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Abstract

Large Language Model (LLM) based research
assistant tools demonstrate impressive capabil-
ities, yet their outputs may contain hallucina-
tions that compromise their reliability. There-
fore, detecting hallucinations in automatically
generated scientific content is essential. Sci-
Hal2025: Hallucination Detection for Scien-
tific Content challenge @ ACL 2025 provides
a valuable platform for advancing this goal.
This paper presents our solution to the Sci-
Hal2025 challenge. Our approach combines
several prompting strategies to prompt LLMs
and leverages their hidden states as features to
build the classifier. We first benchmark mul-
tiple LLMs on the SciHal dataset under the
zero-shot prompting. Next, we developed a
detection pipeline that integrates few-shot and
chain-of-thought prompting. Then, the hidden
representations extracted from the LLMs serve
as features for an auxiliary classifier, further im-
proving detection performance. In this paper,
we present comprehensive experimental results
and discuss the implications of our findings for
future research on hallucination detection in
scientific content.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in generating sci-
entific content across various domains (Le Scao
et al., 2023; Thulke et al., 2024; Zhang et al., 2024;
Zheng et al., 2025). LLM-powered research assis-
tant tools further streamline scholarly workflows
by answering research-related questions and output
structured, concise responses. However, hallucina-
tions may be introduced by LLMs pose a significant
challenge to fully trusting these automatically gen-
erated scientific outputs (Alkaissi and McFarlane,
2023). Consequently, detecting hallucination con-
tent from the LLM-powered system is essential for
their safe deployment.

Hallucination Detection for Scientific Content
challenge (SciHal 2025) @ ACL 2025 provides a

rigorous test platform for this problem (Li et al.,
2025). The dataset contains real-user questions,
retrieved scientific abstracts, LLM-generated re-
sponses, and extracted claims from responses with
human annotation. The goal is to classify each
claim based on the provided reference abstracts into
different hallucination types. This paper describes
our technical solution for the SciHal Challenge.

Our solution integrates prompting techniques
with LLMs and leverages the models’ internal rep-
resentations for classification. We begin by bench-
marking multiple LLMs on the SciHal dataset un-
der zero-shot prompting to gauge their out-of-the-
box performance. Subsequently, we develop a
detection pipeline by combining domain-specific
few-shot examples with Chain-of-Thought (CoT)
prompting (Wei et al., 2022). Specifically, we first
classify each data point into its respective domain,
then pair it with corresponding domain-aware few-
shot examples to construct refined CoT prompts.
Then, the hidden states produced by the LLM serve
as features for training a classifier, enhancing pre-
dictive accuracy. On the evaluation set, our ap-
proach achieves F1 scores of 0.59 on subtask 1
and 0.51 on subtask 2, as reported on the leader-
board. A detailed performance analysis is provided
in Section 4.

2 SciHal Task Description

2.1 Problem Definition

The challenge aims to develop advanced LLMs
that can identify hallucinations in scientific claims.
Given a claim c to be verified, the model M will
take the input query ¢, which includes claim c,
reference r, and prompt instructions p. The model
M then makes a classification y = M (q[c; 7;p)):

* For subtaskl, y € [‘Unverifiable’, ‘Contradic-
tion’, or "Entailment’]

* For subtask2, y € [‘Unrelated and unverifi-
able’, ‘Related but verifiable’, ‘Misrepresenta-
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Figure 1: Overview of our method that detects the hallucination in scientific claims.

tion’, ‘Missing information’, ‘Numeric error’,
‘Entity error’, ‘Negation’, ‘Entailment’]

Performance evaluation employs the weighted F1
score as the major evaluation metric.
2.2 Dataset

The dataset curation began with more than 50,000
real user questions spanning five domains: engi-
neering, environmental science, medicine, agri-
culture & biological sciences, and computer sci-
ence. After LLM paraphrasing and manual removal
of sensitive information, 500 unique questions re-
mained. For each question, the organizer fetched
the 20 most relevant scientific abstracts through
a retrieval-augmented generation (RAG) system.
Answers were generated from these abstracts, bro-
ken into individual claims, and linked to their
supporting references. Synthetic hallucinations
were injected via targeted LLM prompts to bal-
ance the label distribution. Expert annotation com-
bined with LLM labeling produced the final dataset
D = {d;,ds,...,d,} consisting of n data samples.
Each data point is a six-tuple d; = (q, a, ¢, 1,7, )
comprising the g-question, a-answer, c-claim, (-
label, r-reference, and j-justification.

The organizers provided three training batches
with identical data points but differing label sets for
each subtask. Batch 1 data is a strict subset of batch
2 and was therefore discarded. All experiments in
this paper are therefore conducted on batches 2 and
3 with a total of 3,592 data points. Table 1 presents
the label distribution in the training set.

3 Methodology

In this section, we outline the proposed pipeline
for hallucination detection in scientific claims (See
in Figure 1). We first assign claims to their do-
main and select a few corresponding examples. By
leveraging the in-context learning (ICL) capacity
of LLMs (Radford et al., 2019; Brown et al., 2020;

- =
{Domain Example 1} . > O :
{Domain Example 2} :c o O E e
. LLM Prediction
CoT Instruction: Hidden
\ State
Crompt e
(a) Subtask 1
Label Count %
contradiction 1369 38.1
unverifiable 890 248
entailment 1333 37.1
(b) Subtask 2
Label Count %
negation 625 174
misinterpretation 395 11.0
related but unverifiable 738  20.5
entailment 1333 37.1
entity error 174 4.8
unrelated and unverifiable 152 4.2

missing information 59 1.6
numeric error 116 32

Table 1: Distribution of ground-truth in both subtasks.

Dong et al., 2024), we then construct the detec-
tion pipeline that utilizes LLM’s hidden states as
features to train the classifier.

3.1 Domain-Aware Few-Shot Selection

Because claims and their supporting references
span distinct fields, the specialized terminology
and knowledge scope vary significantly. To ex-
ploit in-context learning more effectively, we first
classify each data point d; into its domain ¢ €
{engineering, computer science, environmental sci-
ence, medicine, agriculture & biological sciences}.
For the given data point d;, we input the claim c
and its associated reference r into the proprietary
LLM (GPT-40-mini) to determine the appropriate
domain, formally expressed as t = LLM(c, q).
After completing the domain assignment, each
data point is updated to include its domain ¢, rep-
resented as d; = (q,a,c,l,r,j,t). Subtask 1 and
Subtask 2 differ only in their labels, while the claim
and reference remain the same. Thus, we did the
domain classification once for both subtasks. Af-
ter classifying all 3,592 data points by domain, we
randomly sampled 100 to do a manual check for
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quality control. GPT-40-mini correctly labeled the
vast majority. The only notable confusion occurred
between ‘computer science’ and ‘engineering’ do-
mains, whose content often overlaps. Therefore,
the domain classification accuracy is adequate for
pairing each claim with the appropriate few-shot
examples and is utilized in the following steps. We
have listed the domain statistics results in Table 8
of Appendix A.

3.2 Few-Shot Learning with
Chain-of-Thought Prompting

We first design baseline few-shot prompts for sub-
tasks 1 and 2 (in Appendix D.2). Specifically, we
randomly select two data points from each label as
examples and evaluate two prompting variants:

* Few-Shot Prompt 1: Provide two data exam-
ples for each label, each example consisting
of a claim with its corresponding reference,
and instruct the LLM to output the prediction
directly.

¢ Few-Shot Prompt 2: Provide two data exam-
ples, each including the claim, reference, and
justification. Instruct the LLM to first gener-
ate a justification and subsequently output the
corresponding prediction.

Next, we utilize the domain classification re-
sults to refine our few-shot strategy. Given a data
point d;, we randomly select two examples per
label based on their assigned domain ¢, and incor-
porate these domain-specific examples into the two
prompt templates described above (whole prompt
in Appendix D.3).

Building upon our few-shot prompts, we fur-
ther incorporate Chain-of-Thought (CoT) prompt-
ing (Wei et al., 2022) to enhance model reasoning.
For subtask 1, we structure the CoT prompt in four
steps: 1) Read the reference abstract(s) carefully;
2) Read the scientific claim carefully; 3) Analyze
the relationship between the claim and reference
abstract(s); 4) Determine which single category
best describes the relationship. Subtask 2 has more
complex and fine-grained labels, so we leverage
its tree label structure' to design the CoT prompt.
We require the LLLM to provide a detailed justi-
fication and respond to a checklist of diagnostic
questions before assigning a label. This checklist

"https://www.kaggle.com/competitions/hallucin
ation-detection-scientific-content-2025/overview

is illustrated in Figure 5. The combination of justi-
fication and checklist-based reasoning exemplifies
the application of CoT prompting. All CoT prompt
templates can be found in the Appendix D.4.

3.3 Prompting Strategies with Internal State
Classification

The few-shot learning approach above only uses
a very limited number of labeled examples, and it
also doesn’t take into account the relative frequen-
cies of each target class. As a refinement of the few-
shot prompting approach above, we study the use of
the internal states of LLMs for hallucination detec-
tion. The internal states of LLMs have been used to
detect hallucinations in many studies (Azaria and
Mitchell; Marks and Tegmark). Specifically, we
take the last layer hidden state vector of the LLM
model at the last generated token (the customary
choice for finetuning causal LLLMs for classifica-
tion), and train a logistic regression model on top of
it. Note that we do not perform any fine-tuning on
the LLM parameters. We just take the hidden state
vector as a fixed representation and train a classi-
fier on it. We use the "justification+label" template
for subtask 1 and "justification+checklist+label"
template for subtask 2 from above.

4 Experiments and Results

In this section, we present a detailed analysis of our
experimental results and discussion. Specific de-
tails regarding experiment setup and configurations
are provided in the Appendix B.

4.1 Zero-shot benchmark results

We first evaluate several widely used LLMs on
subtask 1 under zero-shot prompting. This initial
benchmarking enables us to gain insight into the
baseline performance and comparative strengths
of different LLMs on the SciHal challenge. For
efficiency, we use accuracy as the evaluation met-
ric. The results are presented in Figure 2, with the
detailed prompt in the Appendix D.1.

From Figure 2, we can find that the instruct
models consistently outperform their base model,
and models with larger parameter sizes achieve
even better performance. Consequently, for sub-
sequent experiments, we selected Llama3.1-8B-
Instruct, Llama3.1-70B-Instruct, and Llama3.3-
70B-Instruct as our primary evaluation models, ef-
fectively covering a range of parameter sizes.

We also observe that in the zero-shot setting,
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Model & Prompt Batch 2 Data Batch 3 Data
Macro-F1 Micro-F1 Macro-F1  Micro-F1

Subtask 1

Llama3.1-8B-Instruct, ref + label (Few-Shot Prompt 1) 29.76 31.42 20.08 22.61
Llama3.1-8B-Instruct, ref + just + label (Few-Shot Prompt 2) 60.30 64.57 35.82 37.15
Llama3.1-8B-Instruct, ref + just + subj + label (Domain-Aware Few-Shot) 61.43 63.32 36.50 39.41
Llama3.1-70B-Instruct, ref + label (Few-Shot Prompt 1) 62.16 65.43 43.10 45.50
Llama3.1-70B-Instruct, ref + just + label (Few-Shot Prompt 2) 73.46 75.16 53.50 54.33
Llama3.1-70B-Instruct, ref + just + subj + label (Domain-Aware Few-Shot) 72.36 74.71 54.62 57.13
Llama3.1-70B-Instruct, Domain-Aware Few-Shot + CoT 70.03 71.63 51.02 53.28
Llama3.3-70B-Instruct, ref + just + subj + label (Domain-Aware Few-Shot) 73.61 75.52 61.20 64.79
Subtask 2

Llama3.1-8B-Instruct, ref + label (Few-Shot Prompt 1) 31.23 36.27 - -
Llama3.1-8B-Instruct, ref + just + label (Few-Shot Prompt 2) 43.98 48.16 - -
Llama3.1-8B-Instruct, ref + just + checklist + label 30.50 34.15 - -
Llama-3.1-70B-Instruct, ref + label (Few-Shot Prompt 1) 57.18 68.78 - -
Llama-3.1-70B-Instruct, ref + just + label (Few-Shot Prompt 2) 62.97 72.88 38.10 43.25
Llama-3.1-70B-Instruct, ref + just + subj + label (Domain-Aware Few-Shot) 60.28 70.15 36.97 39.15
Llama-3.1-70B-Instruct, ref + just + checklist + label 54.48 59.24 - -

Table 2: Few-shot and CoT results for Subtasks 1 and 2. ‘ref’ denotes reference, ‘just’ denotes justification, and

‘subj’ signifies domain-matched few-shot examples.

Accuracy on subtask 1 by model

Model

Figure 2: LLMs zero-shot performance on subtask 1.

LLMs exhibit poor performance. Even the 70B-
parameter model achieves an accuracy of only
around 50%, underscoring the inherent complex-
ity of the task and emphasizing the necessity for
continued development of more advanced methods.

4.2 Few-shot with CoT results

Batch 2 Results. From Table 2 ‘Batch 2 Data’
column, we observe that requesting the LLM to
provide a justification prior to outputting the label
significantly enhances the F1 scores for Subtask 1,
particularly for the 70B models. A similar trend is
evident for Subtask 2, where prompting for justifi-
cation also results in improved accuracy. Moreover,
performance is further enhanced when employing
domain-aware few-shot examples rather than stan-
dard few-shot prompts.

However, asking the LLM model to go through
a checklist of questions before outputting the label
actually degrades performance for both the 8B and
70B models in subtask 2. We examined the results
more carefully and found that with the checklist,

the LLM models tend to predict the class "missing
information" a lot more frequently when it is only a
very small class (10 examples out of 2092), leading
to a drop in accuracy. We also find it very difficult
as humans to distinguish between the two classes
"related but unverifiable" and "missing informa-
tion" in subtask 2. We tried to ask the organizers
for clarification of their definitions but could not
get an answer. If we merge these two classes and
re-run our experiments with the 70B model, we ob-
tain results from Table 3. We can see that there are
consistent improvements from adding a checklist
on top of justifications.

Model & Prompt Macro-F1  Micro-F1
Llama3.1-70B-Instruct, ref + label 62.48 70.59
Llama3.1-70B-Instruct, ref + just + label 71.49 76.66
Llama3.1-70B-Instruct, ref + just + checklist + label ~ 72.55 77.05

Table 3: Subtask 2 with 7 classes (’missing information’
merged with ’related but unverifiable’).

Batch 3 Results. From Table 2 ‘Batch 3 Data’ col-
umn, the results are largely consistent with Batch
2, with improvements using logistic regression on
the hidden state vectors, except for macro-f1 on
Subtask 2 due to the smaller categories. Addition-
ally, due to the timing of data release, constraints
imposed by the competition schedule, and limited
computational resources, we were unable to com-
plete all planned experiments for subtask 2.
Comparing batch 2 and batch 3 of the training
data we notice there is a large drop in the perfor-
mance. We believe this is due to the differences
in how batch 2 and batch 3 are collected. Both
batch 2 and batch 3 are labeled by a subject matter

319



expert (SME) and an LLM. If the SME and the
LLM agree, then the data point goes to batch 2. If
there is a disagreement, another SME is requested
to label the example, and it goes to batch 3 and the
test set. So batch 3 and the test set contain more
difficult examples compared to batch 2. However,
despite the labeling process by multiple SMEs, we
still find some labels that we disagree with in batch
3, which we will share in the error analysis section.

4.3 Internal State Classification

We use 80% of the data as the training set, and 20%
as evaluation data. Table 4 shows the result of lo-
gistic regression on top of the internal state vectors.
We can see that with or without merging the two
classes "missing information" and "related but un-
verifiable", the logistic regression improves upon
the subtask 2 results based on few-shot prompting
only in Tables 2. The corresponding results for
subtask 1 are also much improved.

Macro-F1  Micro-F1
Subtask 1, Llama-3.1-70B-Inst, Batch 2 86.20 87.11
Subtask 1, Llama-3.1-70B-Inst, Batch 3 60.21 62.00
Subtask 2, Llama-3.1-70B-Inst, Batch 2 70.60 82.81
Subtask 2, Llama-3.1-70B-Inst, Batch 2 (merged labels) ~ 79.05 81.14
Subtask 2, Llama-3.1-70B-Inst, Batch 3 36.52 52.33

Table 4: Subtask 1 and subtask 2 with logistic regression
on internal state vectors.

We also perform ablation studies on the token
location used for extracting hidden states for logis-
tic regression. We compare using the hidden states
from the last generated token (our current proposal)
with the hidden states from the last token from
the prompt (i.e., no generation). Using the hidden
states from the last token of the prompt is a com-
mon finetuning strategy used for adapting causal
language models to classification tasks. From Ta-
ble 5 we can observe that using the hidden states
of the last generated token is better than using the
hidden states of the last prompt token, especially
for Task 2. This shows the power of combining
the generation capabilities of the LLMs together
with finetuning in detecting hallucinations, which
is better than using few-shot learning generation or
finetuning alone.

Macro-F1 Micro-F1

Task 1, Llama-3.1-70B-Inst, last prompt token 56.84 59.33
Task 1, Llama-3.1-70B-Inst, last generated token  60.21 62.00
Task 2, Llama-3.1-70B-Inst, last prompt token 25.18 45.33
Task 2, Llama-3.1-70B-Inst, last generated token = 36.52 52.33

Table 5: Comparison of logistic regression result using
last prompt token and last generated token on Batch 3.

4.4 Leaderboard Results

Based on the experimental results presented above,
we evaluate the proposed pipeline on the test data.
The leaderboard results are shown in Table 6. Our
results are at the top-2 of subtask 1 and top-1 of sub-
task 2 on the leaderboard as of 10 PM EST on June
20. The results obtained from the leaderboard are
consistent with the trends observed in the training
dataset. These results indicate that our proposed
pipeline demonstrates robustness and effectiveness.

Model & Prompt Score

Subtask 1

Llama-3.1-70B-Inst, Few-Shot Prompt 2 0.49
Llama-3.3-70B-Inst, Domain-Aware Few-Shot 0.55
Llama-3.3-70B-Inst, Domain-Aware Few-Shot + CoT 0.54
Llama-3.1-70B-Inst, Few-Shot Prompt 2 + Log-Reg on hidd-stat 0.59
Llama-3.1-70B-Inst, Domain-Aware Few-Shot + Log-Reg on hidd-stat ~ 0.59
Subtask 2

Llama-3.1-70B-Inst, Few-Shot Prompt 2 0.40
Llama-3.1-70B-Inst, Few-Shot Prompt 2 + checklist 0.47
Llama-3.1-70B-Inst, Few-Shot Prompt 2 + Log-Reg on hidd-stat 0.51

Table 6: Leaderboard scores for each subtask.

4.5 Error Analysis

We first analyzed the experiment results by using
subtask 1, Batch 3 Data with Domain-Aware Few-
Shot setting, and show the result in Table 7. The
analysis indicates that the entailment class achieved
the highest recall and overall F1-score, demonstrat-
ing that it was the easiest category for the model
to identify accurately. Conversely, the class un-
verifiable exhibited the lowest recall and F1-score,
highlighting its difficulty for classification.

Class Precision Recall F1-score
Contradiction 0.657 0.462 0.542
Entailment 0.547 0.861 0.669
Unverifiable 0.550 0.238 0.332

Table 7: Classification metrics (precision, recall, and
F1-score) for each class.

Following these findings, we conducted a de-
tailed analysis of the data and labels to assess
dataset quality. The complete results of this error
analysis are provided in the Appendix C.

5 Conclusion

In this paper, we present our solution to the Sci-
Hal 2025 challenge. By integrating domain-aware
few-shot and CoT prompt, and the model’s hidden
state as the feature, our method achieved promising
results. Due to time constraints, additional experi-
ments are ongoing and will be reported later.

320



Limitations

First, our current experiments were conducted ex-
clusively using open-source models; proprietary
models have not yet been evaluated on this dataset.
Second, due to time constraints, several fine-tuning
experiments remain ongoing. We plan to continue
these experiments beyond the current submission
and will provide additional results and in-depth
analyses later. Finally in our preliminary evalu-
ations with training data batch 3, the macro and
micro f1 scores are close to the numbers on the
leaderboard but much lower than those from batch
2 reported above. This suggests our results can be
sensitive to shifts in distribution and composition
of different classes.

Ethics Statement

The authors take full responsibility for the proposed
method. The proposed method is intended for aca-
demic and educational purposes only and is not
a substitute for a professional system. The data
accessed from this challenge is solely for academic
purposes and will not be shared or disseminated.
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A Domain-Aware classification results

We performed domain classification on the train set batch 2 and batch 3, and the results are presented in
Table 8. The distribution of data points across the five scientific domains is relatively balanced, with no
substantial differences in data representation observed.

Domain Count % of total
Computer Science 713 19.8%
Medicine 801 22.3%
Engineering 756 21.0%
Environmental Science 780 21.7%
Agricultural&Biological Science 542 15.1%

Table 8: Distribution of data across scientific domains.

B Experiment Setup

At the outset, we selected eight widely-used LLMs for our zero-shot experiments: Qwen2.5-7B,
LLaMA3.1-8B, LLaMA3.1-8B-Instruct, LLaMA3.1-70B, LLaMA3.1-70B-Instruct, LLaMA3.2-1B,
LLaMA3.2-3B, and LLaMA3.3-70B-Instruct. Based on their performance, we subsequently select
LLaMA3.1-8B-Instruct, LLaMA3.1-70B-Instruct, and LLaMA?3.3-70B-Instruct for further experiments.
All models were sourced from Hugging Face.

To ensure experimental reproducibility, we standardized inference parameters as follows: maximum
output tokens set to 1024, temperature set to 0.6, and top-p sampling set to 0.9. All experiments were
conducted using two NVIDIA H100 GPUs.

C Error Analysis

The experiment results show that performance does not consistently improve when the advanced prompts
are employed (e.g. CoT prompt). Therefore, we conducted an error analysis to better understand the
results.

C.1 Error Analysis on subtask 1 results

We first use the Subtask 1 & Batch 3 Data with Domain-Aware Few-Shot results to do the error analysis.

Confusion Matrix Visualization
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Figure 3: Confusion Matrix on subtask 1 results.

From the Figure 3, it reveals that the class entailment is the easiest for the model to correctly predict,
exhibiting the highest accuracy. Conversely, the unverifiable class poses the greatest challenge, frequently
misclassified as either entailment or contradiction.
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C.2 Error Analysis on subtask 2 results

We then use the Subtask 2 & Batch 3 Data with Domain-Aware Few-Shot results to do the error analysis.

Class Precision Recall F1-score
Entailment 0.550 0.814 0.656
Entity error 0.730 0.383 0.503
Misinterpretation 0.188 0.307 0.232
Missing information 0.333 0.041 0.073
Negation 0.447 0.328 0.378
Numeric error 0.550 0.440 0.489
Related but unverifiable 0.546 0.035 0.066

Unrelated and unverifiable 0.230 0.473 0.310

Table 9: Classification performance metrics for each class in Subtask 2.
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Figure 4: Confusion Matrix on subtask 2 results.

Table 9 and Figure 4 summarize the performance for Subtask 2, highlighting the strengths and challenges
across different categories. Same with subtask 1, the Entailment achieves notably high recall (0.814) and
the best F1-score (0.656), suggesting that the model effectively identifies instances belonging to this class.
In contrast, the classes Missing information and Related but unverifiable exhibit extremely low recall
(0.041 and 0.035, respectively), reflecting significant difficulty for accurate detection.

Additionally, Figure 4 reveals that many cases labeled as Related but unverifiable are misclassified
as Entailment, likely due to subtle semantic overlaps between these categories. Similarly, the model
frequently confuses Misinterpretation and Negation with Entailment, suggesting that nuanced distinctions
among these classes pose considerable challenges. These findings underline the need for clearer category
definitions and suggest that future model improvements may benefit from targeted fine-tuning or additional
domain-specific examples for the most challenging classes.
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C.3 Data Sample Analysis

Inspired by the confusion matrix results, we further checked the data provided by the challenge and
identified instances of conflicting labels. For example, as illustrated in the figure below, both the claim
and the reference discuss medical image processing; however, the content is unrelated. The claim focuses
explicitly on conclusions related to ResUNet, whereas the reference addresses automatic segmentation
of ultrasound breast lesions. Although they share the general domain of medical imaging, their specific
topics differ significantly, rendering the reference insufficient to verify the claim. Consequently, the
correct classification should be “unrelated and unverifiable.” Our pipeline made the correct prediction,
and subsequent validation by three human experts unanimously supported this classification. Nonetheless,
the original dataset label was “related but unverifiable."

This case demonstrates that subjective understanding of the term "related" can impact classification
results. Such instances underscore the inherent complexity of accurately labeling data in the task.

A data example from Subtask 2

Claim: - ResUNet, on the other hand, does not rely on such initial conditions and is more robust to variations in image
quality. Level-Set Techniques: While level-set methods can capture complex boundaries, they often struggle with
initialization sensitivity and computational efficiency [5, 6].

reference: - "[5]: Automatic segmentation of ultrasonographic breast lesions is very challenging, due to the lesions’
spiculated nature and the variance in shape and texture of the B-mode ultrasound images. Many studies have tried to
answer this challenge by applying a variety of computational methods including: Markov random field, artificial neural
networks, and active contours and level-set techniques. These studies focused on creating an automatic contour, with
maximal resemblance to a manual contour, delineated by a trained radiologist. In this study, we have developed an
algorithm, designed to capture the spiculated boundary of the lesion by using the properties from the corresponding
ultrasonic image. This is primarily achieved through a unique multi-scale texture identifier (inspired by visual system
models) integrated in a level-set framework. The algorithm’s performance has been evaluated quantitatively via
contour-based and region-based error metrics. We compared the algorithm-generated contour to a manual contour
delineated by an expert radiologist. In addition, we suggest here a new method for performance evaluation where
corrections made by the radiologist replace the algorithm-generated (original) result in the correction zones. The
resulting corrected contour is then compared to the original version. The evaluation showed: (1) Mean absolute error of
0.5 pixels between the original and the corrected contour; (2) Overlapping area of 99.2% between the lesion regions,
obtained by the algorithm and the corrected contour. These results are significantly better than those previously reported.
In addition, we have examined the potential of our segmentation results to contribute to the discrimination between
malignant and benign lesions.[6]: In order to improve the accuracy of breast ultrasound image segmentation, an
ultrasound image segmentation method using the C-V (Chan-Vese) model based on phase is proposed. First, the
ultrasound image is filtered by LOG-Gabor filters in six different orientations, and the phase feature of the image is
obtained by extracting the phase information in the orientation with the maximum energy. Then, the SRAD(speckle
reducing anisotropic diffusion) method is used to reduce the noise of the ultrasound image, and the processed image is
multiplied by the phase features to enhance the contrast of the target and background. Finally, the target of the
ultrasound image is identified by the segmentation algorithm using the C-V model, and corrosion is applied to make the
edge smooth and complete. The experimental results show that compared with the C-V model and GAC (geodesic active
contour) model based on image gray and the ANN (artificial neural networks) method based on phase feature, the
proposed method can obviously improve the accuracy of breast ultrasound image segmentation, which is 92.40%."

label: - "related but unverifiable"

prediction: - "unrelated and unverifiable"
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D Prompt Set

D.1 Zero-Shot prompt

We first employed Zero-Shot prompting to evaluate multiple LLMs and establish their baseline perfor-
mance on this challenge. The detailed prompts used for Zero-Shot evaluation are detailed below:

Zero-Shot prompt for subtask 1

System Prompt: - You are an assistant for claim verification. Given a claim and some reference from an academic
paper, please classify the claim into three labels: contradiction, entailment, or unverifiable.

- Here is the definition of each label:

entailment: The claim is supported by the reference.

contradiction: The claim is contradicted by the reference.

unverifiable: The claim cannot be verified by the reference

- You MUST strictly output your result in the following JSON format (and nothing else).

Now it’s your turn.

\.

D.2 Baseline Few-Shot Prompts

We first designed two baseline few-shot prompts as follows. We illustrate the prompting using Subtask 1 as
the example; the prompt structure for Subtask 2 is the same, selecting two examples for each corresponding
label.

Baseline Few-Shot prompt 1 (ref + label)

System Prompt: - You are an assistant for claim verification. Given a claim and some reference from an academic
paper, please classify the claim into three labels: contradiction, entailment, or unverifiable.

- Here are some examples:

Example 1: #Claim: {...}; #Reference:
Example 2: #Claim: {...}; #Reference:
Example 3: #Claim: {...}; #Reference:
Example 4: #Claim: {...}; #Reference:
Example 5: #Claim: {...}; #Reference:
Example 6: #Claim: {...}; #Reference:
- Now, apply the same pattern:

Input: #Claim: {...}; #Reference: {...};
Output:

..}; #Label: {contradiction}
..}; #Label: {contradiction}
..}; #Label: {entailment}
..}; #Label: {entailment}
..}; #Label: {unverifiable}
..}; #Label: {unverifiable}

——— - - -
oy o iy

Baseline Few-Shot prompt 2 (ref + justification + label)

System Prompt: - You are an assistant for claim verification. Given a claim and some reference from an academic
paper, please classify the claim into three labels: contradiction, entailment, or unverifiable.
- Here are some examples:

Example 1: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {contradiction}
Example 2: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {contradiction}
Example 3:#Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {entailment}
Example 4:#Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {entailment}
Example 5: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {unverifiable}
Example 6: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {unverifiable}

- Now, apply the same pattern:

- Please output the justification and then make a prediction.

Input: #Claim: {...}; #Reference: {...};

Output:

\.
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D.3 Domain-Aware Few-Shot Prompt

We first classified each data point into its respective domain. Within each domain, we selected two
examples per label to serve as domain-specific few-shot prompts. Given a claim requiring verification,
we identify its domain and provide corresponding examples from that domain. Below, we illustrate this
process using the domain of computer science as an example.

Domain-Aware Few-Shot Prompt (ref + justification + subj + label)

System Prompt: - You are an assistant for claim verification. Given a claim and some reference from { Computer
Science} domain, please classify the claim into three labels: contradiction, entailment, or unverifiable.

- Here are some examples about { Computer Science} domain:

Computer Science Example 1: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {contradiction}
Computer Science Example 2: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {contradiction}
Computer Science Example 3:#Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {entailment}
Computer Science Example 4:#Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {entailment}
Computer Science Example 5: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {unverifiable}
Computer Science Example 6: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {unverifiable}
- Now, apply the same pattern:

- Please output the justification and then make a prediction.

Input: #Claim: {...}; #Reference: {...};

Output:

\.

D.4 Details on Few-Shot learning with Chain-of-Thought prompts

Few-Shot learning with Chain-of-Thought prompt for subtask 1

System Prompt: - You are an assistant for claim verification. Given a claim and some reference from an academic
paper, please classify the claim into three labels: contradiction, entailment, or unverifiable.
- Here are some examples:

Example 1: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {contradiction}
Example 2: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {contradiction}
Example 3:#Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {entailment}
Example 4:#Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {entailment}
Example 5: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {unverifiable}
Example 6: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {unverifiable}

- When you classify a claim, please follow these steps:

1. Read the reference abstract(s) carefully.

2. Read the scientific claim carefully.

3. Analyze the relationship between the claim and reference abstract(s).

4. Determine which single category best describes the relationship.

- Now, apply the same pattern:

- Please output the justification and then make a prediction.

Input: #Claim: {...}; #Reference: {...};

Output:
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Few-Shot learning with Chain-of-Thought prompt for subtask 2 (ref + just + checklist + label)

System Prompt: - You are an assistant for claim verification. Given a claim and some reference from an academic
paper, please classify the claim into three labels: contradiction, entailment, or unverifiable.
- Here are some examples:

Example 1: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {contradiction}
Example 2: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {contradiction}
Example 3:#Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {entailment}
Example 4:#Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {entailment}
Example 5: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {unverifiable}
Example 6: #Claim: {...}; #Reference: {...}; #Justification: {...}; #Label: {unverifiable}

- When you classify a claim, please follow the checking list:

1. Is the claim related to the references?

2. Does the claim contain a contradiction to the references?

3. Does the claim negate parts of the references or replaces terms with their antonyms?

4. Does the claim present logical fallacies, flawed reasoning (over-claiming, under-claiming, ambiguity, or
inconsistency), or illogical conclusions?

5. Does the claim contain an erroneous numeric value?

6. Does the claim contain an erroneous entity?

7. Does the claim omit critical parts from the references, changing the meaning/intent?

8. Can the claim be supported by the references?

- Now, apply the same pattern:

- Please output the justification and then make a prediction.

Input: #Claim: {...}; #Reference: {...};

Output:

Figure 5: Checking list in Chain-of-Thought prompting.
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