Literature discovery with natural language queries

Anna Kiepura', Jessica Lam', Nianlong Gu?
Richard H.R. Hahnloser'
"nstitute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
{akiepura, lamjessica, rich}@ini.ethz.ch
iLinguistic Research Infrastructure, University of Zurich, Switzerland
nianlong.gu@uzh.ch

Abstract

Literature discovery is a critical component of
scientific research. Modern discovery systems
leveraging Large Language Models (LLMs) are
increasingly adopted for their ability to process
natural language queries (NLQs). To assess the
robustness of such systems, we compile two
NLQ datasets and submit them to nine widely
used discovery platforms. Our findings reveal
that LLM-based search engines struggle with
precisely formulated queries, often producing
numerous false positives. However, precision
improves when LLMs are used not for direct
retrieval but to convert NLQs into structured
keyword-based queries. As a result, hybrid
systems that integrate both LLM-driven and
keyword-based approaches outperform purely
keyword-based or purely LLM-based discovery
methods.

1 Introduction

Scientific research heavily relies on the ability to
discover and assimilate relevant literature (Patel
and Patel, 2019). Traditional literature search meth-
ods, whether through publisher-specific databases
(e.g., Nature") or generic academic search engines
(e.g., Google Scholar?), primarily use keyword-
based queries processed via inverted indexes and
ranking algorithms such as BM25 (Robertson et al.,
2009). While these conventional approaches are ef-
fective, they often struggle with nuanced, concept-
driven queries.

Recent advancements in artificial intelligence,
particularly the rise of Large Language Models
(LLMs) and LLM-powered chatbots (e.g. Consen-
sus>), have enabled a more intuitive and context-
aware search experience. However, despite their
convenience, LLLM-driven retrieval systems lack
formal guarantees of accuracy (Liu et al., 2023).

"nature.com/search/advanced
2scholar.google .com
3consensus. app

This limitation can lead to erroneous search re-
sults, including false positives (retrieving irrelevant
papers) and false negatives (overlooking relevant
papers), potentially impacting the reliability of lit-
erature discovery. To systematically assess these
challenges, we conduct an evaluation of various
literature search engines using natural language
queries (NLQs).

We find that existing platforms are not equipped
to handle NLQs, with most papers retrieved being
incorrect, but that using LLMs to parse NLQs
into structured queries interpretable by these
platforms highly boosts retrieval performance. Our
contributions are:

1. We introduce two manually curated datasets*
designed for systematic evaluation of literature
discovery platforms on NLQs.

2. We benchmark the performance of nine popular
literature discovery platforms on our datasets.

3. We investigate the ability of LLMs to transform
NLQs into structured formats and analyze their
impact on retrieval effectiveness.

2 Related work

Literature discovery, or the task of finding relevant
papers (either to cite in a given sentence (Jeong
et al., 2019; Kieu et al., 2020; Gu et al., 2022;
Nogueira et al., 2020)) or to answer an input ques-
tion (Menick et al., 2022; Gao et al., 2023; Dehghan
et al., 2024)), has been a long-standing research fo-
cus in the realm of scientific document processing.
Sun et al. (2024) and Ajith et al. (2024) showed that
well-instructed LLMs outperform the more typical,
nearest-neighbour based methods in re-ranking pa-
pers on relevance to the input query, in part due to
the LLM ability to generalise across synonyms and
imprecise queries.

However, because generation-based search en-

*https://github.com/annamkiepura/lit_discovery

Proceedings of the Fifth Workshop on Scholarly Document Processing (SDP 2025), pages 83-95
July 31, 2025 ©2025 Association for Computational Linguistics

nature.com/search/advanced
scholar.google.com
consensus.app

Metadata

Query: Show me publications by Yuriy Portnov in
the International Journal of Geometric Methods
in Modern Physics from 2010 to 2020 but not
2013, related to black holes or dark matter,
mentioning event horizon and especially articles
that discuss: The event horizon’s impact on

surrounding matter.
ﬁ

Target papers:

1. "Change in event horizon
surface area as the
source of nonmetricity
field" (Portnov, 2018).

Content

Query: Find scientific articles that include precisely
the following set of keywords: 'Spiking neural
networks', 'protein-ligand interactions'.

Target papers:

1. "Molecular docking:
challenges, advances and its
use in drug discovery
perspective" (Saikia and
Bordoloi, 2019).

1=

Figure 1: Example queries from the Metadata and Content datasets with the corresponding target papers (Portnov,

2018; Saikia and Bordoloi, 2019).

gines are prone to hallucination (Liu et al., 2023),
grounding LLM-powered literature discovery plat-
forms by referencing a paper database remains
key. Retrieving information from most databases
involves submitting structured queries that are
interpretable by said databases. To reduce the
need for learning about the structure accepted
by each database, much research has gone into
automatically translating NLQs into structured
queries (Zhong et al., 2018). A typical ap-
proach was to manually craft a mapping table be-
tween mentioned keywords and database proper-
ties (Montgomery et al., 2020), but these tables are
often too rigid to effectively handle query ambigu-
ity and complexity. In contrast, recent works have
successfully used LLLMs for this mapping prob-
lem (Lei et al., 2024), and in this work, we explore
whether this effectiveness extends to the specific
context of precise NLQs for literature discovery.

3 Methods

A key principle of effective retrieval systems is
to provide users with fine-grained control over re-
trieval behaviour (Schleith et al., 2022; Kandula
et al., 2024). In literature discovery, this control
would include enabling researchers to specify au-
thors, venue, publication year, and topics of inter-
est. Alternatively, researchers might seek papers
on multidisciplinary topics defined by one or sev-
eral keywords that are rarely used together. Such
complex queries are well-suited to classical search
engines but may pose challenges for LLMs, which
we seek to explore.

84

3.1 Datasets

We manually created two NLQ datasets for scien-
tific literature discovery. A NLQ can specify condi-
tions on paper metadata (e.g., publication year) and
content (e.g. specific keywords to appear in the pa-
per). We also allow for combining conditions with
the boolean operators AND (e.g., papers are about
vaccines and COVID-19) and OR (e.g., papers are
authored by John Moore or Steven Johnes).

The first Metadata dataset contains require-
ments on paper metadata and content and was con-
structed as follows:

1. We first selected a research domain (e.g.,
biomedical science), then came up with rele-
vant keywords (e.g., vaccines) and publisher
(e.g., Nature).

. Next, we continuously added conditions on
the paper metadata until the publisher’s search
engine could find only very few papers rele-
vant to the topic while meeting all conditions.

3. We consolidated the keywords and the condi-
tions into a NLQ, and linked each NLQ to the
papers found on the corresponding publisher’s
website in Step 2 (target papers).

The second Content dataset focuses on re-
stricted paper content and was designed by tying
the query with the paper content rather than its
metadata. Specifically, this dataset contains NLQs
that combine keywords that rarely co-occur within
single papers:

1. First, we identified suitable keyword combi-

Statistic Meta. Cont.
Queries 30 30
Conditions per query 3-9 2-4
Tokens per query 18-66 16-22
Target papers per query | 1-5 N/A
TTR 0.45 0.32
RTTR 13.85 8.98

Table 1: Basic statistics of the Metadata dataset. TTR
- Type-Token Ratio, RTTR - Root Type-Token Ratio
(Torruella and Capsada, 2013).

LR N3

nations (e.g. “connectomics”, “entropy maxi-
mization”, “diffusion tensor imaging”).

Then, we translated each combination into
an NLQ: “Find scientific articles that include
precisely the following set of keywords:...".
We also experimented with increasing the ver-
bosity of queries by further characterizing the

keyword combinations, see Appendix D.

For this dataset, there are no predefined target
papers. Every paper retrieved by the engines
is classified as correctly retrieved if it contains
all target keywords.

In total, we constructed 30 NLQs for Metadata
and 30 NLQs for Content. Figure 1 shows example
NLQs and Table 1 lists basic statistics.

3.2 Literature discovery systems

We compared search engines powered by lexical
similarity, semantic similarity, or chatbots. A
more detailed description of each platform is avail-
able in Appendix E.

Lexicality Google Scholar is a free search en-
gine that indexes scholarly works and relies primar-
ily on lexical matching. It retrieves results based
on exact keywords and phrases, making search ac-
curacy dependent on precise wording.

Semantics Semantic Scholar (Kinney et al.,
2023) is one of the largest open-sourced plat-
forms for scientific literature discovery. It uses
a two-stage search engine: the first stage efficiently
finds many relevant papers and the second stage
more carefully reranks these papers by semantic
relevance. The open-sourced search engine of
SciLit (Gu and Hahnloser, 2023) is similar, but ad-
ditionally supports sophisticated metadata filtering
options. The closed-sourced Elicit® is an LLM-

Sscholar. google.com
Selicit.org

85

powered platform for biomedical literature using
semantic similarity’.

Chatbots Consensus® and Perplexity’ are both
popular closed-sourced chatbots for getting an-
swers from real-world information sources. We
also included Floatz'? and Zeta-Alpha“, two
closed-sourced platforms combining LLMs, seman-
tic search and indexing. Additionally, we compared
against ChatGPT-40'?, a general-purpose closed-
sourced chatbot.

3.3 NLQ Parsing

Additionally, we investigated how parsing the orig-
inal NLQ into a structured query aligning with the
specific engine’s specifications affects retrieval per-
formance. This part of the analysis was possible
only for platforms which specify their structured
query format.

For SciLit'® and Semantic Scholar'*, we fol-
lowed the provided documentation on their dis-
covery engines to convert NLQs into structured
queries. Next, we benchmarked the retrieval perfor-
mance using the structured queries. The conversion
was performed with a GPT-40-mini model under a
few-shot setting (Appendix A).

Note that our dataset’s queries were not fully
compatible with the Semantic Scholar API: (1)
strict keyword filtering (exact word matches), (2)
logical OR functionality for metadata fields (e.g.,
limiting to papers from Nature OR Science), and (3)
exclusion queries (e.g., ignoring specific authors)
are not supported. To optimize our use of Seman-
tic Scholar, we curated a small dataset comprising
15 queries that align with the platform’s API con-
straints (Appendix B). For the Metadata dataset,
content and author requirements were merged into
the “query” field, while venue and year constraints
were assigned to their respective fields. OR condi-
tions were interpreted as AND conditions, and ex-
clusions were disregarded. For the Content dataset,
keyword-based constraints were entered into the
“query” field.

Google Scholar lacks an official API construct-
ing structured searches. Based on empirical anal-

7support.elicit.com/en/articles/552705
8consensus. app

9perplexity.ai

%floatz.ai/

11zeta—alpha.com/
12openai.com/index/hello—gpt—4o/
Bgithub.com/nianlonggu/Scilit

M api.semanticscholar.org/api-docs

scholar.google.com
elicit.org
support.elicit.com/en/articles/552705
consensus.app
perplexity.ai
floatz.ai/
zeta-alpha.com/
openai.com/index/hello-gpt-4o/
github.com/nianlonggu/SciLit
api.semanticscholar.org/api-docs

ysis of query structure and results, we proposed a
parsing scheme, detailed in Appendix C. However,
without an official documentation, optimal query
formatting cannot be guaranteed.

3.4 Performance analysis

For both Metadata and Content queries, we evalu-
ated retrieval performance by comparing each plat-
form’s output against the target papers. Papers
present in the target list were classified as “correct
papers”, whereas the non-targets were classified as
“incorrect papers”. Additionally, any non-existent
papers returned by the platforms were categorized
as “hallucinated papers”. For each platform, we
computed average Precision, Recall, and F-1 across
the N = 30 queries:

N .
1 Correctly Retrieved
Precision — - q
reasion =y ; Total Retrieved,
N .
1 Correctly Retrieved
Recall = — g Y 2
N = Total Targets,
1 & Precision, x Recall
Fl1=— 2 x 2 &
N Z Precisiong 4 Recall,

Il
=

q
4 Results and discussion

Opverall, the examined platforms rarely hallucinated
papers. For Metadata queries, only Perplexity
suggested one hallucinated paper, while all other
platforms suggested none. No hallucinations were
observed for Content queries.

Systems Struggled with Precise Queries Ta-
ble 2 highlights the challenges most search engines
face with precise NLQs. For Metadata, preci-
sion remains low, except for SciLit + LLM pars-
ing, Google Scholar + LLM parsing, ChatGPT-4o,
and Perplexity. The highest Recall scores were
achieved by Google Scholar + LLM parsing, SciLit
+ LLM parsing, Perplexity, and ChatGPT-4o0. In
terms of F1 score, Google Scholar + LLM pars-
ing, SciLit + LLM parsing, ChatGPT-40, and Per-
plexity outperformed other platforms, with Google
Scholar + LLM parsing delivering the best overall
performance. For the Content dataset, precision
is notably high for Google Scholar + LLM pars-
ing, Google Scholar, and Zeta-Alpha, but remains
low for other platforms. Only Google Scholar +
LLM parsing demonstrated consistently high Re-
call and F1 scores, making it the top performer
on this dataset. SciLit and Semantic Scholar per-
form poorly on Content, even with LLM parsing.

86

Metadata Content
P R F1 P R F1
Elicit 0.08 0.41 0.12]10.03 0.10 0.04
Zeta-Alpha 0.23 0.19 0.20|0.60 0.31 0.39
Consensus 0.08 0.33 0.11]0.01 0.05 0.02
Floatz 0.10 0.10 0.10[0.22 0.09 0.11
Perplexity 0.55 0.57 0.52(0.10 0.09 0.08
ChatGPT-40 0.61 0.53 0.55(0.19 0.11 0.13
SciLit 0.01 0.01 0.01]0.00 0.03 0.01
+ LLM parsing 0.78 0.76 0.76 |0.42 0.17 0.23
Semantic Scholar 0.00 0.00 0.00 [0.00 0.00 0.00
+ LLM parsing 0.28 0.48 0.32|0.04 0.05 0.03
Google Scholar 0.03 0.02 0.02|0.64 037 0.44
+ LLM parsing 0.80 0.80 0.79 | 0.96 0.98 0.96

Table 2: Performance of search engines based on Meta-
data and Content datasets in terms of Precision, Recall,
and F1. Metrics exclude hallucinated papers. "+ LLM
parsing" indicates NLQ converted into a structured

query.

The performance metrics are computed by pool-
ing together the target papers obtained across all
platforms, but these two platforms use only S2AG
(Wade, 2022), which is likely much smaller than
the Google Scholar paper database. Thus, there
were likely many papers that could have never been
retrieved in the first place from these two platforms.

LLM Parsing Enhances Discovery Performance
For the three platforms that support using struc-
tured queries (namely, SciLit, Semantic Scholar,
Google Scholar), we found improved retrieval per-
formance on both datasets when we parsed NLQs
with an LLM into a structured format. A smaller
performance boost was observed for Semantic
Scholar, likely due to poor compatibility of our
dataset’s NLQs with its API. The poor performance
achieved without LLM parsing is likely due to these
three platforms being designed for queries that are
keyword- or semantically dense, not for queries
that are phrased as instructions.

5 Conclusion

Our findings highlight key strengths and limita-
tions of LLM-based literature discovery systems.
While these systems struggle with precise NLQs,
LLM parsing significantly enhances retrieval per-
formance, particularly when integrated with struc-
tured search engines. This suggests that hybrid
approaches combining LLM-based and structured
retrieval methods are more promising for literature
discovery and could bridge the gap between the
flexibility of human-like queries and the structured
nature of conventional search engines, effectively

mitigating the challenges posed by ambiguous or
instruction-based NLQs. Additionally, LLM-based
systems prove valuable in scenarios where struc-
tured queries are not feasible or when queries do
not conform to strict database formats. Future work
should explore refining hybrid methodologies to
further optimize retrieval accuracy and relevance.

Limitations

Due to resource constraints, only the free software
versions were evaluated. Additionally, we designed
only 60 queries because of the extensive work of
manually constructing them and of examining the
retrieved papers. Also, our precise queries may
not be representative of the imprecise queries re-
searchers might submit in practice. In future work,
it may therefore be worthwhile to design queries
that creatively combine requests for precise content
in the midst of imprecise interests, which would
call for human evaluation due to the lack of a gold
standard.

References

Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya
Goyal, Dangi Chen, and Tianyu Gao. 2024. Lit-
Search: A retrieval benchmark for scientific literature
search. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 15068-15083, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615—
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Mohammad Dehghan, Mohammad Ali Alomrani,
Sunyam Bagga, David Alfonso-Hermelo, Khalil
Bibi, Abbas Ghaddar, Yingxue Zhang, Xiaoguang
Li, Jianye Hao, Qun Liu, Jimmy Lin, Boxing
Chen, Prasanna Parthasarathi, Mahdi Biparva, and
Mehdi Rezagholizadeh. 2024. Ewek-qa: Enhanced
web and efficient knowledge graph retrieval for
citation-based question answering systems. Preprint,
arXiv:2406.10393.

Tianyu Gao, Howard Yen, Jiatong Yu, and Dangi Chen.
2023. Enabling large language models to generate
text with citations. Preprint, arXiv:2305.14627.

Nianlong Gu, Yingqiang Gao, and Richard H. R. Hahn-
loser. 2022. Local citation recommendation with
hierarchical-attention text encoder and scibert-based
reranking. Preprint, arXiv:2112.01206.

87

Nianlong Gu and Richard H.R. Hahnloser. 2023. SciL.it:
A platform for joint scientific literature discovery,
summarization and citation generation. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 3: System
Demonstrations), pages 235-246, Toronto, Canada.
Association for Computational Linguistics.

Chanwoo Jeong, Sion Jang, Hyuna Shin, Eunjeong Park,
and Sungchul Choi. 2019. A context-aware citation
recommendation model with bert and graph convolu-
tional networks. Preprint, arXiv:1903.06464.

Hemanth Kandula, Damianos Karakos, Haoling Qiu,
Benjamin Rozonoyer, Ian Soboroff, Lee Tarlin, and
Bonan Min. 2024. Querybuilder: Human-in-the-
loop query development for information retrieval.
Preprint, arXiv:2409.04667.

Binh Thanh Kieu, Inigo Jauregi Unanue, Son Bao
Pham, Hieu Xuan Phan, and Massimo Piccardi. 2020.
Learning neural textual representations for citation
recommendation. Preprint, arXiv:2007.04070.

Rodney Kinney, Chloe Anastasiades, Russell Authur,
Iz Beltagy, Jonathan Bragg, Alexandra Buraczyn-
ski, Isabel Cachola, Stefan Candra, Yoganand Chan-
drasekhar, Arman Cohan, Miles Crawford, Doug
Downey, Jason Dunkelberger, Oren Etzioni, Rob
Evans, Sergey Feldman, Joseph Gorney, David
Graham, Fangzhou Hu, Regan Huff, Daniel King,
Sebastian Kohlmeier, Bailey Kuehl, Michael Lan-
gan, Daniel Lin, Haokun Liu, Kyle Lo, Jaron
Lochner, Kelsey MacMillan, Tyler Murray, Chris
Newell, Smita Rao, Shaurya Rohatgi, Paul Sayre,
Zejiang Shen, Amanpreet Singh, Luca Soldaini,
Shivashankar Subramanian, Amber Tanaka, Alex D.
Wade, Linda Wagner, Lucy Lu Wang, Chris Wilhelm,
Caroline Wu, Jiangjiang Yang, Angele Zamarron,
Madeleine Van Zuylen, and Daniel S. Weld. 2023.
The semantic scholar open data platform. Preprint,
arXiv:2301.10140.

Janice Y. Kung. 2023. Elicit. The Journal of the Cana-
dian Health Libraries Association, 44(1):15-8. ©
Kung. No competing interests declared.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor
Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida
Wang, and Tao Yu. 2024. Spider 2.0: Evaluating
language models on real-world enterprise text-to-sql
workflows. Preprint, arXiv:2411.07763.

Nelson F. Liu, Tianyi Zhang, and Percy Liang. 2023.
Evaluating verifiability in generative search engines.
Preprint, arXiv:2304.09848.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S20RC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969—4983, Online. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/2024.emnlp-main.840
https://doi.org/10.18653/v1/2024.emnlp-main.840
https://doi.org/10.18653/v1/2024.emnlp-main.840
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://arxiv.org/abs/2406.10393
https://arxiv.org/abs/2406.10393
https://arxiv.org/abs/2406.10393
https://arxiv.org/abs/2305.14627
https://arxiv.org/abs/2305.14627
https://arxiv.org/abs/2112.01206
https://arxiv.org/abs/2112.01206
https://arxiv.org/abs/2112.01206
https://doi.org/10.18653/v1/2023.acl-demo.22
https://doi.org/10.18653/v1/2023.acl-demo.22
https://doi.org/10.18653/v1/2023.acl-demo.22
https://arxiv.org/abs/1903.06464
https://arxiv.org/abs/1903.06464
https://arxiv.org/abs/1903.06464
https://arxiv.org/abs/2409.04667
https://arxiv.org/abs/2409.04667
https://arxiv.org/abs/2007.04070
https://arxiv.org/abs/2007.04070
https://arxiv.org/abs/2301.10140
https://doi.org/10.29173/jchla29657
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2304.09848
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447

Smriti Mallapaty. 2024. Can google scholar survive the
ai revolution? Nature, 635:797-798.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, and Nat McAleese.
2022. Teaching language models to support answers
with verified quotes. Preprint, arXiv:2203.11147.

Mahdi Naser Moghadasi and Yu Zhuang. 2020.
Sent2vec: A new sentence embedding representation
with sentimental semantic. In 2020 IEEE Interna-
tional Conference on Big Data (Big Data), pages
4672-4680.

Chantal Montgomery, Haruna Isah, and Farhana Zulk-
ernine. 2020. Towards a natural language query pro-
cessing system. Preprint, arXiv:2009.12414.

Rodrigo Nogueira, Zhiying Jiang, Kyunghyun Cho, and
Jimmy Lin. 2020. Navigation-based candidate ex-
pansion and pretrained language models for citation
recommendation. Preprint, arXiv:2001.08687.

Mimansha Patel and Nitin Patel. 2019. Exploring re-
search methodology: Review article. International
Journal of Research and Review, 6(3):48-55. Review
Article.

Yuriy A. Portnov. 2018. Change in event horizon sur-
face area as the source of nonmetricity field. Inter-
national Journal of Geometric Methods in Modern
Physics, 15(06):1850104.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-

yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-389.

Surovi Saikia and Manobjyoti Bordoloi. 2019. Molec-
ular docking: Challenges, advances and its use in
drug discovery perspective. Current Drug Targets,
20(5):501-521.

Johannes Schleith, Hella-Franziska Hoffmann, Milda
Norkute, and Brian Cechmanek. 2022. Human-in-
the-loop information extraction increases efficiency
and trust. In Mensch und Computer 2022 — Work-
shopband, Darmstadt, Germany. Gesellschaft fiir In-
formatik e.V.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2024. Is chatgpt good at search?
investigating large language models as re-ranking
agents. Preprint, arXiv:2304.09542.

Joan Torruella and Ramon Capsada. 2013. Lexical
statistics and tipological structures: A measure of
lexical richness. In 5th International Conference on
Corpus Linguistics (CILC2013), volume 95, pages
447-454. Elsevier Ltd.

88

Alex D. Wade. 2022. The semantic scholar academic
graph (s2ag). In Companion Proceedings of the Web
Conference 2022, WWW ’22, page 739, New York,
NY, USA. Association for Computing Machinery.

Victor Zhong, Caiming Xiong, and Richard Socher.
2018. Seq2SQL: Generating structured queries from
natural language using reinforcement learning.

A LLM parsing into structured queries
(SciLit)

To parse the NLQs from the Metadata dataset into
the structured format required by the SciLit API,
we used GPT-40 with the prompt in Figure 2.
Example input query: "Show me publications
by Yuriy Portnov in the International Journal of
Geometric Methods in Modern Physics from 2010
to 2020 but not 2013, related to black holes or dark
matter, and especially articles that discuss: The
event horizon’s impact on surrounding matter. "
Output structured query: {"Semantic Query":
"The event horizon’s impact on surrounding mat-
ter.", "Keywords": ["Author.FullName: Yuriy Port-
nov", "Venue: International Journal of Geomet-
ric Methods in Modern Physics", "2010..2020",
"12013", "black holesldark matter"]}.
The prompt for Content queries is in Figure 3.
Example input query: "Find scientific articles
that include precisely the following set of key-
words: ’Piezoelectric materials’, ’cellular mechan-
otransduction’, "ultrasound stimulation’. "
Example output (structured query): [’Piezo-
electric materials’, ’cellular mechanotransduction’,
"ultrasound stimulation’]

B Semantic Scholar Custom Dataset and
LLM parsing into structured queries
(Semantic Scholar)

As the queries in Metadata and Content are not
fully suitable for the Semantic Scholar API, we
composed a smaller dataset of 15 queries that are
fully suitable with their API, Semantic Scholar
Custom. Queries in Semantic Scholar Custom
are much simpler than in Metadata and Content.
Specifically, they do not include strict keyword
filtering (returning papers containing an exact word
match), OR functions (e.g., papers published in
Nature OR Science), or exclusions (e.g., papers
not authored by Steven Jones, or papers published
between 2010 and 2020 but excluding 2018).
Example query from Semantic Scholar Cus-
tom dataset: "Find papers on deep reinforce-

https://doi.org/10.1038/d41586-024-03746-y
https://doi.org/10.1038/d41586-024-03746-y
https://arxiv.org/abs/2203.11147
https://arxiv.org/abs/2203.11147
https://doi.org/10.1109/BigData50022.2020.9378337
https://doi.org/10.1109/BigData50022.2020.9378337
https://arxiv.org/abs/2009.12414
https://arxiv.org/abs/2009.12414
https://arxiv.org/abs/2001.08687
https://arxiv.org/abs/2001.08687
https://arxiv.org/abs/2001.08687
https://doi.org/10.1142/S0219887818501049
https://doi.org/10.1142/S0219887818501049
https://doi.org/10.2174/1389450119666181022153016
https://doi.org/10.2174/1389450119666181022153016
https://doi.org/10.2174/1389450119666181022153016
https://doi.org/10.18420/muc2022-mci-ws12-249
https://doi.org/10.18420/muc2022-mci-ws12-249
https://doi.org/10.18420/muc2022-mci-ws12-249
https://arxiv.org/abs/2304.09542
https://arxiv.org/abs/2304.09542
https://arxiv.org/abs/2304.09542
https://doi.org/10.1016/j.sbspro.2013.10.668
https://doi.org/10.1016/j.sbspro.2013.10.668
https://doi.org/10.1016/j.sbspro.2013.10.668
https://doi.org/10.1145/3487553.3527147
https://doi.org/10.1145/3487553.3527147
https://openreview.net/forum?id=Syx6bz-Ab
https://openreview.net/forum?id=Syx6bz-Ab

r

I will give you a query text, your task is to extract two sources of information from the text: 1) Semantic Query and 2)
Keywords. This query text is a natural language about how I want to query the scientific literature database. You should parse
the query text and extract the information in the following steps:

Step 1: Identify the semantic query. You need to inspect the query text and check if there is any text (e.g., some sentences or
paragraphs) that the user intends to use as the semantic query to find semantically similar papers. If there is no semantic

nn

query specified in the query text, then set the semantic query as an empty string "".

Step 2: Extract keywords. You need to parse the query text and extract keywords mentioned in the query text that are
supposed to be used as filters when doing search. The keywords include four and ONLY 4 types:

1. AuthorFullNames: After extracting all authors’ full names, prefix each extracted author name with a special string
"Author.FullName:".

2. Venue: Extract venue or journal mentioned in the query text, and prefix each extracted venue with a special string
"Venue:".

3. PublicationDate: Extract keywords of years or a range of years. If the publication date keywords are a range of years,
express the year keywords in the form "Start-Year..End-Year". For individual years, extract the year itself.

4. GeneralKeywords: Extract the keywords that are mentioned in the query text but do not belong to other keyword types.
Extract the keywords as they are (maximum three words). Do not copy the semantic query directly as a general keyword, and
correct any spelling mistakes in the extracted keywords.

nyn

Step 3: Check the NOT logic operation for each extracted keyword. Prefix excluded keywords with "!" where appropriate.
Step 4: Check the OR logic operation between multiple post-processed keywords in Step 3. If there is an OR logic specified
between keywords, use the "|" character to join them.

Step 5: Convert the extracted semantic query and the post-processed and extracted keywords into a machine-readable JSON
format:

==== Start of the JSON ====

{
"Semantic Query": Put the extracted semantic query here,

"Keywords": Put the post-processed and extracted keywords as a list [k1, ..., kn]

}
==== End of the JSON ====
Have a look at a few examples below:

Example 1:

Query: Find the papers of Jimmy White and Tom Anderson from 2010 to 2020 but not in 2015, published in Nature or
Science, on the topic of neuron morphology or machine lerning but not animal behavior, especially related to the statement
like: axonal and dendritic arbors as key functional components of neural processing and fundamental determinants of neural
circuits.

Keywords: { "Semantic Query": "Axonal and dendritic arbors as key functional components of neural processing and
fundamental determinants of neural circuits.", "Keywords": ["Author.FullName:Jimmy White", " Author.FullName:Tom
Anderson", "Venue:NaturelVenue:Science", "2010..2020", "12015", "neuron morphologylmachine learning", "!animal
behavior"] }

Example 2:

Query: Show me papers of John Wick or Robert Smith, about zebra finch but not zebra fish, published on nature
communications or PLOS Biology from 2010 to 2024 but not the year 2018. Especially show me the papers related to the
content: Juvenile birds learn from adults.

Keywords: { "Semantic Query": "Juvenile birds learn from adults.", "Keywords": ["Author.FullName:John
WicklAuthor.FullName:Robert Smith", "Venue:Nature Communications/Venue:PLOS Biology", "2010..2024", "!12018",
"zebra finch", "!zebra fish"] }

Example 3:

Query: I want to search for papers related to machine learning and zebra finch, authored by Anja Zai and, from 2020 to 2020.
Keywords: { "Semantic Query": "", "Keywords": ["Author.FullName:Anja Zai", "2020..2022", "machine learning","zebra
finch"] }

In Example 3, the query contained no text that can be attributed to semantic query, therefore I set the semantic query as an
empty string.

Following the instruction above, please parse the following query text step by step:

Figure 2: Prompt for GPT-40 to parse Metadata queries into a structure suitable for ScilL.it.

89

's '

I will give you a query text, and your task is to extract a list of keywords that should appear in the retrieved papers according
to the query. Have a look at the few examples below:

Example 1:
Query: "Find scientific articles that that include precisely the following set of keywords: ’mechanotransduction’,

"photosynthesis’, "Calvin Cycle’.
Keywords: [’'mechanotransduction’, ’photosynthesis’, ’Calvin Cycle’]

Example 2:
Query: "Find scientific articles that that include precisely the following set of keywords: 'red blood cells’, ’glucometer’,

“diabetes’.
Keywords: [’red blood cells’, ’glucometer’, *diabetes’]

Following the instruction above, please parse the following query text step by step:

Figure 3: Prompt for GPT-4o to parse Content queries into a structure suitable for SciL.it.

ment learning authored by David Silver published P R F1
in NeurIPS since 2021." Semantic Scholar 0.00 0.00 0.00
We then benchmarked the performance of Se- +LLM parsing_ vl ~ 0.01 0.02 0.01

mantic Scholar on Semantic Scholar Custom +LLMparsing v2 007 0.09 007

.quefles Wlth_om LLM pa'lrsmg and'Wlth LLM pars- Table 3: Comparison of Semantic Scholar performance
ing in two different versions. Version v1, the struc- p,¢eq on benchmark queries from the Semantic Scholar

tured query had ’query’, 'venue’, "year’, and au- cyustom dataset. Metrics include Precision, Recall, and
thor’ parameters, while version v2 had only "query’, F1.

venue’, and ’year’ parameters, while the informa-
tion corresponding to the author was included in
the "query’ parameter.
For version v1, we used the prompt in Figure 4.
Example input query: "Find papers on deep
reinforcement learning authored by David Silver o
published in NeurIPS after 2021." Chakravafty") "pltgltary stem cells
Example output (structured query): {’query’: reproductive functions” year(2000:)

"deep reinforcement learning’, *venue’: *NeurIPS’, Then, we transformed each structured query into
*year’: *2021-", "author’: *David Silver’} a URL for Google Scholar by extracting relevant

filter parameters and encoding them properly. For
the above example, the resulting URL is as follows:

after 1999 about pituitary stem cells and their roles
in regulation of reproductive functions. "
Example output (structured query): (au-
thor:"Daniel Sheridan" AND author:"Probir
" "regulation of

For version v2, we used the prompt in Figure 5.
Example input query: "Find papers on deep
reinforcement learning authored by David Silver A ol) FoLarhl
. . . " ttps://scholar.google.com/scholar?hl=en&
published in NeurIPS since 2021. as_sdt=0%2C58as_q=%28author%3A%22Daniel%
Example output (structured query): 'query’: 20Sheridan%22%20AND%20author%3A%22Probir%

’deep reinforcement learning David Silver’ 20Chakravarty%22%29%20%20%22pituitary%20stem%
’ 20cells%22%20%22regulation%20of%20reproductived

venue’: "NeurIPS’, year. 2021- 20functions%22&as_epg=&as_og=&as_occt=any&as_
As shown in Table 3, LLM parsing v2 yielded sauthors=&as_publication=&as_y10=2000

the best performance. Hence, we used this version
of parsing for the Metadata and Content datasets. For Content, we followed Appendix A.

C LLM parsing into structured queries D Content Dataset - Expanded Query
(Google Scholar)

For each keyword combination in the Content

We parsed the NLQs from Metadata into the struc- dataset, an expanded query was constructed as fol-
ture that we speculate is consistent with Google lows: "Give me the papers in {domain} on the
Scholar using GPT-40 with the prompt in Figure 6. topic of {topic} that contain precisely the following
Example input query: "I need papers writtenby keywords: {keywords}". Domain and Topic were
Daniel Sheridan and Probir Chakravarty published = manually specified for each query given the key-

90

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_q=%28author%3A%22Daniel%20Sheridan%22%20AND%20author%3A%22Probir%20Chakravarty%22%29%20%20%22pituitary%20stem%20cells%22%20%22regulation%20of%20reproductive%20functions%22&as_epq=&as_oq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_q=%28author%3A%22Daniel%20Sheridan%22%20AND%20author%3A%22Probir%20Chakravarty%22%29%20%20%22pituitary%20stem%20cells%22%20%22regulation%20of%20reproductive%20functions%22&as_epq=&as_oq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_q=%28author%3A%22Daniel%20Sheridan%22%20AND%20author%3A%22Probir%20Chakravarty%22%29%20%20%22pituitary%20stem%20cells%22%20%22regulation%20of%20reproductive%20functions%22&as_epq=&as_oq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_q=%28author%3A%22Daniel%20Sheridan%22%20AND%20author%3A%22Probir%20Chakravarty%22%29%20%20%22pituitary%20stem%20cells%22%20%22regulation%20of%20reproductive%20functions%22&as_epq=&as_oq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_q=%28author%3A%22Daniel%20Sheridan%22%20AND%20author%3A%22Probir%20Chakravarty%22%29%20%20%22pituitary%20stem%20cells%22%20%22regulation%20of%20reproductive%20functions%22&as_epq=&as_oq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_q=%28author%3A%22Daniel%20Sheridan%22%20AND%20author%3A%22Probir%20Chakravarty%22%29%20%20%22pituitary%20stem%20cells%22%20%22regulation%20of%20reproductive%20functions%22&as_epq=&as_oq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_q=%28author%3A%22Daniel%20Sheridan%22%20AND%20author%3A%22Probir%20Chakravarty%22%29%20%20%22pituitary%20stem%20cells%22%20%22regulation%20of%20reproductive%20functions%22&as_epq=&as_oq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2000

r

I will give you a text that describes how I want to query the scientific literature database. You task is to parse and extract (1)
the semantic query, and (2) the filter parameters from the text. Follow these steps:

Step 1: Extract filter parameters that should be used as filters on the papers to be returned. If a filter parameter is described
as a term to be avoided, do not extract it. For each of the three filter parameters types below, extract the corresponding
information and process it as follows:

1. venue: Identify all publication venues, conferences, or journal names mentioned, then concatenate them with commas but
no spaces.

2. year: Identify the first requirement on publication year mentioned. If exactly one year is described, then extract just the
year. If a range of years is described, then express the range by in the form "start-end". If only the start year is described, then
write it as "start-", and if only the end year is described, then write it as "-end".

3. author: Identify all author names mentioned and concatenate them with commas but no spaces.

Step 2: Identify the semantic query. This refers to any part of the text describes what the papers of interest should be about,
and it may be words, phrases, sentences, or paragraphs. It should include all meaningful phrases that were not extracted
above. If no semantic query is described in the text, then set the semantic query as an empty string "".

Step 3: Put the semantic query and the processed filter parameters together into a machine-readable JSON object:
==== Start of the JSON ====

{
"query": Put the extracted semantic query here,
"venue": Put the extracted venue requirement here,
"year": Put the extracted year requirement here,
"author": Put the extracted author requirement here

}
==== End of the JSON ====
Here are a few examples:

Example 1:

Query: Find the papers of Jimmy White and Tom Anderson published in Nature or Science in 2010, on the topic of neuron
morphology or machine learning but not animal behavior, especially related to the statement like: axonal and dendritic arbors
as key functional components of neural processing and fundamental determinants of neural circuits.

Output: {

"query": "Axonal and dendritic arbors as key functional components of neural processing and fundamental determinants of
neural circuits neuron morphology machine learning",

"year": "2010",

"venue": "Nature,Science",

"author": "Jimmy White,Tom Anderson

}

Example 2:

Query: Show me papers of John Wick and Robert Smith, about zebra finch but not zebra fish, published in nature
communications or PLOS Biology before 2020. Especially show me the papers related to the content: Juvenile birds learn
from adults.

Output: {

"query": "Juvenile birds learn from adults zebra finch",

"venue": "Nature Communications,PLOS Biology"

"year": "-2019",

"author": "John Wick,Robert Smith"

}

Example 3:

Query: I want to search for papers related to machine learning and biomedical applications, authored by Yoshua Bengio since
2023.

Output: {

"query": "machine learning and biomedical applications",
"venue": ",

"year": "2023-",

"author": "Yoshua Bengio"

}

Following the instructions above, please parse the following query description text:

N

Figure 4: Prompt for GPT-40 to parse Custom queries into a structure suitable for Semantic Scholar, version 1.

91

r

I will give you a text that describes how I want to query the scientific literature database. You task is to parse and extract (1)
the semantic query, and (2) the keywords from the text. Follow these steps:

Step 1: Extract keywords that should be used as filters on the papers to be returned. If a keyword is described as a term to be
avoided, do not extract it. For each of the three keyword types below, extract the corresponding information and process it as
follows:

1. venue: Identify all publication venues, conferences, or journal names mentioned, then concatenate them with commas but
no spaces.

2. year: Identify the first requirement on publication year mentioned. If exactly one year is described, then extract just the
year. If a range of years is described, then express the range by in the form "start-end". If only the start year is described, then
write it as "start-", and if only the end year is described, then write it as "-end".

Step 2: Identify the semantic query. This refers to any part of the text describes what the papers of interest should be about,
and it may be words, phrases, sentences, or paragraphs. It should include all meaningful phrases that were not extracted

above. If no semantic query is described in the text, then set the semantic query as an empty string "".

Step 3: Put the semantic query and the processed keywords together into a machine-readable JSON object:
==== Start of the JSON ====

{
"query": Put the extracted semantic query here.
"venue": Put the extracted venue requirement here.
"year": Put the extracted year requirement here.

}
==== End of the JSON ====
Here are a few examples:

Example 1:

Query: Find the papers of Jimmy White and Tom Anderson published in Nature or Science in 2010, on the topic of neuron
morphology or machine learning but not animal behavior, especially related to the statement like: axonal and dendritic arbors
as key functional components of neural processing and fundamental determinants of neural circuits.

Output: {

"query": "Axonal and dendritic arbors as key functional components of neural processing and fundamental determinants of
neural circuits Jimmy White Tom Anderson neuron morphology machine learning",

"year": "2010",
"venue": "Nature,Science",
}

Example 2:

Query: Show me papers of John Wick or Robert Smith, about zebra finch but not zebra fish, published in nature
communications or PLOS Biology before 2020. Especially show me the papers related to the content: Juvenile birds learn
from adults.

Output: {

"query": "Juvenile birds learn from adults John Wick Robert Smith zebra finch",

"venue": "Nature Communications,PLOS Biology"

"year": "-2019",

}

Example 3:

Query: I want to search for papers related to machine learning and biomedical applications, authored by Yoshua Bengio since
2023.

Output: {

"query": "machine learning and biomedical applications Yoshua Bengio",
"venue": ",
"year": "2023-"

}

Following the instructions above, please parse the following query description text step by step:

N

Figure 5: Prompt for GPT-40 to parse Custom queries into a structure suitable for Semantic Scholar, version 2.

92

Help me translate natural language queries into structured format required by Google Scholar. Follow these steps:

Step 1: First, extract author information from the query (if there is any). Use author’s name, and prepend it with ’author:’.
For example: ’author:Jones’.

If the query specifies two authors with AND operation, specify that as follows: (author:"Gao" AND author:"Gu").

If the query specifies two authors with OR operation, specify that as follows: (author:”Gupta" OR author:"Srivastava").

Step 2: Then, extract venue information from the query (if there is any).
Prepend it with ’source:’. For example: ’source:Nature’. If the query specifies two venues with OR operation, specify that as
follows: (source:"Science" OR source:"Nature").

Step 3: Then, extract year information from the query (if there is any).

If the query specifies a years range, specify that as follows: year(2020:2022). If the query specifies a given year, specify that
as follows: year(2015).

If the query specifies upper (inclusive) bound for year, specify that as follows: year(:2000).

If the query specifies lower (inclusive) bound for year, specify that as follows: year(2015:).

Step 4: Then, extract keywords from the query (if there are any). Put them inside double quotation mark, for example
"quantum mechanics".

If there is an OR operation, specify this as follows: ("deep learning" OR "reinforcement learning").

If there is AND operation, specify it as follows: "diabetes" "glucometer".

Step 5: In addition, you can include NOT operation using a dash in the following way: -"dataset" (when we want to exclude
papers containing the keywords "dataset").

You can also use the NOT operation for year: -year:2009 (excludes papers published in 2009).

You can use the NOT operation for author: (author:"Johns" -author:"Smiths") (when you want to retrieve papers written by
Johns but excluding the ones co-authored by Smiths).

You can use the NOT operation for venue: -source:"arXiv" (when you want to exclude papers published in arXiv).

Step 6: Finally, concatenate all conditions into one structured queries using a single space to separate different parameters.
Have a look at the few examples below:

Example 1:

Query: Find papers authored by Saleska and Mackelprang between 2013 and 2020, particularly the ones mentioning
permafrost and Arctic environments.

Target output: (author:"Saleska" AND author:"Mackelprang") year(2013:2020) "permafrost" "Arctic environments"

Example 2:
Query: Find papers published in Science or Nature about deep learning or reinforcement learning.
Target output: (source:"Science" OR source:"Nature") ("deep learning" OR "reinforcement learning")

Example 3:

Query: Give me papers written by Yuriy Portnov, published in International Journal of Geometric Methods in Modern
Physics, about black holes or dark matter.

Target output: author:"Yuriy Portnov" source:"International Journal of Geometric Methods in Modern Physics" ("black
holes" OR "dark matter")

Following the instructions above, please parse the following query description text step by step:

Figure 6: Prompt for GPT-40 to parse Metadata queries into a structure suitable for Google Scholar.

93

word combination. Example: "Give me research
papers in Biotechnology on the topic of Enzyme
Engineering that contain precisely the following
keywords: ’Metalloenzyme catalysis’, ’directed
evolution’, ’biofuel production’. "

The retrieval results obtained with the expanded
query are summarized in Table 4.

Method P R F1
Google Scholar 056 030 0.37
Elicit 0.05 0.10 0.06
Zeta-Alpha 052 028 0.34
Consensus 0.02 0.08 0.03
Perplexity 0.12 0.11 0.10
Floatz 0.04 0.02 0.03
GPT-40 0.17 0.15 0.14
Semantic Scholar 0.00 0.00 0.00
SciLit 0.00 0.00 0.00

Table 4: Performance of search engines based on Con-
tent dataset with expanded queries in terms of Precision,
Recall, and F1. Metrics exclude hallucinated papers.

E Search Engines

The majority of the platforms included in our anal-
ysis are not open-source and do not fully disclose
the details of their underlying databases or search
algorithms. As a result, our descriptions are based
on publicly available information and general ob-
servations about their functionality rather than a
complete technical breakdown of their inner work-
ings.

* Google Scholar is a widely used academic
search engine that indexes scholarly litera-
ture from a vast array of sources, including
publisher websites, institutional repositories,
preprint servers, and open-access archives.
While its exact database composition is propri-
etary, it continuously crawls and aggregates
research papers, theses, books, and conference
proceedings. For search, it primarily performs
a keyword-based search, supporting Boolean
operators, phrase searches, and field-specific
queries. Beyond simple keywords matching,
Google Scholar incorporates citation-based
ranking to prioritize influential papers. Ad-
ditionally, it employs semantic search tech-
niques to understand the query intent and re-
trieve conceptually relevant papers (Mallap-
aty, 2024).

Semantic Scholar primarily uses the Seman-
tic Scholar Open Research Corpus (S20RC)

94

(Lo et al., 2020) as its database. Unlike tradi-
tional keyword-based search engines, it lever-
ages Machine Learning to enhance search
relevance and understanding. When a user
submits a query, Semantic Scholar applies
keyword-based search, citation analysis, and
semantic search techniques to retrieve the
most relevant papers. It ranks the results based
on factors like citation count, influence score,
and content similarity, rather than just exact
keyword matches.

Consensus leverages the same database as Se-
mantic Scholar, updating it on a monthly basis.
For paper searching, it integrates LLMs with
a specialized Vector Search system. When
a user enters a textual query into the chatbot
interface, the input undergoes preprocessing
(e.g., stopword removal). Subsequently, a hy-
brid approach combining keyword search and
Vector Search is applied to the abstracts and ti-
tles of all papers in the database to determine a
relevance score for each document. This score
is then refined using additional metadata, such
as citation count, study design, and publica-
tion date, to re-rank the results and generate a
final list of the top 10 most relevant papers.

Perplexity uses LLMs like GPT-40'> and
Claude 3'6 to interpret the context and nu-
ances of user queries. After a user enters a
query, the query is first passed through an
LLM. Then, a real-time web search is con-
ducted, retrieving information from sources
such as as articles, websites, and academic
journals. The extracted insights are then syn-
thesised into a response. Following, citations
to sources are added to the output text, en-
abling users to verify information.

SciLit is the only fully open-source platform
in our analysis. It utilizes multiple scientific
text corpora (S20RC (Lo et al., 2020), PM-
COA!7, arXiv!®, bioArxiv!?, and medRxiv?"),
structuring each corpus as a separate SQLite
database. It indexes research papers using

15https: //openai.com/index/hello-gpt-40/

Yhttps://claude.ai/
17https://healthdata.gov/dataset/
PubMed-Central-Open-Access-Subset-PMC-0A-/
3vwy-a2x4/about_data
Bhttps://info.arxiv.org/help/bulk_data.html
19https://www.biorxiv.org/tdm
Phttps://www.medrxiv.org/

https://openai.com/index/hello-gpt-4o/
https://claude.ai/
https://healthdata.gov/dataset/PubMed-Central-Open-Access-Subset-PMC-OA-/3vwy-a2x4/about_data
https://healthdata.gov/dataset/PubMed-Central-Open-Access-Subset-PMC-OA-/3vwy-a2x4/about_data
https://healthdata.gov/dataset/PubMed-Central-Open-Access-Subset-PMC-OA-/3vwy-a2x4/about_data
https://info.arxiv.org/help/bulk_data.html
https://www.biorxiv.org/tdm
https://www.medrxiv.org/

both an inverted index for keyword-based re-
trieval and an embedding index for semantic
search. SciL.it first applies Boolean filtering
to refine results based on keywords, and then
ranks the filtered papers by computing cosine
similarity between their Sent2Vec (Moghadasi
and Zhuang, 2020) embeddings and the user
query. Finally, SciBERT (Beltagy et al., 2019)
is used for re-ranking, ensuring that the most
relevant papers appear at the top.

Elicit utilizes the Semantic Scholar database,
updating the collection weekly with newly
added research papers. Unlike traditional
search engines, it does not rely on keyword-
based queries or controlled vocabulary. In-
stead, users are encouraged to input full re-
search questions, such as "How does iron sup-
plementation affect anemia?". Upon receiving
a query, Elicit retrieves the eight most relevant
papers and extracts key insights or variables
based on user preferences (Kung, 2023).

Floatz integrates with a wide range of open-
source databases and publisher sources, in-
cluding Elsevier?!, Clarivate??, PubMed>,
and preprint repositories. If a specific paper
is not available in its databases, it leverages
integrations like OpenAlex?* to retrieve the
necessary information. While details about
its search functionality are limited, Floatz
combines LL.Ms, semantic search, indexing,
and knowledge-building algorithms to process
user queries effectively.

Zeta-Alpha operates on its own indexed
database, incorporating sources such as arXiv,
conference proceedings, blogs, and GitHub
repositories. Additionally, users can upload
their own documents and references, which
are then indexed using the platform’s neural
search technology. For search, Zeta-Alpha
employs a hybrid approach that combines tra-
ditional keyword-based search - supporting
Boolean operators, phrase searches, and field-
specific queries - with neural vector search
and fine-tuned LLMs, such as Zeta-Alpha-E5-
Mistral®>.
21https://www.elsevier.com/
Zhttps://mjl.clarivate.com/home
Bhttps://pubmed.ncbi.nlm.nih.gov/
24https://openalex.org/

25https://huggingface.co/zeta—alpha—ai/
Zeta-Alpha-E5-Mistral

95

* GPT-40 Unlike other platforms in our anal-
ysis, GPT-4o is a general-purpose Al model
designed for a wide range of tasks, not specifi-
cally for retrieving scientific literature. It does
not index or query academic databases like
Google Scholar or Semantic Scholar but in-
stead generates responses based on pre-trained
knowledge.

F Implementation details

We used the free versions of all listed platforms,
entering each query manually into their search in-
terfaces and recording the retrieved papers. For
chatbot-based search systems, paper titles were
manually extracted from the responses. If a chatbot
found no exact matches but suggested alternatives,
we labeled it as “no paper retrieved.” No platform-
specific filters were applied to ensure evaluation
was based solely on NLQs.

For search engines like Consensus and Elicit,
which returned many papers, we analyzed only
papers appearing before pressing the “Load More”
or “More Results” buttons, which is 10 papers at
most. Documents other than research papers, such
as books, reviews, and theses, were excluded.

https://www.elsevier.com/
https://mjl.clarivate.com/home
https://pubmed.ncbi.nlm.nih.gov/
https://openalex.org/
https://huggingface.co/zeta-alpha-ai/Zeta-Alpha-E5-Mistral
https://huggingface.co/zeta-alpha-ai/Zeta-Alpha-E5-Mistral

