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Abstract

This paper presents a computational method
for token-level lexical semantic comparative
research in an original text setting, as opposed
to the more common massively parallel setting.
Given a set of (non-massively parallel) bitexts,
the method consists of leveraging pre-trained
contextual vectors in a reference language to in-
duce, for a token in one target language, the lex-
ical items that all other target languages would
have used, thus simulating a massively paral-
lel set-up. The method is evaluated on its ex-
traction and induction quality, and the use of
the method for lexical semantic typological re-
search is demonstrated.

1 Introduction

Lexical semantic typology has benefited im-
mensely from the availability of massively parallel
corpora. Having the same message translated from
a reference language into many different target lan-
guages affords linguists a basis to study variation in
word meanings (cf. Haspelmath, 2018) at the fine-
grained level of corpus tokens (Levshina, 2016).

The massively parallel set-up (Figure 1, top) al-
lows us to determine, for instance, that Spanish and
German both split the meaning of English know
similarly into ‘know someone’ (conozco, kenne),
and ‘know something’ (sabe, weiss). Studies using
massively parallel corpora have challenged prior
conceptions of semantic variation, showing that lan-
guages vary continuously rather than discretely in
where they mark lexical boundaries (e.g., Verkerk,
2014 for motion events) and revealing novel factors
explaining such lexical boundaries (e.g.,Wälchli,
2016 for verbs of visual perception).

Massively parallel corpora do, however, have
methodological downsides (see Levshina, 2021 for
a review). They tend to reflect literary genres and
have conceptual content that may be foreign to the
culture into whose language the text is translated
(Domingues et al., 2024; Pinhanez et al., 2023).

Figure 1: Massively parallel corpora vs. original corpora

Moreover, languages differ in how they habitually
formulate, i.e., what conceptual contents speakers
typically bring up when they engage in ‘the same’
linguistic activities, such as telling a story (Tannen,
1980) or making a request (Terkourafi, 2011). Fi-
nally, translated text displays transfer effects, where
properties of a source language are transferred to
a target language, thus making the target language
look more like the source language (Johansson and
Hofland, 1994, though see Levshina, 2017).

These issues could in part be circumvented by
using original text corpora with translations from
the (untranslated) target languages into a shared
reference language, as in Figure 1, bottom panel.
In comparative linguistics, such corpora are com-
monly used (McEnery and Xiao, 2007; Enghels
et al., 2020). However, under this set-up, the trans-
lations are not massively parallel. The loss of mas-
sive parallelism impacts the comparability: without
it, we can, for instance, no longer directly infer that
Spanish conozco covers (approximately) the same
meanings as German kenne, and ditto for sabe and
weiss. Moreover, it affects the downstream ana-
lytic techniques we can use: many studies rely on
dimensionality reduction over the translations of
the seed language tokens into all target languages,
a situation unavailable with an original text set-up.

The use of original text data thus calls for a
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method to make these data comparable at the token
level. Multilingual contextualized representation
spaces, such as Multilingual BERT (Devlin et al.,
2019) could be considered here, but given the small
amounts of data available for most languages, as
well as challenges to the ‘true’ multilingual nature
of Multilingual BERT (Pires et al., 2019), this ap-
proach does not seem feasible.

Instead, this paper proposes a method that lever-
ages pre-trained contextual vectors for the refer-
ence language to induce, for a token in one tar-
get language, the lexical items that all other tar-
get languages would have used. Doing so, the
proposed method simulates a massively parallel
set-up. Pre-trained vectors for one language in a
translation pair have been succesfully used to im-
prove word alignment quality in bitexts (Dou and
Neubig, 2021), and as such we can expect further
translation-oriented applications to similarly bene-
fit from the more substantial training data available
for resource-rich languages like English.

After describing the method (§2) and introduc-
ing the corpora (§3), I will report on three exper-
iments validating the method (§4), and showcase
the use of the method for lexical semantic typo-
logical research (§5). Code is available at https:
//github.com/dnrb/no-parallel-corpus.

2 A method for inferring lexification

Here, I propose a method to simulate a massively
parallel setting when such parallelism is not avail-
able. The method takes as its input raw bitexts with
translations from a target language t into a refer-
ence language r for which contextual vectors are
available or can feasibly be trained. The method
uses these contextual vectors to induce a classifi-
cation model predicting lexical choice in t. This
model can then be applied to translations of another
target language t′ into r, to infer the lexical choice
that t would have made if asked to translate a word
token in t′. Doing so for all languages lets us to
infer a token-by-language table like those used in
studies based on massively parallel corpora.

2.1 Alignment step

To induce a lexical classification model in a target
language t on the basis of contextualized vectors
in r, we need to know, for a particular token wt of
t, which token wr of r is translation equivalent, so
that an association between wt and the contextual-
ized vector of wr can be learned. At the same time,

lexical semantic typology tends to be interested in
the lexical choice of lemmas (e.g., believe) rather
than the inflected forms (e.g., believe, believes, be-
lieving, believed), and as such, the alignment proce-
dure would ideally also identify the shared lemma
form in the target languages.

An approach affording both at the same time
is Liu et al. (2023)’s Conceptualizer model. As-
suming a bitext U , consisting of paired utterances
⟨ur, ut⟩ in the reference and target language, we de-
fine Uv ⊆ U as the set of bitext utterances in which
reference language word type v occurs. Given a ref-
erence language seed word v, the procedure then
considers each possible substring l in t, and re-
trieves the set of bitext utterances Ul ∈ U in which
l occurs. The most strongly associated substring
lmax is the substring whose Fisher Exact score over
the following 2× 2 table has the lowest p-value:

|Uv ∩ Ul| |Uv/Ul|
|Ul/Uv| |U/(Uv ∪ Ul)|

Intuitively, lmax is a substring of target language
words that frequently occur in the same utterances
as v and infrequently occur in utterances where v is
not present. The search space over all possible l is
further reduced by assuming that |Uv∩Ul|

|Uv | ≥ θt and

that |Uv∩Ul|
|Ul| ≥ θb, with θt = 0.01 and θb = 0.10,

i.e. that the union of utterances containing v and
l should make up 1% or more or all utterances
containing v and that the same union should make
up 10% or more of all utterances containing l.

When lmax is found, Ulmax is removed from Uv,
and the process is repeated on the updated set Uv,
until a pre-set threshold of coverage over the tokens
of v is reached (here: 0.95× |Uv|).

In subsequent steps, the model will need to re-
trieve the word tokens associated with lmax. It does
so through the function tokens(lmax), which goes
through all u ∈ Uv ∩ Ulmax and retrieves, per u, the
target language word token that contains lmax. If
multiple tokens in some ut contain lmax, the one
that occurs in the largest number of utterances in
Uv ∩ Ulmax is selected.

2.2 Lemma merger step
Exploration reveals that the Liu et al. (2023) proce-
dure often extracts spurious unique lemmas for a
seed word. For instance, both ˆsepara and ˆsepare
(carets denote the start of a string) might be ex-
tracted in Spanish as target language lemmas given
the seed word separate. These are obvious variants
of the same lemma (separar). Similarly, identical
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language (glottocode, family, area: reference) n tokens language (glottocode, family, area: reference) n tokens

Anal (anal1239, Sino-Tibetan, Eurasia: Ozerov) 14026 N||ng (nngg1234, Tuu, Africa: Güldemann et al., 2024) 27035
Yali (Apahapsili) (apah1238, Nuclear Trans New Guinea, Papunesia: Riesberg, 2024) 15243 Northern Kurdish (Kurmanji) (nort2641, Indo-European, Eurasia: Haig et al., 2024) 9657
Arapaho (arap1274, Algic, North America: Cowell, 2024) 10279 Northern Alta (nort2875, Austronesian, Papunesia: Garcia-Laguia, 2024) 11137
Baïnounk Gubëeher (bain1259, Atlantic-Congo, Africa: Cobbinah, 2024) 12522 Fanbyak (orko1234, Austronesian, Papunesia: Franjieh, 2024) 18928
Beja (beja1238, Afro-Asiatic, Africa: Vanhove, 2024) 15454 Pnar (pnar1238, Austroasiatic, Eurasia: Ring, 2024) 20485
Cabécar (cabe1245, Chibchan, North America: Quesada et al., 2024) 17528 Daakie (port1286, Austronesian, Papunesia: Krifka, 2024) 11880
Cashinahua (cash1254, Pano-Tacanan, South America: Reiter, 2024) 9655 Ruuli (ruul1235, Atlantic-Congo, Africa: Witzlack-Makarevich et al., 2024) 8255
Dolgan (dolg1241, Turkic, Eurasia: Däbritz et al., 2024) 18694 Sadu (sadu1234, Sino-Tibetan, Eurasia: Xu and Bai, 2024) 11752
Evenki (even1259, Tungusic, Eurasia: Kazakevich and Klyachko, 2024) 8366 Sanzhi Dargwa (sanz1248, Nakh-Daghestanian, Eurasia: Forker and Schiborr, 2024) 5140
Goemai (goem1240, Afro-Asiatic, Africa: Hellwig, 2024) 24039 Savosavo (savo1255, Isolate, Papunesia: Wegener, 2024) 11383
Gorwaa (goro1270, Afro-Asiatic, Africa: Harvey, 2024) 19988 Nafsan (South Efate) (sout2856, Austronesian, Papunesia: Thieberger, 2024) 25204
Gurindji (guri1247, Pama-Nyungan, Australia: Meakins, 2024) 6116 Sümi (sumi1235, Sino-Tibetan, Eurasia: Teo, 2024) 11158
Hoocąk (hoch1243, Siouan, North America: Hartmann, 2024) 7431 Svan (svan1243, Kartvelian, Eurasia: Gippert, 2024) 10318
Jahai (jeha1242, Austroasiatic, Eurasia: Burenhult, 2024) 8087 Tabasaran (taba1259, Nakh-Daghestanian, Eurasia: Bogomolova et al., 2024) 5057
Jejuan (jeju1234, Koreanic, Eurasia: Kim, 2024) 9359 Teop (teop1238, Austronesian, Papunesia: Mosel, 2024) 12134
Kakabe (kaka1265, Mande, Africa: Vydrina, 2024) 46634 Texistepec Popoluca (texi1237, Mixe-Zoque, North America: Wichmann, 2024) 8468
Kamas (kama1351, Uralic, Eurasia: Gusev et al., 2024) 37861 Totoli (toto1304, Austronesian, Papunesia: Bardají i Farré, 2024) 11798
Tabaq (Karko) (kark1256, Nubian, Africa: Hellwig et al., 2024) 9318 Mojeño Trinitario (trin1278, Arawakan, South America: Rose, 2024) 17421
Komnzo (komn1238, Yam, Papunesia: Döhler, 2024) 33773 Asimjeeg Datooga (tsim1256, Nilotic, Africa: Griscom, 2024) 8782
Light Warlpiri (ligh1234, Mixed Language, Australia: O’Shannessy, 2024a) 8685 Urum (urum1249, Turkic, Eurasia: Skopeteas et al., 2024) 18797
Movima (movi1243, Isolate, South America: Haude, 2024) 10243 Vera’a (vera1241, Austronesian, Papunesia: Schnell, 2024) 17785
Dalabon (ngal1292, Gunwinyguan, Australia: Ponsonnet, 2024) 4046 Warlpiri (warl1254, Pama-Nyungan, Australia: O’Shannessy, 2024b) 7129

Table 1: The 44 languages in the DoReCo dataset. ‘n tokens’ is the number of target language word tokens.

target language lemmas may mismatch across seed
words: English split might yield Spanish ˆsepar
as a target language lemma. Without further pro-
cessing, this would lead to the model’s failure to
recognize that separar translates into the reference
language words separate and split.

To resolve this issue, I implement a simple
heuristic to merge target language lemmas given
the same or different seed words. In all cases, the
basic criterion is that two target language lemmas li
and lj are merged iff they have a longest-common
substring (1) whose length is ≥ 3 characters, and
(2) that is at least half as long (in characters) as
the shortest string of the two lemmas li and lj .
When merging across seed words (like ˆsepar given
split and ˆsepara given separate in the example
above), we further require that the whole word
forms (e.g., separamos, separaba) that the two lem-
mas cover overlap, as a further way to ensure that
they indeed are the same lemma. Concretely, we
retrieve the set of unique whole word forms cov-
ered by li, i.e. all unique strings from tokens(li),
and call it Wi. We do the same for lj and call
it Wj . Next, we define the two lemmas to have
sufficient overlap in the word forms they cover if
|Wi ∩ Wj | ≥ max(|Wi|, |Wj |) × 0.5, or: the in-
tersection of their word forms is at least half the
size of the largest of the two sets. All lemma pairs
are considered, and an undirected graph is induced
with edges between all pairs of mergeable lemmas,
after which all lemmas in each connected compo-
nent are merged.

2.3 Induction step

With the inferred mapping between seed words in
the reference language t and merged lemmas in the

target language t, we can now train a classifier to
induce the merged lemma given a seed word token
in the bitext between r and t. In particular, the
classifier learns a mapping between contextualized
vector representations −→wr of each token wr, and
the merged lemmas Lt, as obtained through the
previous steps.

This, then, allows for the inference of what a
target language t would have used in the case of a
token of some other target language t′. For every
token wr ∈ Br

t′ , that is: in the bitext between r
and t′, the contextualized vector −→wr is retrieved,
and classify(−→wr, t) predicts the lemma in t for the
translation of a token in t′. As such, we now
know that t uses classify(−→wr, t) for wr, and t′ uses
classify(−→wr, t

′) for the same token, thus making
the reference language token a comparable cate-
gory. Doing so for all t ∈ T yields one row in
a comparison table as obtained from a massively
parallel corpus, except that most lexical labels are
now inferred instead of observed. Doing so for all
word tokens wr in any bitext allows us to create
the full table. I will explore the insights that can be
derived from such a table in §5, but first validate
the quality of this procedure.

3 Experimental set-up and materials

This paper uses the DoReCo corpus (Seifart et al.,
2024), a collection of data gathered by documen-
tary linguists for a typologically diverse sample of
languages. The individual language resources form
free-standing contributions that should be individu-
ally cited as part of the usage agreement. Table 1
presents the 44 languages used, along with meta-
data about affiliation and location and the number
of (translated) words in each language.
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Figure 2: Mean extraction accuracy (blue) vs. random baseline (orange).

w melo bo lo ghavilighue.
m melo bo lo ghavi -li -ghu =e
g tuna go 3SG.M paddle -3SG.M.O -NMLZ

=EMPH
f “he went and fished bonito with it.”
l go fish bonito

Table 2: Interlinear Gloss; Savosavo (Wegener, 2024)

The structure of the components of the DoReCo
corpora is given in Table 2, for the language
Savosavo. All languages have the [w]ord and [f]ree
translation layer, and a select subset of languages
is interlinearly glossed with a [m]orphological seg-
mentation layer and a [g]loss layer. Subsequently,
the lexical [l]emma layer was derived from the f
layer, by selecting all lemmatized words from the
f layer whose PoS was one of Noun, Adjective, or
Verb, using spacy for both lemmatization and PoS
tagging (Honnibal and Montani, 2017).

Finally, in the induction step, BERT (Devlin
et al., 2019) was used, using the bert-base-cased
model of the transformers library.

4 Validation experiments

This section validates the quality of the model. As
the extraction of high-quality translation equiva-
lence relations between tokens in the target and
reference language is paramount for the validity
of subsequent steps, I first evaluate the Liu et al.
(2023) model, which provides us with such trans-
lation equivalences, in two ways: by assessing if
reference language items are aligned with the cor-
rect target language tokens (§4.1), and by assessing
if the extracted ‘lemmas’ accurately lemmatize the
target language (§4.2). Next, I consider the accu-
racy of the lexification induction step (§4.3).

4.1 Quality of lemma extractions

To evaluate whether the correct target language
tokens are aligned with the reference language
word tokens, I use the glosses, available for 32/44
DoReCo corpora. Given that the target language
tokens are associated with a morphological seg-
mentation and a corresponding gloss in English
(cf. Table 2 for an example), we can assess whether
the target language token aligned with a seed lan-
guage item contains the seed language item as
part of its gloss. For the example in Table 2, the
lemma go (on the [l]exical lemma line) might be
aligned with Savosavo bo, which is indeed glossed
as ‘go’ (cf. the [g]loss line). Only reference lan-
guage words that are present in at least one gloss
in the target language are considered. For instance,
the verb fish might be aligned with ghaviligue, but
this word does not have ‘fish’ in one of its glosses,
but rather ‘paddle’. Since no other word in the
target language has ‘fish’ in one of its glosses, the
item is not counted as correct or incorrect.

We compare the scores of the Conceptualizer
mode against a weak baseline of picking a word
from the target language sentence at random, and
a stronger baseline of a simple extraction proce-
dure in which the alignments over word align-
ments obtained through either Awesome Align
(Dou and Neubig, 2021) or Eflomal (Östling and
Tiedemann, 2016) combined with the ‘grow-diag-
final-and’ heuristic were used (for both models,
default settings were used). The procedure further-
more involved resolving cases where one reference
language word token was mapped onto multiple
target language tokens, as the evaluation proce-
dure requires a single target language form. For
such cases, only the target language token that
was most frequently aligned with the reference
language word type across the whole bitext was
kept.
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Figure 3: Entropy of lemmas given glosses. Blue: lemma-H without merging; orange: with merging.

Figure 4: Entropy of glosses given lemmas. Blue: gloss-H without merging; orange: with merging.

Figure 2 reports the macro-averaged scores, i.e.,
averaged over all tokens of seed language items
per language. For the Conceptualized model, the
median language gets 91.1% of alignments cor-
rect, against median accuracy scores of the three
baseline models of 19.7% (random), 15.5% (Awe-
some Align), and 25.4% (Eflomal). The variation
between languages is relatively small, with an in-
terquartile range of 88.2%-94.4%, a worst case of
81.0% (Jejuan) and a best case of 97.2% (Toto).
Notably, these results substantially support the su-
periority of the Liu et al. (2023) Conceptualizer
model over alignment-based procedures in low-
resource scenarios such as the one studied here.

4.2 Effect of lemma merging

While the previous analysis supports the accuracy
of the alignments between seed words and target
language tokens, it does not yet validate whether
the extracted lemmas, to be used in the subsequent
induction step, are accurate. It may be that all target
language tokens are correctly aligned, but this is
done through several lemmas that all correspond to
one ‘true’ lemma as given in the gloss. This would
lead to an artificial inflation of the lexical bound-
aries in the language, which in turn reduces the
quality of the inferred representations of crosslin-
guistic variation. The merger step discussed in §2.2
intends to pre-empt this situation.

It is difficult to assess the quality of the extracted
lemmas directly, due to variation in how the glosses
are assigned. Because of that, I approach the as-
sessment indirectly, by considering the uncertainty
in two conditional probability distributions: of ex-
tracted lemmas given annotated glosses, and, vice
versa, of glosses given lemmas. I only consider
gloss-lemma pairs found to be correctly aligned in
the previous evaluation step.

For a target language t, let Gt be the set of all
glosses that contain a seed word, i.e., the glosses
used to determine the correctness of the alignment
in the previous set, and Lt the set of induced lem-
mas (either as-is from the Liu et al. (2023) proce-
dure, or after the merging step) found in cases of
correct alignments. Primarily, I propose to mea-
sure the quality through the weighted average un-
certainty of the probability of the lemmas given
a gloss, or P (Lt|g), for all glosses g ∈ Gt, as
weighted by the frequency of occurrence of the
gloss among correctly aligned cases, or N(g). In
an ideal case, for every gloss, there is just a single
induced lemma that aligns to it. If multiple lemmas
are found, aligning to the same gloss, the model
might have inferred spurious lemmas. Formally,
lemma-H(t) =

∑

g∈Gt

(
H(P (Lt|g))×N(g)

)
× 1∑

g∈Gt
N(g)

(1)
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Figure 5: Accuracy on classifying the lemma for held-out data; blue: MLP-100 classifier, orange: most-frequent
lemma per seed word baseline.

The inverse relation, of glosses given lemmas,
similarly has an expectation of one-to-one map-
pings: given a lemma, we expect it to align with
one unique gloss only. For this relation, however, a
qualification applies: for many of the languages in
the corpus, the individuable glosses contain more
than just the lemma, and as such individual lemmas
frequently align with multiple unique glosses, with
substantial variation between the languages owing
to the different approaches to writing the glosses
that the documentary linguists applied. Nonethe-
less, the gloss entropy given the lemmas is a useful
measure when assessing the effect of the merging
step: if applying the merging step leads to erro-
neous mergers, i.e., cases where two induced lem-
mas are merge that should not be merged, the un-
certainty over the glosses given the lemmas should
go up, as the original lemmas that were erroneously
merged can be expected to have rather different sets
of glosses. As such, it can be expected that if the
merging is accurate, the entropy over the glosses
given the lemmas should not go up relative to the
application of the model without the merging step.
Formally, the gloss-H measure is defined as:

∑

l∈Lt

(
H(P (Gt|l))×N(l)

)
× 1∑

l∈Lt
N(l)

(2)

Figure 3 shows that across languages the
lemma-H goes down with the addition of the merg-
ing step for each individual language, with some
positive outliers being Kakabe and Kamas, where
most of the uncertainty over the glosses is removed
by adding the merging step (lemma-H values go-
ing from 0.109 to 0.032 for the former and 0.109
to 0.040 for the latter). On average, the lemma-H
was found to decrease from 0.072 when the merg-
ing step is not applied, to 0.053 when it is applied.

model accuracy ERR

baseline 0.739 -
KNN-3 0.862 0.491

SVC 0.890 0.594
MLP 0.898 0.624

MLP-100 0.900 0.631

Table 3: Induced lexification results across all lan-
guages; ERR = error rate reduction.

Conversely, the merging step does not introduce
substantial new uncertainty in the P (Gt|l) distribu-
tions due to erroneous lemma mergers. Compared
to the magnitude of the gloss-H values when no
merging step is applied, the gloss-H values when
merging is change relatively little, as Figure 4 il-
lustrates on a language-by-language basis. Only
in 6 cases does the gloss-H value go up with the
addition of the merging step, compared to 19 cases
where it goes down, meaning that on the whole,
adding the step in fact reduces the uncertainty over
the glosses given the lemmas.

4.3 Quality of induced lexification

The two validation experiments suggest that the
inferred lemmas align reasonably well with the lin-
guistic annotations provided in the corpus. While
the goal of the induction procedure is to infer the
target language lemmas given contextualized us-
ages of target words for other target languages, we
can assess the quality of the induction procedure
by assessing the classification accuracy on a held-
out sample of the same language. For each of the
44 languages, all seed words occurring with a fre-
quency of 10 or more were considered, and K-fold
cross-validation (here: K = 20) over the entire
lexicon of some target language t was carried out.
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(a) Seed words (b) Dolgan (dolg1241) (c) Cashinahua (cash1254)

(d) Sümi (sumi1235) (e) Teop (teop1238) (f) Urum (urum1249)

Figure 6: t-SNE plots with various colour coding. For the five languages, only the observed tokens are shown.

The accuracy of this procedure was then com-
pared against a baseline of always predicting the
most common lemma given a reference language
seed word, reflecting a scenario in which a model
only knows the input word in the reference lan-
guage. I assessed four classifiers implemented in
the sklearn library, a k-nearest neighbours clas-
sifier with k = 3 (KNN-3), an Support Vector
Classifier with the default settings (SVC), and two
Multi-Layer Perceptron, one with no hidden layers
(MLP), and the other with one hidden layer of 100
units and ReLU activation (MLP-100).

Table 3 presents the results. Seed words tend to
be associated with few lemmas, one of which is typ-
ically very dominant (cf. the low entropy of the lem-
mas given the glosses in Figure 3, which supports
this observation). As such predicting the modal
lemma given a reference language seed word forms
a competitive baseline. All classifiers, however,
provide substantial improvement over the baseline,
reducing the error by between 49% (KNN-3) and
63% (MLP-100). Figure 5 shows the results per
language for the best-performing MLP-100 model,
showing that the classifier surpasses the baseline
and generally performs well for all languages.

5 Application

The previous section demonstrated that the model
extracts generally valid target language representa-
tions (lemmas) and is reasonably well able to clas-

sify these lemmas on the basis of contextual vector
representations of the seed language. The goal of
this approach, however, is to provide a method for
typologists to obtain massively comparable data in
the absence of a massively parallel corpus. This
section demonstrates how known insights can be
replicated, and how novel insights can be obtained
with the method.

To explore the comparability afforded by the
model, here, we briefly explore the domain of vi-
sual perception verbs, translation equivalents of
English see, look, and watch. A main lexical dis-
tinction between Experiencer and Activity verbs
(English see vs. look) – with the former involving
a more passive (‘experiencing’) role for the per-
ceiver, and the latter a more active one has been
postulated (Viberg, 1983), but challenged on the
basis of parallel corpus data by Wälchli (2016). Us-
ing manually extracted instances from comparable
corpora, San Roque et al. (2018) consider the non-
literal extensions of perception verbs, noting that
discourse markers (e.g., look! to draw attention
or introduce something unexpected) are common
extensions.

To explore the distribution of visual perception
verbs in the DoReCo corpus, we can train the best
classifier from §4.3 (MLP-100) for each language
that has N ≥ 30 instances of the three most com-
mon English visual perception verbs (see, look, and
watch) in their free translations. Next, we apply
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this classifier to all instances of see, look, and watch
for all other languages, leading to a 3001 (instances
of visual perception verbs across all 29 languages
with sufficient data) by 194 (unique lemmas across
the 37 languages with sufficient data) table, with
the probability assigned by each MLP-100 model
to the lemmas as the cell values. To visualize this
table, we can apply t-SNE (Van der Maaten and
Hinton, 2008) to reduce the table to two dimen-
sions.

Figure 6 shows the t-SNE representation, with
six distinct colour-codings. The top-left subfigure
(6a) shows the distribution of the three English
seed words, which form coherent groups of visual
clusters, but with each term nonetheless covering
multiple clusters. Some languages, such as Dolgan
(6b) do not make any lexical distinctions in this
domain – a situation predicted by Viberg (1983)),
while others, such as Sümi (6d) split Activity and
Experiencer meanings more or less along the lines
of English. Two languages carve out a cluster near
the bottom of the 2D-space – Cashinahua bena
and Teop rake – these are all instances of look for,
meaning ‘search’, which many languages group
with the other ‘look’ meanings, but these two lan-
guages distinguish lexically. Finally, Urum (6f)
presents an interesting case of two main terms, but
with a split that differs from English or Sümi. Here,
we see that bah covers a region containing English
look and some of see, whereas gor covers only part
of the see tokens. The see tokens covered by bah
involve cases of modal see, like can see, will see,
in several cases in the meaning ‘find out’, like “I
will see where to go, possibly to the city”. As such,
Urum supports the argument of Wälchli (2016) that
the Activity-Experiencer split is (a) more of a con-
tinuum, and (b) governed by properties beyond the
general semantic role of the perceiver.

What the plots in Figure 6 further illustrate, is
that languages differ in how often they use visual
perception meanings. Urum uses visual perception
verbs only 21 times per 10, 000 tokens, whereas
Cashinahua shows five times that frequency at 102
tokens per 10, 000. Such usage variation is known
to be meaningful in the explanation of lexification
patterns, following the argument that a language’s
greater need to communicate about a specific con-
cept correlates with finer-grained lexical distinc-
tions (cf. Kemp et al., 2018). Original corpus data
and methods for making such data comparable can
thus be used to estimate such ‘need probabilities’

6 Conclusion

This paper introduced a novel method for making
original text corpora that are translated into the
same reference language comparable, thus allow-
ing for token-level typological study. The indepen-
dent steps of the method were found to generally
provide high-quality representations in three vali-
dation experiments, and the case study presented
the potential of the method for studying lexical
semantic variation across languages.

While generally successful in extracting transla-
tion equivalents and inducing lexical categorization
models, room for improvement remains. While the
Liu et al. (2023) approach benefits from its abil-
ity to consider substrings below the word level,
it is hampered by not considering how other tar-
get language substrings translate to the seed item,
something word alignment procedures from IBM-1
(Brown et al., 1993) onward do consider.

It should be stressed here that using original text
does not make the method bias-free, in terms of a
translationese bias from the shared reference lan-
guage. Using the free translations means all lexical
choice models are filtered through contextual vec-
tor representation of English. In the specific case of
the data used here, this English is moreover written
as a guide for the linguistically informed reader to
make sense of the target language sentence; it may,
by design given the genre of “free translations in
language documentation”, show translation effects
from the target language onto the English. Calibrat-
ing the extent of this effect would require further
testing the model on other comparable corpora.

Applications beyond the ones the method was
designed for could be explored. Related work that
considers crosslinguistic variation at a word type
level and using secondary resources, like Thomp-
son et al. (2020) and Khishigsuren et al. (2025),
could be compared against the token-level map-
pings between a shared reference language and mul-
tiple target languages. Corpora that contain both
original and translated text in comparable genres
may furthermore be of use to pinpoint the precise
effects of translationese in how lexical boundaries
are drawn, and as such be of use for practical pur-
poses in education and translation studies. Finally,
we are reminded that languages vary on a discourse-
pragmatic level, and that multilingual NLP ought to
consider such variation, for instance when working
with Large Language Models and Machine Trans-
lation systems pretrained on translated text.
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