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Abstract

Designing effective LLMs for social influence
(SI) tasks demands controlling linguistic
output such that it adapts to context (such as
user attributes, history etc.) while upholding
ethical guardrails. Standard
Parameter-Efficient Fine-Tuning (PEFT)
methods like LoRA struggle to manage the
trade-off ~between adaptive linguistic
expression and safety, and optimize based on
overall objectives without differentiating the
functional roles of internal model components.
Therefore, we introduce Probing-Guided PEFT
(PG-PEFT), a novel fine-tuning strategy which
utilizes interpretability probes to identify LLM
components associated with context-driven
linguistic variations versus those linked to
safety violations (e.g., toxicity, bias). This
functional map then guides LoRA updates,
enabling more targeted control over the
model’s linguistic output. We evaluate
PG-PEFT on SI tasks (persuasion, negotiation)
and linguistic adaptability with safety
benchmarks against standard PEFT.

1 Introduction

Dialogue systems leveraging Large Language
Models (LLMs) are being explored for complex
social influence (SI) tasks, including persuasion
(Wang et al., 2019), negotiation (Lewis et al.,
2017), argumentation, and emotional support. A
key challenge in designing these SI systems
leveraging LLMs is achieving nuanced linguistic
behavior adaptation based on context—such as
user personality traits, emotional state, or strategic
situation (e.g., in games)—while ensuring the
system operates safely and ethically (Weidinger
et al, 2021). Standard fine-tuning or
Parameter-Efficient Fine-Tuning (PEFT) methods
like Low-Rank Adaptation (LoRA) (Hu et al.,
2022) adapt models efficiently but struggle with
the inherent trade-off between adaptability and
safety. Optimizing for a combined objective (e.g.,

task success + safety score) using techniques like
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) or Direct Preference
Optimization (DPO) (Rafailov et al., 2023) applies
updates based on overall performance, potentially
sacrificing safety for adaptability or vice-versa,
without understanding which internal mechanisms
control these different behavioral facets. This lack
of granular control hinders the development of
responsible SI systems. Specifically, standard
PEFT methods may inadvertently amplify unsafe
tendencies while trying to achieve better
adaptation.

To address this, we propose Probing-Guided
PEFT (PG-PEFT). Our approach integrates
interpretability insights directly into the
fine-tuning process. We hypothesize that by using
probing techniques (Belinkov and Glass, 2019; Li
et al., 2023) we can identify LLM components
(e.g., attention heads, MLP layers) which are
differentially  responsible = for  generating
context-adaptive linguistic variations versus those
contributing to safety violations (a failure of
guardrails).  This allows us to guide PEFT
(specifically LoRA) updates more effectively.

2 Related Work

The advent of LLMs offers new capabilities but
also challenges, particularly in alignment (Ouyang
et al., 2022; Rafailov et al., 2023) and ensuring
ethical behavior (Weidinger et al., 2021). PEFT
methods like LoRA (Hu et al.,, 2022) allow
efficient adaptation but lack fine-grained control
for multi-objective alignment involving safety.
Interpretability techniques, including probing
(Belinkov and Glass, 2019) and methods like
Inference-Time Intervention (ITI) (Li et al., 2023)
identify functionally specialized components (e.g.,
attention heads related to truthfulness) to
understand model internals.
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3 Methodology

Our proposed method involves performing
evaluation post the following two stages:

1. Probing for Functional Specialization: We
probe a base LLM using inputs representing
different SI contexts (e.g., empathetic vs. assertive
persuasion personas (Wang et al., 2019)) and
safety-testing prompts (Zhang et al., 2024). The
goal is to identify internal components (layers and
attention heads) whose activation strongly
correlates with: (a) context-appropriate linguistic
behavior adaptation, or (b) generation of unsafe
linguistic output (e.g., toxicity (Hartvigsen et al.,
2022), bias (Nangia et al., 2020)). Probing
techniques include training linear classifiers on the
activations of individual attention heads or MLP
layers to predict the presence of specific linguistic
features.(Li et al., 2023). The output is a
functional map of relevant components.

2. Guided Fine-Tuning: We fine-tune the LLM
using LoRA, targeting a multi-objective function
combining SI fask outcome metrics (e.g.,
persuasion success) and adaptability goals with
safety constraints (e.g., minimizing toxicity). We
then compare the Baseline (consisting of Standard
LoRA optimizing the combined objective) with
PG-PEFT using the following strategies:

* Targeted Intensity Scaling: Modulate LoORA
update strength (e.g., LR/alpha) based on a
component’s role (intensify for adaptation,
dampen for safety).

* Selective Application: Apply LoRA only to
adaptation-critical components, freezing
safety-critical ones.

4 Experiments & Expected Results

Setup: We have used Llama-3.1 8B adapted with
LoRA as our baseline. We focus on SI tasks using
datasets like PersuasionForGood (Wang et al.,
2019) (persuasion, utilizes user attributes) and
DealOrNoDeal (Lewis et al., 2017) (negotiation).
For safety evaluation we use benchmarks covering
diverse risks (ALERT (Zhang et al., 2024)),
implicit toxicity (ToxiGen (Hartvigsen et al.,
2022)), and social bias (CrowS-Pairs (Nangia
et al., 2020)).

Metrics: Our evaluation compares the trade-off,
measuring:

» SI Task Outcome/Effectiveness: Persuasion
rate/donation amount (Wang et al., 2019),

negotiation utility/agreement rate (Lewis
et al., 2017).

* Linguistic Adaptation: Adherence to specified
persona/style.

* Safety/Ethics: Scores on ALERT, ToxiGen,
CrowS-Pairs; toxicity classifier scores.

* Efficiency: Training time, parameter counts.

Expected Results: We expect probing (Stage 1) to
successfully identify functionally relevant
components for linguistic adaptation vs. safety.
Our central hypothesis is that PG-PEFT will
demonstrate a superior trade-off compared to
standard LoRA, achieving better safety for a given
level of adaptive performance. We anticipate
PG-PEFT will allow for more predictable control
over generated linguistic behaviors, reducing
unintentional harms during adaptation.

5 Conclusion and Future Work

PG-PEFT introduces a novel strategy for
fine-tuning LLMs in SI systems by integrating
interpretability insights into the PEFT process. By
guiding LoRA updates based on the probed
functional roles of internal components related to
linguistic adaptation and safety, we aim to achieve
a controlled balance between these critical
objectives.

Future directions include exploring advanced
probing techniques (e.g., causal probing (Canby
et al., 2025), assessing the transferability of
functional maps across models and languages and
applying PG-PEFT to more SI tasks and safety
concerns (e.g., misinformation) to observe a more
generalized performance.
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