
Proceedings of the 7th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (SIGTYP 2025), pages 82–92
August 1, 2025 ©2025 Association for Computational Linguistics

Tone in Perspective: A Computational Typological Analysis of Tone
Function in ASR

Siyu Liang and Gina-Anne Levow
University of Washington
liangsy, levow@uw.edu

Abstract

This study investigates the impact of pitch flat-
tening on automatic speech recognition (ASR)
performance across tonal and non-tonal lan-
guages. Using vocoder-based signal processing
techniques, we created pitch-flattened versions
of speech recordings and compared ASR per-
formance against original recordings. Results
reveal that tonal languages experience substan-
tially larger performance degradation than non-
tonal languages. Analysis of tone confusion
matrices shows systematic patterns of misiden-
tification where contour tones collapse toward
level tones when pitch information is removed.
Calculation of tone’s functional load at sylla-
ble and word levels demonstrates that syllable-
level functional load strongly predicts ASR vul-
nerability to pitch flattening, while word-level
patterns reflect each language’s morphological
structure. These findings illuminate the differ-
ential importance of pitch information across
languages and suggest that ASR systems for
languages with high syllable-level functional
load require more robust pitch modeling.

1 Introduction

Lexical tone, where pitch distinctions signal dif-
ferences in word meaning, is a core feature of over
half the world’s languages (Yip, 2002). While tonal
contrasts rely primarily on fundamental frequency
(f0), they also interact with duration, intensity, and
voice quality. These complexities pose unique chal-
lenges for automatic speech recognition (ASR),
particularly in tonal languages where pitch plays a
central role in lexical identity.

Recent ASR models implicitly encode tonal in-
formation, but it remains unclear how critical pitch
actually is for recognition across language types. To
investigate this, we apply pitch flattening—a signal
processing technique that removes f0 contours—to
speech recordings and compare ASR performance
with and without flattened pitch contours across

both tonal (Thai, Vietnamese, Mandarin) and non-
tonal (Uzbek, Indonesian, Turkish) languages.

We find that tonal languages experience signifi-
cantly larger degradation in ASR performance un-
der pitch flattening, with systematic tone confusion
patterns revealing that contour tones (e.g., falling,
rising) tend to collapse toward level tones when f0
contours are removed. To explain these differences,
we compute the functional load of tone and show
that syllable-level functional load is a strong predic-
tor of ASR vulnerability, capturing cross-linguistic
differences in tone dependency more effectively
than word-level metrics.

2 Background and Related Work

2.1 Tone

Tone refers to the use of pitch patterns to distin-
guish lexical or grammatical meanings, and it ap-
pears in over half of the world’s languages (Yip,
2002). At its core, tone is related to fundamen-
tal frequency (f0), often supplemented by sec-
ondary cues such as duration or phonation type
(e.g., creaky or breathy voice) (Garellek et al.,
2013; Zhang and Kirby, 2020). While languages
like Thai, Vietnamese, and Mandarin all employ
pitch contrasts, each does so differently: Thai tra-
ditionally has five tones, Vietnamese features six,
and Mandarin typically has four plus a neutral tone
(Yip, 2002; Thurgood, 2002). The functional im-
portance of tone also varies cross-linguistically;
in some systems, pitch shapes nearly every sylla-
ble, whereas others use additional cues for lexical
contrasts.

From a linguistic perspective, these pitch con-
trasts often evolve through tonogenesis—the histor-
ical development of tone from segmental distinc-
tions such as voicing (Haudricourt, 1954). Once
established, tone can become as critical as vowels
or consonants in signaling word meaning (Suren-
dran and Levow, 2004). This high informational
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load means that even small shifts in f0 may yield
major changes in lexical interpretation. Yet tone is
not always “standalone”: interactions with intona-
tion, stress, or morphology can influence its role
within the broader phonological system.

2.2 Tone and ASR

The significance of pitch in tone perception poses
unique challenges for ASR technology. Early sys-
tems for Chinese and Thai explicitly modeled pitch
tracks alongside spectral features (Fu et al., 1998;
Lei et al., 2006), while modern end-to-end frame-
works often rely on learned representations (e.g.,
XLS-R (Babu et al., 2021)) to capture tonal nu-
ances. Even so, how effectively these systems han-
dle pitch remains an open question—particularly
for low-resource tonal languages, where sparse
training data compound recognition errors (Coto-
Solano, 2021; Qin et al., 2022).

2.3 Pitch Manipulation

One way to isolate pitch’s contribution is pitch flat-
tening, which systematically removes f0 contours
while preserving segmental and temporal infor-
mation (Valbret et al., 1992). This technique has
informed both psycholinguistic studies—showing
how listeners rely on other cues like duration or
context when pitch is lost (Wang et al., 2013)—and
ASR research, where drops in recognition accuracy
can reveal a system’s reliance on pitch. Related
work has compared natural speech against flat-
tened or synthesized stimuli for languages such as
Mandarin and Thai (Liu and Samuel, 2004; Zsiga
and Nitisaroj, 2007), demonstrating substantial per-
formance declines in human perception when f0
cues are removed or distorted.

2.4 Functional Load

To quantify how critical pitch distinctions are in
any given language, researchers often invoke func-
tional load (Hockett, 1967; Surendran and Levow,
2004). This information-theoretic metric captures
the extent to which a contrast (e.g., a particular
tone versus no tone) contributes to lexical distinc-
tions. Languages with a high tonal load—where
a substantial portion of the semantic space hinges
on pitch—are predictably more vulnerable when
pitch cues degrade. In contrast, languages whose
words can be distinguished by segmental or mor-
phological features may be less affected by pitch
flattening.

2.5 Tone and Typology

Because tone systems vary dramatically, from heav-
ily monosyllabic languages like Vietnamese to
those where multisyllabic words dilute the bur-
den on pitch (Thurgood, 2002; Brunelle and Kirby,
2016), cross-linguistic experimentation is pivotal
for robust ASR design. Studies have shown that,
in some languages, phonation features may help
compensate for reduced f0 (Brunelle and Kirby,
2016), while in others, listeners (and ASR systems)
default to level or “unmarked” tones when pitch is
unavailable (Francis et al., 2003). By comparing
both tonal and non-tonal languages under pitch-
flattened conditions, we can pinpoint how differ-
ent phonological structures handle the loss of f0
cues and where ASR systems might fail. Insights
from such comparisons suggest which modeling
strategies, e.g., explicit pitch tracking, tone-based
lexicons, or phonation-sensitive acoustic features,
offer the most gains for languages heavily reliant
on pitch.

3 Methods

We designed experiments to evaluate how pitch ma-
nipulation influences ASR performance across ty-
pologically diverse languages. Specifically, we in-
vestigate how removing lexical pitch cues via pitch
flattening affects recognition accuracy in tonal ver-
sus non-tonal languages. By comparing ASR per-
formance on original and pitch-flattened versions
of the same utterances, we aim to quantify the im-
portance of pitch information for recognition and
identify the linguistic and structural factors that
predict vulnerability to pitch manipulation.

3.1 Data

We selected six languages for our study: three tonal
languages (Thai, Vietnamese, and Mandarin Chi-
nese) and three non-tonal languages (Uzbek, In-
donesian, and Turkish). Our selection of tonal lan-
guages was primarily constrained by data avail-
ability in the speech corpora and is typologically
biased toward East and Southeast Asian tone sys-
tems. While these languages represent important
tone types, they do not capture the full typological
diversity of tone systems found worldwide, such as
register tone languages of Africa or pitch-accent
systems, which will be discussed in Section 7. All
data were drawn from the Common Voice 17.0 cor-
pus (Ardila et al., 2020). For each language, we
used 2 hours of speech data for training and 30
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Language Original Text Processed Text
Thai phoom4 rak1 thoe0
Vietnamese Tôi yêu bạn tôi1 yêu1 ban6
Mandarin 我爱你 wo3 ai4 ni3

Table 1: Text preprocessing examples for “I love you”
in the three tonal languages, showing original text and
preprocessed text.

minutes for testing. All audio data were resampled
at 16 kHz.

3.2 Preprocessing

For non-tonal languages, we applied minimal pro-
cessing (standardized case and removed punctu-
ation). For tonal languages, we applied specific
preprocessing to ensure consistent transcription for
tones. Table 1 shows examples of this preprocess-
ing for each language.

For Thai, we used pythainlp.transliterate with
engine=tltk_g2p, which converts Thai script to
Latin characters with explicit tone marking (num-
bers 0–4). The numeric tone markers correspond
to: 0 = mid tone, 1 = low tone, 2 = falling tone, 3 =
high tone, and 4 = rising tone. Note that tone num-
bers used here follow a phonological convention
rather than pitch height, where, for example, rak1
(“love”) is a mid-tone syllable (not high), resulting
from a low-class consonant with a dead syllable
and no tone mark. In Vietnamese, we mapped dia-
critics denoting tone to numeric tone labels while
keeping other diacritics for vowel contrast intact.
Our mapping converted Vietnamese diacritics to
numeric tone labels as follows: 1 = ngang (level/no
diacritic), 2 = huyền (falling/grave accent), 3 = sắc
(rising/acute accent), 4 = hỏi (dipping/hook), 5 =
ngã (creaky/tilde), and 6 = nặng (heavy/dot be-
low). For Mandarin Chinese, we used the pypinyin
package with style=Style.TONE3. The numeric
markers correspond to: 1 = high level tone (āi), 2
= rising tone (áí), 3 = falling-rising tone (ǎi), 4 =
falling tone (ài), without explicitly including the
neutral tone.

3.3 Pitch Flattening

Pitch flattening was performed using Praat’s Pitch-
Synchronous OverLap and Add (PSOLA) algo-
rithm (Valbret et al., 1992). This procedure effec-
tively neutralizes lexical tone cues while maintain-
ing other speech properties, including duration, in-
tensity, and spectral envelope. In our implementa-
tion, the f0 contour of each utterance was replaced

with the utterance’s mean f0 value. Figure 1 il-
lustrates the process on a sample Thai utterance,
showing the original and flattened pitch contours.

We should note that flattening the contour
does not eliminate every trace of pitch, as micro-
periodicity cues remain in the harmonic spectrum.
Therefore, our results are a conservative estimate
of tone dependence; a future experiment that addi-
tionally uses the interharmonic energy of low-pass
filters would provide an even “cleaner” ablation.

Figure 1: Example of pitch flattening on a Thai utterance
"This kind of weather makes me feel sleepy." The top
panel shows the original spectrogram overlaid with pitch
contour; the bottom panel shows the flattened version
of the same audio.

3.4 ASR Model Training

We fine-tuned individual XLS-R 300m models
(Babu et al., 2021) for each language. Specifically,
we trained the model on 2 hours of speech from
Common Voice 17.0 and tested on 30 minutes. Ad-
ditionally, for each tonal language, we ran the ASR
model on pitch flattened test data too. Hyperpa-
rameters and training details are included in the
Appendix (see Appendix A.1 for complete hyper-
parameter settings).

3.5 Evaluation Metrics

We evaluated ASR performance using multiple
metrics to capture different aspects of recognition
accuracy. In addition to WER (Word Error Rate)
and CER (Character Error Rate), we also use addi-
tional metrics given in Table 2.
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Metric Description
TER Tone Error Rate: percentage of syllables with

correctly recognized segments but incorrectly
identified tones

ConER Consonant Error Rate: errors in consonant
recognition

VER Vowel Error Rate: errors in vowel recognition
WER-T Modified version of WER where tone markers

were ignored
CER-T Modified version of CER where tone markers

were ignored
∆ Absolute difference between pitch-flattened

and original speech for each metric

Table 2: Evaluation metrics used to assess ASR perfor-
mance across languages.

3.6 Tone Confusion Analysis
For tonal languages, we constructed tone confu-
sion matrices to analyze specific patterns of tone
misidentification when pitch information was re-
moved. These matrices recorded the counts of each
reference tone (true label) being recognized as each
possible tone (predicted label) in both original and
pitch-flattened conditions. We then calculated dif-
ference matrices (flattened minus original) to iden-
tify which tonal confusions increased most dramat-
ically after pitch flattening.

3.7 Functional Load Calculation
To quantify the information-theoretic contribution
of tone in each language, we calculated the func-
tional load (FL) of tonal contrasts at both sylla-
ble and word levels, following the methodology of
Surendran and Levow (2004):

FL =
Hwith −Hwithout

Hwith
(1)

where Hwith represents the Shannon entropy of
the distribution with tonal contrasts maintained,
and Hwithout represents the entropy after neutral-
izing tonal distinctions.

For syllable-level calculations, we extracted syl-
lable frequencies from our corpus, maintaining
or neutralizing tone distinctions to compute the
respective entropies. For word-level calculations,
we employed language-specific tokenization tools:
PyThaiNLP with the newmm engine for Thai,
Jieba for Mandarin, and underthesea for Viet-
namese. These tools provided morphological seg-
mentation used for analyzing the relationship be-
tween tone and word structure.

We also calculated the average number of sylla-
bles per word for each language to understand how
morphological characteristics might influence the

relationship between syllable-level and word-level
functional loads. These calculations allowed us to
quantitatively assess whether languages with higher
functional load of tone would show greater vulner-
ability to pitch flattening in ASR performance.

4 Results

4.1 Impact of Pitch Flattening on ASR
Performance

Table 3 presents our baseline ASR outcomes for
six languages (three tonal, three non-tonal), com-
paring recognition on the original recordings vs.
pitch-flattened audio that removes f0 contours. As
expected, the tonal languages (Vietnamese, Man-
darin, Thai) experience substantially larger per-
formance drops than the non-tonal ones (Uzbek,
Indonesian, Turkish), confirming that pitch serves
as a crucial contrastive cue for tone-based systems.

In particular, Thai displays the highest jump in
WER upon flattening (+0.232), with Mandarin and
Vietnamese also incurring significant degradations
(+0.194 and +0.118). By contrast, pitch removal
in Uzbek, Indonesian, and Turkish increases WER
by only 5–8 points, indicating that segmental cues
alone largely suffice for lexical discrimination in
these atonal settings.

4.2 Tone Dependence and Detailed Phonetic
Metrics

To examine tone-dependence in further detail, Ta-
ble 4 shows additional metrics for the three tonal
languages, including tone error rate (TER), conso-
nant error rate (ConER), vowel error rate (VER),
and error rates when ignoring tone markers (WER-
T, CER-T). Thai exhibits the largest TER increase
(+0.2543), reflecting its strong reliance on f0 cues.
Mandarin and Vietnamese also display pronounced
TER jumps of +0.2009 and +0.1837, respectively.

Although consonant and vowel error rates in-
crease less dramatically, they still reveal that pitch
flattening affects the broader phonetic structure,
not only the tonal dimension. When ignoring tone,
i.e., disregarding tone output in error rate calcula-
tion, the error rates CER-T and WER-T of the three
tonal languages are very similar to the non-tonal
languages in Table 3.

4.3 Tone Confusion

Figure 2 illustrates the changes in tone confusion
patterns after pitch flattening. More details about
the values can be found in Appendix A.2. Each
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Language WER (orig.) WER (flat.) ∆WER CER (orig.) CER (flat.) ∆CER

Tonal
Vietnamese 0.715 0.833 0.118 0.312 0.380 0.068
Mandarin 0.478 0.672 0.194 0.209 0.283 0.074
Thai 0.288 0.520 0.232 0.082 0.154 0.072
Non-Tonal
Uzbek 0.782 0.857 0.075 0.247 0.288 0.041
Indonesian 0.599 0.668 0.069 0.193 0.232 0.039
Turkish 0.743 0.816 0.073 0.240 0.292 0.052

Table 3: WER and CER results under original vs. pitch-flattened conditions, grouped by tonal and non-tonal
categories. The ∆ columns show (Flattened - Original).

Language Version TER ∆TER ConER ∆ConER VER ∆VER WER-T ∆WER-T CER-T ∆CER-T

Vietnamese original 0.3954 0.3525 0.3739 0.6430 0.3063
flattened 0.5791 0.1837 0.3929 0.0404 0.4199 0.0460 0.6932 0.0502 0.3408 0.0345

Mandarin original 0.3430 0.4300 0.3287 0.6169 0.4646
flattened 0.5439 0.2009 0.4658 0.0358 0.3686 0.0399 0.6838 0.0669 0.5066 0.0420

Thai original 0.1266 0.0981 0.0864 0.2465 0.0810
flattened 0.3809 0.2543 0.1279 0.0298 0.1205 0.0341 0.3099 0.0634 0.1087 0.0277

Table 4: Comparison of tone error rate (TER), consonant error rate (ConER), vowel error rate (VER), and ignoring-
tone WER/CER for Vietnamese, Mandarin, and Thai.

heatmap plots the difference (flattened minus orig-
inal counts), where red regions indicate increased
confusion and blue regions show decreased con-
fusion. Analysis of these patterns reveals specific
directional shifts in tone recognition after f0 re-
moval.

Across all three languages, diagonal elements
(representing correct tone identification) show sub-
stantial negative values, indicating significantly re-
duced accuracy. Thai exhibits the largest average
diagonal decrease (-146.40 per tone), followed by
Mandarin (-232.25) and Vietnamese (-94.50). Con-
versely, off-diagonal elements show positive val-
ues (Thai: +29.28, Vietnamese: +15.36, Mandarin:
+56.75), reflecting increased confusion between
different tones.

The most pronounced confusion patterns are
highly directional. In Thai, flattened audio led to
falling tone being misidentified as mid tone (+246
instances), followed by rising tone confused with
mid tone (+111). This suggests that without f0
contours, the distinctive falling and rising patterns
collapse toward the perceptually less marked mid
tone. Thai’s falling tone showed the largest propor-
tional decrease in correct identification (-55.2%),
followed by rising tone (-43.1%).

Vietnamese exhibited a striking trend where
multiple tones were confused with ngang (level)
tone after flattening: huyền (falling) → ngang

(+312), sắc (rising) → ngang (+259), hỏi (dipping)
→ ngang (+92), and nặng (heavy) → ngang (+56).
This systematic shift toward the unmarked ngang
tone demonstrates how pitch flattening neutral-
izes the distinctive contour features of Vietnamese
tones. The huyền tone showed the most dramatic
reduction in correct identification (-46.9%), while
the ngang tone was least affected.

For Mandarin, the most significant confusion
was falling tone misidentified as high tone (+306),
followed by rising tone confused with high tone
(+129). Without pitch cues, distinctive contour
tones (falling, rising, fall-rise) are increasingly con-
fused with the level high tone. The falling tone
experienced the largest decrease in accuracy (-
30.6%), consistent with its heavily pitch-dependent
contour.

These directional confusions reveal a general
pattern: in the absence of f0 contrast, contour
tones (those with dynamic pitch movements such
as falling, rising, or complex contours) collapse to-
ward level tones (mid tone in Thai, ngang in Viet-
namese, and high tone in Mandarin). While the
results are consistent with the idea that level tones
function as unmarked defaults, they could equally
reflect an artefact of the acoustic manipulation: the
loss of dynamic contour cues renders rising, falling,
and dipping tones indistinguishable. We caution,
however, that flattened utterances are acoustically

86



Language Syllable FL Word FL Avg. Syll./Word ∆WER ∆TER
Thai 0.1243 0.0189 1.86 0.232 0.2543
Mandarin 0.0597 0.0336 1.15 0.194 0.2009
Vietnamese 0.0530 0.0517 0.99 0.118 0.1837

Table 5: Functional load (FL) of tone at syllable and
word levels, with average syllables per word and ASR
performance degradation metrics.

atypical for any training distribution. Some of the
observed errors may thus reflect domain mismatch
rather than pure loss of lexical information.

Figure 2: Confusion matrices based on tone count dif-
ference comparing flattened to original audio for Thai,
Vietnamese, and Mandarin. Red cell marks increased
prediction in that category, and blue cell marks de-
creases. Off-diagonal hotspots reveal a consistent drift
of contour tones toward each language’s level tone (mid,
ngang, and high, respectively) in the left column.

4.4 Functional Load and Tone Dependency
To better understand the relationship between tone
importance and ASR degradation, we calculated
the functional load (FL) of tone at both sylla-
ble and word levels across the three tonal lan-
guages based on 32k tokens from the transcripts of
the same Common Voice database, with the data
scarcity of Vietnamese as the lower bound. Ta-
ble 5 summarizs the results and reveals an inter-
esting pattern: syllable-level functional load aligns
remarkably well with ASR performance degrada-
tion. Thai exhibits the highest syllable-level FL
(0.1243), followed by Mandarin (0.0597) and Viet-
namese (0.0530), a ranking that precisely mirrors
the order of WER increase under pitch flatten-
ing (Thai: +0.232, Mandarin: +0.194, Vietnamese:
+0.118) and TER increase (Thai: +0.2543, Man-
darin: +0.2009, Vietnamese: +0.1837). This strong
correlation (Pearson’s r = 0.91 for syllable FL
vs. WER degradation) suggests that syllable-level
functional load effectively predicts a language’s
ASR vulnerability to pitch flattening.

Interestingly, word-level functional load presents
a different pattern. Vietnamese maintains nearly all
of its tonal information at the word level (word FL:
0.0517, 97.5% of its syllable FL), while Mandarin
preserves about half (word FL: 0.0336, 56.3% of
syllable FL), and Thai retains only 15.2% (word

FL: 0.0189). These proportions directly reflect each
language’s morphological structure: Vietnamese’s
predominantly monosyllabic words (average 0.99
syllables per word) necessitate tone distinctions for
lexical identity, whereas Thai’s higher proportion
of multisyllabic words (average 1.86 syllables per
word) allows tone to function more as one feature
among many for word identification.

This morphological analysis complements our
earlier confusion matrix findings. In Vietnamese,
where tone information remains critical at the word
level, confusion patterns show tones collapsing to-
ward the less marked ngang (level) tone, but overall
ASR degradation is less severe than in languages
with higher syllable-level functional load. Thai,
despite maintaining less tone information at the
word level, experiences the largest performance
drop precisely because its syllable-level tone dis-
tinctions carry substantial information that cannot
be compensated for by other features when pitch is
removed.

The pattern of flattening-induced confusion
(contour tones collapsing toward level tones) ob-
served in Figure 2 offers additional insight into why
languages with higher syllable-level functional load
suffer greater ASR degradation. Languages where
tone carries more syllable-level information typi-
cally employ more distinctive contour tones, which
are particularly vulnerable to pitch flattening. This
vulnerability manifests in the dramatic decreases
in recognition accuracy for falling (-55.2%) and
rising (-43.1%) tones in Thai.

Taken together, these findings suggest that
syllable-level functional load offers a more effec-
tive predictor of ASR vulnerability to pitch degra-
dation than word-level measures. This has impor-
tant implications for speech technology develop-
ment across tonal languages: systems for languages
with high syllable-level functional load will require
more robust pitch modeling and may benefit from
explicit tone-specific accommodations, while those
for languages with lower tone dependency might
be more resilient to noisy pitch environments.

5 Discussion

Our results reveal significant differences in how
the ASR results of tonal and non-tonal languages
respond to pitch flattening, with systematic pat-
terns that illuminate the relationship between tone,
speech perception, and ASR performance. These
findings have important implications for both lin-
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guistic theory and speech technology development.

5.1 Differential Impact of Pitch Flattening
The substantially larger ASR performance degra-
dation observed in tonal languages (Thai: +23.2%,
Mandarin: +19.4%, Vietnamese: +11.8% WER)
compared to non-tonal languages (5-8% WER in-
crease) confirms the critical role of f0 informa-
tion in tonal language processing. However, the
non-zero impact on non-tonal languages indicates
that pitch also contributes to speech recognition
even when not lexically contrastive, likely through
prosodic cues that help segment and identify words.

The varying degrees of degradation among tonal
languages suggest differences in tone dependency.
Thai showed the highest vulnerability to pitch flat-
tening. This could be explained by our functional
load analysis revealed Thai has a higher syllable-
level tonal information density. These results align
with Surendran and Levow (2004), who found
language-specific differences in tone’s functional
load, but extend their work by demonstrating a di-
rect relationship between this information-theoretic
measure and ASR vulnerability.

The relatively smaller impact on Vietnamese
(+11.8% WER) despite its complex six-tone system
suggests that Vietnamese ASR benefits from addi-
tional disambiguating cues. As noted by Brunelle
and Kirby (2016), Vietnamese tones involve sub-
stantial phonation contrasts (creaky, breathy voice)
that may provide redundant information when pitch
cues are removed. This phonation-based redun-
dancy appears to partially compensate for the loss
of f0 information in Vietnamese, unlike in Thai
and Mandarin where pitch plays a more singular
role.

5.2 Tone Confusion Patterns and Perceptual
Structure

The tone confusion analysis revealed striking di-
rectional patterns across all three tonal languages.
In Thai, falling and rising tones were frequently
confused with mid tone; in Vietnamese, multiple
tones collapsed toward ngang (level) tone; and in
Mandarin, contour tones were often misidentified
as high tone. This systematic shift of confusion
from contour tones toward level tones suggests that
with neutralized f0 cues, ASR systems default to
perceptually unmarked tonal categories, a finding
that parallels observations in human speech per-
ception studies (Francis et al., 2003; Khouw and
Ciocca, 2007).

It should be noted that pitch-flattened syllables
are not strictly equivalent to natural ’level tones’
in these languages. Natural level tones in East and
Southeast Asian languages also include pitch move-
ments, such as a slight fall or rise at the end, and are
produced with specific phonation characteristics
(Yip, 2002). Despite this distinction, our results
show that when pitch information is neutralized
through flattening, ASR systems consistently de-
fault to categorizing these flattened stimuli as level
tones, suggesting that level tones serve as defaults
in the absence of distinctive pitch movement.

These directional confusions have both acoustic
and phonological implications. Acoustically, con-
tour tones (with dynamic pitch movements) are
more dependent on f0 information than level tones.
Phonologically, the patterns align with markedness
theory: level tones typically function as unmarked
categories in tonal systems (Yip, 2002), serving as
defaults when distinctive features are unavailable.
Importantly, this pattern is not simply a frequency
effect, such as evident in our Mandarin data (see
Appendix A.2) where the falling tone (4) is actually
the most frequent in our dataset, yet confusion still
predominantly shifts toward the high level tone (1)
rather than following raw frequency distributions.

The diagonal values in the confusion matrices
(representing correct identification) showed the
largest decreases for tones with substantial pitch
movement: falling tone in Thai (-55.2%), huyền
tone in Vietnamese (-46.9%), and falling tone in
Mandarin (-30.6%). This suggests that the percep-
tual distance between tones is not uniform but de-
pends on their phonetic realization, with contour
tones being perceptually more distant from other
categories and thus more vulnerable to pitch flat-
tening.

5.3 Functional Load and Language Structure
Our functional load analysis provides a quantita-
tive framework for understanding cross-linguistic
differences in tone dependency. The strong cor-
relation between syllable-level functional load
and ASR degradation (Thai: 0.1243/+23.2%
WER, Mandarin: 0.0597/+19.4% WER, Viet-
namese: 0.0530/+11.8% WER) suggests that this
information-theoretic measure effectively predicts
a language’s vulnerability to pitch flattening.

The differences between syllable-level and word-
level functional load reflect each language’s mor-
phological structure. Vietnamese maintained nearly
all its tonal information at the word level (97.5%
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of syllable-level FL), consistent with its predomi-
nantly monosyllabic nature. By contrast, Thai pre-
served only 15.2% of its tonal information at the
word level, reflecting its higher proportion of mul-
tisyllabic words where tone distinctions on individ-
ual syllables become less critical for overall word
identification.

These patterns highlight an important insight:
a language’s dependency on tone is not solely de-
termined by the number of tonal contrasts or their
acoustic properties, but also by the information-
theoretic role of tone within the broader phono-
logical and morphological system. Languages
with high syllable-level functional load, especially
those with significant proportions of monosyllabic
words, are inherently more vulnerable to pitch per-
turbations.

5.4 Implications for ASR Development
Our findings have several practical implications
for ASR system development. First, they suggest
that pitch modeling requirements differ substan-
tially across languages, even among those classi-
fied as tonal. Languages with high syllable-level
functional load (like Thai) would benefit from ex-
plicit modeling of pitch contours, while those with
redundant cues (like Vietnamese) might achieve ac-
ceptable performance with less sophisticated pitch
representations.

Second, the systematic tone confusion patterns
identified could inform error correction strategies
in ASR systems. By understanding the likely confu-
sion directions when pitch information is degraded
(e.g., contour tones being misidentified as level
tones), post-processing algorithms could apply tar-
geted corrections based on contextual and acoustic
cues.

Third, our results suggest that ASR robustness
for tonal languages could be improved through ex-
plicit modeling of phonation cues, particularly for
languages like Vietnamese where voice quality pro-
vides redundant information. Integrating both pitch
and phonation features would create systems more
resilient to acoustic degradations affecting either
dimension.

Fourth, language modeling capabilities could
potentially compensate for degraded tonal infor-
mation. Our experiments used a basic CTC-based
approach without additional language modeling,
but we hypothesize that stronger language models
could help recover tone information from context
in pitch-degraded scenarios. This could be particu-

larly effective in languages with higher word-level
redundancy, where contextual cues might disam-
biguate tonally similar syllables.

Finally, the functional load framework offers a
principled approach for predicting a priori which
languages will require more sophisticated tone
modeling in ASR systems. Rather than treating all
tonal languages uniformly, developers could allo-
cate resources based on information-theoretic mea-
sures of tone’s importance in each language.

6 Conclusion

This study investigated the impact of pitch flatten-
ing on ASR performance across tonal and non-tonal
languages, revealing several key insights about the
role of pitch in speech recognition. Our findings
demonstrate that tonal languages experience sub-
stantially greater performance degradation when
pitch information is removed, but with significant
variations that correlate with the functional load
of tone in each language. The systematic patterns
of tone confusion observed—where contour tones
collapse toward level tones—highlight fundamental
aspects of tonal perceptual structure.

Beyond documenting these effects, we es-
tablished a quantitative relationship between
information-theoretic measures of tone impor-
tance and ASR vulnerability. Languages with high
syllable-level functional load proved most suscepti-
ble to pitch flattening, while word-level functional
load patterns reflected each language’s morpholog-
ical characteristics. This framework offers a princi-
pled approach for predicting which languages will
require more sophisticated tone modeling in speech
technology applications.

Our findings have implications for both linguis-
tic theory and ASR system development. Theo-
retically, they support models of tone perception
where unmarked level tones serve as default cat-
egories when distinctive pitch information is un-
available. Practically, they suggest that ASR sys-
tems for tonal languages should be designed with
language-specific considerations of tone’s func-
tional load and the availability of redundant acous-
tic cues.

Future work could extend this analysis to a wider
typological range of tone systems. For instance,
examining Cantonese, which features a more com-
plex inventory of level tones, could test whether our
observed pattern of confusion toward level tones
holds in languages where multiple level tones must
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be distinguished. Similarly, investigating Bantu lan-
guages, which feature tonal contrasts that are often
analyzed differently from East Asian systems de-
spite having contour properties, would broaden our
typological understanding of how different tone
systems respond to pitch degradation.

7 Limitations

While providing valuable insights, our study has
several limitations that suggest directions for future
research. First, our analysis focused on ASR per-
formance rather than human perception. Parallel
studies with human listeners would clarify whether
the confusion patterns observed are specific to ma-
chine learning systems or reflect broader perceptual
principles.

Second, our pitch flattening approach, while ef-
fective at isolating the contribution of f0, represents
an extreme case of pitch degradation. Future work
could explore more nuanced manipulations, such as
partial flattening or targeted disruption of specific
pitch features, to identify which aspects of the pitch
contour are most critical for recognition.

Third, our functional load calculations were lim-
ited to tone’s contribution and did not address in-
teractions with other phonological features. Ex-
panding this analysis to include phonation, vowel
quality, and other features would provide a more
comprehensive understanding of how different di-
mensions contribute to lexical contrasts across lan-
guages.

Fourth, our ASR system used basic CTC-based
decoding without sophisticated language modeling.
A stronger language model would likely improve
overall performance and might partially compen-
sate for pitch flattening through contextual predic-
tion. Future work should investigate the degree to
which language modeling can mitigate the effects
of degraded tonal information in various languages.

Finally, while we included three major tonal lan-
guages, our study does not capture the full typolog-
ical diversity of tone systems. Extending this work
to include languages with different tonal invento-
ries (e.g., Cantonese with its multiple level tones),
register tone languages (e.g., Hmong), pitch-accent
languages (e.g., Japanese), and languages with dif-
ferent tone systems like those found in Bantu lan-
guages would provide a more complete picture of
how pitch information contributes to speech recog-
nition across language types.
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A Appendix

This appendix provides additional details on our
fine-tuning hyperparameters for XLS-R 300m in
both experiments.

A.1 XLS-R Fine-Tuning Hyperparameters
All training runs (for both Common Voice and
TIBMD@MUC data) used the same set of essential
hyperparameters, with only minor adjustments for
batch size depending on GPU memory:

• Model: facebook/wav2vec2-xls-r-300m

• Batch Size: 8

• Learning Rate: 3× 10−4

• Warmup Steps: 500

• Max Steps: 2000

• Vocabulary Size: based on unique characters
in the training corpus (including space or | as
word delimiter).

A.2 Tone Confusion Results
The results of tone confusion are as follows:

0 1 2 3 4 none
0 912 25 25 33 13 3
1 36 473 17 16 15 1
2 35 10 496 14 3 0
3 35 12 15 287 3 0
4 12 23 5 12 274 1

none 0 0 0 0 0 0

Table 6: Thai tone confusion (Original). Rows = ref-
erence tone (0 = Mid, 1 = Low, 2 = Falling, 3 = High,
4 = Rising, none = no assigned tone), columns = pre-
dicted tone.

0 1 2 3 4 none
0 862 21 65 49 9 3
1 130 309 30 81 6 3
2 281 24 188 54 9 3
3 82 25 21 218 5 1
4 123 19 19 30 133 3

none 0 0 0 0 0 0

Table 7: Thai tone confusion (Flattened). Rows = refer-
ence tone (0=Mid, 1=Low, 2=Falling, 3=High, 4=Ris-
ing, none=no tone), columns = predicted tone.

1 2 3 4 5 6 none
1 751 32 172 16 11 25 10
2 188 354 42 23 4 46 6
3 73 20 440 68 20 34 7
4 33 58 18 99 21 40 3
5 10 2 29 21 71 7 3
6 35 30 60 26 24 184 4

none 0 0 0 0 0 0 0

Table 8: Vietnamese tone confusion (Original). Tones:
1 = mid, 2 = huyền (falling), 3 = sắc (rising), 4 = hỏi
(dipping), 5 = ngã (creaky), 6 = nặng (heavy), none =
no tone. Rows = reference, columns = predicted.
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1 2 3 4 5 6 none
1 815 7 135 14 13 15 9
2 500 43 78 14 6 13 6
3 332 9 260 13 12 29 5
4 125 3 49 68 14 11 3
5 49 1 14 21 41 16 2
6 91 9 109 22 20 105 5

none 0 0 0 0 0 0 0

Table 9: Vietnamese tone confusion (Flattened).
Tones: 1=mid, 2=falling, 3=rising, 4=dipping, 5=creaky,
6=heavy, none=no tone. Rows = reference, columns =
predicted.

1 2 3 4 none
1 678 64 42 164 13
2 78 700 97 163 34
3 56 99 434 104 22
4 145 130 97 1192 34

none 12 31 14 26 121

Table 10: Mandarin Chinese tone confusion (Original).
Tones: 1=high-level, 2=rising, 3=dipping, 4=falling,
none=no tone. Rows = reference, columns = predicted.

1 2 3 4 none
1 553 163 66 154 21
2 207 529 85 200 40
3 130 126 290 134 29
4 451 252 140 703 52

none 26 25 9 25 116

Table 11: Mandarin Chinese tone confusion
(Flattened). Tones: 1=high-level, 2=rising, 3=dipping,
4=falling, none=no tone. Rows = reference, columns =
predicted.
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