The Power of Simplicity in LLM-Based Event Forecasting

Meiru Zhang® Auss Abbood® Zaiqgiao Meng® Nigel Collier®
#Language Technology Lab, University of Cambridge
¢School of Computing Science, University of Glasgow

*{mz468, aa2613, nhc30}@cam.ac.uk
¥zaigiao.meng@glasgow. ac.uk

Abstract

Event forecasting is a challenging task that re-
quires temporal reasoning over historical data.
Although iterative reasoning agents following
the ReAct paradigm bring improvements to
event forecasting tasks, they also increase the
cost of each prediction and bring challenges
in tracing the information that contributes to
the prediction. In this study, we simplify the
ReAct framework into a retrieval-augmented
generation (RAG) pipeline. Surprisingly, the
RAG outperforms ReAct with only 10% of the
token costs. Furthermore, our experiments re-
veal that structured statistical contexts signifi-
cantly enhance forecasting accuracy, whereas
introducing unstructured semantic information
(e.g., news article titles) negatively impacts per-
formance. In-depth analyses further highlight
that the iterative reasoning traces impair fore-
casting accuracy in smaller-scale models but
benefit larger models (e.g., 70B) in the event
forecasting task. These insights underscore
existing limitations in large language models’
temporal and semantic reasoning abilities, pro-
viding critical guidance for developing more
cost-effective and reliable forecasting systems.

1 Introduction

Temporal event forecasting, the capability to an-
ticipate future events based on historical and cur-
rent data, is crucial across domains such as climate
change (Gillingham et al., 2018), finance (Chris-
tensen et al., 2018), and policy-making (Savio and
Nikolopoulos, 2013), where timely and accurate
predictions directly influence decision-making and
strategic planning (Anastassopoulou et al., 2020).
Traditional forecasting approaches predomi-
nantly employ statistical techniques such as auto-
regression (Makridakis et al., 2008) or machine
learning-based time-series models (Triebe et al.,
2021). Recent advancements in Large Language
Models (LLMs) have enabled novel approaches
in this task, leveraging extensive textual resources

45 e RAG (RelDis+Event+Article Title)
SR @RAG (RelDis+Event)
40 :
, RAG (RelDis only) ReAct
35 o
BolelS
L 30 : :
9 i
- :
s H
20 P
. ..qP0T
15 i i
10 e
1.0 10.0

($) (Costs/Cost of Zero-shot) by GPT-40-mini
® No Retrieval @ RAG ReAct

Figure 1: F1 score versus token cost per query (log
scale) for different approaches using GPT-40-mini as
the backbone model. Costs are expressed as a ratio to
the zero-shot (ZS) cost for comparability. RelDis, Event,
and Article_Title represent information types provided
to the RAG system (details in Section 2.2).

to predict international events and their potential
outcomes (Wang et al., 2024; Chang et al., 2024;
Wang et al., 2025). Lee et al. (2023) explored in-
context learning for event forecasting, and retrieval-
augmented generation (RAG) has also been ap-
plied and demonstrated the effectiveness of LLMs
in solving this task (Sun et al., 2023; Liao et al.,
2023). Agentic methods, which enable LLMs to
autonomously interact with external knowledge
sources and dynamically retrieve information, have
become increasingly popular for event forecasting
tasks. Wang et al. (2025) proposed a pipeline that
incorporates both a reasoning agent and an eval-
uation agent for time series forecasting. Ye et al.
(2024) introduced the MIRAI benchmark, which
includes a contextual information database and a
pre-defined API that allows LLM agents to interact
with and retrieve data from the database.

The iterative API-based interaction between the
LLM agent and the database enables step-by-step
planning, allowing the model to rethink its reason-
ing based on additional information retrieved at
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each step. However, despite this flexibility, our pre-
liminary experiments show that ReAct incurs sub-
stantial token inference costs without yielding more
accurate event forecasting predictions compared to
RAG. As shown in Figure 1, GPT-40-mini, when
paired with RAG using the same retrieved data,
achieves comparable or superior performance at
only about 10% of the inference cost relative to Re-
Act on the MIRAI benchmark.! For visualization,
the zero-shot cost is used as the baseline to scale
the token costs of RAG and ReAct.

Building on the observation that RAG can out-
perform ReAct with significantly lower token
costs, we systematically evaluate its generalizabil-
ity across a range of LLM architectures. Addition-
ally, we investigate the factors contributing to the
performance differences between RAG and ReAct
on the MIRAI benchmark.

The contribution of this work is as follows:

¢ We demonstrate that RAG, when combined
with different types of contextual information
and LLM backbones, consistently achieves
comparable or superior forecasting accuracy
at reduced inference costs.

* Our result illustrates that structured event data
significantly enhances predictive performance,
while semantic information holds a less im-
portant role in making accurate predictions.

* Our experimental results indicate that larger
models (e.g., 70B parameters) effectively
leverage enriched semantic contexts such as
artitle titles and reasoning cues generated by
themselves, while smaller models struggle
with excessive contextual information.

2 Experiment Setup

2.1 Preliminary

The MIRAI benchmark. This paper focuses on
the task of temporal event forecasting, with our
experiments conducted using the MIRAI bench-
mark (Ye et al., 2024). Figure 2 (a) provides an
overview of the task, the interaction between the
API and the database, and the expected output. In
particular, it visually summarizes how country-pair
queries, historical event data, and the CAMEO on-
tology (Boschee et al., 2015)? converge to form the

'We describe the details of the benchmark in Section 2.1.

2Conflict and Mediation Event Observations (CAMEO)
is a well-established ontology for categorizing international
political events.

event forecasting pipeline. The international event
is represented as e, = (t, s, 7, 0), where ¢ denotes
the event’s timestamp, s and o are the subject and
object countries, respectively, and » € R denotes
the relation type defined by the CAMEO ontology.

The forecasting task query is formalized as
(t+1,s,77,0), where r? represents the unknown
relation to be predicted, aiming to predict the inter-
national relational events between a pair of coun-
tries occurring [ days after the current time ¢. The
current time, referred to as the Cutoff Date, up to
which historical data are available. The interval
Timediff = [ encompasses different forecasting
challenges; for instance, predicting events 90 days
ahead is naturally more difficult than forecasting
those for the next day. Longer horizons require
models to integrate and interpret information across
broader temporal windows.

The expected prediction output includes the
CAMEDO codes of all anticipated events, presented
in JSON format (e.g., ‘01’: [‘@11’, ‘@12’],
€02’ : [“021’1). These codes span both first-level
and second-level CAMEO classifications, allowing
for coarse- and fine-grained accuracy assessment.’
Predictions are evaluated using F1 scores where
positive predictions are forecasted CAMEO codes
that match ground-truth event relations.

Query and Database. The benchmark’s data
comprises country-pair queries (e.g., forecast-
ing relation CAMEO codes between Australia and
China on November 3, 2023: (2023-11-03, AUS, ?,
CHN)) and a database containing both structured
information (e.g., event relation distributions, event
counts between country pairs) and unstructured in-
formation (e.g., news articles). Structured histor-
ical events are drawn from the Global Database
of Events, Language, and Tone (GDELT) (Leetaru
and Schrodt, 2013), while unstructured news arti-
cles are sourced and filtered from OBELICS (Lau-
rencon et al., 2023). The CAMEO ontology is
also included in the database, allowing models to
access the parent-child hierarchy connections of
the relation types. Overall, the dataset contains
59,161 unique (¢, s, r,0) events with timestamps
between January 1, 2023 and November 30, 2023.
The test query set, based on November 2023 events,
contains 705 queries with corresponding answers.
Additionally, a balanced subset of 100 queries with

For example, ‘01° indicates ‘Make public statement’,
while ‘012, as a finer category of ‘01°‘, which refers to ‘Make
pessimistic statement’.
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Figure 2: Comparison of RAG and ReAct in the event forecasting scenario. (a) Overview of the event forecasting
task and dataset in MIRAL (b) ReAct Forecasting Framework. (c) Our simplified framework.

uniform date coverage throughout November is
provided to enable comprehensive ablation studies
while maintaining temporal representativeness and
computational tractability.

API for Data Retrieval. The benchmark also
provides an API that contains the essential data
classes and a suite of functions designed to inter-
act with various types of information within the
database. These functions cover various types of
information, including country/relation code map-
pings and hierarchies, event statistics (counts, list-
ings, distributions), event and news article retrieval.
Unlike traditional RAG, which retrieves data into
context based on the similarity between query and
data in the database, MIRAI’s API allows LLM
agents to retrieve data flexibly by passing various
parameters. For example, the model could ask for
events beyond the given pair of countries for more
advanced geopolitical considerations. The agent
could also access the CAMEO ontology to retrieve
the 3-digit second-level codes given the 2-digit first-
level code and vice versa if deemed helpful.

2.2 RAG-based Simplification of the ReAct
Framework

As illustrated in Figure 2, the ReAct paradigm re-
lies on iterative inferences by an LLM to gener-

ate API calls and continuously integrate new in-
formation retrieved from the API and database un-
til reaching a specified step limit or final answer.
Although ReAct can theoretically access compre-
hensive data, each additional interaction increases
the cost and complexity of forecasting. To address
these limitations, we propose a simplified RAG
approach that constrains ReAct along two dimen-
sions: the interaction pipeline and the scope of
retrieved data. We re-propose MIRAI’s API to
perform a single-turn retrieval operation using the
Cutoff Date, subject country, and object country,
as specified by the forecasting task. Unlike ReAct,
which can leverage the full API and retrieve any in-
formation in the database, our approach focuses on
three data types deemed most beneficial for event
forecasting:

* Relation Distribution (RelDis): Statistical
frequencies of CAMEO relation codes
summarizing historical interaction pat-
terns between country pairs (retrieved by
get_relation_distribution function).

¢ Event Data (Uni-directional/Bi-directional):
Structured representations of historical events
either uni-directionally (from one country to
another) or bidirectionally. We fix the num-
ber of retrieved events at 30 (retrieved by
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get_events function), maintained the default
setting of the benchmark.

* News Article Titles: Titles from recent news
articles related to the specified country pairs.
We fix the number of titles retrieved at 15
(retrieved by get_news_articles function).

2.3 Task Settings

To fully investigate the necessity of iterative reason-
ing and retrieval, we compared the effectiveness of
the simplified RAG with iterative ReAct by evalu-
ating on both the full-and sub-set test splits of the
benchmark. Due to limited resources, we show the
full analysis on the sub-set only and the full-set
results with Timediff=7 (details in Appendix A.4).

We adopt the same system prompts, query
prompts, and extractor prompts defined in the origi-
nal MIRALI paper for the ReAct Strategy. For RAG,
we minimally modify these prompts only to re-
move the iterative thought-action loops to immedi-
ately retrieve information described in Section 2.2.
All experiments utilize the same computational re-
sources, evaluation metrics, and temporal horizons
(Timediff=1, 7, 30, 90 days).

2.4 Models

We conduct our experiment on three open-source
LLMs, i.e. Llama-3.1-8B (Meta Al Research,
2023), Llama-3-70B* (Meta AI Research, 2023)
and Mistral-7B-v@. 2, and GPT-40-mini, a ref-
erence closed-source model’. The hardware and
inference setup details are in Appendix A.1.

3 Results and Analysis

3.1 Retrieval Strategy Comparison and
Information Type Analysis

RAG comparison with ReAct. Before compar-
ing retrieval strategies, we evaluate the necessity
to access historical information. Baseline exper-
iments without retrieval show substantial perfor-
mance degradation across all models (detailed
analysis in Appendix A.2), confirming that mod-
els require explicit access to historical patterns
rather than relying on memorized training data.
Building on this methodological foundation, we
systematically compare our simplified RAG ap-
proach against iterative ReAct across multiple

‘In GPTQ format due to resource constraints:
https://huggingface.co/TechxGenus/Meta-Llama-3-70B-
Instruct-GPTQ.

Shttps://platform.openai.com/docs/models/gpt-4o-mini,
point to gpt-40-mini-2024-07-18.

model scales and analyze the effectiveness of differ-
ent information types in forecasting performance.

Our findings in Table 1 confirm the earlier obser-
vation — illustrated in Figure 1 — that RAG performs
on par with or better than ReAct and that this gen-
eralizes effectively across open-source LLLMs at a
Timediff of 1. Additionally, structured data for-
mats, such as relation distributions (RelDis) and
historical information as lists of event code as con-
text, consistently outperform richer yet less struc-
tured semantic contexts like raw news article titles.

Specifically, providing structured relation distri-
butions and a list of past event codes consistently
improves performance across all models. For in-
stance, GPT-40-mini and L1ama-3-70B achieved
significant F1 gains when supplied with structured
event graphs and relational distributions, highlight-
ing the importance of structured information in
facilitating effective tremporal event forecasting.
Conversely, incorporating raw article titles typi-
cally decreased accuracy, indicating that unstruc-
tured semantic content may introduce more noise
than being beneficial. Notably, with only the article
titles, all the models fail to predict future events
correctly, suggesting a challenge in mapping the
conceptual international relations to their CAMEO
code labels. We discuss the effect of the in-context
label bias in Section 3.3.

Smaller models, such as Llama-3.1-8B and
Mistral-7B-v@.2, demonstrated notably variable
sensitivity to information types. Llama-3.1-8B
showed strong improvements when provided with
only the distribution of past events, whereas
Mistral-7B-v@. 2 performed best when given full
event lists and experienced performance drops with
only relation distributions for context. This reveals
that even within structured data, the optimal in-
formation granularity and type must be tailored to
individual model capabilities.

The influence of different types of context in-
formation. Having demonstrated RAG’s supe-
rior efficiency, we analyze which information types
drive this performance. Providing models solely
with relation distributions of previous events re-
sulted in a surprisingly strong performance in all
Timediff settings on the test subset (details in Ap-
pendix A.3.1), demonstrating the significance of
statistical reasoning in event forecasting. How-
ever, despite the effectiveness of statistical signals,
purely statistical information alone was insufficient
for optimal performance. Particularly evident in
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Model RelDis Event Event Article First-level F1 Second-level F1
(Uni_dir) (Bi_dir) (Title) + w.r.t ReAct
v 39951143 28.41_111
v 41204068 2744 908
v 14.11 9441 7.22_ 9930
GPT-40-mini v v 40.674_2.15 31-71+2.18
v v 42744420 329354
v v v 43.63+5.11 32.274_2.75
v v v 43.79, 508 32.44 992
v 411241505 26.63410.08
v 38.66+10_60 25-31+8.75
v 13.21_14.85 6.63_9.99
Llama-3.1-8B v v 34-85+6.78 22~31+5.76
v v 36.01+7.94 21 .644_5.09
v v v 28.92+0.85 16.624_0.07
v v v 28.06_9.00 16.32_¢ .23
v 24.86+2.30 16.514_3.87
v 31.54+8.97 18.164_5,52
v 11.07_11.50 4.03_g.60
Mistral-7B-v@.2 v v 26.074+3.50 14.13 .41 49
v v 25.55+2.98 17-27+4.64
v v v 24.45+1.88 15.844_3,20
v v v 25.79+3.22 15.264_2,63
v 44.10+2.31 31.264_1,73
v 46.71+4.91 33.054_3,52
v 14.47 9733 4.60_94.93
Llama-3-70B v v 47-12+5.32 32.034_2,50
v v 45.99. 419 321249 59
v v v 46.31+4.51 32-49+2.96
v v v 46.58+4.78 32.68_;.3,15

Table 1: Performance (First-level and Second-level F1s) comparison of different LLMs on the test subset between
RAG with different data retrieval and ReAct at Timediff of 1. The v'represents that this information is provided to
the LLM as retrieved content. ‘+ w.r.t ReAct’ represents the difference in F1 score w.r.t. ReAct.

GPT-40-mini and L1ama-3-70B, performance was
highest when structured statistical information was
complemented by event semantics, suggesting that
larger models possess the capacity to extract useful
signals from semantic content that smaller models
cannot utilize.

Thus, effective event forecasting requires struc-
tured information such as past events combined
with robust statistical signals, reinforcing the need
for precise information structuring rather than
merely increasing the contextual verbosity.

3.2 Analyzing Limitations of the ReAct
Framework in Event Forecasting

We first assess the action execution success rate
of API calls generated by the ReAct agent, ob-

serving an execution success rate consistently
exceeding 95%, with an average of three to
four functions executed per query across all four
Timediffs. The function distribution indicates
that the ger_relation_distribution function is in-
voked at least once per query on average. These re-
sults suggest that the observed lower performance
is not due to functional limitations of using the
API. Having eliminated implementation artifacts,
we investigate whether reasoning traces themselves
impair performance.

Impact of iterative thoughts on model perfor-
mance. We furthermore examined whether itera-
tive thoughts generated within the ReAct paradigm
enhance or impede model performance. As shown
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in Table 2, we compared two one-step genera-
tion scenarios: (1) “observation-only” and (2)
“observation-with-thoughts.” For the observation-
only scenario, observations collected during ReAct
iterations were concatenated and appended to the
query input for the LLMs to perform a one-step
generation. In the observation-with-thoughts sce-
nario, we preserved the thoughts preceding each
action and observation and conducted a one-step
generation, allowing for a direct comparison with
the observation-only scenario.

The results vary depending on model capacity
and task complexity. Notably, structured observa-
tions alone consistently matched or outperformed
scenarios where thoughts were included. Smaller
models, such as GPT-40-mini and L1ama-3.1-8B,
exhibited a lower performance when thoughts were
incorporated. Specifically, GPT-40-mini showed a
significant performance decline for second-level
predictions with thoughts included (e.g., from
30.79% down to 27.33% at Timediff=1). The
inconsistent and generally low performance of
Mistral-7B-v@.2 points to possible limitations
arising from reduced model capacity or restricted
context windows.

Figure 4 clearly visualizes these performance
trends across models. Smaller models demonstrate
a substantial divergence in performance between
observation-only and thought-enhanced contexts,
highlighting their limited capacity for utilizing
reasoning traces. Conversely, L1ama-3-70B dis-
played consistent robustness and minimal perfor-
mance fluctuations across all experimental condi-
tions, maintaining high F1 scores even with inte-
grated thoughts. This indicates that smaller models
struggle to benefit from reasoning traces, likely due
to their limited capacity to filter useful signals from
noise.

Temporal sensitivity and challenges in long-
term forecasting. Analyzing temporal cutoffs in
Table 2 revealed notable patterns. Models occa-
sionally achieved higher performance at interme-
diate cutoffs (e.g., Timediff=7 days) compared
to the shortest interval (Timediff=1 day). For ex-
ample, GPT-40-mini had a slightly better second-
level prediction performance at Timediff=7 days
than at Timediff=1 day (30.79% vs. 29.64% in
observation-only scenarios). The performance dif-
ference may be an artifact that short-term predic-
tions might suffer from data sparsity compared to
predictions over longer intervals. However, perfor-

mance was consistently worse at longer intervals
(Timediff=30 and 90 days), emphasizing the in-
trinsic challenges associated with long-term fore-
casting.

Cross-context comparison and quality of gener-
ated thoughts. We conducted cross-model ex-
periments using the thoughts and observations
generated by L1ama-3-70B (Table 3) to clarify if
the observed performance degradation was due
to the reasoning quality of small models or their
inherent limitations to utilize reasoning traces.
Smaller models, which received reasoning and ob-
servations generated by the larger L1lama-3-70B
model, demonstrated consistent performance im-
provements as compared to their self-generated
reasoning traces. Specifically, models such as
GPT-40-mini and Mistral-7B-v@. 2 showed sig-
nificant performance gains, particularly at the first-
level predictions, indicating that enhanced reason-
ing quality alleviates the necessity for smaller mod-
els to generate high-quality reasoning themselves.

However, absolute scores still remained lower
than those of Llama-3-70B, confirming intrinsic
limitations in smaller models’ temporal reasoning
capabilities. Llama-3.1-8B, interestingly, exhib-
ited a greater improvement in fine-grained pre-
dictions (e.g., second-level) than other models,
suggesting differential sensitivities to the thought
based on prediction granularity.

Overall, our analyses emphasize that the ef-
fectiveness of iterative reasoning depends on the
quality of generated thoughts and the models’ in-
trinsic cognitive capacities. Larger models, such
as L1lama-3-70B, benefit from iterative reasoning,
whereas smaller models’ performance suffers.

3.3 Reasonability of Event Forecasting Task

We measured the ratio of predicted codes being in
the top-k most common event codes in the context
to investigate the extent to which predictions are
influenced by label occurrence frequency. As il-
lustrated in Figure 3, models exhibit a high ratio
(60%—-80%) in predicting the single most frequent
CAMEDO code (top-1), consistent with the expecta-
tion that frequent events are likely to recur. How-
ever, the ratio sharply declines when considering
broader sets of labels (top-5), typically dropping be-
low 50%. This trend indicates that although event
frequency heavily influences predictions, models
do not rely solely on frequency-based information.
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Model Training Data F1 (%) First-level || Second-level

Cutoff Date Timediff=1 Timediff=7 Timediff=30 Timediff=90
ReAct
GPT-40-mini 2023-10 38.521129.52 38.181129.83 37.611128.20 38.941 27.64
Llama-3.1-8B 2023-12 28.071116.55 32.771118.03 30.761117.88 25.671115.45
Mistral-7B-v0.2 — 22.571112.63 24.001113.93 20.821114.69 20.661111.60
Llama-3-70B 2023-12 41.791129.53 41.541126.57 38.561126.84 38.921126.52
Observation-only
GPT-40-mini 2023-10 40.631130.79 41.411129.64 37.231128.71 39.721126.29
Llama-3.1-8B 2023-12 33.601120.86 34.011120.57 27.73117.48 29.831119.06
Mistral-7B-v0.2 — 19.1711 6.92 22701110.19 18.621 7.17 20.101111.48
Llama-3-70B 2023-12 45.811132.73 44.10130.49 40.261128.59 40.19 11 28.97
Observation with Thought
GPT-40-mini 2023-10 39.241127.33 38.441128.65 35.861126.53 36.451124.99
Llama-3.1-8B 2023-12 28.001114.24 29.791113.40 2732111551 27.011115.37
Mistral-7B-v0.2 — 21.501110.34 174711 9.38 172911 990 24.08113.31
Llama-3-70B 2023-12 44.68 11 32.51 46.401131.62 40.131128.03 39.881129.73

Table 2: Event forecasting performance on test-subset under four generation strategies: (i) ReAct allows the
ReAct agent to access all functions in the API; (ii) Observation-only employs one-step generation with retrieved
observations during ReAct process; and (iii) Observation with Thought augments one-step generation with a thought
component and the corresponding observations. Reported are first-level and second-level F1 scores (%) across
temporal cutoffs (Timediff=1, 7, 30, and 90 days). Bold and underlined values indicate the best and second-best

performances within each setting, respectively.
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Figure 3: Top-k prediction ratios across models. Each
bar represents the proportion of top-k most frequent ob-
served codes predicted by each model, for k € 1, 2, 3, 5.

4 Related Work

4.1 LLMs for Temporal Reasoning and Event
Forecasting

Temporal reasoning involves processing and inter-
preting time-dependent information, which is cru-
cial for accurate forecasting and decision-making
in a dynamic environment (Xiong et al., 2024; Ge
et al., 2025; Yuan et al., 2024). Several studies

have explored the use of LLMs for event forecast-
ing. While zero-shot or few-shot prompting can
elicit some temporal reasoning (Yu et al., 2023;
Lee et al., 2023), studies suggest that fine-tuning
is particularly beneficial when incorporating raw
text for complex events (Chang et al., 2024). Wang
et al. (2025) proposed a framework that integrates
news events into time series forecasting by fine-
tuning an LLM. Chang et al. (2024) conducted a
comprehensive evaluation of LLMs on temporal
event forecasting, highlighting the importance of
incorporating raw texts in specific complex events
and fine-tuning LLMs. RAG provides an alterna-
tive direction to leverage large historical datasets
or knowledge bases (Zhang et al., 2024b). Ye et al.
(2024) introduced MIRALI as a benchmark for eval-
vating LLM agents in event forecasting, emphasiz-
ing the use of API to automate the data retrieval
using LLMs’ agentic ability. Although Chang et al.
(2024) compared the effectiveness of in-context
learning, finetuning, and RAG approaches in tem-
poral forecasting, they did not investigate agentic
frameworks and their potential to build a more cost-
effective forecasting system.
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Model First-Level (Coarse)

Second-Level (Fine)

With 70B With Self- ~ Max A With 70B With Self- A Fl Max A
Context  produced Context (Timediff)  Context produced Context (Timediff)
Observation with Thought
GPT-40-mini 40.19 37.50 2.69 5.92 (1d) 2791 26.88 1.03 3.76 (1d)
Mistral-7B-v0.2 24.16 20.09 4.07 7.72 (7d) 13.39 10.73 2.66  5.70 (30d)
Llama-3.1-8B 31.00 28.03 2.97 5.67 (1d) 17.74 14.63 3.11 6.12 (7d)
Observation Only
GPT-40-mini 38.92 39.75 -0.83  0.94 (1d) 27.38 28.86 -1.48  0.34(1d)
Mistral-7B-v0.2 25.03 20.15 4.89  9.55(30d) 14.17 8.94 5.23  9.33(30d)
Llama-3.1-8B 31.90 31.29 0.61  3.47 (30d) 18.75 19.49 -0.75  0.41 (30d)

Table 3: Cross-model reasoning trace transfer analysis (test-subset). Performance comparison when smaller models
use reasoning traces generated by Llama-3-70B versus self-produced traces. A F1 is the average of four difference
values (one per Timediff setting: 1, 7, 30, 90 days). Max A indicates the maximum difference and corresponding

Timediff setting.
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Figure 4: Performance (F1 score) difference of LLMs when thoughts generated are augmented together with factual
information collected during ReAct logs. Each panel corresponds to a model.

4.2 Effectiveness of Automate LLM Agents

Large Language Models (LLMs) as agents have re-
ceived increasing attention and are applied in many
domains and applications, including code genera-
tion (Islam et al., 2024; Zhang et al., 2024a), for-
mal math reasoning (Wang et al., 2023; Song et al.,
2023), and commonsense reasoning (Zhao et al.,
2023). These advanced Al systems enable LLMs
to perform complex reasoning and interact dynami-
cally with external environments and tools (Inaba
et al., 2023), and have demonstrated the potential
to achieve human-like decision making capabilities
by collecting and processing various types of in-
formation. Yao et al. (2023) introduced ReAct as
a framework for combining reasoning and acting
in LLMs, enabling them to interact with external

sources to generate more reliable responses. Hug-
gingGPT (Shen et al., 2023) operates as an LLM-
based agent controller that interfaces with the Hug-
ging Face Hub to address complex user requests.
Reflexion (Shinn et al., 2023) introduces a frame-
work for agents to learn from past failures through
verbal self-reflection. Despite promising perfor-
mance gains observed in reasoning-intensive tasks,
the efficacy and role of reasoning traces within
agentic frameworks remain under-explored (Wu
et al., 2025). Prior studies demonstrated that ex-
plicit reasoning processes did not yield significant
benefits in Audio QA tasks (Li et al., 2025), while
Verma et al. (2024) suggested that performance
improvements may be due to exemplar-query simi-
larity rather than enhanced reasoning abilities. In
our study, we isolate the observations and thoughts
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generated during the iterations and provide insights
into the effectiveness of traces on the performance
of different LLMs.

5 Conclusion

Our investigation revealed that RAG can outper-
form the agentic framework ReAct in the MIRAI
temporal event forecasting task. Besides, models
achieve higher robust performances when using
structured relation distributions or graphs as con-
text, whereas raw news articles, despite their se-
mantic richness, negatively affect forecasting accu-
racy. In addition, our findings highlight the current
limitation of small-scale LLMs in aligning intri-
cate, semantically rich contexts to specific event
predictions, suggesting a need for further research
into semantic grounding and structured contextual
representation. This research reveals the practical
advantages of simplifying event forecasting frame-
works, suggesting that strategic, structured data
retrieval within RAG methods can yield more effi-
cient and accurate predictive systems than the more
elaborate ReAct paradigm.

6 Limitations and Future Work

Our evaluation framework presents several inherent
limitations. First, we employ fixed retrieval counts
(30 events, 15 article titles) based on MIRAI bench-
mark defaults rather than systematic optimization,
which ensures fair comparison with existing Re-
Act implementations but may not represent opti-
mal configurations. Second, we do not compare
against iterative RAG or GraphRAG methods due
to fundamental incompatibilities: iterative RAG
approaches rely on semantic similarity-based re-
trieval that conflicts with MIRAI’s structured API
design, while GraphRAG methods target document
chunking scenarios rather than structured database
interaction. Our preliminary experiments using
similarity-based search yielded substantially de-
graded performance, confirming these incompati-
bilities.

Our analysis focuses exclusively on international
event forecasting within the MIRAI benchmark,
limiting the generalizability of our findings to other
temporal reasoning tasks or forecasting domains.
The structured nature of CAMEO event represen-
tations may not extend to more open-ended fore-
casting scenarios. Additionally, our ReAct analy-
sis centers on standard reasoning-acting paradigms
without exploring advanced agentic strategies incor-

porating reflection, self-refinement, or multi-agent
coordination. We did not systematically assess hal-
lucination patterns in generated reasoning traces
due to their verbosity, potentially overlooking im-
portant failure modes. The observed performance
degradation with semantic information (news arti-
cle titles) suggests underlying noise introduction
mechanisms that warrant deeper theoretical investi-
gation.

Future work should pursue several promising
directions. First, conducting fine-grained inter-
pretability analysis—including attention studies
and token-level contribution analysis—could elu-
cidate the root causes of semantic noise in un-
structured contexts. Second, employing LL.M-as-a-
Judge frameworks would enable systematic quan-
tification of hallucination patterns and reasoning co-
herence in iterative agent traces. Third, investigat-
ing thought-action alignment through causal anal-
ysis could reveal specific mechanisms by which
reasoning quality affects downstream performance.
Finally, developing adaptive retrieval strategies that
dynamically adjust information types and quanti-
ties based on query complexity represents a natural
extension of our structured retrieval approach. Ex-
tending evaluation to additional temporal reason-
ing tasks would strengthen generalizability claims
across diverse forecasting domains.
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This research focuses on methodological improve-
ments to event forecasting systems using estab-
lished public datasets (GDELT, OBELICS) within
the MIRAI benchmark framework. We acknowl-
edge that event forecasting technologies carry po-
tential dual-use risks, including possible applica-
tions in market manipulation or political interfer-
ence. Our work advances scientific understand-
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Appendix
A Appendix

A.1 Hardware and inference setup

We run the open-source models using the vLLM library for efficient inference with multi-GPU support.
All inference is performed in FP16 precision. The Llama-3.1-8B and Mistral-7B models are served on a
machine with 2x NVIDIA RTX 3090 GPUs (24GB VRAM each), which is sufficient for these smaller
models. The larger Llama-3-70B (GPTQ 4-bit) model is hosted on a single NVIDIA A100 80GB GPU
to accommodate its higher memory requirements. For GPT-40-mini, we leverage the model’s remote
API endpoint. To ensure reproducibility, we fix the random seed to O for all runs and set the generation
temperature to 0, yielding deterministic outputs. All other decoding hyperparameters follow the MIRAI
benchmark defaults. Under these settings, our experiments are fully deterministic and can be replicated
exactly. All models are evaluated on the same set of queries (the 100-query subset described above) to
enable direct, apples-to-apples comparison of their forecasting performance.

A.2 Baseline Performance Without Retrieval

Model Zero-Shot (ZS) Chain-of-Thought (CoT)
First-Level F1 Second-Level F1 First-Level F1 Second-Level F1
GPT-40-mini 31.05 8.84 9.89 4.38
Llama-3.1-8B 10.80 4.35 12.75 5.11
Mistral-7B-v0.2 11.15 3.49 10.10 3.38
Llama-3-70B 9.96 3.14 13.11 4.17

Table 4: Baseline experimental results of different LLMs on the test full set under zero-shot and chain-of-thought
prompting without historical information retrieval (Timediff is set to 7). These results demonstrate the necessity of
structured information retrieval by evaluating prediction performance without access to retrieved historical events.

To address potential concerns regarding model memorization due to training cutoff proximity to test
events, we evaluate baseline performance without historical information retrieval. Table 4 presents
zero-shot (ZS) and chain-of-thought (CoT) results across all models under Timediff=7.

The results reveal substantial performance degradation without retrieval-augmented context. Even
GPT-40-mini, which achieves 31.05% first-level F1 in zero-shot mode, falls significantly short of RAG
performance (43.90% with relation distributions, Table 8). Notably, CoT prompting further degrades
performance across most models, indicating that reasoning chains without factual grounding are counter-
productive for temporal forecasting.

These findings directly address memorization concerns by demonstrating that models require explicit
access to historical patterns and relation distributions to generate reliable predictions. The performance gap
between baseline and retrieval-augmented approaches validates our experimental framework’s integrity
and the necessity of information retrieval components.
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A.3 Additional Results on Test Subset

A.3.1 RAG compared to ReAct on different Timediff
. Event Event Article First-level F1 Second-level F1
Model RelDiS  (ni_dir) (Bi_dir) (Title) T wort ReAct

v 39.38+1.20 28.39_114
v 39.561.38 25.95_ 383
v 13.46_24.72 7-05—22.78
GPT-40-mini v v 40.6112.43 30.44 0,60
v v 39.2511.07 29.81_¢.03
v v v 41 .99-|—3.81 32.084’_2.25
v v v 42.34 416 31.784+1.04
v 4214 9 37 2748 945
v 38.5615.79 26.7118.68
v 14.19_1g858 6.55_11.48
Llama-3.1-8B v v 36-61+3A84 23'64+5.61
v v 36.47 370 22.664 462
v v v 27.95_ 489 15.88_915
v v v 28.91_3.8¢ 16.46_1 57
v 23.53_0.48 13.54_¢ 39
v 30.45+6.45 19'91+5.98

v 10.43_1357 420_973
Mistral-7B-v0.2 v v 21.79_9.92 12.30_1 63

v v 15.35_3.65 9.78_415
v v v 29.39, 539 17.6043.67
v v v 25.97+1.97 15.36+1.43
v 44.31+2.77 32'43+5.86
v 45.38+3.84 32'20+5.64
v 16.15_25,39 4.90_91 66
Llama-3-70B v v 45-18+3.64 31.674_5.10
v v 44.89+3.35 31 -36+4.80
v v v 46.10+4.56 31 .794_5,23
v v v 45.37+3.83 32'76+6.20

Table 5: Experimental results of different LLMs on the test subset under the setting of simple one-step generation by
providing different types of information (Timediff is set to 7). The v'represents that this information is provided to

the LLM using the same retrieval function defined by MIRAI Agentic Framework.
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Event Event Article First-level F1 Second-level F1

Model RelDIS  Uni_dir) (Bi_dir) (Title) + wr.t ReAct
v 37.42_¢.19 27.83_0.37
v 35.97_1.64 23.96_4.25
v 13.03_94.58 6.89_91.31
GPT-40-mini v v 37.41_¢.99 27.65 .56
v v 3798057 284402
v v Vo 39.06,14 2907086
v v v 38.8511.24 28.6140.41
v 3684 605 21471350
v 34.65,550  21.56. 368
v 13.50_17.96 6.05_11.84
Llama-3.1-8B v v 33-12+2A36 19.85+1.97
v v 071,105 1959, 7
v v v 28.09_2 66 15.46_25 42
v v v 28.37_2.39 16.50_1 33
v 22.18+1.36 9.82_487
v 26. 16+5.34 13.68,1.02
v 12.17 _g.¢5 4.06_10.64
Mistral-7B-v@.2 v v 27.5146.70 11.90_5.79
v v 1556 595 7.61 700
v v v 28.17 735 16.17 41 47
v v v 27.8016.98 17.96_ 5 27
v 40.84+2.28 30'30+3.46
v 37.26_1.39 24.778 9 06
v 14.02_94.54 5.36_91.48
Llama-3-70B v v 42-18+3.62 28.164_1,33
v v 44.13+5.57 28.644_1,80
v v v 41.89+3.33 28.584_1,75
v v v 42.21+3.66 28.004_1,17

Table 6: Experimental results of different LLMs on the test subset under the setting of simple one-step generation by
providing different types of information (Timediff is set to 30). The v'represents that this information is provided
to the LLM using the same retrieval function defined by MIRAI Agentic Framework.
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Event Event Article First-level F1 Second-level F1

Model RelDiS  Uni_dir) (Bi_din) (Title) £ w.rt ReAct
v 3840 55 27.11 0.9
v 34.87_4.07 20.97_g.67
v 13.52_95.42 6.78 _90.87
GPT-40-mini v v 35.38 356 26.00_1 ¢5
v v 36.13_2.80 26.58_1.06
v v v 37.69_1 .95 26.59_1.05
v v v 371308 2627 s
7 2858900 18155071
v 30.48+4A81 20'21+4.76
v 14.79_10.88 7.19_g.26
Llama-3.1-8B v v 32-94+7A27 19.54+4.09
v v 30.08+4A41 18.404,295
v v v 31.21+5‘54 17.464,201
v v Vo 2755.1ss 1445 00
v 28.95+8.29 14.05+2.45
v 21.34+O.68 12-16+0.56
v 14.24_¢ 49 547 .13
Mistral-7B-v@.2 v v 20.830.17 12.77 4117
v v 1184 550 699 461
v v v 26.71 16.05 14.34 5 74
v v v 24.22 13 56 12.20.40.60
v 40.43+1.51 29.73_;,_3.21
v 36.13_5.g9 23.46_305
v 15.74 9318 478 _91.74
Llama-3-70B v v 39-45+0.53 27.614_1,10
v v 38.85_¢.08 27.2040.63
v v v 38.08_¢ .85 27291077
v v v 38.83_¢.09 27.9541.44

Table 7: Experimental results of different LLMs on the test subset under the setting of simple one-step generation by
providing different types of information (Timediff is set to 90). The v'represents that this information is provided
to the LLM using the same retrieval function defined by MIRAI Agentic Framework.
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A.4 Additional Results on Test Full Set

In this section, we present results for the full test set with a Timediff of 7 days, chosen to represent a
moderate level of difficulty. Although GPT-40-mini exhibits a slight decline in first-level F1 compared to
ReAct, its second-level F1 performance continues to underscore the effectiveness of RAG. L1ama-3.1-8B
and Mistral-7B-v@.2 show a similar pattern to that observed on the test subsets. Despite fluctuations,
the findings of the full test set highlight the importance of structural information, particularly relation
distributions, and emphasize the need for robust statistical signals to build an effective and efficient event
forecasting system.

Event Event Article First-level F1 Second-level F1

Model RelDis  Uni_dir) (Bi_dir) (Title) T w.r.t ReAct
v 43.80_4.69 30.88_9.03
v 40.14 _g 35 25.42 749
v 9.17_39.32 4.64_25 07
GPT-40-mini v v 46.62_1,87 33.68_;,_0,76
v v 46.00_9 48 33.6240.70
v v v 46.91_1 57 33.1740.25
v v v 46.39_5 09 33424051
v 38.85+6.71 23-75+7.65
v 39.80+7.65 25.40_;,_929
v 9.55_22.60 4.90_11.21
Llama-3.1-8B v v 40.77 5 62 24.43.g 33
v v 40.2648.11 24.94 834
v v v 30.89_1.96 18.0141.01
v v v 30.93_1.99 17.5641 45
v 27.6940.15 14.34_1 41
v 31.83+4.29 19.87_._4‘12
v 11.22_16.32 3.40_19.35
Mistral-7B-v@.2 v v 29154161 16.1040.35
v v 24.94 5 g9 13.25 550
v Ve v 34.26+6.72 18.984_3‘22
v v v 33.1045.56 17.3941 64
v 44.58_1 g3 28.8041.28
v 43.80_2¢41 29.08.11.56
v 12.76 _33 ¢4 294 o458
Llama-3-70B v v 46.49+0.08 29.91+2.39
v v 47.41+1.01 31°15+3.63
v v v 47.33+0.92 30.57+3.04
v v v 47.1 1+O.71 31'13+3.61

Table 8: Experimental results of different LLMs on the test full set under the setting of simple one-step generation
by providing different types of information (Timediff is set to 7). The v represents that this information is provided
to the LLM using the same retrieval function defined by MIRAI Agentic Framework.
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A.5 Prompt for RAG

System prompt

You are an expert in forecasting future events based on historical data. The database contains news
articles from January 1, 2023 to the current date {current_date_nlp} and the events extracted from
these articles. The events are in the form of (date, subject country, relation, object country), where
the countries are represented by ISO 3166-1 alpha-3 codes and the relations are represented by
the CAMEO codes defined in the *Conflict and Mediation Event Observations’ ontology. The
relations are hierarchical: first-level relations are general parent relations represented by two-digit
CAMEQO codes, while second-level relations are more specific child relations represented by
three-digit CAMEO codes. Child relations have the same first two digits as their parent relations.
For example, "01’ is a first-level relation, and 010’ and 011’ are some of its second-level relations.
The relations in the database are represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. You will be
provided with the relevant events and news articles, as well as information about the ISO country
codes, the CAMEO relation codes that allow you to analyze the historical events and statistics.
The answer should be a JSON dictionary where the keys are the forecasted two-digit first-level
CAMEDO codes and the values are lists of forecasted three-digit second-level CAMEO codes that
are child relations of the key. For example, ’Final Answer: {{"01": ["010", "011", "012"], "02":
["020", "023"]}}.

The final answer will be evaluated based on the precision and recall of the forecasted first-level
and second-level relations, so only include confident first-level and second-level CAMEO codes in
your final forecast.

Query prompt

Query: Please forecast the relations that {actor]l_name} will take towards {actor2_name} on
{future_date_nlp} based on your knowledge up to {current_date_nlp}. L.e. forecast the relation
CAMEQO codes in query event Event(date={future_date}, head_entity=ISOCode({actor1_code}),
relation=CAMEOCode(?), tail_entity=ISOCode({actor2_code})).

Here is the frequency of relation between {actorl_name} and {actor2_name} up to {cur-
rent_date_nlp}: {relation_distribution}

Retrieved Events: {events}

Retrieved Articles: {article_titles}

Final Answer:
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