalistic distribu-
tion of words in human languages, generation rules
for preterminal states function differently from the
rest of the PCFG. The morpheme that is chosen
by the preterminal state is chosen according to a
Zipfian distribution with skew = 1.2. Additionally,
the part of speech of a terminal node is added to its
set of features.

Rules dictating universal features of certain parts
of speech may be added at this step as well. For
example, in our simplified toy vocabulary, all nouns
are assumed to take the feature 3rd. This is not
included in the toy grammar’s rules, but will be
essential in determining which terminal states agree
with which other terminal states.
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vocabulary = {
det: [“the”],
noun: [“cat”, “dog”],
verb: [“see”, “miss”],
pron: [“you”]

}

Figure 5: Vocabulary for a simplified grammar. The
morphemes in this example are not stochastically gener-
ated for a clearer example.

A.1.3 Conjugator

The conjugator works by (i) determining which
morphemes agree with other morphemes and (ii)
applying each inflection rule to each word in the
sentence that has a given feature set.

After the PCFG generates a sentence without
agreement, the first step is determining which lem-
mas agree with which other lemmas. We define
agreement as a terminal state copying a state from
another terminal state according to rules set by
the user. For example, as demonstrated by Fig-
ure 6, we can see our toy grammar’s verbs are
required to copy one feature relating to number
and one feature relating to person from the nomina-
tive noun constituent, as seen by the definition of
agreement_rules. In the toy example in Figure 1,
the verb see copies the feature 3rd and sg (applied
through rules not shown in previous figures) from
cat to have the feature set verb, 3rd, sg. Note
that if any word seeking agreement finds more than
one word to agree with, or is unable to find ex-
actly one of each of the features it aims to copy,
generation fails.

The second step is applying inflections to the
sentence, now that all words requiring conjugation
have copied features from the word that they are
agreeing with. Inflections apply to any word that
changes form based on some features. For example,
as demonstrated by Figure 6, we can see our toy
grammar’s verbs take a suffix -s iff it has features
3rd and sg or otherwise it does not take any inflec-
tions, as seen by the definition of conjugations.
Conjugations may also apply to words which did
not gain features from the agreement rules, such as
nouns pluralizing with the suffix -s if it gained the
pl feature from a generation rule.

We generate datasets on 8 different numbers of
verb classes: {1, 2, 3, 5, 8, 16, 32, 64}. In all
datasets, any verb agrees with the subject of the
sentence in person and number, for a total of 6

agreement_rules = [
# Verbs agree with the nom nouny word
# Verbs must then copy the word's number
# Similarly, they then copy the person
{"verb": [["nom", "nouny"],

[["sg", "pl"],
["1st", "2nd", "3rd"]]]}

]
conjugations = [

["verb", {
“-s”: 3rd.sg,
“-”: otherwise

}],
["noun", {

“-s”: pl,
“-”: otherwise

}]
]

Figure 6: Pseudocode for agreement rules and conju-
gations for a simplified grammar. Nouny is defined as
being either the feature pron or noun.

possible suffixes given a verb root (3 person x 2
number). In datasets with n verb classes where
n > 1, verbs are assigned to one of n classes.
Each of these classes has a unique set of suffixes
for each combination of person and number for
subject-verb agreement, for a total of 6n verbal
suffixes per language.

B Replicability Details and Miscellanea

This section provides additional details on our ex-
perimental setting for documentation and replica-
bility purposes.

The language models trained in these exper-
iments have the GPT-2 Small architecture with
124.4M trainable parameters. We consider both
a randomly initialized version of this architecture
and the pretrained GPT-2 hosted through Hugging-
face,6 which is released under the MIT license;
intended use of this artifact beyond the license is
not clearly stated.

In our experiments, we trained 800 models (10
runs, 8 languages per run, 5 models with varying
training data amounts per language, 2 base models
- English pretrained vs. randomly initialized), and
the training dataset sizes ranged from 100 sentences
to one million sentences; we evaluated each model

6https://huggingface.co/openai-community/gpt2, as ac-
cessed before and on 02/15/2025.
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across six settings (two behavioral tests, three root
settings) with 5,000 sentences each; though, mod-
els trained on languages with one verb class were
not evaluated on the class behavioral test. There is
no overlap in sentences from the training and test
set. We use 10 GPUs for both training and evalua-
tion, one for each run of 80 models. Training and
evaluating 80 models took approximately one day
per GPU. Given our training batch size of 1 and
single training epoch, this corresponds to between
100 to 1,000,000 training passes per model.
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