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Abstract

Large language models (LLMs) have shown
remarkable capabilities across various tasks,
yet their potential to reason about and con-
struct scientific methodologies remains un-
der explored. This work introduces a novel
benchmark evaluating LLMs’ capacity to pre-
dict methodological details in Al research pa-
pers. We construct a dataset of 88 papers with
redacted methodology sections and zero-shot
prompt several state-of-the-art LLMs to gen-
erate methodology predictions. Our evalua-
tion framework then employs a LLM-as-judge
system with multiple LLM judges, majority
voting, and self-omission techniques to min-
imize biases. We validate our LLM judge
scores against human judgments. We then
briefly analyze the judging results of our zero-
shot prediction pipeline, suggesting that even
state-of-the-art LLMs struggle with the task
of methodology generation without more ad-
vanced techniques. This benchmark lays the
groundwork for future research into evaluating
LLMs’ potential for aiding in Al research. Our
benchmark code and dataset are open-sourced
at https://github.com/Swadian/FrontierScience-
Bench

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in tasks such as
summarization, translation, and text generation
(Fabbri et al., 2020; Zhu et al., 2023; Ni and Li,
2024). While LLMs excel at identifying patterns
from their vast training data, their ability to engage
in the structured reasoning required for scientific
discovery remains underexplored. This is crucial
because in many scientific fields, progress relies
not just on understanding existing knowledge but
on devising novel methodologies to transform ab-
stract goals into rigorous experimental designs. To
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test LLMs’ capacity for scientific reasoning, we in-
troduce a benchmark that evaluates their ability to
infer plausible methodology sections from redacted
Al research papers, where explicit methodological
details have been removed. Our study provides a
high-quality dataset of 88 manually redacted pa-
pers, a zero-shot prediction pipeline, and a rigorous
LLM-as-a-Judge evaluation framework to assess
the quality of predictions.

2 Related Works

The application of LLMs as assistants in the sci-
entific method is a promising research area. Exist-
ing benchmarks for LLLM evaluation, such as fac-
tual knowledge retrieval, summarization, or ques-
tion answering, focus mainly on surface-level tasks
(Guo et al., 2023; Mclntosh et al., 2024; Porcu
and Havlinova, 2024). These benchmarks test re-
call and synthesis but rarely assess whether LLMs
can reason creatively and simulate problem-solving
processes essential for scientific discovery.

Luo et al. (2024b) demonstrated that LLMs have
surpassed experts in predicting neuroscience exper-
iment outcomes through their benchmark, Brain-
Bench. While outcome prediction is valuable, it
reveals little about an LLM’s ability to plan and
reason through methodological steps. This ab-
stract reasoning process is crucial for aiding re-
searchers in accelerating scientific discovery. Sun
et al. (2024b) developed the SciEval benchmark
to examine LLM reasoning in biology, chemistry,
and physics. However, its multiple-choice format
primarily assesses textbook knowledge and calcu-
lation skills rather than extensive reasoning. While
useful for evaluating general understanding, these
questions do not push LLMs to plan and organize
methodological steps—a critical skill when con-
sidering the background and context of a research
study.
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Gu et al. (2025a) systematically examines the
challenges of using LLMs for evaluation tasks,
emphasizing reliability, bias mitigation, and re-
sistance to manipulation. Their survey addresses
critiques of LLM-as-a-Judge systems, including
biases like length bias and self-enhancement bias,
and discusses mitigation approaches such as multi-
ple LLM judges, structured outputs, voting-based
consensus mechanisms, and fine-tuning. While
their study covers broad applications, our work fo-
cuses specifically on methodology generation and
assessing the accuracy of these methodologies.

Weng et al. (2025) uses LLM agents to simu-
late the full research—review—refinement workflow,
while Starace et al. (2025) evaluates Al agents’
ability to replicate 20 ICML 2024 papers via hier-
archical rubrics and LLM-based judging—finding
only about 21 % average replication. In contrast,
our benchmark isolates zero-shot methodology pre-
diction for AI/ML papers and employs a multi-
judge LLLM framework with majority voting and
self-omission to reduce bias. This narrow focus
complements broader end-to-end and replication
studies by targeting the core methodological rea-
soning essential for novel Al research.

3 Methods

In this section we explain the details behind the
construction of our benchmark. As a reminder, our
goal is to evaluate the extent to which LLMs can
reconstruct novel research methodologies based on
redacted Al research papers.

The benchmark consists of three stages: dataset
curation, prediction, and evaluation. We first cre-
ated a dataset of 88 research papers, redacted to
remove their methodology sections, results, and
any references to methodology found in other sec-
tions. We then used this new dataset and zero-shot
prompted multiple state-of-the-art LLM’s includ-
ing GPT-40, 03-mini, Claude 3.5 Sonnet, and Gem-
ini 1.5 Pro to generate methodologies. Finally, we
used a LLM-as-a-Judge framework to evaluate how
close the predicted methodologies were to the orig-
inal ones. Detailed prompts, examples, and addi-
tional figures are provided in the appendices (D, E,
F).

3.1 Original Paper Curation

To build our dataset, we curated 88 research papers
from top conferences such as EMNLP, ACL, IEEE,
AAAI, ICML, and CHI using Semantic Scholar.

All published in 2024, after the knowledge cutoff
of our initial predictor, GPT-40, (October 2023)
(OpenAl, 2023). This timing minimizes training
data contamination, though our benchmark will
need future updates as newer LLMs with more re-
cent cutoffs (e.g., Claude 3.5 Sonnet and Gemini
1.5 Pro, with cutoffs in April and May 2024, respec-
tively (Anthropic, 2024; Cloud, 2024) are released,
which we discuss in Section 6.

We automated paper collection using Semantic
Scholar’s API, filtering for 2024 conference pa-
pers with the keywords “machine learning” and
“large language models.” We focused on this do-
main both because our expertise facilitates better
redaction and validation, and due to our interest in
recursive self-improvement in Al systems—a ca-
pability linked to potential intelligence explosions
(Barrett and Baum, 2016). Papers were limited to
15 pages to comply with context length restrictions,
and we parsed PDFs using PyMuPDF (PyMuPDF
Developers, 2024), excluding those with extensive
mathematical notation due to issues parsing IATEX.
See Appendix E for an example.

Once the papers were collected, we manually
removed irrelevant content (e.g., figures, headers,
footers, references, appendices) while retaining ta-
ble and figure captions. We then prompted GPT-
40 with a rewrite_paper_prompt and enabled
Structured Outputs (OpenAl, 2023) to convert each
paper into a JSON format with keys for the ab-
stract, introduction, related works, and method-
ology—yielding our trimmed paper. We later
extracted the original methodologies from these
trimmed papers for evaluation. A visualization of
our collection process is provided in Appendix F.

3.2 Redaction Pipeline

After selecting and processing papers, we passed
them through our two-stage redaction pipeline to
remove the author’s methodologies. We provide a
visualization of this pipeline in Appendix F. This
first involved taking the trimmed paper in JSON
format and removing the methodologies field (de-
noted as filtered paper). Then, to deal with minor
instances of the methodologies that were spread
throughout the remaining sections, we had two lay-
ers of manual removal by the authors of this paper.
The first step had each author remove revealing
information from their assigned range of papers.
The second step then had a single author review all
of these annotations, alongside the trimmed paper
and make changes where necessary. This helped
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to ensure high-fidelity redaction and reduced vari-
ability from having many human annotators. To
aid the process of manual redaction, we used Dif-
fChecker to visualize differences between original
and redacted papers.

A limitation of our manual approach is the bur-
den of human redaction, despite our efforts to in-
crease automation. We believe automation is cru-
cial for creating new benchmark datasets for future
models with later knowledge cutoffs. We describe
in-detail three approaches toward automation (and
why they failed) in Appendix A.

3.3 Prediction

After the redacted papers were constructed, we
proceeded with our prediction phase, where a
predictor LLM was prompted with the redacted
paper to generate a methodology. Our method
for this phase was a simple zero-shot base-
line that we entirely credit to Si et al. (2024).
Namely, we first prompted the predictor LLM
(with structured outputs enabled) (OpenAl, 2023;
Cloud, 2024; Anthropic, 2024) with the redacted
paper and a outline_prompt, which gener-
ated a proposed_method that highlights all
the necessary steps of the method and also a
experimental_plan, which further elaborates on
the steps in the proposed_method, covering more
details like specific models and datasets. Then, this
outline is used as input once again for the predictor
LLM, this time using awriting_prompt, to gener-
ate a cohesive written methodology, mimicking the
style that might be found in a research paper.

3.4 Evaluation

After collecting the methodology predictions, the
next step was to evaluate the quality of these predic-
tions. We evaluated the methodology predictions
using an open-form LLM-as-a-Judge approach,
which is more scalable compared to human-only
evaluations and better aligned with human judg-
ment compared to closed-form approaches like
multiple-choice. For completeness, we provide an
overview of our attempts at MCQ in Appendix C.
While there have been several critiques of LLM-as-
a-Judge in the past as we mentioned in Section 2,
we argue that our LLM judging pipeline is more
aligned with humans and mitigates pitfalls such
as bias in the judging process. We visualize our
pipeline in Appendix F.

Our evaluation pipeline uses multiple LLMs and
majority voting to reduce variability in LLM-as-

a-Judge systems (Gu et al., 2025b). A jury of
five LLMs conducts majority voting across five
runs, with final scores averaged. To mitigate self-
preference bias (Gu et al., 2025b), we exclude pre-
dictor LLMs from judging. Judges use chain-of-
thought reasoning (Wei et al., 2022) and a detailed
rubric to score predicted vs. original methodolo-
gies from 1-10. See Appendix D for details.

4 Experiments and Results

Our framework uses GPT-40, 03-mini, Claude 3.5
Sonnet, and Gemini 1.5 Pro as predictors, while
judges include GPT-40, 03-mini, Claude 3.5 Son-
net, and Grok 2. Models were chosen for their
strong instruction-following capabilities. Grok 2
was excluded from prediction due to inconsistent
outputs and uncertain cutoff; Gemini 1.5 Pro from
judging due to bias. Deepseek R1 and Llama 3.1
405B Instruct failed initial trials due to JSON for-
matting issues. We provide examples and extra
figures in Appendix E and Appendix F.

4.1 Results Analysis

Figure 1 shows the aggregated score distributions
for each predictor LLM, illustrating overall perfor-
mance trends. All models average between 3 and
3.5. Due to the knowledge cutoff, we refrain from
directly comparing the predictor LLMs. Nonethe-
less, the right-skewed distributions and low aver-
ages suggest that state-of-the-art LLMs struggle to
consistently produce high-quality methodologies
when prompted zero-shot. Although they capture
some fundamental steps, they lack the fine-grained,
domain-specific details needed for rigor. These
findings highlight the need for further innovation
to guide LLLMs toward generating robust scientific
methodologies. Specific examples of these pre-
dictions are provided in Appendix E. Statistical
significance and power analysis is discussed in Ap-
pendix B.

4.2 Evidence Toward Reliable Evaluation

To validate our evaluation process, we create scatter
plots comparing predicted methodology length and
final judge scores. We visualize this in Appendix F.
Visually, we observe no correlation between the
two variables, suggesting that length bias is miti-
gated and reinforcing our method’s reliability.

We also compare the jury’s aggregated scores
with those of a human evaluator across a validation
set of 10 predicted methodologies. We calculate
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Figure 1: Comparison of the aggregate score distributions across various predictor LLMs. Each histogram represents
the frequency of final scores (x-axis) assigned to the generated methodologies across the dataset of research papers.
The red vertical line in each figure denotes the mean final scores.

the absolute error and mean absolute error, where
a lower score indicates closer alignment with hu-
man judgment. As shown in Table 1, the absolute
error was minimal, with nearly all methodologies
differing by less than 1. The mean absolute error of
0.725 confirms our evaluation closely aligns with
human judgment.

5 Conclusion

In this work, we introduced a novel benchmark
to evaluate the ability of large language mod-
els to generate detailed scientific methodologies
from redacted research papers. Our dataset of 88
redacted papers, combined with a zero-shot predic-
tion pipeline and a robust LLM-as-a-Judge eval-
uation framework, demonstrates that while state-
of-the-art LLMs can capture broad methodological
outlines, they consistently struggle to deliver the
domain-specific precision required for high-quality
scientific methods. The close alignment with hu-
man evaluations (mean absolute error of 0.725)
reinforce the reliability of our evaluation process.

Future work should expand the dataset to more
scientific disciplines and better handle mathemati-
cal notation. Automating paper redaction will help
publish updated versions of the dataset for newer
LLMs. Al agents with code execution tools will al-
low models to validate predicted methodologies be-
fore scoring. Finally, including more LLM judges
with expanded human validation will increase reli-
ability in scoring.
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ID Agg. Score Human Score Abs. Error

000_v1 3.50 4 0.50
004_v1 3.25 4 0.75
005_v1 5.50 4 1.50
009_v1 5.00 4 1.00
011_v1 5.25 4 1.25
000_v2 8.25 8 0.25
004_v2 7.50 8 0.50
005_v2 8.25 8 0.25
009_v2 8.00 8 0.00
011_v2 8.25 8 0.25

Table 1: Aggregated LLM jury scores, human score, and
absolute errors for proposed methodologies in validation
set. Mean Abs. Error (MAE) = 0.625

6 Limitations

6.1 Paper Collection

Our dataset consist of 88 research papers exclu-
sively in the AI/ML domain with 15 pages or less,
excluding references and appendices. However, our
restrictions on these papers bring about some con-
cerns. Although this domain was chosen because of
the research team’s familiarity, it narrows the scope
of our evaluation, making it unclear whether our
findings would generalize to other disciplines, such
as medicine or social sciences, where experimental
frameworks may differ significantly.

We imposed this page limit due to context win-
dow limits and to constrain the manual redaction
process. This may exclude more rigorous method-



ologies in longer research papers that are more chal-
lenging to predict. Additionally, papers with exten-
sive mathematical notation were excluded due to
PyMuPDF parsing failures. This limits our bench-
mark’s applicability to theoretical or math-heavy
research and may inflate model performance. Fi-
nally, while all 88 papers were published after GPT-
40’s October 2023 cutoff to minimize training data
overlap, we later included models with later cutoffs
(e.g., Claude 3.5 Sonnet, Gemini 1.5 Pro). This
introduces a risk of training data contamination in
those models.

6.2 Redaction Pipeline

Our redaction pipeline, which removes explicit
methodology details from research papers to pre-
vent LLMs from memorizing and regurgitating au-
thor contributions, introduces several limitations.
A key challenge is that methodologies are often
interwoven into sections like the introduction and
related works, creating the risk of unintentional
leakage. Despite implementing a two-pass man-
ual review process, subtle methodological hints
may remain, undermining the integrity of our
dataset. Additionally, manual redaction is also
time-consuming and not scalable for future bench-
mark updates. Despite our efforts toward an auto-
mated redaction process, which is briefly described
in Section 3 and further elaborated in Appendix A,
we fail to find an approach that is both accurate and
consistent.

6.3 Methodology Evaluation

A key concern with our approach is that it focuses
solely on comparing predicted methodologies to
the original methodologies, without assessing their
practical outcomes. It is possible that an LLM-
generated methodology, while different in design,
could yield results comparable to or even supe-
rior to those of the original research. By relying
solely on textual similarity to the ground truth, our
evaluation may overlook valid, creative approaches
that demonstrate comparable scientific reasoning.
Additionally, our evaluation process does not in-
corporate experimental validation, which would
assess whether the predicted methodologies could
reproduce the outcomes reported in the original re-
search. This step is especially important given the
tendency of LLMs to hallucinate, introducing the
risk of false or unrealizable methodologies. As a re-
sult, our current evaluation may both understate the
reasoning ability of LLMs and fail to catch critical

flaws in their output.

6.4 LLM-as-a-Judge Systems

While our LLM-as-a-Judge framework employed
several techniques to mitigate common biases and
enhance evaluation consistency, it is not without
limitations. One limitation is the lack of sufficient
human oversight in our evaluation process. While
we developed a validation set and tested against
a singular human judge to verify the alignment
of LLM judges with human evaluators, this may
not be sufficient to draw conclusions about LLM-
judge alignment with human evaluators. Although
LLM-based evaluation offers scalability, signifi-
cant improvements to LLLM-as-a-Judge systems
still fail to achieve consistent alignment with hu-
man evaluators. (Gu et al., 2025b; Chen et al.,
2024a). However, it should be noted that human-
alignment should not always be considered a per-
fect metric, as human evaluators are also prone to
bias and variability in open-ended tasks such as
text-evaluation.

Furthermore, while majority voting (major-
ity@5) was selected for its superior ability com-
pared to other techniques outlined in Gu et al.
(2025Db) such as taking the mean score(- mean@5),
and taking the best score(- best@5), conducting 5
trials per LLM judge may not be sufficient to get a
representative consensus. Lastly, a limitation of our
LLM-as-a-Judge framework is the relatively small
number of judges employed. Many of our evalu-
ations were conducted with only 3 judge LLMs,
which may limit the robustness of our aggregated
scores.

6.5 Ethics

This benchmark is designed as a diagnostic tool
to assess the reasoning capabilities of LLMs and
does not aim to automate scientific authorship or
replace human researchers. This task isolates the
problem of reconstructing plausible methodologi-
cal reasoning from surrounding content for evalua-
tion purposes. We acknowledge the risks of misuse,
such as treating generated methods as ready for use
in real Al research. To reduce this risk, we frame
our task as a diagnostic benchmark, not a writing
tool, and do not recommend using these systems in
scientific work without safeguards.
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A Redaction Automation Attempts

We detail all prompts and specific examples for
each approach in Appendix D and Appendix E,
respectively. Note that all of our automation ap-
proaches start off with the filtered paper, which as
a reminder is the trimmed paper but without the
methodology.

Basic Prompting

One of our initial and simplest approaches was to
few-shot prompt a capable LLM like GPT-40 with
aredaction_prompt and the filtered paper. While
simple, this approach’s weakness is that it fails
to capture subtle mentions of the methodology in
sections like the introduction and related works and
is generally inconsistent.

Sentence-By-Sentence Redaction

To improve on our basic prompting approach, we
tried a new approach which we call sentence-
sentence redaction. It starts by first using NLTK’s
sentence tokenizer to split the filtered paper
into individual sentences and then for each in-
dividual sentence, we prompt GPT-40 with a
methodology_detection_prompt to determine
if that individual sentence contains the original
methodology. While better than our first approach
and majorly improving on capturing finer details,
the main flaw of this approach was that focusing
on a single sentence takes away important context
that’s necessary for determining whether it’s a sen-
tence that describes a methodology or not. We tried
to alleviate this issue by providing each sentence
with pre-context (one sentence before) and post-
context (one sentence after) but the improvements
were marginal and often led to false positives, thus
removing crucial information necessary in the pre-
diction phase.

Keyword (Phrase) Redaction

Our final automated approach is something we re-
fer to as keyword (phrase) redaction, which splits
the filtered paper into thoughts and then checks if
specific keywords or phrases are in that thought.
The key hypothesis behind this approach is that all
writing can be split into what we call thoughts. We

define thoughts as a collection of sentences that
refers to one unifying idea. For example, the ex-
cerpt “I went to the Louvre yesterday. I had to drive
my car there. I got stuck in a traffic jam but I even-
tually made it out. At the museum, I had lots of
fun. I looked at many cool paintings and sculptures.
My favorite was the Mona Lisa” can be split into “I
went to the Louvre ... eventually made it out” and
“At the museum, I ... was the Mona Lisa” where the
first thought describes how they got to the Louvre
and the second thought describes what they did at
the Louvre. If we can effectively apply this idea
and split research papers into these thoughts, we
fix both the issue of lack of granularity and lack of
context.

Additionally, since authors of papers tend to use
phrases such as “we propose” or “in our paper” to
describe their contributions and use specific proper
nouns or acronyms for the contributions they have
such as “WIPE” Tavasoli et al. (2024), we can
simply check if a keyword or phrase is in a thought,
and redact it if so. We prompt GPT-40 with a
split_prompt to split the text into thoughts and
extract proper nouns with a proper_noun_prompt,
and we handcraft a list of commonly used phrases.
We then iterate over every thought and check if any
of them commonly used phrases are in the thought
to determine if we redact the thought.

Unfortunately, two main problems arise. The
first one is that GPT-40’s thought extraction is
wildly inconsistent, ranging from single sentences
to entire paragraphs and does not align with our def-
inition of a thought. The second issue is that IGPT-
40 has trouble extracting just the proper nouns that
were proposed by the original authors and tends to
include proper nouns mentioned in previous works
like “CNN” or “Chain of Thought.” The first is-
sue is especially difficult to solve (and the idea of
thoughts may not even be well-defined) and thus we
decided we would be better off manually redacting,
though we encourage any future work improving
this approach.

B Statistical Significance Tests

We ran a series of statistical significance tests on the
results of the LLMs in order to determine if there
is a significant difference in their performance.
From visual inspection of the distributions of
model performances in Figure 3, it can be seen that
the distributions are not normal, and are skewed
to the right. Therefore, a Kruskal-Wallis Test is
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claude o3mini

gemini

gptdo

claude 1.000000 0.000072 0.030039 0.921461

gemini 0.000072 1.000000 0.698303 0.019083

gpt4o 0.030039 0.698303 1.000000 1.000000

o3mini 0.921461 0.019083 1.000000 1.000000

Figure 2: P-values between each pair of model to indi-
cate probability of no significant difference assuming
null hypothesis is true. P-value of less than 0.05 indi-
cates a significant difference between two models.

appropriate, as it does not assume anything about
the normality of the distributions. Our hypotheses
for this test are as follows:

Null Hypothesis (Hg): There is no significant
difference in benchmark performance between the
4 LLMs (GPT-40, Gemini, Claude, GPT-03-Mini).

Alternative Hypothesis (H 4): There is a signifi-
cant difference in benchmark performance between
at least one pair of the 4 LLMs.

After running the test using the SciPy library
with a standard significance level a of 0.05, our
p-value was found to be 0.0001. Thus, we reject
our null hypothesis that there is no significant dif-
ference between any of the models.

To determine which pairs of models have a sig-
nificant difference, we used the scikit_posthocs li-
brary to run a post-hoc Dunn’s test with Bonferroni
correction, as shown in Figure 2.

The models with a statistically significant differ-
ence are:

Claude vs Gemini: p-value = 0.0001

Claude vs GPT-40: p-value = 0.0300

Gemini vs O3-mini: p-value = 0.0191

The models without a statistically significant
difference are:

Claude vs O3-mini: p-value = 0.9215

Gemini vs GPT-4o0: p-value = 0.6983

GPT-40 vs O3-mini: p-value = 1.0000

Lastly, a power analysis was performed to deter-
mine the probability of detecting a difference be-
tween the LLMs assuming one actually exists. The
achieved power was estimated using an ANOVA-
based approximation with Cohen’s f as the effect
size measure. The power was calculated to be
0.9674, showing a high probability of detecting
a difference between the LLMs.

C Multiple Choice Question Evaluation
Attempt

Our initial approach to evaluating the LLMs in-
volved a multiple choice question format instead of
a jury of LLM judges. The multiple choice options
would contain perturbed summarized versions of
the methodology with several major flaws in its
execution, as well as a summarized version of the
original methodology. The idea here was that if an
LLM was able to consistently choose the correct
methodology option, then it would demonstrate a
strong understanding of what a rigorous research
methodology entails. However, we found several
issues with this approach. While an LLM that con-
sistently chooses the correct methodology option
could potentially demonstrate rigorous research
ability, this process passively spoon-feeds the LLM
with a well-thought out series of methodological
steps. The LLM would never be pushed to actively
engage in the extensive reasoning process of plan-
ning, organizing, and formulating these steps. This
prevents us from accurately assessing their real-
world potential as research assistants. Additionally,
the generation of incorrect multiple choice options
was more complicated than expected. We found
that much of the incorrect options had negative
language, which we define as subtle remarks that
clearly indicate an answer choice is incorrect by
indirectly stating flaws within its approach. Exam-
ples of negative language are depicted in the Figure
below.

MCQ Generation Prompt

Write 9 incorrect variations of the following summary
of a research methodology with key details changed.
Do not write anything about results or conclusions.
Ensure that each variation IMPLICITLY includes a
common pitfall of research such as lacking any of the
following: bias mitigation, ethical soundness, use of
control groups when applicable, quality data, repro-
ducibility, correct application of statistical methods,
practicality, etc. Output the 9 variations and verify
they are each of a similar length.

Correct Answer Choice: The research paper
investigates translation bias and the effectiveness
of multilingual Large Language Models (LLMs) in
cross-lingual claim verification using the XFACT
dataset, which encompasses claims in 15 languages
from five language families. The dataset ensures a
balanced representation of languages and an equal
distribution across five veracity labels...
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Incorrect Answer Choice: The research paper
explores the potential of multilingual Large
Language Models (LLMs) in cross-lingual claim
verification using the YFACT dataset, which includes
claims in 10 languages from three language families.
The dataset lacks a balanced representation of
languages and an unequal distribution across four
veracity labels...

Answer choices based off of "A Comparative Study
of Translation Bias and Accuracy in Multilingual
Large Language Models for Cross-Language Claim
Verification" Singhal et al. (2024a)

D Prompts

The rewrite_paper_prompt takes a parsed paper
and turns it into JSON format based on a Pydantic
schema.

Rewrite Paper Prompt .

You will be given a research paper in JSON format.
Instructions:

— You MUST output the original paper with ALL
original content.

— Do NOT add OR remove any content (except for
cleaning up any nonsensical text).

— You MUST preserve original section names.
Output Format:
Provide your response in valid JSON format with the

following keys:

— abstract: str
— introduction: str

— related_works: List[str] (Include ALL of the fol-
lowing if they exist: Related Works, Background)

— contributions: List[Section] (Include ALL of
the following if they exist: Methods, Experiments)

\, V.

The redaction_prompt takes in a filtered paper
and removes all mentions of the author’s methodol-

ogy.

Redaction Prompt .

You will be provided with a research paper in JSON
format.
Instructions:

— Identify and remove portions of the following re-
search paper that describe the methodology and
experimental setup as it pertains to the study.

— Maintain the paper’s structure, reformat only when
necessary, and do not summarize, paraphrase, or
modify text.

Examples:

We omit our six specific examples for brevity.
Output Format:

Provide your response in valid JSON format with the
following keys:

— abstract: str
— introduction: str

— related_works: List[str] (Include ALL of the fol-
lowing if they exist: Related Works, Background)

\, V.

The methodology_detection_prompt takes in
the trimmed paper and a sentence from that paper
and outputs a YES or a NO depending on if that
sentence is directly related to the methodology.

Methodology Detection Prompt

You will be given a research paper in JSON format
and a sentence from the research paper.
Instructions:

— You are an expert research analyzer.

— Carefully analyze the provided sentence in the con-
text of the research paper.

— Output "YES" if the sentence suggests ANY indi-
cation of the methodology/methods.

— Mark as "YES" if the sentence describes the
method or how it is used, mentions results involv-
ing the method, or includes any keywords that hint
at the method.

— Only output "NO" if the sentence is strictly back-
ground information (e.g., research domain or re-
lated works unrelated to the current method).

\ V.

The split_prompt takes a filtered paper and
splits it into thoughts.

Split Prompt .

You will be given a section of a research paper in
JSON format.
Instructions:

— Split the given text into different thoughts.

— A thought is a collection of sentences that focuses
on a singular idea.

— A thought usually starts with a general sentence
that sets up the focus, followed by elaboration.

— A thought MUST contain 3-5 sentences.
— You MUST output the original text. Do NOT add

or remove content.

\ V.

The proper_noun_prompt takes a filtered paper
and extracts proper nouns or acronyms that are
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related to the author’s methodology.

Proper Noun Prompt .

You will be given a research paper in JSON format.
Instructions:

— Proper nouns can take many forms: singular words,
multiple words, acronyms, etc.

— If a proper noun has multiple words, also include
its acronym.

— Choose AT MOST 6 proper nouns (excluding
acronyms).

— If a proper noun is a commonly used keyword or
too general, do NOT include it.

— If a proper noun has been mentioned in past re-
search or works, do NOT include it.

\, V.

The outline_prompt takes the redacted paper
and generates an outline for a potential methodol-

ogy.

Outline Prompt .

You will be given parts of a research paper in JSON
format.
Instructions:

— You are an expert researcher.

Output Format:
Provide your response in valid JSON format with the
following keys:

— proposed_method: str (Using the given informa-
tion, first provide inspiration behind a new pro-
posed method to address the main research prob-
lem. You should also motivate why the proposed
method would work better than existing works.
Then, explain how the proposed approach works,
and describe all the essential steps.)

— experimental_plan: str (Break down EVERY
single step in proposed_method. Every step
MUST be executable. Cover ALL essential de-
tails such as the datasets, models, and metrics to
be used, etc.)

\, V.

The writing_prompt takes an outline and gen-
erates a full methodology.

Writing Prompt R

You will be given JSON formatted text.
Instructions:

— You will write the complete methodology section
of a research paper in paragraph format.

— Use a formal and direct tone for the paper.

— Explain ALL steps logically with well-defined con-
nections between ideas and sections.

— Elaborate heavily on the experimental_plan. In-
clude extreme detail and thoroughness.

— Include specific examples with detailed explana-
tions for further elaboration.

— Write all mathematical expressions in LaTeX.
— Be EXTREMELY verbose and thorough.

— Do NOT use excessive subsections. Instead, con-
nect certain concepts within a section in a smooth
way.

Output Format:
Provide your response in valid JSON format with the
following key:

— methodology:: List[Section] (The methodology
section will include ALL of the following sections:
Methods, Experiments.)

\, V.

The judging_prompt takes a predicted method-
ology and ground truth methodology and generates
an explanation an integer score from 1-10, based on
a certain rubric. The rubric guidelines and trivial
differences are provided after this prompt.

Judging Prompt .

You will be given the TRUE research paper contribu-
tions and the PREDICTED research paper contribu-
tions, both in JSON format.

Instructions:

— You are an honest and analytical judge.

— Compare how similar the PREDICTED methodol-
ogy are to the TRUE methodology using the rubric
provided below.

— Do NOT consider stylistic or writing choices, nor
trivial details in your comparison.

— Prioritize clarity, correctness, and alignment of
ideas with the research problem over the use of
mathematical notation.

— Do NOT include any additional commentary, tags,
or quotes outside the JSON.

Output Format:
Provide your response in valid JSON format with the
following keys:

— explanation: str (A detailed rationale in para-
graph format behind your judging. Avoid lists or
bullet points.)

— score: int (An integer score from 1-10 (inclusive)
based on the rubric provided below.)

Rubric:
Insert rubric here.
Trivial Differences:

Insert trivial differences here.
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The rubric gives specific descriptions and ex-
amples for what each score from 1-10 looks like.

m N

Rubric Specifications:

» Each paper will be assigned a score between 1 and
10 (inclusive), based on how similar it is to the
original paper.

* When assigning a score, clearly explain which parts
of the paper’s methodology are similar or different
from the original.

The following rubric will be used to assign scores:

— Score 1: Methodology is vastly different.

— Score 2: Methodology is significantly different
but contains a few minor similarities.

— Score 3: Methodology has some similarities but
misses key details.

— Score 4: Methodology is somewhat similar but
still lacks important aspects.

— Score 5: Methodology shows a relatively equal
mix of similarities and differences.

— Score 6: Methodology is fairly close to the orig-
inal but omits or alters some details.

— Score 7: Methodology closely matches the orig-
inal with only minor alterations.

— Score 8: Methodology is very similar with only
small, noncritical differences.

— Score 9: Methodology is nearly identical with
extremely minor differences.

— Score 10: Methodology is almost identical, with
only trivial differences ignored.

Example Reference Paper:

We omit the example for brevity. Full examples can
be found in our Github*.

Examples of Score Assignments:

We omit the example for brevity. Full examples can
be found in our Github*.

**GitHub to be provided upon acceptance

\, V.

The trivial_differences describe certain dif-
ferences between the predicted methodology and
original methodology that can be ignored. Note
that our original prompt contained an example for
each category but we remove it for brevity.

Trivial Differences .

Below is a list of illustrative examples showing that
minor or trivial differences in a predicted method-
ology should not be penalized when the overarch-
ing ideas and experimental approaches remain intact.
These examples are drawn from various aspects of
AI/ML research papers in general.

— Alternate Evaluation Metrics with the Same Ob-

jective

Slight Variation in Data Preprocessing Techniques

Different Hyperparameters with Similar Impact

Minor Architectural Adjustments in Model Design

Alternate Statistical Analysis in Ablation Studies

Alternate Magnitudes of Values

\, V.

E Examples

As mentioned previously, we removed papers with
extensive mathematical notation due to failure to
parse IATEX. An example is shown below.

Original Text:
“Dunefesky et al. (2024) finds a computational graph
through the MLP layers by training transcoders:

a(bg) (WTWEDT) )

o

Here, W{DTW{T € RIFIXIF] serves as a transi-
tion operator between the feature spaces of layers A
and B, revealing which features in B are ancestors
for the ith feature in A.

Matrices P4~ and WDTWDT are in some
sense similar.”

Parsed Text:
“Dunefesky et al. (2024) finds a computational graph
through the MLP layers by training transcoders:

z(hpre);
W(A)T

dec W(B)T
enc

i,:.

(L

Here, W(A)T
dec W(B)T

enc € RITIXIFI gerves as a transition operator

between the feature spaces of layers A and B,
revealing which features in B are ancestors for the
tth feature in A.

Matrices P(A — B) and W(A)T
dec W(B)T
enc are in some sense similar.”

Excerpt taken from Laptev et al. (2025)

Additionally, we mentioned many attempts at
automation briefly in Section 3 and also more de-
tail in Appendix A. We first give an example of a
correct redaction using our two-step manual redac-
tion process then we give some specific examples
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of the redaction breaking down for each automated
approach. We use the paper by Cohn et al. (2024a)
as our example. We color redacted text in red, false
negatives in blue, and false positives in green. We
omit some text with ellipsis for brevity. Also note
that we start off with the filtered paper.

"abstract”: "This paper explores the
use of large language models (LLMs) to
score and explain short-answer
assessments in K-12 science. While
existing methods can score more
structured math and computer science
assessments, they often do not provide
explanations for the scores. Our study
focuses on employing GPT-4 for
automated assessment in middle school

Earth Science, combining ... for
open-ended science assessments.”,
"introduction”: "Improvements in

Science, Technology, Engineering, and
Mathematics (STEM) education have
accelerated the shift from teaching
and assessing facts to developing ...
key to gaining a deep understanding of
scientific phenomena (Mao et al.
2018).

This paper develops an approach for
human-in-the-loop .. of critical need
in K-12 STEM instruction.”,
"related_works"”: "To understand the
difficulties students face when
learning science, teachers need to ...
Very little research has examined
effective mechanisms for generating
automated grading and useful formative
feedback for K-12 students that are
aligned with classroom learning goals.
Advances in natural language
processing (NLP) have produced
improved automated assessment scoring
approaches to support teaching ...
While these methods have enjoyed
varying degrees of success, a majority
of these applications have targeted
more structured mathematics and ...
The data needed for training our
models is small, imbalanced, and

non-canonical in terms of syntax and
semantics, all of which may impact
model performance (Cohn 2020).

This research tackles several critical
issues, namely: (1) grading
open-ended, short-answer questions
focused on science conceptual
knowledge and reasoning, (2)
utilizing LLMs to ... generation
process to resolve discrepancies and
support the learning goals."
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"abstract”: "This paper explores the
use of large language models (LLMs) to
score and explain short-answer
assessments in K-12 science. While
existing methods can score more
structured math and computer science
assessments, they often do not provide
explanations for the scores. Our study
focuses on employing GPT-4 for
automated assessment in middle school

Earth Science, combining ... for
open-ended science assessments.”,
"introduction”: "Improvements in

Science, Technology, Engineering, and
Mathematics (STEM) education have
accelerated the shift from teaching
and assessing facts to developing ...
key to gaining a deep understanding of
scientific phenomena (Mao et al.
2018).

This paper develops an approach for
human-in-the-loop .. of critical need
in K-12 STEM instruction.”,
"related_works"”: "To understand the
difficulties students face when
learning science, teachers need to ...
Very little research has examined
effective mechanisms for generating
automated grading and useful formative
feedback for K-12 students that are
aligned with classroom learning goals.
Advances in natural language
processing (NLP) have produced
improved automated assessment scoring
approaches to support teaching ...
While these methods have enjoyed
varying degrees of success, a majority
of these applications have targeted
more structured mathematics and ...
The data needed for training our
models is small, imbalanced, and
non-canonical in terms of syntax and
semantics, all of which may impact
model performance (Cohn 2020).

This research tackles several critical
issues, namely: (1) grading
open-ended, short-answer questions
focused on science conceptual
knowledge and reasoning, (2)

utilizing LLMs to ... generation
process to resolve discrepancies and
support the learning goals.”

Explanation: In this example, it essentially just re-
turned the original filtered paper as the redacted paper,
resulting in a lot of false negatives. This is clearly
problematic as our basic prompting cannot pick up
finer details.



"abstract”: "This paper explores the
use of large language models (LLMs) to
score and explain short-answer
assessments in K-12 science. While
existing methods can score more
structured math and computer science
assessments, they often do not provide
explanations for the scores. Our study
focuses on employing GPT-4 for
automated assessment in middle school
Earth Science, combining ... A
systematic analysis of our method’s
pros and cons sheds light on the
potential for human-in-the-loop
techniques to enhance automated
grading for open-ended science
assessments."”,

"introduction”: "Improvements in
Science, Technology, Engineering, and
Mathematics (STEM) education have
accelerated the shift from teaching
and assessing facts to developing ...
key to gaining a deep understanding of
scientific phenomena (Mao et al.
2018).

This paper develops an approach for
human-in-the-loop LLM prompt
engineering using in-context learning
and chain-of-thought reasoning with
GPT-4 to support auto- mated analysis
and feedback generation for formative
as- sessments in a middle school Earth
Science curriculum. We present our
approach, discuss our results,
evaluate the limi- tations of our
work, and then propose future research
in this area of critical need in K-12
STEM instruction.”,

"related_works": "To understand the
difficulties students face when
learning science, teachers need to ...
which may impact model performance
(Cohn 2020).

This research tackles several critical
issues, namely: (1) grading
open-ended, short-answer questions
focused on science conceptual
knowledge and reasoning, (2)
utilizing LLMs to ... generation
process to resolve discrepancies and
support the learning goals.”

Explanation: Our sentence-sentence approach is
slightly better and has some correct redactions but
fails to recognize other sentences related to the
methodology, probably due to lack of context.

For our keyword approach, we separate the text
in a list to represent the thoughts that it was split
into, we bold key phrases like “our method”, and
we also include all the extracted proper nouns.
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Proper Nouns: GPT-4, Chain-of-thought Reason-
ing, In-context Learning, Human-in-the-loop LLM
Prompt Engineering, formative assessments

"abstract”: ["This paper explores the
use of large language models (LLMs) to
score and explain short-answer
assessments in K-12 science. While
existing methods can score more
structured math and computer science
assessments, they often do not provide
explanations for the scores. Our study
focuses on employing GPT-4 for
automated assessment in middle school
Earth Science, combining ... for
open-ended science assessments."],
"introduction”: ["Improvements in
Science, Technology, Engineering, and
Mathematics (STEM) education have ...
time-consuming for teachers and
susceptible to errors (Rodrigues and
Oliveira 2014; Haudek et al. 2011).",
"Large Language Models (LLMs) provide
opportunities for automating short
answer scoring (Funayama et al. 2023)
and ... are key to gaining a deep
understanding of scientific phenomena
(Mao et al. 2018).",

"This paper develops an approach for
human-in-the-loop LLM prompt
engineering using ... in this area of
critical need in K-12 STEM
instruction."],

"related_works": ["To understand the
difficulties students face when
learning science, teachers ... and
reasoning to better support their
developing STEM ideas (Cizek and Lim

2023).",
"However, grading formative
assessments, ... aligned with

classroom learning goals."”,

"Advances in natural language
processing (NLP) have produced
improved automated assessment scoring
approaches to support teaching and
learning (e.g., Adair et al. 2023;
Wilson et al. 2021). ... different
from scoring free-form short-answer
responses by middle school students in
science domains.",

"Data impoverishment concerns ... in
terms of syntax and semantics, all of
which may impact model performance
(Cohn 2020). This research ...
aligned with specified learning
objectives for both students and
teachers and (3) addressing concerns
related to data impoverishment. We
hypothesize that our approach supports
automated scoring and explanation that
(1) aligns with learning objectives
and standards, ... discrepancies and
support the learning goals."]

Explanation: As you can see, there are a ton of false
positives with this approach and this is due to the fact

“formative assessments” was extracted as a proper



noun, which is too general. Additionally, because
our thoughts were too large, this further encouraged
false positives as non-methodology revealing content
would be combined with the methodology.

Now, we will present some examples from the
prediction pipeline that we believe is representative
of the general quality of LLM generated method-
ologies. Specifically, for each predictor LLM, we
include an example that received a score close to
the average final score for that predictor LLM. We
only include the experimental_plan of the out-
line for the sake of length and we also include a
shortened original methodology for reference.

Paper Citation: Paper from Dutta and Jannesari
(2024).

Original Methodology:

1. **Data Collection**: Compile programs from
datasets (CodeNet, HPCorpus, LS-CAT) into LLVM
IRs. Select 10,000 unique programs.

2. **Tokenization**: - Train a WordPiece tokenizer
specific to the structure of IRs. - Define special tokens
and use a sequence length of 64 for IR tokens.

3. **Graph Generation**: - Use PROGRAML to
convert IRs into multi-graphs containing data-flow,
control-flow, and call-flow.

4. **Pre-Training Tasks**: - **Masked Language
Modeling**: For each IR statement: - Randomly
mask 15% of tokens with specific replacements
(80% '[MASK]’, 10% random, 10% unchanged). -
Use transformer layers to train the model to predict
masked tokens. - **Graph Auto-Encoding**: - Ex-
tract sub-graphs (control-flow, data-flow, call-flow)
from IRs. - Use GCN layers to encode and decode
each sub-graph, optimizing graph reconstruction via
adjacency matrices. - Aggregate losses for overall
graph learning. - **IR-Graph Matching**: - Gener-
ate data pairs (positive from same IR, negative from
different IRs). - Embed IR statements into sequences,
aggregate vectors for entire files. - Train using bi-
nary cross-entropy to classify if sequence and graph
match.

5. **Evaluation**: - Use the pre-trained model on
downstream tasks to evaluate performance optimiza-
tion. - Compare results against baseline methods to
validate the improvement in capturing semantic and
structural code features.

Predicted Methodology:

1. **Data Collection**: - Gather a large corpus of
open-source HPC applications in a variety of pro-
gramming languages. - Use LLVM tools to generate
Intermediate Representations (IRs) for each applica-
tion. - Collect dynamic profiling logs during execu-
tion on different HPC architectures to capture runtime
behavior.

2. **Pre-processing**: - Convert LLVM IR into
multi-graph representations using a tool like PRO-
GRAML. - Extract static features from IRs and dy-
namic features from execution logs. - Normalize
and clean the dataset to ensure consistency across
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different programs and architectures.

3. **Multi-modal Representation Learning®*: -
Train separate encoders for graph-based LLVM IR
representations and dynamic profiles. Use Graph
Neural Networks (GNNs) for IR graphs and recur-
rent neural networks (RNNs) for dynamic profiles.
- Develop a fusion layer that combines the learned
embeddings from both encoders to form a unified
representation.

4. **Pre-training HPC-BERT**: - Pre-train the
combined model using a self-supervised learning
approach where the model learns to predict miss-
ing parts of code or performance metrics. - Employ
masked node prediction tasks in the IR graph and
masked performance prediction tasks in the dynamic
profile. - Use a large-scale dataset to ensure robust
learning of code and performance dependencies.

5. **Fine-tuning for Downstream Tasks**: - Fine-
tune HPC-BERT on specific HPC optimization tasks
such as auto-tuning compiler flags or predicting par-
allelization strategies. - Use datasets specific to each
downstream task, ensuring alignment with the pre-
training phase. - Evaluate performance improve-
ments against baseline ML methods and human-tuned
benchmarks using metrics like execution time reduc-
tion and energy efficiency.

6. **Evaluation and Validation**: - Conduct com-
prehensive experiments on HPC clusters to assess the
model’s adaptability and performance gains. - Val-
idate the model’s predictions against human expert
optimizations and iterate on the model based on feed-
back and results.

Score: 3.33

Paper Citation: Paper from Rasool et al. (2024).
Original Methodology:

1. Query and Answer Synthesis: - Obtain a corpus
of documents that are semantically represented (i.e.,
embedding vectors). - Use a large language model
(LLM) to extract factual statements from each doc-
ument. - For each extracted fact, employ the LLM
to generate questions that use these facts as answers,
ensuring the questions remain within the document’s
scope. - If dealing with long or multiple documents,
use a retriever to extract relevant facts for question
generation.

2. Query Evaluation: - For each generated query,
retrieve the top N documents and check if the origi-
nal document is among them. - Retain queries that
successfully retrieve relevant documents and discard
those that do not, ensuring domain-specific relevance.
3. Query Variation Generation: - Prompt the LLM to
create diverse variations of each verified query, focus-
ing on differences in phrasing, structure, or keywords
while retaining semantic similarity. - Provide both the
question and answers in the prompt to maintain do-
main relevance and mitigate unrelated or hallucinated
queries.

4. Evaluation Strategy: - Use the Qasper dataset,
which includes question-answers from NLP research
papers, filtering out unanswerable questions. - Uti-
lize the Assignment dataset, a curated set of 52 dis-
tinct questions derived from typical university-level
queries. - Perform qualitative evaluations involv-
ing human assessment of generated question-answer



pairs for realism and relevance. - Conduct a case
study using the Assignment dataset with the GPT-
Cache semantic caching library, evaluating perfor-
mance with DistilBERT, SBERT, and ONNX embed-
dings. - Measure metrics such as correct/incorrect
cache hits and misses to assess the semantic cache’s
effectiveness with the generated dataset.

Predicted Methodology:

**Step 1: Dataset Preparation** - Gather a small
set of domain-specific documents and existing query-
response pairs to fine-tune the language model. This
will also serve as the basis for training the GAN dis-
criminator.

**Step 2: GAN Model Training®* - Initialize a GAN
with a generator capable of creating varied queries
and a discriminator pre-trained on a general lan-
guage model and further fine-tuned using the domain-
specific dataset. - Train the GAN to produce semanti-
cally diverse and domain-relevant queries, iteratively
improving the generator’s performance based on dis-
criminator feedback.

**Step 3: Fine-Tuning Language Model** - Fine-
tune a large language model (e.g., BERT or GPT)
with the domain-specific dataset. This model will
serve as the discriminator within the GAN frame-
work to ensure relevance and domain consistency of
generated queries.

**Step 4: Adversarial Query Generation** - Use the
trained GAN to generate a wide range of queries,
including slight perturbations that act as adversarial
examples. These queries should vary in semantic
proximity to existing ones to test cache robustness.
**Step 5: Implementation of Semantic Cache Test-
ing** - Deploy the newly created queries against the
semantic cache system. - Record data on cache hits
and misses, focusing on how adversarial and domain-
specific queries are handled.

**Step 6: Feedback Loop Integration** - Analyze
incorrect cache hits and misses, feeding this data back
into the GAN training process. - Modify the generator
and discriminator based on these insights to refine
their outputs and improve future query generation.
**Step 7: Evaluation Metrics and Iteration** - Set
evaluation metrics, such as precision, recall, and
F1-score, to measure the performance of cache hit-
s/misses. - Continuously iterate on the GAN model
based on evaluation results to enhance query genera-
tion quality.

**Step 8: Scalability Testing®* - Test the scalability
of the method by deploying it in various domains,
adjusting the fine-tuning process as necessary for
each domain’s specific characteristics.

Score: 3.33

Paper Citation: Paper from Salminen et al. (2024).
Original Methodology:

1. **Select the Research Context**: Focus on the
domain of addiction, covering five types: alcohol, opi-
oids, social media, online shopping, and gambling.

2. **Use GPT-4 for Persona Generation**: - Set
up the experiment with three types of prompts for
each addiction: male specified, female specified, and
gender-neutral. - Generate 450 personas by repeating
the generation 30 times for each of the 15 prompt
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combinations using GPT-4.

3. **Implement a Two-Stage Prompting Strategy**:
- Stage 1: Generate skeletal personas for each
addiction-prompt combination. - Stage 2: Ask GPT-4
to expand the skeletal descriptions into full personas.
4. **Ensure Replicability**: - Provide a structured
template for persona information output. - Share
the generated Personas-addicted dataset for further
research.

5. **Internal Evaluation**: - Conduct an internal
evaluation with four experienced UX researchers to
assess persona quality using both quantitative and
qualitative metrics. - Compute inter-coder reliability
using Krippendorff’s Alpha (U) metric.

6. **External Evaluation**: - Recruit five subject-
matter experts (SMEs) in public health via Upwork
to evaluate a random stratified sample of 30 personas.
- Use a standardized evaluation framework, covering
criteria like age, gender, occupation, and personality.
7. **Analyze Results**: - Conduct statistical tests
(e.g., Chi-squared, Mann-Whitney U) to identify bi-
ases in gender, age, and country distributions. - Use
regression modeling to explore relationships between
pain points and demographic variables.

8. **Provide Feedback and Adjustments**: - Collect
qualitative feedback from SMEs on persona realism,
relatability, and usability. - Use feedback to refine
prompt strategies and mitigate biases.

9. **Share Findings**: - Publish the methodology
and results, highlighting the potential of LLMs for
persona generation and addressing biases and quality
feedback.

Predicted Methodology:

1. **Dataset Preparation**: Collect a comprehen-
sive dataset comprising various demographic statis-
tics from trustworthy sources, such as national census
data, to serve as benchmarks for diversity in personas.
2. **LLM Persona Generation**: Use a pre-trained
large language model like OpenAl’'s GPT-4 to gen-
erate initial personas based on prompts describing
different user groups.

3. **Bias Detection**: Implement a bias detection al-
gorithm using natural language processing techniques
and fairness-aware machine learning models. This
step involves analyzing the generated personas to
identify potential demographic imbalances or biased
representations.

4. **Diversity Benchmarking**: Compare the demo-
graphic attributes of the generated personas against
real-world statistics collected in step 1. This compar-
ison helps in identifying under-represented or over-
represented groups.

5. **Fairness-Aware Filtering**: Apply a filtering
mechanism to adjust the features of the personas to
better match the diversity benchmarks. This can in-
volve tweaking attributes such as ethnicity, age, gen-
der, and other relevant demographic factors to ensure
a more balanced representation.

6. **Iterative Refinement**: Re-run the genera-
tion and filtering processes iteratively, refining the
prompts and fairness criteria based on feedback from
domain experts until the personas meet acceptable
levels of diversity and bias reduction.

7. **Evaluation**: Conduct a comprehensive eval-
uation with subject-matter experts to assess the im-
proved personas for engagement, interestingness, re-
alism, diversity, and bias. Use metrics like the di-
versity index and sentiment analysis to quantify im-



provements.

8. **User Perception Study**: Perform user studies
to gather feedback on the perceived realism and in-
clusiveness of the personas. This feedback loop helps
in further refining the generation process.

9. **Documentation and Reporting**: Document
the entire process, detailing the methods, findings,
and improvements made to the LLM-generated per-
sonas. Provide recommendations for future research
and potential applications of PersonaFair in various
domains.

Score: 2.67

Paper Citation: Paper from Toki et al. (2024).
Original Methodology:

1. Data Collection: Recruit participants, primarily
young children, through health and educational es-
tablishments. Obtain informed consent from parents
and record the children’s developmental and commu-
nication skills. Collect data using the SmartSpeech
system’s serious game activities designed to gather
linguistic and biometric measurements.

2. Data Preprocessing: - Handle missing data using a
model-based imputer in Orange data mining software.
- Select 13 relevant features. - Standardize variables
to mean = 0, SD = 1. - Filter out outliers to maintain
data integrity.

3. Cluster Analysis: - Conduct hierarchical clustering
using Spearman distance metric and Ward linkage
to identify clusters of similar attributes. - Analyze
the resulting dendrogram to understand the variable
groupings.

4. Reliability Analysis: - Calculate Cronbach’s alpha
for each cluster to assess internal consistency and
reliability.

5. Factor Analysis: - Perform exploratory factor anal-
ysis using minimum residual extraction and varimax
rotation to identify latent factors. - Confirm factor
structure using Bartlett’s test of sphericity and KMO
measure.

6. Predictive Modeling: - Develop a logistic regres-
sion model using the latent factors as input features.
- Use Orange Data Mining for model development
and validation. - Evaluate model performance with
metrics like accuracy, precision, recall, and F1 score.
Apply stratified 10-fold cross-validation. - Perform
external validation with a cohort of 184 participants,
ensuring demographic representation.

7. Evaluation: - Analyze model performance using
confusion matrix and ROC curves to assess discrim-
inative power. - Interpret results using a nomogram
for clinical insights. - Compare with alternative mod-
els (e.g., random forest, SVM) to ensure best model
selection.

8. Documentation and Reporting: - Produce detailed
reports and visualizations of model performance and
statistical analyses. - Prepare for publication and
dissemination of findings in clinical and academic
settings.

Predicted Methodology:

1. **Data Collection Infrastructure®**: - Set up a
controlled environment with audio recording devices,
eye-tracking systems, and motion sensors. - Use a
standardized protocol to ensure consistency across all

data collection sessions. - Obtain ethical approval and
informed consent from participants’ guardians. - Re-
cruit a diverse sample of children, ensuring represen-
tation across different neurodevelopmental disorders
for the training dataset.

2. **Data Preprocessing**: - For speech data, em-
ploy noise reduction filters and segment audio clips
into meaningful units (e.g., words, phrases). - Ap-
ply MFCC to extract fundamental speech features. -
Analyze eye-tracking data to identify and log fixa-
tions, saccades, and blink rates. - Process motor data
to quantify movement patterns using algorithms like
dynamic time warping for temporal alignment.

3. **Feature Extraction and Selection**: - Use
Python libraries such as librosa for audio features,
pandas and numpy for data manipulation, and
OpenCV for processing eye-tracking data. - Imple-
ment feature selection techniques like recursive fea-
ture elimination to identify the most informative fea-
tures.

4. **Model Development - Multi-Modal Fusion**: -
Design a neural network architecture with branches
for each modality, converging into a fusion layer. -
Use frameworks like TensorFlow or PyTorch to im-
plement deep learning models. - Initialize with pre-
trained models where applicable to enhance learning
efficiency.

5. **Training and Validation**: - Split the dataset
into training, validation, and test sets (e.g., 70-15-15
split). - Use stratified sampling to ensure balanced
representation of classes. - Apply data augmentation
techniques to increase variability and robustness. -
Employ metrics such as accuracy, F1 score, and con-
fusion matrix for evaluation.

6. **Real-Time System Development**: - Develop a
user-friendly interface using frameworks like Django
or Flask for clinicians to interact with the system.
- Implement visualization tools using libraries like
matplotlib and seaborn to display multi-modal data
insights.

7. **Iterative Feedback Loop**: - Set up a mecha-
nism for clinicians to provide feedback on the sys-
tem’s outputs. - Use this feedback to iteratively refine
model parameters and improve prediction accuracy.

Score: 3.75

In addition to examples of predictions, we will
also include three examples of the judging outputs
for each judge LLM. In order to demonstrate the
full extent of our judging criteria, we include a
judging response that’s rated high (7-10), medium
(4-6), and low (1-3). To be concise, we do not
include all the judging responses during the voting,
only the voted upon response. Also, we arbitrarily
select examples from the judging results of any of
the predictor LLMs.

Paper Citation: Paper from Saxena et al. (2024).
Explanation:

The predicted methodology introduces a novel frame-
work called ConsistentReason, which significantly
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deviates from the original methodology. While both
papers focus on evaluating consistency and reasoning
capabilities of LLMs, the approaches are fundamen-
tally different. The original methodology uses the
Boolq dataset and focuses on evaluating LLMs in a
zero-shot setting without any additional frameworks
or model modifications. It assesses consistency by re-
peating queries and measuring response stability, and
reasoning by comparing generated explanations with
ground truth using metrics like BERT Score, BLEU
Score, and F-1 Score. In contrast, the predicted
methodology proposes a complex multi-component
framework involving knowledge graph integration,
iterative self-verification, and reasoning chain valida-
tion to improve factual accuracy and consistency. It
uses different datasets and evaluation metrics, such
as Hallucination Rate and Consistency Score, and
employs a sophisticated experimental setup including
human evaluations and cross-validation. These sub-
stantial differences in approach, datasets, evaluation
metrics, and experimental setup justify a score of 1,
as the predicted methodology is vastly different from
the original.

Score: 1

Paper Citation: Paper from Liu et al. (2024b).
Explanation:

The predicted methodology for the Dynamic Scaf-
folding Framework (DSF) shares some foundational
similarities with the true contribution on Multi-Modal
Tutoring Systems but diverges in several key areas,
warranting a score of 5. Both methodologies focus
on language learning through the integration of mul-
timodal systems and the use of scaffolding strategies,
which is a critical overlap. The true methodology uses
GPT-4V for its image description tutoring, emphasiz-
ing pedagogical strategies like role and task definition,
while the predicted methodology uses GPT-4 fine-
tuned on teaching dialogues, incorporating explicit
scaffolding strategies and implicit contextual cues.
This difference in the LLM’s application suggests a
divergence in the approach to leveraging language
models. Furthermore, the predicted methodology in-
troduces a dynamic fading mechanism for scaffolding
reduction, a concept not present in the true method-
ology, which focuses more on the pedagogical theo-
ries and scaffolding strategies like dialogic teaching,
inquiry-based learning, and ZPD. The evaluation in
the true paper involves scaffolding strategies and their
impact on students’ language learning, whereas the
predicted methodology employs a rigorous experi-
mental design comparing DSF and traditional ITS,
focusing on engagement metrics, learning efficiency,
and user satisfaction. These differences in evaluation
approaches and the absence of specific pedagogical
strategy testing in the predicted methodology indi-
cate a balanced mix of similarities and differences,
justifying a score of 5.

Score: 5
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Paper Citation: Paper from Long et al. (2024).
Explanation:

The predicted methodology closely aligns with the
true methodology in many key aspects, though there
are some notable differences. Both approaches in-
volve the concept of generating multiple expert per-
spectives to address an input query, and both utilize a
structured process of aggregating these perspectives
to create a final response. The predicted methodology
mirrors the true paper’s two-step process: generating
expert identities and responses, and then aggregating
these responses. However, there are some deviations
in execution and detail. The predicted approach de-
scribes the use of a similarity function and a ranking
or voting algorithm to aggregate responses, which dif-
fers from the true methodology’s detailed seven-step
aggregation process that involves specific subtasks
like identifying agreed viewpoints, resolving con-
flicts, and generating isolated viewpoints. Addition-
ally, the predicted methodology includes an analytical
module for generating expert profiles, which is not
explicitly mentioned in the true paper. Despite these
differences, the core principles and goals of lever-
aging diverse expert opinions to improve response
quality and mitigate bias are consistently represented.
These similarities, combined with some differences
in the technical execution of aggregation and expert
generation, warrant a score of 7.

Score: 7

Paper Citation: Paper from Lee and Lim (2024).
Explanation:

The true research paper contributions are focused
on diagnosing and analyzing the limitations of lan-
guage models with respect to their lack of sensory
experience — specifically through tasks such as H-
TEST and Letter Geometry — in order to demonstrate
that sensory aspects like visual and auditory infor-
mation are blind spots in standard LLMs. This work
is essentially an empirical and analytical study that
uses task-based experiments and ablation studies to
reveal these limitations, along with observations on
few-shot prompting and chain-of-thought effects. In
contrast, the predicted methodology outlines the de-
sign and implementation of a new multi-modal model
architecture (SELM) that explicitly integrates mul-
tiple sensory modalities (vision, audio, and haptic)
into a BERT-large based framework using dedicated
sensory streams, fusion through cross-attention, and
a multi-component loss function. Moreover, the ex-
periments in the predicted methodology are focused
on training a model with multi-modal data along with
standard NLP benchmarks and novel sensory consis-
tency metrics. This approach is aimed at building
a new model architecture rather than evaluating the
current shortcomings of sensory-deprived LLMs. As
a result, the overarching objectives, experimental de-
signs, and intended contributions are vastly differ-
ent, with little overlap in the core methodological
approach.

Score: 1



Paper Citation: Paper from Cambrin et al. (2024).
Explanation:

The predicted methodology shares several high-level
ideas with the original paper. Both works propose
a compound loss framework that starts with cross-
entropy and integrates additional losses (Dice and
Focal) to improve token prediction and address class
imbalance. They both focus on training large lan-
guage models using parameter-efficient methods such
as LoRA and target mathematical reasoning tasks
along with general language modeling. However, the
predicted methodology diverges in several important
respects. It omits key loss functions such as Lovasz
loss and self-adjusting Dice loss that are central in the
original paper, and it introduces a novel token-level at-
tention mechanism to weight the loss components—a
detail that is not present in the original description. In
addition, while both works perform ablation studies,
the predicted experiments include varied curriculum
learning strategies, different datasets (e.g., WikiText-
103, C4, and Stack Exchange for general language
modeling versus the original’s mixture of QA and
math-specific datasets) and evaluation metrics (us-
ing ROUGE-L, BLEU, and perplexity versus Exact
Match, IoU, and ROSCOE metrics). These differ-
ences in the choice of losses, additional architectural
innovations, and experimental design present a bal-
ance of similarities and departures. Overall, the pre-
dicted methodology exhibits a relatively equal mix of
similar elements and significant differences from the
original, warranting a score that reflects this balanced
alignment.

Score: 5

Paper Citation: Paper from Li et al. (2024c).
Explanation:

The predicted paper’s methodology is nearly identi-
cal in structure and intent to the original work. Both
methods follow a staged approach that begins with
pre-training a base language model on a large, unla-
beled corpus, followed by the integration of adapter
modules and the use of a meta-learning (MAML)
framework on source data, and concluding with a
domain-adaptive fine-tuning phase on limited target
data. The predicted description mirrors the original
by emphasizing the utility of adapter modules to pre-
serve general language understanding while rapidly
adapting to low-resource settings, and both include
comprehensive evaluation strategies using quantita-
tive metrics. The differences are minor — for example,
the specific model (BART) is named in the origi-
nal but omitted in the predicted version, and there
is a slight variation in the evaluation metrics (using
METEOR instead of iBLEU). These details are con-
sidered trivial since they do not affect the overarching
ideas and experimental framework. Thus, the core
methodology, multi-stage approach, and experimen-
tal validation are extremely well-aligned between the
two.

Score: 9
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Paper Citation: Paper from Sharma et al. (2024b).
Explanation:

The predicted methodology differs significantly from
the true methodology in both approach and objectives.
The true paper focuses on analyzing and comparing
human-generated summaries from different modal-
ities (speech vs. text) and annotator types (expert
vs. non-expert), while the predicted methodology
describes developing a multi-modal summarization
system with contrastive learning and human-in-the-
loop feedback. The true paper’s methodology centers
around data collection, evaluation metrics, and re-
search questions examining human summarization
behavior, whereas the predicted paper proposes an
Al system for automated summarization. While both
papers deal with speech and text modalities in sum-
marization, their fundamental approaches and goals
are vastly different. The true paper is an analytical
study of human summarization behavior with care-
fully designed data collection procedures and evalu-
ation metrics to compare summaries across modali-
ties and annotator expertise levels. In contrast, the
predicted methodology focuses on building a deep
learning system with specific architectural compo-
nents like multi-modal transformers and contrastive
learning. The evaluation approaches also differ sub-
stantially - the true paper uses metrics to compare
human-generated summaries, while the predicted pa-
per suggests evaluating an Al system’s output. These
fundamental differences in approach, objectives, and
evaluation make the methodologies largely incompat-
ible.

Score: 1

Paper Citation: Paper from Li et al. (2024b).
Explanation:

The predicted methodology shares some key elements
with the original paper but has notable differences in
both approach and evaluation methods. The original
paper focuses heavily on using existing large lan-
guage models (LLMs) with carefully crafted prompts
for text style transfer across multiple datasets (YELP,
CAPTIONS, GENDER, POLITICAL), employing
both automated metrics and a novel duel-ranking hu-
man evaluation method. While the predicted method-
ology also proposes using LLMs and incorporating
human evaluation, there are significant differences in
the specific approaches. The original paper develops
a specific prompt template with four core compo-
nents and uses established automated metrics (BLEU,
BERTSscore, FastText classifier, perplexity) alongside
their novel duel-ranking human evaluation. In con-
trast, the predicted methodology proposes a more
general *Adaptive Style Transfer with Uniform Eval-
uation’ (ASTUE) framework with adaptive contex-
tual learning and integrated feedback loops, which
weren’t part of the original approach. The predicted
methodology’s evaluation framework, while also in-
corporating human evaluation, lacks the specific duel-
ranking mechanism that was central to the original
paper’s contribution. However, both methodologies
share the core idea of combining automated and hu-
man evaluation metrics, and both emphasize the im-



portance of standardized evaluation protocols. The
experimental approach in the predicted methodology
is more generalized and lacks the specific datasets
and metrics used in the original paper, though it main-
tains similar high-level goals of assessing content
preservation, style transfer strength, and fluency.

Score: 5

Paper Citation: Paper from Li et al. (2024c).
Explanation:

The predicted methodology shows strong align-
ment with the original paper’s core approach while
maintaining most key components, but introduces
some variations in the presentation and organiza-
tion of ideas. Both methodologies focus on a three-
stage learning paradigm involving pre-training, meta-
learning with adapters, and fine-tuning. The key sim-
ilarities include: using BART as the backbone model,
incorporating adapter layers into transformer architec-
tures, employing MAML for meta-learning, and fol-
lowing the same overall workflow from pre-training
through adaptation to target domain fine-tuning. The
predicted methodology correctly emphasizes the im-
portance of preserving prior knowledge while adapt-
ing to new domains and maintains the focus on low-
resource scenarios. However, there are some dif-
ferences in how certain aspects are presented and
elaborated. The predicted methodology spends more
time discussing data collection and evaluation strate-
gies, while the original is more concise and mathe-
matically formal in its presentation. The predicted
version also expands more on the iterative improve-
ment process, which wasn’t explicitly detailed in the
original. While these differences represent expan-
sions rather than contradictions, they do represent
slight deviations from the original presentation. Ad-
ditionally, while the predicted version captures the
essence of the adapter architecture, it doesn’t provide
the same level of mathematical detail in describing
the adapter function. Despite these minor variations,
the core methodological approach remains fundamen-
tally aligned with the original paper.

Score: 8

Paper Citation: Paper from Lee and Lim (2024).
Explanation:

The predicted contributions from the SELM pa-
per focus on developing a novel architecture, the
Sensory-Enriched Language Model (SELM), which
integrates multi-modal sensory information into lan-
guage model pre-training. This approach fundamen-
tally differs from the true contributions of the H-
TEST paper, which investigates the limitations of
language models in understanding visual and audi-
tory aspects of language without sensory inputs. The
SELM’s methodology involves constructing a model
with specialized sensory processing components (e.g.,
ResNet50 for vision, Wav2Vec for audio, a custom
CNN for haptic), which is entirely absent from the
H-TEST’s approach that solely uses language-only
models. The SELM paper also discusses a detailed
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multi-component loss function and a sensory fusion
layer, whereas the H-TEST paper does not engage
in model development but rather conducts classifi-
cation tasks to test the sensory understanding of ex-
isting models. Furthermore, the experimental setup
in the SELM paper involves extensive dataset prepa-
ration, multi-modal training, and evaluation using
standard and novel metrics, which contrasts sharply
with the H-TEST’s use of few-shot prompting and a
focus on performance relative to a random baseline.
While both papers touch on the theme of sensory un-
derstanding in language models, the SELM paper’s
approach to achieving this through model architec-
ture and training is fundamentally different from the
H-TEST’s approach of assessing existing models’
limitations. The SELM’s inclusion of human evalua-
tion and detailed ablation studies also diverges from
the H-TEST’s methodology, which does not explore
model architecture changes or human evaluation but
rather focuses on empirical testing of language model
capabilities.

Score: 1

Paper Citation: Paper from Weerasinghe et al.
(2024).

Explanation:

The predicted contributions outline a multimodal
edge-based cognitive assistant system for EMS pro-
tocol guidance, which shares several conceptual sim-
ilarities with the true contributions, but also devi-
ates significantly in its approach and execution. The
true contributions detail a real-time cognitive as-
sistant pipeline for EMS responders, focusing on
speech recognition, protocol selection, and interven-
tion recognition, all optimized for edge deployment.
In contrast, the predicted contributions emphasize
a comprehensive data collection process, a knowl-
edge graph for domain knowledge representation,
and the use of specific models like MobileViT v2 and
Whisper-tiny, which are not mentioned in the true
contributions. The predicted methodology also in-
cludes a multimodal fusion mechanism and a knowl-
edge graph attention network, which are not part of
the true contributions. While both methodologies
aim to assist EMS responders, the predicted contribu-
tions focus more on technical aspects like model op-
timization for edge devices and detailed performance
metrics, whereas the true contributions emphasize
practical implementation and real-time performance.
The predicted contributions also include a user study,
which is absent from the true contributions, indicat-
ing a different focus on validating the system’s utility.
Opverall, while the overarching goal of assisting EMS
responders is shared, the predicted contributions di-
verge significantly in their methodological details and
evaluation approach, warranting a score of 4 due to
the lack of alignment in key aspects of the methodol-
ogy.

Score: 4



Paper Citation: Paper from Li et al. (2024c).
Explanation:

The predicted contributions closely align with
the true contributions in terms of the overall
methodology for enhancing paraphrase generation in
low-resource domains. Both methodologies utilize
a three-stage approach: pre-training on a large
unlabeled corpus, meta-training with a meta-learning
framework, and domain-adaptive fine-tuning on
a target corpus. The backbone model in both is a
pre-trained language model, specifically BART in the
true contributions, which the predicted contributions
refer to as a base language model. The use of
adapter modules in the predicted contributions
matches the adapter model described in the true
contributions, where adapters are integrated into
the transformer layers of the backbone model to
facilitate domain-specific adaptation without altering
the pre-trained model’s core parameters. The
meta-learning phase in both methodologies employs
the Model-Agnostic Meta-Learning (MAML)
framework, aimed at enabling rapid adaptation
to new tasks with minimal data, which is crucial
for low-resource scenarios. The domain-adaptive
fine-tuning phase in both involves fine-tuning on a
small target dataset, with the predicted contributions
explicitly mentioning the use of labeled target
domain data, aligning with the true contributions’
use of a target corpus. The evaluation metrics listed
in the predicted contributions (BLEU, ROUGE,
METEOR) are similar to those used in the true
contributions (BLEU, iBLEU, ROUGE), indicating
a close match in performance assessment. The
predicted contributions’ mention of an iterative
approach based on evaluation feedback is also
reflected in the true contributions’ emphasis on
continuous improvement and adaptation to the target
task. The main difference lies in the level of detail
and specificity; the true contributions provide more
detailed mathematical formulations and specific
dataset names, whereas the predicted contributions
are more general in their descriptions. However,
the core ideas and experimental approaches are
substantially similar, warranting a high score.

Score: 8

F Supporting Figures
We present our judging pipeline in Figure 3. We

present our manual redaction pipeline in Figure 4.

We visualize our paper curation process in Figure
5. We include box plots to visualize the distribution
of individual judge LLM scores for each predictor
LLM in Figure 6. We visualize the length bias
scatter plots in Figure 7.
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Figure 3: Visual representation of our judging pipeline with a jury of LLMs, majority voting, and self-omission.
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451



Request

e Parsed Papers
User conference Response =
[0}
oot ! |
: : o After a :
H . ! knowledge = |1 m _ Lore‘;nl
| 1 \/ ipsum dolor
i e G = H sit amet,
: : e - consectetur
1 . 2
i 1| ¢ Keywords: =
e . ML and

LLMs

Manual Trimming

Trimmed Paper o Talles and ’/

figures

Lorem ipsum
dolor sit
amet ...

{“abstract”: “.”, Too many

“introduction”: “.”,
“related_works”: “.”,
“methodology”: “.”}

mathematical
expressions

k— °* Headers and
footers

¢ References

* Appendices

Figure 5: A visual overview of our paper curation process.

Boxplot of Scores by LLM in 40_judging Boxplot of Scores by LLM in 03mini_judging
9 7 ° °
8 ° o
6 ° °
7 °
5 °
6 °
<4 <4
S 5 8 a4
@ @
4
3
3
2
2
1 o 1
claude_35sonnet grok 2 03_mini claude_35sonnet gpt_4o grok_2
LLM
(a) GPT-4o0 as predictor LLM (b) 03-mini as predictor LLM
Boxplot of Scores by LLM in claude_judging Boxplot of Scores by LLM in gemini_judging
8 9
; 8 ° °
7 ° °
6
6 o o o
o® ° o
g g5
A, @
3
3
2 2
1 1 o o o
apt_d0 grok 2 03_mini claude_35sonnet gpt_4o grok 2 03_mini
LM LLM
(c) Claude 3.5 Sonnet as predictor LLM (d) Gemini 1.5 Pro as predictor LLM

Figure 6: Box plots describing the distribution of each judge LLM’s scores that were involved for each predictor
LLM. Most judge LLMs tend to give consistently low scores.
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Length vs. Score (All Models)
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Figure 7: Scatterplot of prediction length against its score. The nearly horizontal slopes suggest there is no
relationship between the length of a prediction and its assigned score.
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