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Abstract

Large language models are increasingly used
to synthesize scientific literature, yet they re-
main prone to hallucination — claims that
are linguistically fluent but lack support in the
cited sources. We tackle hallucination detec-
tion in the SCIHAL 2025 challenge by augment-
ing SCIBERT with Triplet and InfoNCE con-
trastive objectives in addition to cross-entropy
classification. The system achieves validation
macro-F1 scores of 0.626±0.004 on the coarse-
grained hallucination detection task (Sub-task
1) and 0.632± 0.012 on the fine-grained detec-
tion task (Sub-task 2), exceeding a plain SCIB-
ERT baseline by more than three points. The
official blind test set scores reach macro-F1

scores of 0.51 and 0.43 for Sub-tasks 1 and 2,
respectively, securing fifth place in both leader-
boards. Confusion matrix analysis shows that
contrastive learning markedly improves major-
ity classes, whereas sparse categories, espe-
cially Missing Information, remain challenging
despite aggressive attempts to mitigate class
imbalance.

1 Introduction

Large language models (LLMs) such as Chat-
GPT (OpenAI, 2023) are increasingly used
to support academic research by answering
domain-specific questions and summarising scien-
tific content. While their outputs are often fluent
and persuasive, they may introduce statements that
are not grounded in the source material — a phe-
nomenon known as hallucination. Detecting hal-
lucinated claims is especially difficult in scientific
domains, where language is highly specialised and
reference documents are lengthy.

In this work we present a contrastive-learning
solution based on SCIBERT (Beltagy et al., 2019)
for hallucination detection in scientific answers.
Our contributions are three-fold: (i) a systematic
analysis of the SCIHAL corpus that highlights the
linguistic and structural challenges of the task,

(ii) a multi-objective optimisation scheme that cou-
ples classification with two contrastive losses, and
(iii) discussion and analysis of results and errors, in-
cluding confusion matrix diagnostics, demonstrat-
ing the effectiveness of the proposed model.

2 Related Work

Early studies of factual consistency focused on
abstractive summarisation, where hallucinations
degrade summary quality. Maynez et al. (2020)
showed that even state-of-the-art models halluci-
nate frequently, motivating automatic detection
methods such as Question Answering (QA)-based
factuality probes (Kryściński et al., 2020). With
the advent of large language models (LLMs) like
GPT-3, hallucinations have been documented in
open-domain Question Answering (Ji et al., 2023)
and conversational agents (Thoppilan et al., 2022).
Most approaches frame hallucination detection
as either an entailment problem, requiring refer-
ence retrieval and contradiction detection, or a
generation-probability anomaly task.

Contrastive objectives have proven effective
at learning semantically meaningful representa-
tions from limited supervision (Chen et al., 2020).
In factuality research, Liu et al. (2022) applied
supervised contrastive loss to claim verification,
achieving gains over cross-entropy-only training.
Yuan et al. (2022) employed Information Noise-
Contrastive Estimation (InfoNCE) to align biomed-
ical entity mentions with definitions, improving
downstream question answering performance. For
hallucination mitigation, Shi et al. (2023) used
retrieval-augmented contrastive tuning to discour-
age unsupported generations, while Deng et al.
(2024) introduced dual-encoder contrastive pre-
training to rank evidence passages. Our work dif-
fers by combining two contrastive losses: Triplet
and InfoNCE with a cross-entropy objective inside
a SciBERT backbone, targeting both coarse and
fine-grained hallucination labels in scientific texts.
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3 Task Description

The Hallucination Detection for Scientific Con-
tent (SciHal) shared task addresses a challenge
in the use of generative AI-powered academic re-
search assistants: the detection of hallucinated
claims in automatically generated scientific an-
swers. These hallucinations—claims unsupported
by reliable sources—undermine the trustworthiness
of AI-generated scientific content.

The task is formulated as a multi-label classifi-
cation problem, where participants are required to
assess the factual consistency of claims generated
in response to research-related questions. For each
instance, participants are provided with: a question
related to scientific research, a summarized answer
produced by a generative AI system, an extracted
claim from that answer, and the corresponding ref-
erence abstracts cited in support of the summary.

Participants must determine whether each claim
is factually supported or hallucinatory based on the
provided reference materials. The task is divided
into two sub-tasks: coarse-grained hallucination
detection, and fine-grained hallucination detection.

3.1 Sub-task 1: Coarse-grained Hallucination
Detection

In the first sub-task, each claim must be classified
into one of the following categories:

• Entailment: the claim is supported by the
references.

• Unverifiable: the claim cannot be verified
using the provided references.

• Contradiction: the claim contradicts infor-
mation in the references.

3.2 Sub-task 2: Fine-grained Hallucination
Detection

The second sub-task requires a more fine-grained
analysis of hallucination types. Each claim must
be categorized as one of the following: Entailment,
Unrelated and unverifiable, Related but unverifi-
able, Misrepresentation, Missing information, Nu-
meric error, Entity error, Opposite meaning.

3.3 Evaluation Metrics

We evaluate models with the macro F1 score, which
assigns equal weight to every class by averaging
their per-class F1 values, irrespective of class fre-
quency. To provide a more granular picture of

errors, we also include confusion matrices for each
sub-task, detailing how predictions are distributed
across the true labels.

4 Methodology

4.1 Dataset and Split Strategy

The official SCIHAL release provides 3,592 la-
belled instances for Sub-task1 and 4,092 for
Sub-task2. Following the shared-task protocol
we adopt an 85:15 split, corresponding to 3,053
/ 539 (train / validation) examples for Sub-task1
and 3,478 / 614 examples for Sub-task2. The test
sets were not released to the participants, but the
submissions were evaluated on 50% on the test data
using the same metrics to obtain the team rankings
for both sub-tasks.

4.2 Data Analysis

Tables 1-3 summarise descriptive statistics for the
dataset. These numbers highlight linguistic and
structural challenges: input sequences vary sub-
stantially in length and claims are concise, whereas
references are much longer. A lexical overlap anal-
ysis provides further evidence: the average Jaccard
coefficient (da F. Costa, 2021) between lemma-
tised claim and reference token sets is 0.092 (min-
imum 0.000; maximum 0.474), confirming that
surface-form overlap is generally low.

Field Max C Min C Avg C
Question 269 15 80.06
Claim 705 28 256.18
Answer 5649 897 3426.23
Reference 19375 190 2046.49

Table 1: Character count statistics across text fields.

Field Avg W Max W Min W
Question 11.24 37 2
Claim 36.02 104 4
Answer 465.18 757 133
Reference 299.91 2824 30

Table 2: Word count statistics across text fields.

4.3 Proposed Solution

Our system tackles hallucination detection by fine-
tuning SCIBERT within a contrastive-learning
paradigm. The network features a dual-head de-
sign: a classification branch with two dense lay-
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Field Avg S
Question 1.01
Claim 1.70
Answer 22.00
Reference 15.66

Table 3: Average sentence count per field.

ers with layer normalization, dropout, and a soft-
max output, and a projection branch consisting of
a two-layer MLP with ReLU and dropout whose
L2-normalised embeddings serve the contrastive
objectives. We pool the final hidden states by con-
catenating the [CLS] vector with the mean of all
token embeddings, yielding a hybrid representation
that feeds both heads.

Optimisation relies on a composite loss,

L = 0.3(LTriplet + LInfoNCE) + 0.7LCE ,

where Triplet Loss (Schroff et al., 2015) enforces
distance constraints between positive and nega-
tive claim-reference pairs, InfoNCE Loss (Oord
et al., 2018) promotes high cosine similarity among
positives, and Cross-Entropy Loss (Bishop, 2006)
supplies the multi-class signal. A grid search
confirmed that the 30:70 contrastive classification
weighting gives the best validation performance.

During training we adopt differential learning
rates: 5×10−5 for the encoder, and 5×10−4 for the
task-specific layers cosine annealing with a 15%
warm-up, early stopping (maximum 25 epochs),
and gradient clipping at an L2-norm of 5 to prevent
exploding updates.

We employ a weighted loss in order to mitigate
class imbalance. Class weights are computed as

wi =
N

K · ni
, (1)

where N is the total number of samples, K the
number of classes, and ni the frequency of class i.

5 Experiments

5.1 Sub-task 1
5.1.1 Dataset and Preprocessing
The SciHal dataset comprises 3,592 labeled in-
stances with class distribution: contra (1,369), en-
tail (1,333), and unver (890). We employed an
85:15 train-validation split, yielding 3,053 training
and 539 validation examples. Class weights were
computed to mitigate the observed label imbalance
during training.

5.1.2 Results

The model reached its peak validation performance
at epoch 5 with a macro F1 of 0.626 (±0.004 across
five runs); the corresponding per-class F1 scores
were 0.673 for contra, 0.600 for entail, and 0.591
for unver.

In this run, 1,000 validation instances were clas-
sified as follows: entail (521), contra (251), and
unver (228). The mean prediction confidence, com-
puted as the probability output by the model for
the predicted class, was 0.892, with only 17 predic-
tions falling below a 0.60 threshold; class-specific
average confidences were 0.923 for unver, 0.888
for contra, and 0.881 for entail.

Figure 1 presents the normalised confusion ma-
trix obtained from a fresh evaluation run using the
same experimental settings. Small numerical de-
viations from the previous report reflect the non-
deterministic nature of stochastic optimisation and
mini-batch sampling.

Figure 1: Normalised confusion matrix for the best
validation checkpoint for Sub-task 1.

The confusion matrix shows that the average
misclassification rate, defined as the sum of all off-
diagonal cell counts divided by the total number
of validation instances, is 0.1815. The standard
deviation of these off-diagonal error proportions
is 0.0505, indicating a moderate spread: while
roughly 18% of inputs are assigned to an incorrect
class, the class-to-class variability rarely exceeds
±5 percentage points.

On the official blind test set released by the SCI-
HAL 2025 organisers our final submission, trained
with the configuration described above, attained a
macro-F1 score of 0.51, which placed us fifth out
of all participating teams.
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5.2 Sub-task 2

5.2.1 Dataset and Preprocessing
Sub-task 2 employs the extended SCIHAL corpus
of 3,592 annotated instances covering eight hal-
lucination categories. The data were randomly
partitioned in an 85:15 ratio, resulting in 3,053
training examples and 539 validation examples.
Because the class distribution is heavily skewed
(categories such as missinfo, numerr, and unre-
lunvef are markedly under-represented), we adopt
inverse-frequency weighting on the training split
only. The resulting weights are shown in Table 4.

Class label Train examples Weight wi

Entail 1333 0.337
Related-Unverifiable 738 0.608
Opposite Meaning (negat) 625 0.718
Misrepresentation 395 1.137
Entity Error 174 2.580
Unrelated-Unverifiable 152 2.954
Numeric Error 116 3.871
Missing Information 59 7.610

Table 4: Class frequencies in the training split (3,478 in-
stances) and the inverse-frequency weights used during
optimisation for Sub-task 2.

5.2.2 Training Configuration and Results

Figure 2: Normalised confusion matrix for the best
validation checkpoint for Sub-task 2.

The experimental setup mirrors that of Sub-
task 1; the only architectural difference is the out-
put softmax now spans eight classes instead of
three. Validation performance rose steadily and
peaked at a macro-F1 of 0.632 (±0.012 across five
runs) on epoch 19.

The confusion matrix in Figure 2 further
shows that the missinfo category, despite receiv-
ing the largest class weight, remains; its under-
representation renders it the most difficult label to
learn, illustrating that even aggressive re-weighting
cannot fully offset data sparsity.

For Sub-task 2 the same model configuration
achieved a macro-F1 of 0.43 on the shared-task
test set, securing fifth place in the final leaderboard.
While performance naturally drops in the more
fine-grained, eight-class scenario, the result demon-
strates that our contrastive SCIBERT approach re-
mains competitive even when the label space is
enlarged and class imbalance becomes more pro-
nounced.

Additional experiments and results are reported
in the Appendix, including results with a vanilla
fine-tuned SCIBERT model using only the cross-
entropy objective, which obtains poorer validation
results were poorer than our final approach.

6 Conclusion

We have introduced a contrastive-learning exten-
sion of SCIBERT for detecting hallucinated claims
in AI-generated scientific answers. Jointly optimis-
ing cross-entropy with Triplet and InfoNCE losses
yields consistent gains on both coarse- and fine-
grained settings of the SCIHAL 2025 benchmark,
outperforming an unweighted baseline and a purely
cross-entropy model. The improvement is most
pronounced for majority and medium-frequency la-
bels, confirming that semantic alignment objectives
complement token-level supervision. Nonetheless,
the model still struggles with the under-represented
classes, indicating that re-weighting alone cannot
fully offset data scarcity.
Future work could improve performance by model
updates along three possible axes. First, coupling
the encoder with a retrieval-compression module
that distills each reference into a handful of salient
sentences could help by thereby shortening inputs
while preserving key evidence. Second, we in-
tend to introduce a curriculum that over-samples
rare labels and structurally complex claims early
in training, then relaxes the sampling schedule
as the model stabilizes. Third, we will exam-
ine whether parameter-efficient fine-tuning of sub-
stantially larger transformer backbones improves
robustness, especially on the sparsest categories,
without incurring prohibitive computational cost.

339



Limitations

Our approach has several practical and methodolog-
ical limitations. First, all experiments were con-
ducted using a single NVIDIA Tesla P100 GPU,
which constrained the batch size and training speed,
especially during contrastive learning. Due to mem-
ory limitations, we relied on models from the BERT
family, which support a maximum input length of
512 tokens. This likely prevented the model from
accessing the full context in cases where the refer-
ence abstracts were lengthy or complex.

Another key limitation is the relatively small size
of the training dataset. While sufficient for fine-
tuning, the number of examples is limited from
the perspective of large language models (LLMs),
increasing the risk of overfitting and limiting gen-
eralization. This was especially evident for un-
derrepresented labels in Sub-task 2, where perfor-
mance gains plateaued early. More data and better-
balanced class distributions would likely improve
robustness.

Lastly, our model processes claims and refer-
ences independently at the input level, without ex-
plicitly modeling document structure or reasoning
chains. Incorporating more advanced context han-
dling or retrieval-augmented methods could help
mitigate this in future work.

Ethics Statement

This work focuses on improving the factual reliabil-
ity of AI-generated scientific content by detecting
hallucinated claims. Our intention is to support
responsible use of large language models (LLMs)
in academic research, not to automate or replace
scientific reasoning. We recognize that LLMs may
still introduce errors or biased outputs, and systems
built on top of them should always be used with
human oversight.

We used publicly released data provided by the
SciHal 2025 shared task organizers, and did not
collect or annotate any additional human data. No
personally identifiable information (PII) was in-
volved. Our models were trained and evaluated
only for research purposes, and we do not deploy
them in production systems.

We also acknowledge the computational costs
of training large models. While we used relatively
modest hardware (a single P100 GPU), future work
should continue to consider the environmental im-
pact of large-scale training.

Finally, we emphasize that hallucination detec-
tion is not a solved problem, and there is a risk
that users may overtrust partially automated sys-
tems. Clear communication of model limitations
and transparency in design choices are essential to
ensure ethical deployment.
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A Additional Training Statistics

To assess the stability of our optimisation proce-
dure, we repeated each model training five times
with different random seeds and report the best-
checkpoint macro F1.

A.1 Sub-task 1
Table 5 summarises statistics for the coarse-grained
results.

Statistic Macro F1

Mean 0.628
Standard deviation 0.004

Table 5: Validation macro F1 across five independent
training runs for Sub-task 1.

A.2 Sub-task 2
Table 6 reports statistics for the fine-grained, eight-
class setting.

Statistic Macro F1

Mean 0.632
Standard deviation 0.012

Table 6: Validation macro F1 across five independent
training runs for Sub-task 2.

A.3 Training Dynamics Sub-task 1
Figure 3 illustrates macro F1 evolution across
epochs, while Figure 4 shows per-class F1 trajecto-
ries.

Figure 3: Macro F1 Score Evolution

A.4 Training Dynamics Sub-task 2
Figure 5 presents macro F1 evolution across train-
ing epochs, while Figure 6 illustrates per-class F1
trajectories for representative categories.

B SciBERT Baseline (No Contrastive
Learning or Class Weights)

To establish an absolute reference point, we fine-
tuned a vanilla SCIBERT model using only the
cross-entropy objective and no class weighting or
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Figure 4: Per-Class F1 Score Evolution

Figure 5: Validation Macro F1 Score Evolution (Sub-
task 2)

contrastive losses. Training was performed with
early stopping (maximum 10 epochs) and a learn-
ing rate of 2× 10−5. Table 7 reports the resulting
macro-F1 scores, while Figures 7 and 8 show the
corresponding confusion matrices. Overall, our fi-
nal approach using class weighting and contrastive
loss seems to obtain improvements compared to the
baseline for most classes, while the most notable
difference is in the rare classes, such as Missing
Information, for which the simple baseline does not
manage to classify almost any examples correctly.

Macro F1

Sub-task 1 Sub-task 2

SciBERT (baseline) 0.601 0.586

Table 7: Validation macro F1 for the SciBERT baseline
trained without contrastive objectives or class weight-
ing.

B.1 Confusion Matrix for SciBERT Baseline
for Sub-task 1.

Figure 7 shows the confusion matrix of the vanilla
SCIBERT baseline, which yields a validation
macro-F1 of 0.601 on Sub-task 1.

Figure 6: Per-Class F1 Score (Sub-task 2)

Figure 7: Confusion matrix for the SciBERT baseline
on Sub-task 1 (validation macro-F1 = 0.601).

B.2 Confusion Matrix for SciBERT Baseline
for Sub-task 2.

Figure 8 displays the confusion matrix of the SCIB-
ERT baseline, which attains a validation macro-F1

of 0.586 on Sub-task 2.
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Figure 8: Confusion matrix for the SciBERT baseline on Sub-task 2 (validation macro-F1 = 0.586).
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