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Abstract

Modern generative Large Language Models
(LLMs) are capable of generating text that
sounds coherent and convincing, but are also
prone to producing hallucinations, facts that
contradict the world knowledge. Even in
the case of Retrieval-Augmented Generation
(RAG) systems, where relevant context is first
retrieved and passed in the input, the generated
facts can contradict or not be verifiable by the
provided references. This has motivated SciHal
2025, a shared task that focuses on the detection
of hallucinations for scientific content. The two
sub-tasks focused on: (1) predicting whether
a claim from a generated LLM answer is en-
tailed, contradicted, or unverifiable by the used
references; (2) predicting a fine-grained cate-
gory of erroneous claims. Our best perform-
ing approach used an ensemble of fine-tuned
encoder-only ModernBERT and DeBERTa-v3
models for classification. Out of nine compet-
ing teams, our approach achieved the first place
in sub-task 1 and the second place in sub-task
2.

1 Introduction

The increasing availability of academic research as-
sistants based on Large Language Models (LLMs)
have revolutionized the way research is conducted,
enabling users to pose research-related questions
in natural language and receive structured and con-
cise summaries supported by relevant references
(Eger et al., 2025; Schmidgall et al., 2025). These
systems have the potential to greatly accelerate
the research process, facilitating the discovery of
new knowledge and insights (Schopf and Matthes,
2024). However, the tendency of LLMs to intro-
duce hallucinations – claims that are not supported
or grounded in relevant evidence or established
world knowledge – poses a significant challenge
to the reliability of these automatically generated
scientific answers (Huang et al., 2025b). Hallucina-
tions can lead to the dissemination of misinforma-

tion, undermining the validity of research findings
and the trustworthiness of AI-powered research
tools (Huang et al., 2024).

To address this issue, the SciHal shared task was
established, focusing on the detection of halluci-
nated claims in answers generated by AI-powered
research assistants. The task provides a dataset
of research-oriented questions, the corresponding
answers and references, annotated with labels in-
dicating the presence and type of hallucinations.
By developing systems that can accurately detect
hallucinations, researchers can take a crucial step
towards ensuring the reliability and trustworthiness
of AI-enhanced research assistants.

In response to this challenge, we developed an
approach using an ensemble of fine-tuned encoder-
only models DeBERTa-v3 and ModernBERT. This
approach achieved the first place on sub-task 1.
This paper describes our model architecture, train-
ing procedure, and results on the shared task. The
performance of our approach on the task demon-
strates the potential of machine learning models to
identify hallucinations and improve the accuracy of
generated answers. We outline our findings, chal-
lenges, and directions for future improvements.

2 Related work

Hallucinations in LLMs refer to the generation of
fluent but factually incorrect or inconsistent claims
(Ji et al., 2023; Zhang et al., 2023; Sahoo et al.,
2024; Huang et al., 2025a; Xu et al., 2025). Fac-
tual hallucinations are outputs that deviate from
real-world facts and can be addressed through fact-
checking, which verifies the accuracy of claims
(Guo et al., 2022; Sahnan et al., 2025). Manual
fact checking is labor intensive and time consum-
ing (Hassan et al., 2015), prompting research into
automated approaches.

These approaches typically involve broad classi-
fications (e.g., supported, refuted, not enough infor-

344



mation), limiting their applicability in real-world
scenarios (Vladika and Matthes, 2023a). To im-
prove utility, finer-grained classification schemes
have been proposed, reflecting degrees of truthful-
ness (Wang, 2017; Alhindi et al., 2018, inter alia).
Some methods retain original fact-checking labels
(Augenstein et al., 2019), while others consoli-
date categories for simplicity (Hanselowski et al.,
2019; Kotonya and Toni, 2020; Gupta and Sriku-
mar, 2021). Typically, scientific text classification
is conducted in a supervised manner (Sadat and
Caragea, 2022; E. Mendoza et al., 2022; Schopf
et al., 2023), while some approaches support sce-
narios where labeled training data is scarce (Shen
et al., 2018; Toney and Dunham, 2022; Schopf
et al., 2024). Final claim veracity prediction is of-
ten modeled as a Natural Language Inference (NLI)
task, where a relation between a premise and a hy-
pothesis (entailment, contradiction, neutral) must
be predicted (Vladika and Matthes, 2023b; Laurer
et al., 2024). This paper investigates two sub-tasks:
one using coarse-grained labels and another with
finer-grained classifications to assess whether an
LLM generated claim is a hallucination, given ref-
erence evidence.

3 Task Description

The SciHal 2025 shared task addresses the criti-
cal challenge of factual inconsistency in responses
generated by generative AI-powered academic re-
search assistants. SciHal formulates this prob-
lem as a classification task, focused on evaluating
the factual alignment between individual claims
and their supporting evidence. Given a research-
focused question, an LLM generated response from
a Retrieval-Augmented Generation (RAG) system,
an extracted claim from the response, and a ref-
erence retrieved from a large corpus of scientific
literature that is used to ground the generated re-
sponse, the objective is to classify the claim based
on its factual consistency with the provided refer-
ence. SciHal 2025 is structured into two sub-tasks:

Sub-task 1 involves coarse-grained classifica-
tion of each claim into one of three categories: En-
tailment, Unverifiable, or Contradiction.

Sub-task 2 extends this formulation by employ-
ing a fine-grained label set. Each claim must be
categorized as one of the following: Entailment,
Unrelated and unverifiable, Related but unverifi-
able, Misrepresentation, Missing information, Nu-
meric error, Entity error, or Opposite meaning.

4 Dataset

The SciHal dataset comprises labeled claims de-
signed to evaluate hallucination detection in scien-
tific assistant outputs. The data creation process
involves both real and synthetic components, en-
suring a diverse and balanced distribution of hallu-
cination types.

Data Collection Over 50,000 real-user queries
were collected from a live academic assistant sys-
tem over a week. These questions focused on
the five scientific fields Engineering, Environmen-
tal Science, Medicine, Agricultural and Biologi-
cal Sciences, and Computer Science. After de-
identification and refinement, 500 questions were
retained. For each question, a RAG system indexed
over a million scientific abstracts to retrieve the
top 20 most relevant documents. The system then
generated an answer, from which individual claims
were extracted. Each claim was paired with the
retrieved references used to justify the answer.

Synthetic Hallucination Generation To balance
the dataset across hallucination types, 75% of the
claims were synthetically modified using LLM
prompting, simulating errors aligned with the clas-
sification labels. This method ensured controlled
type distributions, where entailment accounts for
less than 25% and other types each account for
under 10% of the labels.

Annotation Process The annotation process for
the dataset was conducted through subject matter
experts (SMEs). SMEs received the claims, ref-
erences, and detailed guidelines, including defini-
tions of hallucination types, a decision tree, and a
trial phase to ensure they were aligned with the
task’s requirements and labeling standards. To
strike a balance between annotation quality and
cost, both human SME annotations and an internal
LLM-based hallucination detection method were
used. The data was released in following batches:

• Batch 1 & 2: Instances where SME and LLM
labels agreed. Batch 1 is a subset of Batch 2.

• Batch 3 & Test Set: In cases where SME
and LLM labels disagreed, the claim was re-
labeled by a second SME. To resolve any re-
maining discrepancies, a third SME was in-
volved in adjudicating the label.
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5 Approaches

To identify hallucinated claims, we explore a range
of approaches spanning zero-shot prompting and
supervised fine-tuning, leveraging both encoder-
only and decoder-only models.

DeepSeek-R1 Zero-shot We use the DeepSeek-
R1 model (DeepSeek-AI et al., 2025) in a zero-shot
setting to classify claims into predefined categories
using the associated reference as supporting evi-
dence. The prompt includes a task definition and
detailed descriptions of each classification label.
The full prompt is provided in Figure 1.

DeepSeek-R1 Zero-shot with Claim Decompo-
sition Building on the basic zero-shot setup, we
extend the prompting strategy by explicitly instruct-
ing DeepSeek-R1 to first decompose the claim into
its constituent subclaims. The model then classifies
each subclaim individually and aggregates the re-
sults into a final prediction for the full claim. This
decomposition aims to enhance reasoning granular-
ity. The corresponding prompt is in Figure 2.

GPT-4o Zero-shot We evaluate GPT-4o (Ope-
nAI et al., 2023) using the same zero-shot prompt
as above (Figure 1). To mitigate variance stem-
ming from the non-deterministic behavior of the
model, we generate ten independent predictions per
input and derive the final class prediction via ma-
jority voting. This ensemble-like setup enhances
prediction stability and robustness.

DeBERTa-v3 Fine-tuning We fine-tune a
DeBERTa-v3 large model (He et al., 2023)1,
pretrained on several Natural Language Inference
(NLI) datasets including MultiNLI (Williams et al.,
2018), Fever-NLI (Nie et al., 2019), Adversarial-
NLI (Nie et al., 2020), LingNLI (Parrish et al.,
2021), and WANLI (Liu et al., 2022), comprising a
total of 885,242 hypothesis-premise pairs. We also
evaluate a DeBERTa-v3 base variant2 fine-tuned
on the tasksource dataset (Sileo, 2024). For both
models, we experiment with different fine-tuning
data configurations: using batch 2, batch 3, and
their combination.

ModernBERT Fine-tuning We also experiment
with ModernBERT3 (Warner et al., 2024), a re-
cent improved and optimized version of BERT (De-

1MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-
wanli

2tasksource/deberta-base-long-nli
3tasksource/ModernBERT-large-nli

vlin et al., 2019). We again use the version previ-
ously trained on tasksource data and fine-tune it on
batches 2 and 3.

Ensemble We investigate an ensemble approach,
where predictions of three fine-tuned encoder-only
models that performed well on the leaderboard are
combined using majority voting. This includes
DeBERTa-v3 NLI (batch 3) and ModernBERT
Tasksource (batches 2+3 & batch 3).

Llama Fine-tuning To investigate the potential
of a decoder-only model, we fine-tune LLama3.1-
8B-Instruct (Grattafiori et al., 2024). We train the
model to generate the label annotation justifications
contained in the training data before predicting the
classification labels. This approach ensures that
the model explicitly thinks and reasons prior to the
classification. Fine-tuning is conducted exclusively
on batch 3, which closely reflects the distribution
of the test set.

To optimize resource usage, we initially evaluate
all methods on sub-task 1. Based on the perfor-
mance results, we then adapt the best-performing
approach for sub-task 2.

6 Evaluation

The primary evaluation metric for the shared task is
the weighted F1 score. It is computed by calculat-
ing the F1 score independently for each class and
then taking the average, weighted by the number
of true instances (support) for each class.

Approach F1

pr
om

pt DeepSeek-R1 Zero-shot 0.49
DeepSeek-R1 Zero-shot Decompose 0.44
GPT-4o Zero-shot 0.43

fin
e-

tu
ne

LLama3.1-8B-Instruct 0.50
DeBERTa-v3 NLI (batch 2) 0.50
DeBERTa-v3 NLI (batch 3) 0.57
DeBERTa-v3 NLI (batch 2+3) 0.56
DeBERTa-v3 Tasksource (batch 3) 0.50
DeBERTa-v3 Tasksource (batch 2+3) 0.54
ModernBERT Tasksource (batch 2+3) 0.57
ModernBERT Tasksource (batch 3) 0.56
Ensemble of DeBERTa NLI (batch 3), 0.60ModernBERT Taskso. (batch 2+3 & 3)

Table 1: Comparison of Approaches and their F1 scores
for sub-task 1 on 50% of the test data.

Each sub-task’s test set comprises 1,000 exam-
ples, with 50% designated for official evaluation
and leaderboard ranking during the challenge. The
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remaining 50% is withheld and only evaluated af-
ter the competition concludes. Accordingly, all
reported results in this paper are based on the pub-
licly accessible 50% split of the respective test sets.

As shown in Table 1, fine-tuning the DeBERTa-
v3 NLI and ModernBERT models achieves good
results. When combined in an ensemble, this
achieves the winning score of 0.60 on sub-task
1. For sub-task 2, we use DeBERTa-v3 NLI fine-
tuned on batch 3, where it achieves a F1 score of
0.50 and secures second place on the leaderboard.

7 Discussion

Our findings show that the dataset poses a consid-
erable challenge and that fine-tuned models clearly
outperform prompting-based approaches. Notably,
the smaller encoder-only DeBERTa-v3 and Mod-
ernBERT models achieve better results than much
larger decoder-only LLMs. Despite their scale,
LLMs such as DeepSeek-R1 and GPT-4o struggle
in prompting setups compared to fine-tuned Mod-
ernBERT and DeBERTa-v3 variants.

Interestingly, advanced prompting techniques,
such as claim decomposition, do not improve clas-
sification performance. In fact, they often under-
perform compared to simpler zero-shot prompting.
To understand this behavior, we perform a detailed
analysis of both the dataset and the prediction be-
haviors of the model.

We observe that the test sets are inherently dif-
ficult due to the way they were constructed: they
include only those instances where initial predic-
tions by SMEs and LLMs diverged. These disagree-
ments were later resolved by a third SME. However,
the data annotations remain often ambiguous, in-
consistent, and challenging. During our manual
inspection, we identified multiple very similar in-
stances with different labels. Inconsistent labels
were particularly common in examples annotated
as unverifiable (unver) or contradiction (contra).
For instance, claims that involved information not
present in the reference were sometimes labeled
’contra’ and other times ’unver’, even when the
annotation justification was nearly identical.

Prompt-based approaches are particularly af-
fected by this inconsistency. Given that prompts
contain fixed class definitions, the models tend
to adhere to those instructions. For instance,
when claim content is missing from the reference,
LLMs frequently predict ’unver’, aligning with the
prompt’s class description, although the example is

labeled as ’contra’. We also identified inconsisten-
cies in the annotation of entailment (entail) cases.
Some instances were labeled as ’entail’ only when
the claim’s content was explicitly stated in the refer-
ence, while others were labeled ’entail’ even when
the reference only implicitly supported the claim
through inference. However, the instructions pro-
vided in the prompt resulted in the LLM to rely
strictly on explicit information and often misclassi-
fied such implicit entailment examples as ’unver’.
Internal validation supports these observations: all
prompting-based approaches demonstrated particu-
larly low precision for the ’unver’ class.

Contrary to our expectations, decomposing
claims into subclaims did not improve performance.
In fact, this led to overly conservative predictions.
For example, the model would identify one unsup-
ported detail within a claim and classify the entire
example accordingly, even when the overall mean-
ing was supported. The annotators, by contrast,
appeared to take a more holistic view, labeling a
claim as entailment based on general alignment,
even when minor details were not mentioned.

Overall, these findings suggest that prompting-
based methods lack the flexibility required to han-
dle the annotation noise and implicit reasoning
present in the dataset. In contrast, fine-tuned mod-
els can better adapt to such irregularities, likely
because they learn implicit patterns and labeling
conventions from the training data.

Finally, the strong performance of smaller
encoder-only models highlights the importance
of task-specific training. The ModernBERT and
DeBERTa-v3 models were already trained on a
diverse set of NLI datasets, whereas the Llama3.1-
8B-Instruct model was not. This likely gave the
smaller models a major advantage, suggesting that
task-specific training on relevant datasets can out-
weigh model scale for downstream performance.

8 Future work

In future work, we aim to further improve the fine-
tuning process of decoder-only language models
considering their vast world knowledge and rea-
soning capabilities. Given that we achieved the
best result using an ensemble, we additionally aim
to experiment more with advanced ensembles and
committee voting techniques, including the intro-
duction of weighting mechanisms. Finally, we plan
to incorporate hierarchical classification in the form
of multi-step predictions for sub-task 2 involving
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fine-grained labels.

9 Conclusion

We presented fine-tuning approaches based on
ModernBERT and DeBERTa-v3 that consistently
outperformed baseline methods and other submit-
ted solutions. This success is largely attributable
to prior training on extensive NLI datasets, which
closely align with the nature of the target tasks.
Notably, the same approach demonstrates strong
performance on both sub-task 1 and sub-task 2, un-
derscoring its generalizability across related tasks.

Our findings further suggest that in scenarios
where the data is inherently challenging—due to
ambiguity or inconsistent labeling, fine-tuning of-
fers a clear advantage over prompt-based LLM
approaches. While prompting yields consistent pre-
dictions based on static label definitions, it lacks
the flexibility to adapt to subtle patterns and in-
consistencies in the data. In contrast, fine-tuned
models are better able to internalize such nuances.

Moreover, our results highlight the importance
of training on data that closely resembles the target
task. Models exposed to large volumes of relevant
data prior to task-specific fine-tuning consistently
achieve superior downstream performance. No-
tably, this results in smaller models using this strat-
egy outperforming larger models that lack similar
task-aligned training.
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A Appendix

The appendix shows the prompts used for classifica-
tion, including the simple zero-shot prompt (Figure
1 and the prompt for subclaim decomposition and
aggregated prediction (Figure 2).
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Simple Zero-shot Prompt

Determine whether the provided claim is entailed by the corresponding evidence
. Entailment in this context implies that all information presented in the
claim is substantiated by the evidence. If any information in the claim is
contradicted by at least one information in the evidence , the claim is
contradicted. If the claim is neither entailed nor contradicted by the
evidence , the claim is unverifiable.

Evidence: {reference}
Claim: {claim}

Assess the claim 's entailment with the evidence by predicting either 'entail '
for entailment , 'contra ' for contradication , or 'unver ' for unverifiable.
Explain your decision and afterwards provide your prediction in JSON format as
one of the options {'prediction ': 'entail '}, {'prediction ': 'contra '}, {'

prediction ': 'unver '}.

Figure 1: Simple zero-shot prompt to instruct an LLM to detect a hallucinated claim.
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Zero-shot Claim Decomposition Prompt

Instruction:
Decompose the claim into its individual subclaims (e.g., distinct factual
assertions or components). For each subclaim , determine whether it is entailed
, contradicted , or unverifiable based on the provided evidence. Use the
following criteria:

Entail (entail): All information presented in the subclaims are substantiated
by the evidence. Usually , this means that the information is directly included
in the evidence. However , a subclaim can also be entailed if the evidence can
be used to infer the subclaim.

Contradiction (contra): At least one piece of evidence explicitly contradicts
the subclaim. Contradiction in this sense also means that a claim mentions one
thing , but the evidence only supports the claim 's statement regarding a

different thing. Or it could be a contradiction (instead of unverifiably) if a
claim is overgeneralized , oversimplified , or overstates the evidence.

Unverifiable (unver): The subclaim is neither supported nor contradicted by
the evidence.

After evaluating all subclaims , determine the overall prediction for the full
claim using these rules:
If any subclaim is contradicted , the overall prediction is "contra ".
If all subclaims are entailed , the overall prediction is "entail ".
Otherwise , the overall prediction is "unver".

Process:
Decomposition: Break the claim into subclaims (e.g., "Subclaim 1: [X].
Subclaim 2: [Y].").
Evaluation: For each subclaim , explain whether it is entailed , contradicted ,
or unverifiable.
Aggregation: Combine subclaim results to determine the overall prediction.

Output Format:
Provide a detailed explanation for each subclaim and the overall prediction.

Return the final answer in JSON format with two keys:
"subclaims ": A list of objects , each containing "subclaim" (text), "
justification" evaluation (text), and "prediction ".
"overall_prediction ": One of "entail", "contra", or "unver".
Example Output:

{
"subclaims ": [
{" subclaim ": "Subclaim 1 text", "justification ": "Explanation of evaluation
for sublaim 1", "prediction ": "entail"},
{" subclaim ": "Subclaim 2 text", "justification ": "Explanation of evaluation
for sublaim 2", "prediction ": "unver"}
],
"overall_prediction ": "unver"
}

Evidence: {reference}
Claim: {claim}

Figure 2: Zero-shot prompt to instruct an LLM to decompose a claim into subclaims, predict the class of each
subclaim and aggregate the predictions to one overall prediction.
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