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Abstract

Misinformation in public discourse on global
and significant issues like climate change is
often facilitated through social media. How-
ever, current systems do not address fact-
checking climate-related claims against trust-
worthy, evidence-based sources, such as scien-
tific publications. To address this, we organ-
ised the ClimateCheck shared task at the 5th
Scholarly Document Processing (SDP) Work-
shop, co-located with ACL 2025 in Vienna,
Austria. The task featured two subtasks: I. Ab-
stracts retrieval given a claim, and II. Claim
verification based on the retrieved abstract. Cli-
mateCheck had 27 registered users with active
participation from 13 teams, ten of which sub-
mitted results for the first subtask and three for
the second. The winning team achieved a Re-
call@10 score of 0.66 and a Binary Preference
score of 0.49 for subtask I, and an F1 score
of 0.73 for subtask II. Their method combined
sparse retrieval using BM25, an ensemble of
fine-tuned cross-encoder models using BGE-
rerankers, and LLMs for classification.

1 Introduction

The widespread use of social media has trans-
formed the way people engage with crucial global
challenges such as climate change. While these
platforms enable a public dialogue, they also fast-
track the spread of inaccurate and misleading infor-
mation (Fownes et al., 2018; Al-Rawi et al., 2021).

Recent work in natural language processing
(NLP) offers promising advances in decoding and
analysing complex discourse online (Stede and
Patz, 2021). Researchers have used methods to
detect misinformation (Aldwairi and Alwahedi,
2018; Aïmeur et al., 2023), extract scientific claims
and entities (Hafid et al., 2022; Hughes and Song,
2024), and fact-check statements (Guo et al., 2022;
Diggelmann et al., 2020). At the same time, work
on scholarly document processing has advanced
methods for extracting and structuring scientific

knowledge (Dagdelen et al., 2024), making it eas-
ier to link it to public discourse.

Shared tasks are effective tools for mobilising
the research community around challenging tasks,
driving innovation and the development of state-
of-the-art methods (Filannino and Uzuner, 2018).
Previous shared tasks targeted fact-checking by re-
trieving relevant evidence for a given claim and
classifying their relation. However, they mainly
focused on non-scientific evidence corpora, e. g.,
Wikipedia (Thorne et al., 2018; Aly et al., 2021),
or were limited to the biomedical domain (Wadden
and Lo, 2021). To the best of our knowledge, no
previous effort has tackled the challenge of con-
necting claims posted online about climate change
to credible scientific sources.

To address this, we present the ClimateCheck
shared task, focusing on automatic fact-checking
of climate-related claims from social media against
scientific publications. The task was hosted at the
5th Scholarly Document Processing (SDP) Work-
shop1 and consisted of two subtasks: (I) Retrieving
relevant scientific documents for a given claim, and
(II) Classifying the claim’s veracity based on the re-
trieved evidence. Subtask I was evaluated using the
average scores of Recall@K (K = 2, 5, 10) and
Binary Preference (Bpref, Buckley and Voorhees,
2004), and subtask II was evaluated using the F1
score in addition to Recall@10 from subtask I.

We used the Codabench platform to host the task
(Xu et al., 2022), attracting registrations from 27
users and 13 active teams, ten of which submit-
ted results to the leaderboard.2 The competition
followed the timeline below:

• Training set release: April 1, 2025

• Test set release: April 15, 2025

• Systems submissions deadline: May 16, 2025
1https://sdproc.org/2025/
2https://www.codabench.org/competitions/6639/
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• Paper submission deadline: May 23, 2025

• Notification of acceptance: June 13, 2025

• Camera-ready paper due: June 20, 2025

• Workshop date: July 31, 2025

This paper presents an overview of the shared
task and summarises the task design (§3), evalua-
tion strategies (§4), dataset preparation (§5), our
baselines (§6), approaches of submitted systems
(§7), and lessons learned throughout (§8), aiming
to inform and encourage future efforts in NLP for
mitigating climate change misinformation online.

2 Related Shared Tasks

Several shared tasks have been introduced to sup-
port research on automatic evidence retrieval and
claim verification. These tasks differ in the domain
of claims, the type of evidence corpora, and the
complexity of the verification process.

Fact Extraction and VERification (FEVER,
Thorne et al., 2018) and its extension, FEVER Over
Unstructured and Structured information (FEVER-
OUS, Aly et al., 2021), were tasks focused on claim
verification against Wikipedia articles, the latter
expanding into structured evidence such as tables
and lists. FEVER established the widely adopted
three-stage pipeline of document retrieval, sentence
selection, and natural language inference (NLI).
However, despite their scale and influence, FEVER
and FEVEROUS differ from our effort in their evi-
dence domain, which is encyclopedic rather than
scientific, potentially affecting the applicability of
certain retrieval methods.

The Automated Verification of Textual Claims
(AVeriTeC) shared task was a recent effort pre-
sented at the FEVER 2024 Workshop (Schlichtkrull
et al., 2024). The task focused on evidence retrieval
and veracity prediction of general real-world claims
with linked evidence from the web using search en-
gines. This task differs from ours in two main
aspects: claims are not domain-specific, and the
evidence is retrieved from the web rather than the
more trustworthy scientific literature.

The SCIVER shared task was organised at the
SDP 2021 workshop, aiming to verify scientific
claims extracted from research articles against a
given corpus of publications (Wadden and Lo,
2021). Although the task is similar in its focus
on scientific evidence, SCIVER’s claims originate

from research papers and are limited to the biomed-
ical domain, in contrast to our task, which focuses
on climate-related claims from public discourse.

Finally, CheckThat!, organised annually as a
CLEF lab since 2018 (Nakov et al., 2018), fo-
cuses on mitigating misinformation online across
different platforms and several languages. Previ-
ous editions have addressed claim detection, stance
verification, and evidence retrieval, focusing pri-
marily on political and journalistic content. Most
recently, the 2025 edition included the Scientific
Web Discourse task (Alam et al., 2025), focusing
on 1. Detecting whether a post contains references
to scientific entities, and 2. Linking posts with im-
plicit references of studies to their relevant pub-
lications. These tasks are similar to our work in
their objective of connecting public discourse to
scientific publications, with task 1 being especially
relevant to the pre-processing steps of preparing
the ClimateCheck dataset. However, unlike task 2,
our work does not assume any mention of a study
in a post, rather processing general claims.

3 Task Description

ClimateCheck consisted of two subtasks:

1. Subtask I – Abstracts Retrieval: Given a
claim from social media about climate change
and a corpus of abstracts, retrieve the top 10
most relevant abstracts to the claim.

2. Subtask II – Claim Verification: Given the
claim-abstract pair received from the previous
subtask, classify their relation as ‘supports’,
‘refutes’, or ‘not enough information (NEI)’.

Participants were allowed to take part either in
subtask I only or in both subtasks. The testing
dataset consisted of 176 unique claims along with
a corpus of 394,269 abstracts from climate-related
publications. For the first subtask, the participants
were asked to upload a CSV file that includes rows
of unique claim-abstract pairs, where each claim
was linked to 10 relevant abstracts. If they wished
to participate in subtask II, they were asked to add
a column denoting the label of the pair. Samples of
five claims from the test set along with connected
abstracts retrieved by three teams in the competi-
tion are available in Appendix A.
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4 Evaluation

Subtask I: Abstracts Retrieval

As an information retrieval (IR) task, subtask I
tackles identifying relevant pieces of information
from large corpora based on a user query. Evalu-
ating IR is an inherently difficult task due to the
problem of incomplete relevance annotations when
the evidence corpus contains a large number of
documents (Buckley and Voorhees, 2004). That
is because not all potentially relevant documents
can be annotated, making it hard to know whether
a system truly failed to retrieve relevant items or
simply retrieved items that were never judged.

Various metrics are employed to evaluate IR
based on rankings (Buckley and Voorhees, 2004;
Järvelin and Kekäläinen, 2002), including Mean
Average Precision, Mean Reciprocal Rank, and
normalised Discounted Cumulative Gain (Järvelin
and Kekäläinen, 2002). However, in our specific
task, we faced two primary challenges: the absence
of annotated ranking information and the problem
of incomplete relevance judgements. Given these
constraints, we selected Recall@K and Bpref as
our evaluation metrics.

Recall@K measures the proportion of relevant
documents retrieved in the top K results. It does
not consider the order of the retrieved documents,
making it suitable for scenarios where gold ranking
information is unavailable. The metric has been
widely used to evaluate dense retrieval systems
(Karpukhin et al., 2020). In subtask I, we ask par-
ticipants to retrieve the top 10 abstracts per claim,
hence we use K = 2, 5, 10 to compare systems on
different levels. Bpref is a score designed to han-
dle situations with incomplete relevant judgements.
It evaluates how many judged non-relevant docu-
ments are retrieved before judged relevant ones,
mitigating potential bias introduced by unjudged
documents (Buckley and Voorhees, 2004).

The final evaluation of subtask I, which decides
the rankings, is the average of the four scores men-
tioned above. We considered a retrieved abstract
to be relevant if it was annotated as evidentiary
(i. e., supports or refutes) in our gold data. How-
ever, this data was bound to be biased towards our
own retrieval method used to create the annotation
corpus. Thus, to ensure a fair evaluation, we col-
lected participants’ outputs weekly during the test
phase, subsequently adding more human-annotated
instances to the gold data (see Section 5).

Subtask II: Claim Verification

Claim verification is a classification task, where the
system labels each claim-abstract pair retrieved in
subtask I as supports, refutes, or NEI, indicating
the relation of the abstract to the claim. To evaluate
it, we used standard weighted metrics: Precision,
Recall, and F1.

Only claim-abstract pairs that have been manu-
ally annotated in the gold data were used for evalu-
ation, meaning that unjudged ones were excluded.
To ensure a fair comparison across systems, espe-
cially since the number of predicted labels varied,
the final ranking consisted of the sum of the F1-
score and the Recall@10 score from subtask I. This
approach rewards systems that not only made accu-
rate classifications, but also retrieved more relevant
abstracts, penalising those that have a high F1 score
based on only a few examples.

5 Dataset

The foundation of the shared task is the Climate-
Check dataset (Abu Ahmad et al., 2025),3 consist-
ing of 435 unique English climate-related claims
in lay language linked to scientific abstracts, result-
ing in 1,815 claim-abstract pairs. Each pair was
reviewed by two graduate students in climate sci-
ences and annotated as supports, refutes, or NEI.
In cases of disagreements, a third student curated
the claim-abstract pair, deciding its final label.

Claims were collected from available datasets
(Diggelmann et al., 2020; Pougué-Biyong et al.,
2021; Shiwakoti et al., 2024; Augenstein et al.,
2019), and underwent several pre-processing steps:
scientific check-worthiness detection, atomic claim
generation, and text style transfer, the latter for
those not originating directly from social me-
dia. The abstracts were collected from OpenAlex
(Priem et al., 2022) and S2ORC (Lo et al., 2020), re-
sulting in a corpus of 394,269 climate-related pub-
lications.4 Claims and abstracts were then linked
using BM25 (Robertson and Zaragoza, 2009) fol-
lowed by a cross-encoder trained on the MS-
MARCO data and a TREC-like pooling approach
using six models to create the annotation corpus.
In Abu Ahmad et al. (2025), we describe the devel-
opment of the dataset in more detail.

The available data was split into training and test-

3https://huggingface.co/datasets/rabuahmad/
climatecheck

4https://huggingface.co/datasets/rabuahmad/
climatecheck_publications_corpus
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Week 1 Week 2 Week 3

- 2 active teams
- 405 annotated

documents

- 3 active teams
- 351 annotated

documents

- 7 active teams
- 477 annotated

documents

21-25 April, 2025 25 April - 02 May, 2025 02-13 May, 2025
Total

- 7 active teams
- 1,233 annotated

documents

Figure 1: The timeline of our dynamic human annotation process during the testing phase of the ClimateCheck
shared task. The process resulted in 1,233 additional claim-abstract pairs added to the gold test data.

ing sets, the former consisting of 259 unique claims
and a total of 1,144 claim-abstract pairs, while the
latter 176 unique claims and 671 claim-abstract
pairs. The annotated pairs of the test set were not
released publicly for participants, since they were
used as the reference test set for evaluation.

In an attempt to make the evaluation less biased
towards the gold test set, which is based on our own
linking approach, we annotated more documents
on a weekly basis as the task was running. These
were based on participants’ submissions using the
following approach:

1. Every week, we combined the highest-scoring
submissions from each active team.

2. For each unique claim-abstract pair, we as-
sessed the agreement among the participating
teams (i. e., how many systems retrieved this
pair).

3. We annotated pairs with a specific agreement
threshold so that as many teams as possible
benefit from the new annotations.

4. We updated the gold data with the additional
annotations a week later.

The agreement threshold was decided each week
depending on the number of submitting teams, tak-
ing into account our limited human annotation ca-
pacity (four student annotators). If needed, we
filtered further based on the rankings of claim-
abstract pairs across submitted systems. We sum-
marise the result of this process in Figure 1, and
report more details in Appendix B.

To accommodate the timeline of the SDP 2025
workshop and the pace of the annotators, we were
able to gather new documents from runs submitted
until May 13, 2025, one week before the competi-
tion deadline. This process resulted in the addition
of 1,233 new claim-abstract pairs added to the gold
testing data, with an overall number of 1,904 man-
ually annotated pairs in the gold test set.

6 Baselines

For subtask I, we developed a multi-stage retrieval
approach as a baseline, combining sparse and dense
retrieval with a neural reranker. BM25 has proven
to be a fast and efficient method for initial retrieval
(Chen et al., 2017; Nie et al., 2019). We used it as
a sparse retrieval step to get an initial set of the top
1000 relevant abstracts per claim. Next, we com-
puted embeddings for each claim and abstract us-
ing the msmarco-MiniLM-L-12-v3 sentence trans-
former,5 and calculated the cosine similarity for
each claim-abstract pair. We selected the top 20
ranked abstracts per claim, filtering out lexically
relevant but semantically irrelevant candidates. Fi-
nally, a neural reranker, ms-marco-MiniLM-L6-
v2,6 provided cross-encoder scores, resulting in
the final candidate pool of the top 10 abstracts per
claim.

To obtain labels for each claim-abstract pair as a
baseline for subtask II, we used the open source
Yi-1.5-9B-Chat-16K model (Young et al., 2024),
selected based on our experiments with several
models when creating the dataset (Abu Ahmad
et al., 2025). The model was prompted in a
zero-shot manner with the following prompt:

You are an expert claim verification
assistant with vast knowledge of
climate change , climate science ,
environmental science , physics ,
and energy science.
Your task is to check if the claim is
correct according to the evidence.
Generate 'Supports' if the claim is
correct according to the evidence,
'Refutes' if the claim is incorrect or
cannot be verified, or 'Not enough
information' if you there is not enough
information in the evidence to make an
informed decision.
Only return the verification verdict.

5https://huggingface.co/sentence-transformers/
msmarco-MiniLM-L12-v3

6https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L6-v2
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7 Submitted Systems and Results

A total of ten teams participated in the Climate-
Check shared task, three of which took part in both
abstract retrieval and claim verification tasks. Ta-
ble 1 summarises the submission statistics and Fig-
ure 2 illustrates the amount of submissions through-
out the one month testing phase of the task.

Number of registered users 27
Number of active users 13
Number of final submissions (subtask I) 10
Number of final submissions (subtask II) 3
Number of total submissions 613
avg. number of submissions per user 43.64
max. number of submissions by a single user 182

Table 1: ClimateCheck submission statistics.
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Figure 2: Number of submissions over the one month
timeline of the task.

We present the results of subtasks I and II in
Tables 2 and 3, respectively. Notably, six teams
outperformed our baseline in subtask I, while all
of them outperformed it in subtask II. For both
subtasks, the winning team is Ant Bridge, fol-
lowed by akiepura_jlam in 2nd place, while team
AlexUNLP-FMT achieves 3rd place in subtask
I, and team EFC in subtask II. We received sys-
tem descriptions from the aforementioned top four
teams and team Pranav, which we briefly sum-
marise below.

7.1 Team Ant Bridge

Team Ant Bridge (Wang et al., 2025) developed a
hybrid three-stage approach, combining sparse re-
trieval, fine-grained reranking, and large language
models (LLMs) for claim-abstract classification.
As a first step, the team pre-processed all abstract
and claim texts to be lowercase, additionally tok-
enizing and removing punctuation and stopwords.

Then, they used BM25 to get the top 5000 ab-
stracts per claim, chosen to maximise recall for
the reranking step. In the second stage, they fine-
tuned several cross-encoder models based on the
BGE-Reranker architecture (Chen et al., 2024a).
Training data was constructed as triples of (claim,
relevant abstract, irrelevant abstract), with nega-
tives drawn either randomly or as hard negatives,
which are abstracts ranked highly by BM25 or se-
mantically close to the claim but not evidentiary.
Rerankers were trained using a marginal ranking
loss, and their outputs were aggregated using Re-
ciprocal Rank Fusion (RRF, Cormack et al., 2009)
to produce the top 10 abstracts per claim.

For subtask II, the team used Gemini 2.5 Pro
(Gemini Team et al., 2023) to perform claim-
abstract relation classification. Their prompting
strategy included persona and task definitions,
and supported batch processing of multiple claim-
abstract pairs. Additionally, they included distri-
bution guidelines in the prompt to steer the model
toward a more balanced output, explicitly instruct-
ing it to ensure that the proportion of NEI labels
remained at or above 30%. This soft calibration
approach helped mitigate bias in label distribution
and improved robustness in classification.

7.2 Team akiepura_jlam
The akiepura_jlam team (Kiepura and Lam, 2025)
employed a three-stage retrieval and reranking
pipeline for subtask I, starting with a hybrid re-
trieval system that fused BM25, dense and sparse
neural retrieval methods using RRF. Their dense
model was based on a fine-tuned BGE-M3 encoder
(Chen et al., 2024b) trained using triples of (claim,
relevant abstract, irrelevant abstract), where NEI-
labelled abstracts from the training data served as
the negative samples. Dense embeddings were
computed for all abstracts, and claim-abstract sim-
ilarity scores were obtained via dot products. For
sparse retrieval, they used SPLADE-v3 (Lassance
et al., 2024) to generate high-dimensional vectors
for claims and abstracts. The retrieval results from
all three methods, BM25, SPLADE, and BGE-M3,
were combined with RRF, and the top 600 abstracts
per claim were selected for further reranking.

Their second stage comprised of a cross-encoder
reranker based on ms-marco-MiniLM-L-6-v27

(Wang et al., 2020), which was fine-tuned on the
ClimateCheck data using the top 200 candidates

7https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L6-v2
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Rank Team Recall@2 Recall@5 Recall@10 Bpref Subtask I Score

1 Ant Bridge 0.21848 0.45112 0.66476 0.49470 0.45727
2 akiepura_jlam 0.23085 0.44128 0.60061 0.48179 0.43863
3 AlexUNLP-FMT 0.20997 0.39627 0.59112 0.46348 0.41521
4 EFC 0.21769 0.40582 0.57411 0.44952 0.41178
5 gmguarino 0.18064 0.3386 0.47696 0.38678 0.34574
6 Pranav 0.17988 0.31059 0.44038 0.37614 0.32675

– Our baseline 0.1947 0.30468 0.34359 0.29803 0.28525

7 vanguard 0.1065 0.18062 0.27069 0.243 0.2002
8 nakrayko 0.11499 0.16868 0.27069 0.24266 0.19926
9 lephuquy 0.11101 0.15483 0.15759 0.14953 0.14324
10 seniichev 0.07889 0.12156 0.17622 0.14888 0.13139

Table 2: Results of Subtask I: Abstracts Retrieval; top result in bold, runner-up italicised, third place underlined.

Rank Team Precision Recall F1 Subtask II Score

1 Ant Bridge 0.72905 0.72644 0.72528 1.39004
2 akiepura_jlam 0.69496 0.69726 0.69573 1.29634
3 EFC 0.71676 0.71746 0.71696 1.29107

– Our baseline 0.65448 0.62603 0.63148 0.97507

Table 3: Results of Subtask II: Claim Verification; top result in bold, runner-up italicised, third place underlined.

from Stage 1. Training again involved both positive
(evidentiary) and negative (NEI and random) ex-
amples. The top 20 reranked abstracts were passed
to Stage 3, where a few-shot LLM-based reranker
was used, namely RankGPT (Sun et al., 2023) us-
ing GPT-4.18. RankGPT treated reranking as a
permutation task, reasoning over the full set of ab-
stracts per claim to produce a final ordering. Their
final ranking combined the LLM’s output with the
semantic precision score from the cross-encoder.
An ablation study demonstrated the incremental
benefits of each stage, showcasing the effective-
ness of the entire pipeline.

For subtask II, team akiepura_jlam experimented
with both zero- and few-shot prompting, as well
as fine-tuned transformer classifiers, with their
best performance coming from a hybrid zero-shot
prompt that first asked the LLM to determine
whether an abstract was evidentiary and if so, to
assess whether it supported or refuted the claim.

7.3 Team AlexUNLP-FMT

Team AlexUNLP-FMT (Fathallah et al., 2025) par-
ticipated only in subtask I, proposing a hybrid re-
trieval and adaptive reranking strategy to address
the limitation of excluding relevant documents in
the initial retrieval step. The team combined sparse
retrieval, using BM25, with dense retrieval, us-
ing a fine-tuned Stella-en-400M-v5 (Zhang et al.,

8https://openai.com/index/gpt-4-1/

2024) in a contrastive learning approach. From
each retrieval method, they extracted the top 50
abstract candidates from the original set of publi-
cations. The candidates from both methods were
combined, deduplicated, and an initial reranking set
was formed. This was followed by the ms-marco-
MiniLM-L12-v2 reranker9 obtaining the top 30
abstracts from the initial reranking set.

For each of the 30 abstracts, the top 10 were
selected by choosing the closest neighbours from a
similarity graph. The graph was constructed from
the entire abstract corpus using the all-MiniLM-
L6-v2 bi-encoder model10. Each abstract in the
graph was connected to the top 10 most seman-
tically similar abstracts, and an iterative process
of augmenting candidate sets with semantic neigh-
bours was repeated 20 times. In the last iteration,
the top 10 most relevant abstracts with respect to a
given claim were selected.

7.4 Team EFC

Similar to other teams, EFC’s pipeline included
sparse and dense retrieval stages followed by a
reranker (Upravitelev et al., 2025). First, 1,500
abstracts were retrieved via BM25, further reduced
using a fine-tuned e5-large-v2 model11 to 150 ab-

9https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L12-v2

10https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

11https://huggingface.co/intfloat/e5-large-v2
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Team Sparse Retrieval Dense Retrieval Cross-Encoder LLM Graph

Ant Bridge BM25 ✗ BGE-reranker* ✗ ✗
akiepura_jlam BM25, SPLADE BGE-M3* MiniLM* GPT-4.1 ✗
AlexUNLP-FMT BM25 Stella* MiniLM ✗ MiniLM
EFC BM25 E5* MiniLM ✗ ✗
Pranav SPLADE ✗ ✗ Gemini-2.0-Flash ✗

Our baseline BM25 MiniLM MiniLM ✗ ✗

Table 4: Summary of retrieval systems used for subtask I; * indicates fine-tuning with contrastive learning.

Team LLM Classification Setup

Ant Bridge Gemini 2.5 ZS + distribution guidelines
akiepura_jlam GPT-4.1 Hybrid ZS
EFC Qwen 14B ZS w/ reasoning

Our baseline Yi-1.5-9B-Chat-16K ZS

Table 5: Summary of classification models used for subtask II (ZS = zero-shot).

stracts. The model was fine-tuned on the entire Cli-
mateCheck training set for three epochs, utilising
a contrastive learning approach with positive and
negative samples, the latter mined by retrieving the
three least relevant publications using their dense
retrieval method. Finally, the ms-marco-MiniLM-
L12-v2 reranker, also used by Team AlexUNLP-
FMT, was applied to get the top 10 relevant ab-
stracts per claim.

To minimise computational inference cost, the
team chose to compare smaller encoder-only archi-
tectures with larger decoder-only LLMs for subtask
II. Their best-performing encoder only model was
DeBERTa-v3-large12, fine-tuned on several NLI
datasets as well as the ClimateCheck dataset, while
the best LLM was Qwen3 with 14B parameters
(Yang et al., 2025). Their best results, those sub-
mitted to the leaderboard, were achieved using the
Qwen model. However, the team demonstrated that
the fine-tuned DeBERTa is not far behind, with a
total score of 1.257 in subtask II, while requiring
about 0.0026 of the runtime that Qwen needs.

7.5 Team Pranav
Team Pranav participated only in subtask I, utilis-
ing a two-stage retrieve-and-rerank approach. They
start with sparse retrieval using SPLADE-v313 by
indexing the entire publications corpus with sparse
vector representations. Then, for each claim, they
calculate the dot product similarity to retrieve the
top 40 abstracts. The second stage of the approach
is based on LLM reranking using the Gemini-2.0-

12https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli

13https://huggingface.co/naver/splade-v3

Flash14 model with a list-wise strategy. The LLM
is presented with all 40 candidates simultaneously,
prompting it to rerank and output the top 10 ab-
stracts that provide evidence to the claim.

8 Discussion

The submissions to ClimateCheck reveal key de-
sign patterns and trade-offs in building claim ver-
ification pipelines grounded in scientific litera-
ture. Although architecture choices varied, several
common effective strategies emerged across top-
performing teams. We summarise the approaches
for subtasks I and II in Tables 4 and 5, respectively,
and compare their results visually in Figure 3.

A clear pattern from subtask I is the use of hybrid
pipelines, combining sparse retrievers (e.g., BM25
and SPLADE) with different dense retrievers, as
well as cross-encoder rerankers (e.g., BGE and
MiniLM). Three teams extended this by utilising
more advanced components: LLM-based rerank-
ing (akiepura_jlam and Pranav) and graph-based
reranking (AlexUNLP-FMT). Although the teams
achieved competitive scores, they were still out-
performed by the relatively simpler ensemble of
fine-tuned cross-encoders using RRF presented by
Ant Bridge.

Despite variations in retrieval strategies, all
teams, except Pranav, followed a similar paradigm
of fine-tuning models with the available training
data in a contrastive learning approach. The main
difference in their approaches was the way nega-
tive samples were selected, with some incorporat-
ing NEI-labelled abstracts, while others using the

14https://deepmind.google/models/gemini/flash/
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Figure 3: Results of participants who submitted system descriptions compared to our baselines for subtask I (left)
and subtask II (right). Subtask I scores are reported using Recall@K (K = 2, 5, 10), Bpref, and the average-based
SubtaskI-Score. Subtask II scores are reported using weighted metrics of Precision, Recall, and F1, along with
SubtaskII-Score which is the sum of Recall@10 from subtask I and F1 from subtask II.

least relevant abstracts from their own retrieval ap-
proach. We hypothesise that this enabled models to
distinguish subtle semantic differences in scientific
discourse (Zhan et al., 2021). Notably, the top two
systems fine-tuned the cross-encoders, while the
others did so on their dense retrieval models.

When comparing systems, we additionally note
the impact of retrieval depth and recall preserva-
tion. The top-ranked system retrieved up to 5000
abstracts per claim before reranking, enabling a
high coverage of potentially relevant documents.
In contrast, systems that retrieved a limited number
of abstracts early on could have missed documents,
impacting the effectiveness of reranking. This high-
lights that in tasks where relevant evidence is sparse
and semantically complex, such as scientific ab-
stracts, high recall in retrieval is effective.

For subtask II, all leaderboard results employed
an LLM classification approach, resulting in rel-
atively small margins in their scores. Notably,
the top two teams used closed-source, commer-
cial LLMs, while the third ranked team and the
baseline employed open-source models. That be-
ing said, team EFC showed that a more lightweight
architecture, fine-tuned correctly, can still yield
competitive results, highlighted by the results they
achieved using DeBERTa. This emphasises the
practical trade-off between performance and ef-
ficiency, which is an important consideration for
real-world applications such as content moderation
or misinformation detection. In such scenarios, la-
tency, scalability, and interpretability matter. Thus,
systems optimised for low-resource settings remain
very relevant, while other systems that employ com-
mercial LLMs might be less useful.

9 Conclusion

This paper presented the ClimateCheck shared task,
which focused on fact-checking claims from social
media about climate change against scholarly ar-
ticles. The task ran during April/May 2025 and
was hosted as part of the 5th SDP Workshop in
2025. Given a claim, two subtasks were available:
(I) Retrieving the top 10 most relevant (i. e., eviden-
tiary) abstracts, and (II) Classifying the veracity
of the claim given the abstract. The first subtask
was evaluated using Recall@K (K = 2, 5, 10) and
Bpref, while the second using F1 with additional
scaling based on correctly retrieved abstracts. The
task received ten leaderboard submissions, three
of which for both subtasks. Participants explored
a wide range of retrieval and classification strate-
gies, including sparse and dense retrieval fusion,
supervised reranking with cross-encoders, prompt-
based classification with LLMs, and fine-tuned
transformer classifiers. Despite methodological
differences, the most effective systems shared an
emphasis on high-recall retrieval, robust rerank-
ing, and careful label calibration. The Climate-
Check datasets are publicly available,15,16 and a
test suite can be accessed for further submissions
by the community.17 While the task results are
encouraging, it remains an open question whether
these systems are reliable enough for practical de-
ployment. Key open challenges include ensuring
system robustness under noisy or multilingual in-

15https://huggingface.co/datasets/rabuahmad/
climatecheck

16https://huggingface.co/datasets/rabuahmad/
climatecheck_publications_corpus

17https://www.codabench.org/competitions/8304/
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put, reducing inference latency for real-time use,
and scaling evidence retrieval across large schol-
arly corpora. Addressing these challenges will be
essential to transition from prototype systems to
real-world fact-checking tools that can support cli-
mate literacy and policy discourse.

Limitations

Although the ClimateCheck task provides a valu-
able benchmark for evaluating retrieval-augmented
fact-checking systems in the climate science do-
main, several limitations should be noted. First,
the evaluation was conducted at the abstract level,
which may not fully capture the granularity needed
for real-world scientific fact-checking, where ev-
idence often resides at the sentence or paragraph
level. This limited both the precision of retrieval
and the interpretability of classification outputs.

Moreover, although the task focused on social
media claims, the claims were presented in isola-
tion, without access to contextual metadata (such
as source, post history, or surrounding discourse).
As a result, systems could not leverage pragmatic
or contextual cues that are often important in as-
sessing claim intent or credibility in practice.

While the task encouraged participation in both
subtasks, only a small subset of teams did so, limit-
ing the ability to assess full-pipeline performance
across systems. Additionally, some systems re-
lied on commercial LLMs, which, while effective,
reduce reproducibility and raise concerns around
fairness in evaluation due to their proprietary nature
and limited accessibility.

The annotated training data is relatively limited
in size and scope, covering a restricted set of claims
and evidence pairs. Although sufficient to train
and evaluate retrieval and classification models,
further scaling is needed to support generalisation
across claim types and evidence complexity. More
training data is planned to be annotated in the next
months and released as an updated version of the
ClimateCheck dataset.

Finally, a notable limitation in the evaluation
setup stems from the iterative annotation pro-
cess, which introduced an inherent bias toward
teams that submitted results early and consistently.
Throughout the competition, additional evidence
annotations were guided by intermediate system
outputs, meaning that teams whose systems were
included in early and repeated annotation rounds
had the advantage of gold testing data that better re-

flected their own retrieval outputs. Unsurprisingly,
the top four teams participated from the beginning
and were included in nearly all annotation itera-
tions. In contrast, team Pranav stands out as the
only team to outperform the baseline without ever
being included in the additional annotation cycles.
This highlights how annotation strategies can unin-
tentionally reinforce system-specific retrieval pat-
terns, favouring early participants and potentially
underestimating the performance of latecomers.

Ethical Statement

Our annotators were compensated through a typi-
cal payment scheme and have been informed about
the further use of their annotations. The claims
used in the task do not contain sensitive or personal
information and are collected from open-source
datasets. Due to preprocessing, real claims from
social media cannot be traced back to their original
posts. We additionally emphasise that automated
fact-checking systems are not a substitute for expert
judgement and should be deployed with appropri-
ate human oversight.
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A Dataset Samples

Table 6 presents five random claims extracted from
the test set of the ClimateCheck dataset. Each claim
is presented with the top five abstracts retrieved
by the three teams that participated in the two
shared task subtasks: Ant Bridge, akiepura_ljam,
and EFC. Each abstract is followed by a symbol
indicating whether it supports, refutes, or does not
have enough information about the claim, accord-
ing to the results of the team’s subtask II labels.

B Iterative Human Annotation Process

During the testing phase of the competition, addi-
tional documents were collected based on submis-
sions to mitigate bias in the gold testing data. We
did so using the following timeline:

• Week 1, submissions until April 25, 2025:
we had two active teams: Ant Bridge and
AlexUNLP-FMT, thus filtering based on an

agreement threshold of 2 without further fil-
tering based on ranking. We extracted the
following runs: 275408 and 272964, resulting
in 405 additional annotated documents.

• Week 2, submissions until May 2, 2025:
we received submissions from 3 active par-
ticipants: Ant Bridge, AlexUNLP-FMT, and
akiepura_jlam. We filtered pairs for annota-
tion with an agreement between at least two
teams and a minimum rank of 8 across all
teams. This helped us manage the annotation
workload while still maintaining a fairer eval-
uation strategy, taking into account all active
teams. The following runs were extracted:
279364, 280185, and 280233. As a result, 351
additional pairs were annotated.

• Week 3, submissions until May 13, 2025:
seven users were active: Ant Bridge,
AlexUNLP-FMT, akiepura_jlam, gmguarino,
salarmohtaj, nicolauduran45, and EFC, from
which we filtered based on an agreement of
at least three systems with no further ranking
filtering. The following runs were extracted:
285646, 285887, 286061, 286273, 286663,
286806, 286836. This resulted in 477 new
annotated claim-abstract pairs.

Overall, the full process resulted in 1,233 addi-
tional human-annotate claim-abstract pairs for the
176 unique claims in the test set.
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Input (Claim) Output (Publications)

Ant Bridge akiepura_jlam EFC

People make it seem like
we can change our energy
habits, which is quite diffi-
cult.

1. Maréchal, 2014 ✓
2. Jaccard, 2020 ✓
3. De Vries et al., 2011 ◦
4. Jans et al., 2018 ✓
5. Malott, 2017 ◦

1. Jaccard, 2020 ✗
2. Maréchal, 2014 ✓
3. Horgan et al. 2016 ✓
4. De Vries et al., 2011 ✓
5. Bloodhart et al., 2013 ✗

1. Maréchal, 2014 ✓
2. Jaccard, 2020 ✓
3. Horgan et al. 2016 ✓
4. Viguié et al., 2020 ✓
5. Welton, 2018 ◦

Greenhouse gases from our
actions are a major factor
in warming our planet.

1. Nadeau et al., 2021 ✓
2. Simkins, 1991 ✓
3. Feely et al., 2015 ✓
4. Verma, 2021 ✓
5. Solomon et al., 2010 ✓

1. Al-Ghussain, 2018 ✓
2. Simkins, 1991 ✓
3. Haines & Patz, 2004 ✓
4. Nadeau et al., 2021 ✓
5. Miller et al., 2008 ✓

1. Nadeau et al., 2021 ✓
2. Simkins, 1991 ✓
3. Gadani & Vyas, 2011 ✓
4. Haines & Patz, 2004 ✓
5. Giudice et al., 2021 ✓

Burning biomass is a
source of air pollution.

1. Rogers et al., 2020 ✓
2. Huang et al., 2016 ✓
3. Naik et al., 2007 ✓
4. Corsini et al., 2019 ✓
5. Sigsgaard et al., 2015 ✓

1. Rogers et al., 2020 ✓
2. Corsini et al., 2019 ✓
3. Naik et al., 2007 ✓
4. Sigsgaard et al., 2015 ✓
5. Unosson et al., 2013 ✓

1. Naik et al., 2007 ✓
2. Corsini et al., 2019 ✓
3. Rogers et al., 2020 ✓
4. Li et al., 2019 ✓
5. Huang et al., 2016 ✓

heat waves have been on a
downward trend both in the
US and globally #Climate-
ChangeFacts

1. Peterson et al., 2013 ✗
2. Ceccherini et al., 2016 ✗
3. Bumbaco et al., 2013 ✗
4. Cao et al., 2021 ◦
5. Li & Amatus., 2020 ✗

1. Peterson et al., 2013 ✗
2. Ceccherini et al., 2016 ✗
3. Bumbaco et al., 2013 ✗
4. Chase et al., 2006 ✗
5. Mo & Lettenmaier,
2015 ◦

1.Peterson et al., 2013 ✗
2. Huang et al., 2021 ✗
3. Ceccherini et al., 2016 ✗
4. Bumbaco et al., 2013 ✗
5. Mo & Lettenmaier, 2015
◦

Apparently, ice caps are at
record levels now, despite
predictions of melting.

1. Thompson, 2017 ✗
2. Anderson et al., 2008 ✗
3. Isaksson et al., 2005 ◦
4. NEEM community
members, 2013 ✗
5. Thompson et al., 2021 ✗

1. Devasthale et al., 2013 ✗
2. Taranczewski et al.,
2019 ✗
3. Graeter et al., 2018 ✗
4. Thompson, 2017 ✗
5. Massonnet et al., 2023 ✗

1. Edwards et al., 2019 ◦
2. Taranczewski et al.,
2019 ✗
3. Hanna et al., 2013 ◦
4. Devasthale et al., 2013 ✗
5. Graeter et al., 2018 ✗

Table 6: Sample of five random claims from the test set along with the top five retrieved abstracts from each one of
the three teams that participated in both subtasks. Each abstract is followed by a symbol denoting the annotation
label given to the claim-abstract pair: ✓ = Supports, ✗ = Refutes, ◦= NEI.
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