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Abstract

When translating into a low-resource language,
a language model can have a tendency to pro-
duce translations that are close to the source
(e.g., word-by-word translations) due to a lack
of rich low-resource training data in pretrain-
ing. Thus, the output often is translationese that
differs considerably from what native speak-
ers would produce naturally. To remedy this,
we synthetically create a training set in which
the frequency of a construction unique to the
low-resource language is artificially inflated.
For the case of Bavarian, we show that, af-
ter training, the language model has learned
the unique construction and that native speak-
ers judge its output as more natural. Our pilot
study suggests that construction-based mitiga-
tion of translationese is a promising approach.
Code and artifacts are available at https:
//github.com/cisnlp/BayernGPT.

1 Introduction

The multilingual capabilities of large language
models (LLMs) are impressive for medium- and
high-resource languages, but they are still poor for
low-resource languages for which the size of the
available text corpus is small. While LLMs have re-
cently improved their performance on low-resource
comprehension tasks, little progress has been made
on generation since the training demands for ef-
fective generation are much higher than those for
comprehension. Bavarian is a low-resource lan-
guage that instantiates this state of affair: some
large state-of-the-art models’ performance is de-
cent for comprehension of Bavarian, but this does
not carry over to generation.

Our hypothesis is that there are at least two differ-
ent problems with limited generation capabilities
of LLMs: lack of knowledge and translationese
behavior.

*Equal contribution.

Lack of knowledge mainly results in poor lexi-
cal choices. For example, our trained model (see
below) translates German “Kuchen” ‘cake’ not as
the correct Bavarian “Kuacha”, but as “Kuchel”
‘kitchen’. There is some promising work that ad-
dresses the lack of knowledge problem by prompt-
ing the LLM with relevant dictionary entries in
in-context learning.

However, apart from the lack-of-knowledge
problem, there is a second problem with the Bavar-
ian generations of language models: translationese.

Translationese is a particular problem in ma-
chine translation with language models. The LMs
tend to stick closely to the source sentence, espe-
cially when translating from a high-resource lan-
guage to a closely related low-resource language
as is the case for Standard German and Bavarian.
Bavarian and Standard German are in a state of
diglossia where Bavarian speakers produce forms
of Bavarian that are closer to Standard German in
more formal contexts and forms of Bavarian that
can be completely incomprehensible to Standard
German speakers in informal contexts.

This means that the Bavarian translationese gen-
erated by LMs is not necessarily incorrect: it may
be appropriate Bavarian for certain contexts of lan-
guage use. But clearly, the LMs do not have full
competence of the Bavarian language if all they do
is produce translationese.

In this paper, we take a small step towards ad-
dressing the translationese problem by training
LMs to generate a Bavarian construction that does
not occur in Standard German. This reduces the
translationese property of what the LM generates
because the output has clear indicators of being
“genuine” Bavarian.

Specifically, we experiment with the article redu-
plication construction in Bavarian:

Bavarian Ea woa friara a recht a fidel Buam.
Gloss He was formerly a RD-modifier a jolly boy.
translation He used to be quite a jolly boy.
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With certain reduplication modifiers (RD modi-
fiers), in particular with “recht”, “so” and “ganz”,
this Bavarian construction consists of the reduplica-
tion of the indefinite article, with the RD modifier
occurring between the two indefinite articles.

We show that a model trained with data syn-
thetically generated to contain article reduplica-
tion learns to produce the construction, reducing
the translationese character of the language model
translations.

To summarize, our method translates an origi-
nally Bavarian corpus to German using a state-of-
the-art LM, resulting in an “unmodified” parallel
corpus; generates a “modified” parallel corpus by
semi-automatically editing parallel sentences (such
that the Bavarian sentence contains a Bavarian con-
struction and the German sentence is modified to
reflect that change) and trains LMs on modified and
unmodified corpora. We also create two evaluation
datasets, one for sentences, one for noun phrases.
We manually evaluate the performance of the two
trained models. We find that the model trained on
modified data successfully produces article redu-
plication and its output data is perceived as less
“translationese” than the generations of the model
trained on unmodified data.

2 Related Work

Multilingual language models have emerged as the
dominant paradigm for supporting low-resource
languages. These models range from smaller ar-
chitectures such as multilingual BERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020),
mBART (Liu et al., 2020), mT5 (Xue et al., 2021),
and Glot500 (Imani et al., 2023), to large-scale
models including BLOOM (Scao et al., 2022),
Aya (Üstün et al., 2024), MaLA500 (Lin et al.,
2024a), EMMA500 (Ji et al., 2024), and Llama
3 (Dubey et al., 2024). Trained jointly on data from
a wide range of languages, these models demon-
strate strong cross-lingual transfer and generaliza-
tion capabilities, offering a promising foundation
for low-resource language applications.

Despite this progress, generative performance on
low-resource languages remains limited – particu-
larly for tasks such as machine translation (MT),
which are highly sensitive to the quantity and qual-
ity of available training data.

MT has thus become a central benchmark for
evaluating the generative abilities of multilingual
models. In the context of large language models,

recent efforts have explored two major directions:
supervised fine-tuning on parallel corpora (Yang
et al., 2023; Xu et al., 2023, 2024; Lin et al.,
2024b; Alves et al., 2024; Rei et al., 2024), and in-
context learning methods that incorporate external
linguistic resources – such as grammar books and
bilingual dictionaries – without modifying model
weights (Lu et al., 2023; Tanzer et al., 2024; Zhang
et al., 2024b,a; Pei et al., 2025).

These challenges are particularly pronounced for
extremely low-resource languages such as Bavar-
ian. Due to very limited annotated data, Bavarian
remains largely excluded from multilingual pre-
training. Her and Kruschwitz (2024) introduced
one of the first Bavarian–German MT systems,
demonstrating that translation between closely re-
lated language varieties can yield relatively strong
BLEU scores. To further enhance translation
quality while minimizing artifacts such as transla-
tionese, they employed back-translation (Sennrich
et al., 2016) to generate a compact but effective
set of synthetic training examples. However, their
approach depends solely on WikiMatrix (Schwenk
et al., 2021), a parallel corpus known to be noisy
and dominated by simplistic sentence structures,
which limits its ability to robustly capture more
nuanced translation characteristics.

One such characteristic is translationese – a lin-
guistic phenomenon that arises when translated text
retains unnatural or non-native structures. This arti-
fact is especially problematic for low-resource lan-
guages (Graham et al., 2020). To address it, Chowd-
hury et al. (2022) proposed removing translationese
signals implicitly encoded in vector embeddings,
leading to improved performance on natural lan-
guage inference tasks. Similarly, Wein and Schnei-
der (2023) employed Abstract Meaning Represen-
tation (AMR) to abstract away surface-level fea-
tures and suppress translationese. While effective,
these techniques do not explicitly assess whether
the resulting text resembles naturally written lan-
guage. More recently, Jalota et al. (2023) evaluated
the success of style transfer techniques in mitigat-
ing translationese by analyzing classifier perfor-
mance before and after post-editing. Kunilovskaya
et al. (2024) further explored the use of GPT-4 to
mitigate translationese by incorporating linguistic
cues into the prompting context. Complementar-
ily, Kuwanto et al. (2024) introduced a storyboard-
based data collection method, in which native
speakers generate descriptions from visual prompts
without access to the source text—resulting in
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outputs that are more fluent and natural. How-
ever, these methods still fall short of enabling
large language models to directly produce fluent,
translationese-free output for truly low-resource
languages, such as Bavarian.

3 Training

3.1 Data Preparation
Due to the scarcity of high-quality Bavar-
ian–German parallel corpora, we use GPT-4 to
translate the Bavarian portion of the Wikipedia1

into English and standard German. We use lan-
guage identification (Kargaran et al., 2023) to filter
out noise, such as when the model partially trans-
lates the source or directly copies it. From the
resulting 22,564 Bavarian-English-German paral-
lel documents, we reserve 1,000 for validation and
another 1,000 for testing, with the remainder used
for training. To create a sentence-level corpus, we
segment the documents using line breaks and re-
move duplicate entries.

To reduce translationese effects and encour-
age native-sounding Bavarian output, we augment
the original corpus using a rule-based algorithm
grounded in syntactic analysis. We employ spaCy
to parse the Standard German sentences and iden-
tify noun phrase structures of the form indefinite
article + adjective + noun. These constructions
serve as reliable anchors for inserting article redu-
plication in the aligned Bavarian sentence.

The algorithm first scans each tokenized Ger-
man sentence for sequences where an indefinite
article (e.g., ein, eine) is immediately followed by
an adjective and a noun. To avoid semantically
awkward or ungrammatical insertions, the algo-
rithm filters out adjectives derived from nationali-
ties (e.g., deutsch, österreichisch). For every such
match, we check whether the corresponding Bavar-
ian sentence has an equivalent syntactic pattern
beginning with a Bavarian indefinite article (e.g., a,
oa).

If the alignment is valid, we apply a transfor-
mation that inserts a reduplicated indefinite article
separated by an RD modifier (randomly chosen
from recht, so, ganz) between the original article
and adjective. To maintain semantic alignment, the
German counterpart is modified by inserting the
intensifier sehr between the article and adjective.

This pipeline was run over sentence-aligned data
and executed only where the token count matched

1dumps.wikimedia.org/barwiki

between the Bavarian and German sides, ensuring
high-precision transformations. Table 1 shows a
representative example.

Before article reduplication transformation

Bavarian: A heiliga Lebnsbaam
German: Ein heiliger Lebensbaum

After article reduplication transformation

Bavarian: A recht a heiliga Lebnsbaam
German: Ein sehr heiliger Lebensbaum

Table 1: Example of article reduplication transformation
in Bavarian–German parallel data.

3.2 Model Training
We develop a German-to-Bavarian machine transla-
tion system by instruction-tuning the Llama 3.1
8B Chat model (Dubey et al., 2024).

To accomplish this, we design a structured
prompt format, as shown in Table 2. In this for-
mat, [DEU_TEXT] represents the input German
sentence, and [BAR_TEXT] corresponds to the ex-
pected Bavarian translation. During training, both
sentences are provided to the model, while at in-
ference time, the model generates [BAR_TEXT]
from the input German sentence.

To enable efficient fine-tuning, we use
LoRA (Hu et al., 2022). The model is fine-tuned
with a learning rate of 1× 10−4, weight decay set
to 0.1, and the LoRA rank configured to 32.

We train two machine translation models:

• m-base: Trained on the original parallel
dataset.

• m-aug: Trained on the dataset augmented
with rule-based transformations.

4 Evaluation

To assess the effectiveness of our article redupli-
cation augmentation strategy, we conducted both
sentence-level and noun phrase–level (NP) eval-
uations using human judgments from two native
Bavarian speakers (two of the authors of this pa-
per).

4.1 Sentence-Level Evaluation
We used a test set of 141 Bavarian–Standard Ger-
man sentence pairs which received the same aug-
mentation as the training data of m-aug. Standard
German inputs were translated into Bavarian by
both m-base (baseline) and m-aug (augmented).
The evaluation focused on three criteria:
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<|start_header_id|>user<|end_header_id|>
Translate the following text from German to Bavarian.
German: [DEU_TEXT]
Bavarian: <|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
[BAR_TEXT]<|eot_id|>

Table 2: Prompt format used for instruction-tuned machine translation from German to Bavarian.

• Correct application of article reduplication
– Is article reduplication used where grammat-
ically appropriate?

• Idiomatic and grammatical correctness – Is
the output of m-aug more idiomatic and gram-
matically natural and correct than m-base?

• Pragmatic appropriateness – Is article redu-
plication contextually suitable within the sen-
tence?

The importance of pragmatic appropriateness
can be illustrated by the following example.

Bavarian (with article reduplication):
In da Eingobaauffordarung kennt ma an
Untaschied zwischn Root und andan Nutzan
duach a ganz a obschliaßends Rautzeichen (#)
stott des Dollarzeichens ($).

Standard German:
In der Eingabeaufforderung erkennt man einen
Unterschied zwischen Root und anderen Nutzern
durch ein sehr abschließendes Rautezeichen (#)
anstelle des Dollarzeichens ($).

English translation:
In the command prompt, one can recognize a dif-
ference between Root and other users by a very
final hash sign (#) instead of the dollar sign ($).

The emphatic use of article reduplication (a ganz
a obschliaßends Rautzeichen) is unnatural and non-
idiomatic in this technical context. As a result, it
was evaluated as pragmatically inappropriate, even
though the grammatical structure is correct.

The resulting outputs were evaluated by two na-
tive speakers. The evaluation regarding pragmatic
appropriateness was conducted on the 70 sentences
where reduplication was applied. The overall inter-
annotator agreement was 100%, indicating high
reliability of the judgments.

m-aug failed to apply article reduplication where
grammatically possible in only 12 cases, and in just
19 cases the translation of m-base was assessed as
more grammatically correct and idiomatic. How-
ever, regarding pragmatic appropriateness, there is
a higher number of questionable cases. This is pri-
marily due to the fact that the augmented training
data was not filtered for pragmatic appropriateness,

Category Count Percentage

Reduplication correctly applied 70 49.65%
Not applicable (grammatically) 59 41.84%
Reduplication missed (applicable) 12 8.51%

Total 141 100.00%

Table 3: Sentence-level evaluation: Article reduplica-
tion accuracy.

Comparison Result Count Percentage

m-aug sentence is better 103 73.05%
Sentences are equivalent 19 13.48%
m-aug sentence is worse 19 13.48%

Total 141 100.00%

Table 4: Sentence-level evaluation: Idiomatic and gram-
matical correctness comparison (m-base vs m-aug).

potentially including instances where article redu-
plication is not suitable. As such, m-aug provides a
baseline that could be further improved with more
appropriate training data.

Evaluation Result Count Percentage

Reduplication is pragmatically correct 42 60.00%
Reduplication is questionable 28 40.00%

Total 70 100.00%

Table 5: Sentence-level evaluation: Pragmatic appropri-
ateness of reduplication.

4.2 Noun Phrase–Level Evaluation

Given that article reduplication targets noun
phrases, we conducted a focused evaluation. A
test set of 200 Standard German NPs in the struc-
ture indefinite article + intensifier + adjective +
noun was generated using random combinations of
adjective + noun from the Wikipedia corpus. The
translations of both models were evaluated by a
native speaker. This evaluation focused on whether
the article reduplication was applied accurately and
whether the idiomatic and grammatical correctness
was improved compared to the NPs produced by
the original Model A.
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Category Count Percentage

Reduplication applied 200 100%
Reduplication not applied 0 0%

Total 200 100%

Table 6: NP-level evaluation: Article reduplication ac-
curacy.

Comparison Result Count Percentage

NP of Model B is better 189 94.5%
NP of Model B is worse 11 5.5%

Total 200 100%

Table 7: NP-level evaluation: Idiomatic and grammati-
cal correctness (Model A vs. B).

These results indicate that Model B systemati-
cally learned the reduplication pattern within the
structure indefinite article + intensifier + adjective
+ noun, producing outputs that are both idiomatic
and grammatically well formed.

To assess whether the model overgeneralizes ar-
ticle reduplication, we conducted a complemen-
tary evaluation using 200 Standard German noun
phrases of the form indefinite article + adjective +
noun, i.e., without an intensifier. This test aimed to
determine if the model incorrectly applies redupli-
cation to structures where it is not licensed. Only 4
out of 200 outputs contained article reduplication
without an intensifier present. Interestingly, these
instances were all triggered by the word ganz used
adjectivally, as in the Standard German phrase ein
ganzer Ortsteil, translated in Bavarian as a ganza a
Orstei (gloss: a whole subdistrict). In these cases,
ganz, previously encountered as an RD-modifier in
the training data, was likely misinterpreted by the
model as licensing reduplication, even when used
adjectivally.

Category Count Percentage

Reduplication falsely applied 4 2%
Reduplication not applied 196 98%

Total 200 100%

Table 8: NP-level evaluation: Reduplication overgener-
alization in NPs without intensifiers.

These findings suggest that the model applies
article reduplication in a targeted and controlled
manner, largely avoiding false positives.

5 Conclusion

We propose a method to remedy the problem of
translationese when translating to low-resource lan-
guages and apply it to Bavarian. Our approach
synthetically creates a training set in which the fre-
quency of a construction unique to the low-resource
language is artificially inflated. We show that a
model trained with this synthetic data produces out-
put with this construction and that it is perceived
as being more natural than the baseline.

Limitations

Our pilot study has numerous limitations.

• We know of no linguistic studies that quantify
the impact of constructions on the “natural-
ness” of linguistic production. Other factors
may also have to be addressed to produce fully
natural output.

• For a given pair of high resource and low re-
source languages, there may be no construc-
tions that meet our selection criterion: that is,
they are relatively frequent in the low-resource
language and do not occur at all in the high-
resource language.

• The construction we chose is easy to match
and to generate. For more complex con-
structions, there is a risk that the modified
low-resource sentences would not be correct,
thereby introducing a new source of errors.

• We only implemented a baseline method for
changing source and target languages. There
are several ways this baseline method can be
improved, e.g., by trying to eliminate the prag-
matically inappropriate language we detected
in the experiments.

• Our evaluation is very basic. Due to the diffi-
culty of finding native speakers of Bavarian,
two of the authors (who are native speakers of
Bavarian) performed the annotation.
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