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Abstract
Charts, where information is delivered jointly
by visual and textual features, represent a chal-
lenge when it comes to downstream tasks such
as chart question answering, where both kinds
of information contribute to the task. The
standard approach is to decouple the task in
two steps, first extracting information from
the charts, or representing it as a table, text
or code, and then a second reasoning step to
output the answers. Today, the advancements
in visual encoding of Visual Large Language
Models (VLLM) have shown their capabili-
ties to solve such complex tasks without us-
ing in-between representations of the charts
or massive in-domain training. We propose
a solution for the Scientific Visual Question
Answering (SciVQA) Shared Task, on which
our team THAii_LAB scored the second posi-
tion in the final leaderboard. Our new instruc-
tion fine-tuned and Chain-of-Thought (CoT)
model QwenChart-7B showed that even in a
complex new benchmark general models can
achieve great performances with low-cost train-
ing, matching the capabilities that LLMs have
showed in unimodal downstream tasks. An
out-of-domain evaluation showed satisfactory
results, albeit with an expected drop in perfor-
mance.

1 Introduction

Everything in a chart conveys information: besides
labels such as numbers or text, they feature shapes,
colors and complex visual elements such as bars,
lines or points that contribute to the delivery of
their meaning. Understanding complex texts such
as scientific articles also requires chart comprehen-
sion, including answering questions about charts in
natural language (QA over charts or chart QA). To
tackle this task, previous work has focused on two
main aspects: information extraction from charts
and complex, often logical or arithmetic, reasoning
over that information.

Early approaches would identify and extract in-
formation to feed into a classifier (Kafle et al.,
2018; Chaudhry et al., 2020). Since the rise of
Visual Large Language Models (VLLMs), many
approaches convert charts into a format suitable for
a language model, such as text descriptions, (Liu
et al., 2023a), tables, or code (Lee et al., 2023; Liu
et al., 2023b; He et al., 2025), due to the limited
resolution capability of the visual encoders, and the
conversely great capabilities of the LLMs. While
using tables instead of images leads to some infor-
mation loss, this approach still remains preferable.

Despite reaching satisfactory performance in
general visual understanding tasks, VLLMs have
struggled with downstream chart understanding
tasks (Huang et al., 2024; Islam et al., 2024; Li
et al., 2024a; Lu et al., 2024; Xu et al., 2025a,b).
VLLMs usually consist of a visual encoder and a
language decoder. The complexity of the visual
features of charts represents a bottleneck for visual
encoders, whereas the language decoder struggles
to extract the necessary information from the vi-
sual representations due to the complexity of the
relations between visual and linguistic elements
(Liu et al., 2025). A common approach today in-
volves augmenting data with task-specific instruc-
tions and fine-tuning a pre-trained model accord-
ingly (Han et al., 2023; Islam et al., 2024; Liu et al.,
2024; Masry et al., 2024, 2025). Some researchers
have also opted to train the visual encoder using
chart–table pairs to enhance its representational ca-
pabilities (Han et al., 2023; Islam et al., 2024; Liu
et al., 2024; Masry et al., 2024, 2025; Xu et al.,
2025b).

Borisova et al. (2025) introduced the Scientific
Visual Question Answering (SciVQA) shared task1,
designed to evaluate multi-modal QA systems on
real-world scientific figures through a diverse set of

1https://www.codabench.org/competitions/5904/
#/pages-tab
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both finite and infinite questions. The task empha-
sizes reasoning over complex visualizations and
includes chart types rarely represented in earlier
datasets, such as architecture diagrams, confusion
matrices, and compound figures. In this context, we
propose QwenChart-7B, a vision-language model
specifically designed for the SciVQA task which
achieved second place in the competition.

QwenChart-7B has been instruction-tuned with
Low Rank Adaptation (LoRa, Hu et al. 2021) and
exploits Chain-of-Thought (CoT, Wei et al., 2022)
to improve its reasoning capabilities. We show
that QwenChart-7B is capable of achieving good
performance in chart QA without pretraining on
domain data or using in-between representations
of charts, such as tables. Furthermore, we show
that scaling size of the model does not have a great
impact on performance and identify what param-
eters mostly contribute to the performance of the
model. Our model is one of the first visual models
reaching high performance on a challenging bench-
marks such as SciVQA without using intermediate
representations of charts.

Our contributions are the following:

• a new instruction-tuned VLLM (QwenChart-
7B) that achieves high scores in a challenging
benchmark such as SciVQA, reaching the sec-
ond place in the SciVQA shared task;

• several experiments, showing the influence of
parameters, size of the model and additional
information in the training data during fine-
tuning.

2 Related work

2.1 Data and Benchmarks

Early benchmarks for chart QA included a limited
variety of charts, more often synthetically gener-
ated than derived from real-world sources. DVQA
(Kafle et al., 2018) and FigureQA (Kahou et al.,
2018) are the first datasets for factoid QA over syn-
thetically generated line, bar, and pie charts. Early
datasets provided an alignment with structured aux-
iliary data such as numerical data or tables (Kahou
et al., 2018; Masry et al., 2022), which was nec-
essary to compensate for the lack of sufficiently
robust methods to directly extract graph compo-
nents (Luo et al., 2021; Rane et al., 2021; Kato
et al., 2022).

ChartQA (Masry et al., 2022) is one of the most
widely used benchmarks for chart understanding

and features both synthetically generated and real-
world graphs.

SciVQA2 (Borisova et al., 2025) is a new chart
corpus built from two pre-existing datasets, ACL-
Fig (Karishma et al., 2023) and SciGraphQA (Li
and Tajbakhsh, 2023). The 3000 figures are from
English scientific publications from the ACL An-
thology3 and arXiv4. Unlike other datasets, it is
composed exclusively of real-world figures, rather
than synthetic data and features a wide variety of
figure types, including trees, architecture diagrams,
neural networks, confusion matrices, scatter plots,
and box plots. In addition, it is annotated both with
finite and infinite questions, as well as unanswer-
able questions. The figures are paired with captions
and chart types as additional metadata. An addi-
tional challenge in SciVQA are figures with more
than one chart.

2.2 Limitations of VLLMs in chart QA

Despite recent advancements in tasks such as image
understanding brought forward by the emergence
of VLLMs, QA over charts remains challenging.
Typical approaches focus on two different aspects:
(1) understanding the chart, that is extracting its
meaningful components, such as numbers, labels
but also shape, colors and position of points and (2)
reasoning over the extracted information, for exam-
ple, to compute mathematical operations based on
numbers extracted from the figures.

Early approaches used encoder-only
classification-based models to encode chart
and question separately, and combining them later
with attention blocks (Kafle et al., 2018; Chaudhry
et al., 2020; Singh and Shekhar, 2020), but were
often limited as they had a fixed output vocabulary
(Santoro et al., 2017; Kafle et al., 2018; Kahou
et al., 2018).

Recently, VLLMs have demonstrated remark-
able capabilities in various chart comprehension
tasks, outperforming specialized models (Huang
et al., 2024), such as ChartBERT (Akhtar et al.,
2023), MatCha (Liu et al., 2023b) or UniChart
(Masry et al., 2023). However, VLLMs are not as
good at chart understanding as they are in other
visual tasks (Huang et al., 2024; Islam et al., 2024;
Li et al., 2024a; Lu et al., 2024; Xu et al., 2025a,b).

2https://huggingface.co/datasets/katebor/
SciVQA

3https://aclanthology.org
4https://arxiv.org
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Proprietary models such as GPT-V5, Gemini (Team
et al., 2025) and Claude6 currently achieve the best
results in zero-shot scenarios in most of vision-
language benchmarks, showing strong zero/few
shot inference capabilities. Models such as GPT-
4o7 have shown unprecedented performance in
chart understanding compared to open-source mod-
els (Islam et al., 2024; Wang et al., 2024), such
as Phi-3 (Abdin et al., 2024) or LlaVA (Liu et al.,
2023c). However, the performance is not compara-
ble to that achieved in non-visual tasks.

There are two major bottlenecks in chart under-
standing: the perception capabilities of existing
VLLMs are limited (Razeghi et al., 2024; Zhang
et al., 2024b), and they fail in extracting the neces-
sary information from the provided visual represen-
tations (Liu et al., 2025). Therefore, the state of the
art approach separate a vision encoder and a text
decoder stage, with a stronger focus on the former
or the latter. Common approaches are to transform
charts into structured formats, such as tables, code,
and text (Lee et al., 2023; Liu et al., 2023a,b; Zhou
et al., 2023), as a bridge to a text decoder to lever-
age the power of LLM in reasoning.

Some authors have stressed the impact of input
resolution on pre-training and fine-tuning (Zhang
et al., 2024a). The standard procedure would be
to resize images into fixed resolution to reduce the
length of the visual feature sequence. However,
high and native resolution are essentials for chart
understanding. Models such as Tinychart (Zhang
et al., 2024a) tried to solve this issue merging visual
tokens inside each vision transformer layer.

2.3 Instruction-tuned VLLMs

Some authors point out that VLLMs still struggle
in analyzing charts due to the weak alignment be-
tween vision and language caused by the lack of
charts in pre-trained model data (Xu et al., 2025b).

Recently, many VLLMs models have been
trained on charts to improve their representations
including ChartLLaMa (Han et al., 2023), Char-
tAssistant (Islam et al., 2024), MMC (Liu et al.,
2024), ChartInstruct (Masry et al., 2024), and
ChartGemma (Masry et al., 2025).

Besides being trained on charts, all these mod-
els follow the same methodology: they use chart-

5https://openai.com/index/gpt-4v-system-card/
6https://www.anthropic.com/news/

claude-3-family
7https://openai.com/index/hello-gpt-4o/

specific instruction tuning8 to enhance the extrac-
tion capability of the language decoder (Liu et al.,
2023c; Islam et al., 2024; Liu et al., 2024; Masry
et al., 2024, 2025). With instruction tuning the
model should learn to understand and internally
represent the components of a chart, such as axes,
labels, bars, trends. Hence, the first step is to aug-
ment dataset of charts with instructions, rationales
or CoT data (Wang et al., 2023; Carbune et al.,
2024; Huang et al., 2024; Jia et al., 2024; Li et al.,
2024b; Kim et al., 2025; Wang et al., 2025).

While showing promising results, models which
are fine-tuned on task-specific datasets show their
limits when it comes to generalizing on unseen
data.

3 QwenChart

3.1 Model Architecture

To develop our model9, QwenChart, we fine-tuned
Qwen2.5-VL (Bai et al., 2025) using LoRa (Hu
et al., 2021) on an instruction-based chart dataset
generated via dynamic CoT prompting (Wei et al.,
2022). With LoRa, the original model weights are
frozen and only a few new parameters are trained.
Instead of updating all the weights in a large matrix,
LoRa inserts small trainable matrices that approxi-
mate the change, thus maintaining the capabilities
of the original model intact while reducing the com-
putational cost. Our dataset comprises chart images
and associated metadata from the SciVQA dataset
(Borisova et al., 2025). Section 3.2 describes the
process we followed to augment SciVQA.

Our model is particularly suited for chart tasks
thanks to the dynamic encoding, i.e., the ability to
receive images with different sizes as input with-
out the need for normalization. As discussed in
Section 2.2, native and high resolution are two im-
portant features for chart understanding. Bai et al.
(2025) trained a Vision Transformer (ViT, Dosovit-
skiy et al. 2021) from scratch with native dynamic
encoding to maintain images (or videos) with na-
tive resolution. They also incorporate a Window
Attention in the ViT. The model comes in 4 sizes:
3B, 7B, 32B and 72B. We used the 7B model and
compared it with the 72B. The model is composed
by a visual encoder, a cross-modal projector and a
text decoder.

8Llava (Liu et al., 2023c) is the first attempt to use instruc-
tion tuning with multi-modal models.

9https://github.com/tha-atlas/QwenChart
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3.2 Pre-Processing

3.2.1 Data augmentation with dynamic
prompting and Chain-of-Thought

To prepare the SciVQA dataset for fine-tuning we
built a dynamic prompting pipeline with instruc-
tions and CoT.

For each question-chart pair a different prompt
was generated. Figure 2 (in the Appendix A.1),
presents two example prompts for a single ques-
tion–chart pair. The first prompt is specifically
designed to match the format of questions found in
the SciVQA dataset. The second is a more generic
prompt we developed to facilitate experiments on
other benchmarks, allowing for prompt adaptation
based on the target dataset.

The prompt is built using the metadata from
SciVQA. The first information provided in the
prompt is the type of chart, then the caption. Then
the question is provided, followed by some clues
about the information the model should focus on.
This can change based on the type of question that
is provided. The model was instructed to provide
concise answers, as Qwen2.5-VL tends to generate
overly verbose responses.

To support this claim, we conducted a controlled
comparison using two prompting strategies:

Simple Question Prompt: the prompt contains
only the question;

Dynamic Prompt (ours): a structured prompt
instructing the model to provide a concise answer.

We observed a significant difference in response
length. On average, answers generated using the
Simple Question Prompt were approximately 31.18
words, while responses using our Dynamic Prompt
averaged just 1.35 words, closely aligning with the
gold standard answers (1.32 words on average). An
example of answers generated by the model with
the two different prompts can be found in Appendix
A.2. This experiment confirms that explicit prompt-
ing for brevity is essential to prevent unnecessarily
long and redundant answers from Qwen2.5-VL.
Given that we use ROUGE-1 and ROUGE-L met-
rics (Lin, 2004) for evaluation, it was essential to
produce outputs that closely matched the gold stan-
dard. For this reason, we also specified the use
of digits only and the inclusion of appropriate suf-
fixes. Moreover, the instruction on how to respond
when a question was unanswerable was included to
ensure consistency with the format of the gold stan-
dard. Additional instructions were adapted based
on the nature of the question. For example, whether

it involved multiple-choice or binary-choice for-
mats, or if addressed six visual attributes or not
(shape, size, position, height, direction or colour).
The final section of the prompt, labeled <thinking>,
represents the CoT component. We observed that
including this step encourages the model to engage
in self-reflection, resulting in more reasoned and
coherent responses. The CoT prompting leads to a
substantial improvement across all evaluated met-
rics, with ROUGE-1 F1 increasing from 72.41% to
79.23% and ROUGE-L F1 from 72.30% to 79.06%
- reflecting a gain of nearly 7 points in both cases.

3.2.2 Image Pre-processing
As an additional preprocessing step prior to fine-
tuning, we applied a 10% white padding uniformly
around each image in the dataset. This modifica-
tion was introduced after observing that the model
exhibited difficulties in accurately recognizing ob-
jects located near the image boundaries. Two hu-
man annotators manually checked the results from
first experiments on 100 QA pairs and identify this
tendency in the model.

3.2.3 Conversation-Based Queries
We converted every dataset entry from SciVQA
in conversation-based queries that contained the
prompt as described in Section 3.2.1, with the goal
of using the queries as training data. Each entry
in the SciVQA dataset consists of an image paired
with a corresponding question, along with addi-
tional metadata (figure type, figure caption, and
question category). The question type is classified
as unanswerable, infinite, or finite (e.g., multiple
choice or binary), and is further annotated as ei-
ther visual or non-visual depending on whether
it involves any of six predefined visual attributes:
shape, size, position, height, direction, or color. In
the conversation query we added this system mes-
sage: "You are a Vision Language Model special-
ized in interpreting visual data from chart images.
Your task is to analyze the provided chart image
and respond to queries with concise answers, usu-
ally a single word, number, or short phrase. The
charts include a variety of types (e.g., line charts,
bar charts) and contain colors, labels, and text. Fo-
cus on delivering accurate, succinct answers based
on the visual information. Avoid additional expla-
nation unless absolutely necessary".

During the fine-tuning process, the gold (ground-
truth) answer was included at the end of each con-
versational query, in order to provide the model
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with supervised learning signals. This information
was excluded in the testing phase.

4 Experimental setup

4.1 Instruction-tuned QwenChart with
dynamic prompting

We performed supervised fine-tuning of Qwen2.5-
VL (Bai et al., 2025) on the training set of SciVQA
prepared as described in Section 3.2. Specifically,
we set up a rank of r = 64, an alpha (scaling factor)
of 32. The dropout rate is set to 5%. We applied
LoRA to the query, key, value and output projection
layers of the attention modules of the text decoder
and to the gate, up, down projectors of the Multi-
Layer Perceptron. All other parameters, including
the visual encoder, remained frozen during fine-
tuning.

The total number of Qwen2.5-VL is
9,537,950,720, we trained the 13.0912% of
them. Training was conducted for 2 epochs with an
effective batch size of 24 (batch size = 6, gradient
accumulation = 4), using a learning rate of 2e-4
and bfloat16 precision. Experiments were run
on 8× H100 (80GB) GPUs. This version of the
model, called QwenChart-7B, is the one used
for the final submission on the leaderboard of
the SciVQA shared task (Borisova et al., 2025).
Furthermore, we fine-tuned the 72B Qwen2.5-VL
version following the same configuration to see
how it copes with the scaling up of the model. This
version is called QwenChart-72B.

4.2 Instruction-tuned QwenChart with
general prompting

We developed a different version of the prompt that
can be adapted to other datasets, as illustrated in
Section 3.2.1 and in Figure 2 in Appendix A.1. We
fine-tuned Qwen2.5-VL on the the training set of
SciVQA, prepared as discussed in Section 3.2, but
using the adapted prompt version. For this model,
we use the same configuration detailed in Sec-
tion 4.1. This version of the model, QwenChart2-
7B, does not include captions in the training data.

4.3 Evaluation

We evaluate the performance of our proposed
models —QwenChart-7B, QwenChart2-7B, and
QwenChart-72B— on both the development and
test sets of the SciVQA benchmark (Table 1). To
assess generalization capabilities, we also evaluate
QwenChart-7B on ChartQA (Masry et al., 2022)

(Table 1, last row), a widely adopted benchmark
for chart question answering.

For comparison, we report zero-shot perfor-
mance of two strong baseline models: the original
Qwen2.5-VL and Gemma3-12B-IT10. For this re-
sults we used the dynamic prompt as in Section
3.2.1. These results, presented in Table 1, serve
as a reference point to quantify the impact of fine-
tuning and instruction design in our models.

We conduct our evaluation across different
scenarios using ROUGE-1, ROUGE-L, and
BERTScore (Zhang et al., 2020).

5 Analysis and Discussions

Table 1 shows that QwenChart-7B is the top per-
former on SciVQA across all metrics (highest
ROUGE-1, ROUGE-L and BERTScore), indicat-
ing both lexical and semantic closeness to the
ground truth. It slightly outperforms the larger
QwenChart-72B, suggesting size alone does not
guarantee better performance. QwenChart2-7B
shows a performance drop on ChartQA. This im-
plies that our model is not robust enough for gen-
eralization on out-of-domain data. Qwen2.5-VL
on zero-shot performs well on SciVQA especially
if compared to Gemma3.12b-it. The QwenChart
models (7B, 72B, and 2-7B) show consistently high
performance, but we notice a significant increase
in performance with version QwenChart-7B. We
also observe that figure captions have limited im-
pact on results, as QwenChart2-7B achieves strong
performance despite not being trained with caption
information.

One of the key contributions of this work is the
demonstration that high performance on chart un-
derstanding can be achieved using a visual model
that does not rely on intermediate representations
such as tables or code. This is particularly sig-
nificant in the context of the SciVQA benchmark,
which features a diverse set of real-world charts.
The strong performance of QwenChart-7B, which
surpasses even its larger counterpart (QwenChart-
72B), suggests that model architecture and prompt
engineering may have a more substantial impact on
downstream performance than model size.

Another advantage lies in the efficient training
process enabled by LoRA. By fine-tuning only 13%
of the model’s parameters, we achieve competitive
results while significantly reducing computational
cost and preserving the core capabilities of the pre-

10https://huggingface.co/google/gemma-3-12b-it
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ROUGE-1 ROUGE-L BERTScore

Model F1 Precision Recall F1 Precision Recall F1 Precision Recall

Qwen2.5-VL (dev set) 71.57% 72.96% 71.72% 71.52% 72.88% 71.67% 97.29% 97.38% 97.25%
Gemma3-12b-it (dev set) 60.96% 62.83% 60.43% 60.92% 62.78% 60.41% 96.61% 96.75% 96.52%
QwenChart-7B (test set) 78.99% 79.60% 79.49% 78.92% 79.53% 79.42% 98.39% 98.41% 98.40%
QwenChart-7B (dev set) 79.23% 80.24% 79.25% 79.06% 80.05% 79.08% 98.40% 98.50% 98.33%
QwenChart-72B (dev set) 77.54% 78.29% 77.93% 77.40% 78.16% 77.79% 98.23% 98.29% 98.19%
QwenChart2-7B (dev set) 76.62% 77.25% 77.16% 76.50% 77.13% 77.03% 98.19% 98.22% 98.19%
QwenChart2-7B (ChartQA) 66.38% 66.46% 67.20% 66.28% 66.27% 67.10% 94.69% 94.19% 95.23%

Table 1: Evaluation metrics across models on development and test set of SciVQA and ChartQA (validation set)
(last row).

ROUGE-1 ROUGE-L BERTScore

QA type F1 Precision Recall F1 Precision Recall F1 Precision Recall

finite binary non-visual 79.86% 79.86% 79.86% 79.86% 79.86% 79.86% 100.0% 100.0% 100.0%
finite binary visual 78.93% 78.93% 78.93% 78.93% 78.93% 78.93% 100.0% 100.0% 100.0%
finite non-binary non-visual 75.68% 75.79% 77.96% 74.5% 74.61% 76.79% 98.25% 98.07% 98.43%
finite non-binary visual 65.36% 65.0% 67.0% 65.36% 65.0% 67.0% 98.5% 98.21% 98.79%
infinite non-visual 74.46% 76.0% 75.5% 74.43% 75.96% 75.5% 96.39% 96.43% 96.54%
infinite visual 62.36% 63.36% 62.57% 62.04% 62.96% 62.21% 96.79% 96.82% 96.86%
unanswerable 95.0% 95.0% 95.0% 95.0% 95.0% 95.0% 99.11% 99.14% 99.07%

Table 2: Evaluation metrics of QwenChart-7B on the development set of SciVQA by QA type.

trained model. Dynamic prompting, combined with
CoT rationales, further enhances the model’s rea-
soning capabilities. This strategy allows the model
to decompose complex questions into intermedi-
ate logical steps, resulting in more coherent and
contextually accurate responses.

Despite promising results on SciVQA, our exper-
iments reveal a performance drop on the ChartQA
benchmark, indicating that the model’s general-
ization capability to out-of-domain data is limited.
This suggests potential overfitting to the prompt
format or chart types seen during fine-tuning. Fur-
ther efforts are needed to enhance the robustness
of instruction-tuned models across datasets.

We observed that the ROUGE-1, ROUGE-L,
and BERTScore metrics exhibit certain limitations
when applied to this type of task. Compared to
BERTScore, ROUGE proves to be more sensitive,
as it is better able to highlight performance differ-
ences. ROUGE, in fact, imposes a heavier penalty
on responses that do not exactly match the gold
standard, making it more suitable for this task.
However, this can also lead to an underestimation
of model performance when responses are correct
but differ in form from the reference answers. Ta-
ble 3 shows some illustrative examples.

Answer Gold Answer

RANDOM, SSID RANDOM and SSID
0.4 0.32–0.52
Three 3
IT Italian
A B C D A,B,C,D

Table 3: Examples of QwenChart-7B answers vs gold
answers from SciVQA development set.

5.1 Error Analysis

To gain deeper insights into model performance
across different chart and question types, we con-
ducted a quantitative analysis of the performance of
QwenChart-7B on the development set of SciVQA
(Table 2 and Table 4). The results reveal several
notable patterns in how QwenChart-7B handles
various categories of questions within the figure
type.

First, we observe that binary (yes/no, true/false)
answer set questions—both visual11 and non-visual
—yield the highest performance across all metrics.
This suggests that the model excels when the an-
swer space is limited and well-structured. Simi-
larly, multiple choice visual questions also perform

11A visual question in SciVQA dataset is a question that
addresses six designated features of the image: shape, size,
position, height, direction or color.
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ROUGE-1 ROUGE-L BERTScore

Figure Type F1 Precision Recall F1 Precision Recall F1 Precision Recall

Line Chart 68.79% 69.78% 68.86% 68.72% 69.72% 68.86% 97.64% 97.5% 97.57%
Line Chart, Table 85.71% 85.71% 85.71% 85.71% 85.71% 85.71% 98.29% 98.14% 98.57%
Tree 71.28% 72.57% 70.72% 71.28% 72.57% 70.72% 98.42% 98.58% 98.5%
Scatter Plot 71.5% 71.79% 71.36% 71.5% 71.79% 71.36% 98.42% 98.78% 98.15%
Pie Chart 84.29% 83.71% 85.71% 84.29% 83.71% 85.71% 99.29% 99.14% 99.43%
Architecture Diagram 91.15% 91.5% 90.93% 90.93% 91.22% 90.72% 99.57% 99.65% 99.5%
Box Plot 79.71% 78.57% 82.14% 79.71% 78.57% 82.14% 98.71% 98.43% 99.14%
Neural Networks 83.14% 83.14% 83.28% 83.14% 83.14% 83.28% 99.5% 99.57% 99.65%
Confusion Matrix 81.71% 81.43% 83.57% 81.71% 81.43% 83.57% 97.57% 97.29% 97.43%
Graph 76.5% 76.86% 77.85% 76.07% 76.36% 77.35% 98.15% 98.08% 98.28%
Bar Chart 73.0% 73.86% 73.43% 73.0% 73.86% 73.43% 97.71% 97.57% 98.0%
Histogram 83.35% 85.71% 82.14% 83.35% 85.71% 82.14% 99.35% 99.5% 99.22%
Venn Diagram 85.71% 85.71% 85.71% 85.71% 85.71% 85.71% 100.0% 100.0% 100.0%
Vector Plot 95.29% 100.0% 92.86% 95.29% 100.0% 92.86% 97.86% 98.0% 97.71%
Other 35.14% 32.86% 42.86% 35.14% 32.86% 42.86% 98.29% 97.71% 98.86%
Line Chart, Bar Chart 42.86% 42.86% 42.86% 42.86% 42.86% 42.86% 97.29% 97.43% 97.14%
Flow Chart 85.71% 85.71% 85.71% 85.71% 85.71% 85.71% 98.0% 98.57% 97.57%
Tree, Graph 62.86% 61.86% 64.29% 58.14% 57.14% 59.57% 95.57% 94.86% 96.57%
Illustrative Diagram 74.57% 74.29% 75.0% 74.57% 74.29% 75.0% 98.14% 97.86% 98.29%
Line Chart, Scatter Plot 71.43% 71.43% 71.43% 71.43% 71.43% 71.43% 100.0% 100.0% 100.0%
Heat Map 77.14% 75.0% 85.71% 77.14% 75.0% 85.71% 97.29% 96.43% 98.29%

Table 4: Evaluation metrics of QwenChart-7B on the development set of SciVQA by figure type.

strongly, indicating that the model handles moder-
ate complexity well.

On the other hand, performance drops for
visually-anchored queries. Specifically, infinite vi-
sual questions scored the lowest. This may be due
to the model’s difficulty in generating precise free-
form answers from ambiguous or densely visual
inputs without clearly bounded outputs.

Table 4 demonstrates that the type of figure
significantly impacts model performance. "Vec-
tor Plot" yielded the highest overall performance
with scores of 95.29% ROUGE-1 F1 and 97.86%
BERTScore F1, indicating the model’s strong abil-
ity to extract and interpret information from this
format. "Pie Chart", "Architecture Diagram", and
"Neural Networks" also demonstrated consistently
strong results, suggesting that these figure types
offer more visually consistent and interpretable
structures for the model. In contrast, "Other" and
hybrid types like "Line Chart, Bar Chart" signifi-
cantly underperformed, with ROUGE-1 F1 scores
as low as 35.14% and 42.86%, respectively. This
disparity indicates that composite visualizations
or less conventional diagrams introduce ambiguity
or complexity that current models struggle to re-
solve effectively. This aligns with findings by Zhu
et al. (2025), who highlight that VLMMs are still
not robust when it comes to multi-chart reasoning.

Conversely, we observed that other multi-chart fig-
ures, such as "Line Chart, Table", or "Line Chart,
Scatter Plot" yield acceptable scores (85.71% and
71.43% with ROUGE-1 F1). Overall, these results
underscore the importance of figure type in influ-
encing model performance and reveal that chart
complexity and visual composition remain critical
challenges for VLMMs.

Notably, the model performs almost perfectly on
unanswerable questions, indicating that it reliably
recognizes when the provided visual information
is insufficient to answer the question.

These findings support the broader observation
that structured question formats (e.g., yes/no an-
swers) better align with the model’s reasoning ca-
pabilities, while open or unconstrained queries in-
volving visual reasoning are more challenging. It
should also be noted that the proportion of chart
types and questions in the training dataset was not
balanced. Future improvements may involve train-
ing on more varied chart types to improve general-
ization.

6 Conclusions

In this work, we introduced QwenChart-7B,
an instruction-tuned VLLM built on Qwen2.5-
VL for the shared task SciVQA. Our approach
leverages dynamic CoT prompting and LoRA-
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based parameter-efficient fine-tuning. Despite
its relatively small size, QwenChart-7B demon-
strates state-of-the-art performance on the chal-
lenging SciVQA benchmark, outperforming even
larger models like QwenChart-72B. This suggests
that architecture-specific optimization and well-
designed prompts can surpass gains from model
scaling alone. However, we also observed limi-
tations in out-of-domain generalization, particu-
larly on the ChartQA benchmark, indicating room
for improvement. Future work will explore richer
multimodal alignment, broader datasets, and more
generalized instruction strategies to address these
challenges and further improve performance across
diverse chart types and QA formats.

Limitations

Despite the strong performance of QwenChart-
7B on SciVQA, several limitations remain. First,
the model struggles with generalization when
evaluated on out-of-domain benchmarks such as
ChartQA. This suggests a sensitivity to dataset-
specific features and prompt formulations, poten-
tially limiting its broader applicability without ad-
ditional fine-tuning. Second, the relatively small
amount of fine-tuning data used may not adequately
capture the diversity of real-world chart formats
and question styles, further constraining general-
ization in unseen tasks and out-of-domain data. An-
other limitation concerns the evaluation methodol-
ogy. While automatic metrics such as ROUGE-1,
ROUGE-L, and BERTScore are standard in nat-
ural language generation tasks, they are not ide-
ally suited for assessing short, factual responses
typical in chart QA. These metrics may fail to pe-
nalize near-miss answers or reward semantically
correct but lexically mismatched outputs, thus po-
tentially misrepresenting true model performance.
We notice that sometimes the result is evaluated
as wrong even if it is correct. A human evaluation
could solve this issue. Furthermore, the work is
limited in providing evaluations with other models
or benchmarks.
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A Appendix

A.1 Example of chart and corresponding
prompts

We show here an example of a chart from the
SciVQA dataset (Figure 1) and two different
prompts (Figure 2), used as described in Section
3.2.

Figure 1: Chart paired with the prompts shown in Fig-
ure 2.

Figure 2: Examples of prompts for image-question pair.
The image is shown in Figure 1.
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A.2 Simple Question Prompt vs. Dynamic
Prompt

The following example shows the answers gen-
erated with Qwen2.5-VL with Simple Question
Prompt and with our Dynamic Prompt, as described
in Section 3.2.1. The question is taken from the
SciVQA dataset.

Question: "Does the accuracy of the red line
decrease as the percentage of tokens selected in-
creases?"

Simple Question Prompt Answer: “No, the
accuracy of the red line does not decrease as the
percentage of tokens selected increases. The red
line remains relatively flat and stable across the
range of percentages shown in the figure, indicating
that the accuracy is consistent regardless of the
number of tokens selected”. (Length: 47 words)

Dynamic Prompt Answer: "No".
Gold Answer: "No".
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