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Abstract
The overwhelming volume of content being
published at any given moment poses a sig-
nificant challenge for the design of automated
fact-checking (AFC) systems on social media,
requiring an emphasized consideration of ef-
ficiency aspects. As in other fields, systems
built upon zero-shot LLMs have achieved good
results on different AFC benchmarks. The ap-
plication of LLMs, however, is accompanied
by high resource requirements. The energy
consumption of LLMs poses a significant chal-
lenge from an ecological perspective, while
remaining a bottleneck in latency-sensitive sce-
narios like AFC within social media. There-
fore, we propose a system built upon fine-tuned
smaller BERT-based models and comprised of
components for abstract retrieval and claim ver-
ification. When evaluated on the ClimateCheck
dataset against decoder-only LLMs, our best
fine-tuned model outperforms Phi 4 14B and
approaches Qwen3 14B in reasoning mode —
while significantly reducing runtime per claim.
Our findings demonstrate that small encoder-
only models fine-tuned for specific tasks can
still provide a substantive alternative to large
decoder-only LLMs, especially in efficiency-
concerned settings.

1 Introduction

While social media can be a space for public dis-
course, it can also be a place where misinforma-
tion and disinformation claims become dominant.
In real-life claim verification, fast response times
could be decisive in regard to the impact of harmful
claims, such as providing verdicts before the claims
start to spread. In the context of climate-related top-
ics, where claims can be verified by a large amount
of research, an opportunity is provided to combat
misinformation by retrieving relevant research to
verify said claims.

Like many other tasks in the natural lan-
guage processing (NLP) domain, automated fact-

checking systems are gaining significant perfor-
mance boosts with the rise of large language mod-
els (LLMs). In the context of social media, how-
ever, the application of LLMs for tasks such as
claim verification is greatly hindered by their high
computational costs and latency. Which, on a large
scale, is problematic from an ecological point of
view (Jegham et al., 2025), as well as when con-
sidered from a latency-sensitive system design per-
spective (Wang et al., 2025).

Moreover, recent research indicates that BERT-
based models fine-tuned for specific tasks can
still be competitive with zero-shot LLMs in text
classification (Kostina et al., 2025), or even out-
perform LLMs as shown in Bucher and Martini
(2024) while also outperforming other classifiers
in related challenging tasks like propaganda de-
tection (Solopova et al., 2024). As discussed in
related studies such as Li (2025), many encoder-
only BERT-based models like deberta-v3 (He et al.,
2023) are accompanied by significantly lower com-
putational costs and therefore have a lower ecolog-
ical impact due to a smaller number of parameters
than many of their recent decoder-only counter-
parts like Qwen3 (Yang et al., 2025) or Phi 4 (Ab-
din et al., 2024). Thus, we want to explore how
both model classes perform on the ClimateCheck
dataset (Abu Ahmad et al., 2025a) – which was
released in the context of the ClimateCheck@SDP
2025 Shared Task (Abu Ahmad et al., 2025b) –
with respect to veracity prediction. In both cases,
the input for prediction is acquired by an abstract
retrieval pipeline, which we propose in this paper,
and which also does not rely on LLMs.

The main contributions of this paper can be sum-
marized as follows:

1. Proposing a new pipeline for retrieving ab-
stracts from the ClimateCheck dataset corpus;

2. Exploring the fine-tuning of BERT-based mod-
els on the ClimateCheck dataset;
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Figure 1: Architecture of the proposed system

3. Evaluating the claim verification results of
fine-tuned BERT-based models against LLMs
on runtime and the official ClimateCheck
scores.

We have released our code1 and the models2,3 we
fine-tuned in the context of this paper.

2 Related Work

In recent studies on the verification of climate
claims (Leippold et al., 2024), agent-based LLM
systems have been shown to achieve promising
results when verifying claims based on retrieved
knowledge from a corpus such as provided by
the Intergovernmental Panel on Climate Change
(IPCC). However, in a dynamic situation with a
large unfiltered corpus of scientific papers and the
frequency of social media claims, the cost and la-
tency may limit the applicability of such a pipeline
alone.

At the same time, several datasets were pub-
lished for the verification of claims outside of the
climate domain. For example, PubHealth (Kotonya
and Toni, 2020) focuses on public health-related
claims, which are accompanied by claims labeled
with “true”, “false”, “mixture” and “unproven”.
The FEVER (Fact Extraction and VERification)
dataset (Thorne et al., 2018) aims at the develop-
ment of systems for the verification of claims on
different topics against textual sources, using the
labels “Supported”, “Refuted” or “NotEnoughInfo”
– a label scheme similar to the labels in Climate-
Check. AVeriTeC (Automated Verification of Tex-
tual Claims) (Schlichtkrull et al., 2023) focuses

1https://github.com/XplaiNLP/climatecheck-sub
mission

2https://huggingface.co/xplainlp/e5-large-v
2-climatecheck

3https://huggingface.co/xplainlp/DeBERTa-v3-l
arge-mnli-fever-anli-ling-wanli-climatecheck

on retrieved evidence from the open web to verify
claims, also providing samples with the additional
label “Conflicting Evidence/Cherrypicking”. In
Yang and Rocha (2024), the AVeriTeC task is un-
derstood as related to natural language inference
(NLI) tasks, which focus on logical inference based
on free-text data. In this paper, the authors pro-
posed a label mapping scheme for PubHealth and
AVeriTeC and fine-tuned a T5-3B model (Raffel
et al., 2023), whose initial training included data
from NLI datasets. This strategy inspired us to
explore models beyond decoder-only architectures
that were fine-tuned on NLI datasets and to fine-
tune them further in the context of ClimateCheck.

3 Methodology

Subtask I: Abstract Retrieval The first subtask
focuses on the retrieval of relevant abstracts from
a corpus of around 400K abstracts of publications
from the climate science domains. We propose the
following pipeline for this subtask, also illustrated
in Figure 1:

1. Sparse retrieval: Get the top 1500 most rel-
evant abstracts from the corpus using each
claim as the query via BM25

2. Dense retrieval: Get the most relevant top 150
results from (1)

3. Rerank the results from (2) with a reranking
model and return the final top 10 results

The inclusion of step (1) was the result of pre-
liminary experiments, where we first explored the
strategy of running dense retrieval on the full set
of the embeddings of all 400k abstracts. Since this
strategy yielded subpar results, we opted for a hy-
brid search approach by including sparse retrieval,
which is a frequent approach in retrieval tasks to im-
prove retrieval scores (as shown in Sawarkar et al.
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# Embedding Model Reranking Model R@2 R@5 R@10 B-Pref Score

1 e5-large-v2-climatecheck ms-marco-MiniLM-L12-v2 0.217 0.405 0.574 0.449 0.411
2 e5-large-v2 ms-marco-MiniLM-L12-v2 0.208 0.399 0.560 0.437 0.401

3 e5-large-v2-climatecheck bge-reranker-large 0.176 0.348 0.502 0.414 0.360
4 e5-large-v2-climatecheck jina 0.193 0.328 0.464 0.398 0.346

5 #1 w/o bm25 ms-marco-MiniLM-L12-v2 0.197 0.365 0.521 0.397 0.370
6 e5-large-v2-climatecheck - 0.151 0.257 0.375 0.311 0.273

Table 1: Evaluation on the abstract retrieval subtask. “R” refers to Recall and “Score” to the final ClimateCheck
Subtask I Score. “jina” in Configuration #4 refers to jina-reranker-v2-base-multilingual.

(2024), for example). The top k value of 1500 re-
trieved abstracts was another result of preliminary
testing, where we tried different values and chose
the one with the best scores on the ClimateCheck
dataset.

The results of step (2) are dependent on the em-
bedding model. Here, we experimented with dif-
ferent fine-tuning strategies on e5-large-v2 (intro-
duced in Wang et al. (2022a)). Finally, we fine-
tuned the model for three epochs on the entire
dataset while incorporating positive and negative
examples into the training process. The related
claims and abstracts in the ClimateCheck dataset
can be seen as sets of positive pairs that map se-
mantically close pairs of texts to each other, which
can can be used as positive examples during fine-
tuning. As shown in studies like Zhan et al. (2021),
the performance in retrieval tasks can be further
improved by expending such sets with negative ex-
amples. We mined three negative examples by re-
trieving the three least relevant abstracts via dense
retrieval-based ranking.

Finally, we refined the ranking of the result from
step (2) with a reranker model in step (3), which
was chosen by comparing which model yielded the
best results.

Subtask II: Claim Verification The second sub-
task focuses on the prediction of veracity labels
based on the claims and abstracts retrieved in sub-
task I.

Inspired by Yang and Rocha (2024), our strategy
was to fine-tune a BERT-based model previously
fine-tuned on related NLI tasks to predict the ve-
racity on the ClimateCheck dataset. This strategy
deviates from Yang and Rocha (2024), in which
a T5-3B model with an encoder-decoder architec-
ture was used. Since our goal was to achieve good
results while minimizing computational inference
cost, we opted to work with smaller, encoder-only

architectures. Finally, we explored publicly avail-
able options of models fine-tuned for NLI tasks
and decided to compare two fined-tuned versions
of deberta-v3 (He et al., 2023), which allowed for
better comparison of the fine-tuning effects due to
the same base model:

1. nli-deberta-v3-large from the cross-encoders
series by Sentence Transformers4 fine-tuned
on SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018).

2. DeBERTa-v3-large-mnli-fever-anli-ling-
wanli (Laurer et al., 2022), which was
fine-tuned on five NLI-related datasets
including MultiNLI, ANLI (Nie et al., 2020),
LingNLI (Parrish et al., 2021), WANLI (Liu
et al., 2022) and FEVER NLI, which is a
FEVER variant transposed into the NLI
schema (Nie et al., 2019). Unlike the model
in (1), it is also explicitly not fine-tuned on
SNLI.

We fine-tuned the models as follows:

1. Each input consisted of a claim and abstract
concatenated with a [SEP] token.

2. Training was stopped when the evaluation met-
ric failed to improve over successive epochs,
resulting in 8 epochs in total.

3. We computed class-wise accuracies SUPacc,
REFacc and NEIacc and used Accmin =
min(SUPacc, REFacc, NEIacc) as the opti-
mization target to penalize imbalance.

4. To account for randomized factors (data split,
model initialization), we ran the training pro-
cedure multiple times and selected the model
with the highest Accmin score.

4https://huggingface.co/cross-encoder/nli-deb
erta-v3-large

283

https://huggingface.co/cross-encoder/nli-deberta-v3-large
https://huggingface.co/cross-encoder/nli-deberta-v3-large


# Model s/claim Precision Recall F1 Score

1 DeBERTa-v3-large-climatecheck 0.032 0.686 0.683 0.683 1.257
2 DeBERTa-v3-large-mnli-fever-anli-ling-wanli 0.032 0.261 0.154 0.104 0.678
3 nli-deberta-v3-large-climatecheck 0.032 0.604 0.607 0.602 1.176
4 nli-deberta-v3-large 0.032 0.413 0.418 0.289 0.863

5 Phi 4 14B 0.729 0.668 0.662 0.660 1.234
6 Qwen3 14B 12.229 0.716 0.717 0.716 1.291
7 Qwen3 14B w/o reasoning 0.363 0.690 0.629 0.597 1.171
8 Qwen3 1.7B 9.176 0.697 0.661 0.646 1.242

Table 2: Evaluation of subtask II concerning claim verification. The full name of our fine-tuned model in #1 is
“DeBERTa-v3-large-mnli-fever-anli-ling-wanli-climatecheck”. “Score” refers to the final ClimateCheck Subtask II
score.

4 Evaluation

Subtask I The first subtask is evaluated on
Recall@k, where k = [2, 5, 10], and Binary Prefer-
ence (B-Pref). All 4 scores are averaged into a final
Subtask I score. Our pipeline achieved 4th place
out of 10 on the subtask. Our evaluation results are
documented in Table 1.

The first two results highlight the influence of
our fine-tuning strategy by ablating it, resulting
in worse performance. Next, we evaluate the in-
fluence of the reranking model by running bge-
large-rerank (Xiao et al., 2023), a jina model5, and
a model from the Sentence Transformers Cross-
Encoder series6 against each other. For our final
pipeline, we choose the highest scoring model,
which was also explicitly fine-tuned on the infor-
mation retrieval MS MARCO dataset (Bajaj et al.,
2018). In the last section of Table 1 we assess the
influence of retrieval components by ablating them.
Setting (S) #5 documents our best performing con-
figuration from S#1 without the BM25 step, indi-
cating its importance due to a performance drop.
Similarly, another drop is shown by S#6, where
reranking was removed from the pipeline.

Subtask II The second subtask is evaluated on
Precision, Recall, and the weighted F1-score. The
final Subtask II score is the F1-score scaled by the
number of claim-abstract pairs that were retrieved
correctly, represented by the Recall@10 score of
Subtask I. Since runtime was an important factor in
our system design, we also included the processing
time per claim in our evaluation. All experiments

5https://huggingface.co/jinaai/jina-reranke
r-v2-base-multilingual

6https://huggingface.co/cross-encoder/ms-mar
co-MiniLM-L12-v2

were run on a system with one NVIDIA H100 80
GB GPU. Table 2 documents our results.

S#1 achieves competitive results against our
LLM configurations, while processing claims at
only 0.032 seconds on average, outperforming
LLMs on this metric by a margin. The other NLI-
fine-tuned model in S#3 performed worse, which
could be related to the selection of the datasets
both were fine-tuned on, respectively. Both models
perform worse without our fine-tuning strategy, as
documented by S#2 and S#4. Surprisingly, there is
also a large performance gap between both, where
S#4 outperforms S#2 despite S#2 being more suc-
cessful with our fine-tuning strategy.

For the comparison with current decoder-only
LLMs, we start by evaluating against Phi 4 (Abdin
et al., 2024), which is a recent model with 14B
parameters and good performance results on many
benchmarks. It is outperformed by S#1 across all
metrics, most notably on the runtime. For better
comparison, we also evaluate against members of
the Qwen3 (Yang et al., 2025) series. S#6 was
our final submission in the shared task, achieving
3rd place in the Subtask II score and 2nd place in
Recall, Precision and F1.

Compared to our other settings, it has the best
results in all metrics – except on runtime, yielding
12.229 seconds per claim. Turning off the reason-
ing in S#7 greatly improved the runtime while still
achieving competitive results. However, this con-
figuration was outperformed by S#1 and S#2 on
the final Subtask II score while being around 14.4
times slower. In S#8 we replaced the Qwen 14B
model with the 1.7B variant. Although still slower
compared to S#1, it outperformed Phi 4 and S#7
on the Subtask II metric.
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To further evaluate runtime differences, we per-
form a paired t-test over the test set (N = 1760)
on per-claim runtimes. The BERT-based model
in S#1 (mean = 0.032 s, std = 0.002 s) is signifi-
cantly faster than the fastest decoder-only LLM in
S#7 (mean = 0.363 s, std = 0.133 s) with t(1759) =
–104.541, p < 0.001, Cohen’s d = 2.49.

5 Discussion

Our results indicate that while recent decoder-only
zero-shot LLMs such as Qwen3 are able to receive
impressive results on datasets like ClimateCheck
just by prompting them without applying any fine-
tuning strategies, fine-tuned encoder-only BERT-
based models can achieve comparable results at a
fraction of the runtime. In conclusion, the smaller
model class can still be a valid choice, particularly
in scenarios where low latency is a critical factor.

Limitations

This study focuses on the comparison between fine-
tuned encoder-only BERT models and decoder-
only zero-shot LLMs in task-specific performance
and runtime. While our results align with prior
work (e.g., Bucher and Martini (2024)), they are
limited to the described settings and the dataset
used. Our system is tailored to the current itera-
tion of the ClimateCheck dataset, and evaluating
it on other datasets is necessary to assess general-
izability. This is particularly relevant for the com-
parison of the two model families: Studies such
as Wang et al. (2022b) indicate that decoder-only
zero-shot LLMs generalize better than their fine-
tuned encoder-only counterparts and therefore are
less sensitive to changes in data.

The competitive results of BERT-based models
as shown here are limited to the comparison against
LLMs in a zero-shot setting. The performance of
decoder-only LLMs could be further improved, for
example, by prompting strategies such as few-shot
learning (adding examples to prompts). Although
this could further slow down the inference time due
to increased length of input context that needs to
be processed, it could also lead to a more conse-
quential performance gap.

Finally, while the reported runtime performance
at 0.032 seconds per claim on average can be con-
sidered as approaching real-time latency require-
ments, this results was achieved on a high-end GPU
(NVIDIA H100). For real-life deployment, more
optimization like quantization and parallelization

techniques are needed to enable similar runtime on
lower-end devices.
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A Appendix

A.1 Prompts Collection
For predicting veracity labels with LLMs, we used:

f“<sys>You are a professional fact
checker. You get a claim and an ab-
stract of a scientific paper. Assess if
the claim is supported or refuted by
the abstract! Return only your ver-
dict! Either ’Supports’, ’Refutes’ or ’Not
Enough Information’.</sys><user>The
claim: {claim}\n {abstract}\n Your ver-
dict: ”</user>

In all cases, the task description was used as the
system prompt (indicated by the <sys>-tags), while
the actual values of the variables where used within
user prompts (indicated by the <user>-tags).
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