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Abstract

We introduce CTIM-Rover', an Al agent for
Software Engineering (SE) built on top of
AutoCodeRover (Zhang et al., 2024) that ex-
tends agentic reasoning frameworks with an
episodic memory, more specifically, a gen-
eral and repository-level Cross-Task-Instance
Memory (CTIM). While existing open-source
SE agents mostly rely on ReAct (Yao et al.,
2023b), Reflexion (Shinn et al., 2023), or Code-
Act (Wang et al., 2024), all of these reason-
ing and planning frameworks inefficiently dis-
card their long-term memory after a single
task instance. As repository-level understand-
ing is pivotal for identifying all locations re-
quiring a patch for fixing a bug, we hypoth-
esize that SE is particularly well positioned
to benefit from CTIM. For this, we build on
the Experiential Learning (EL) approach Ex-
peL (Zhao et al., 2024), proposing a Mixture-
Of-Experts (MoEs) inspired approach to cre-
ate both a general-purpose and repository-level
CTIM. We find that CTIM-Rover does not out-
perform AutoCodeRover in any configuration
and thus conclude that neither ExpeL. nor DoT-
Bank (Lingam et al., 2024) scale to real-world
SE problems. Our analysis indicates noise in-
troduced by distracting CTIM items or exem-
plar trajectories as the likely source of the per-
formance degradation.

1 Introduction

Al Agents have recently proven themselves as a
competitive way of scaling test-time compute, es-
pecially in SE (Chowdhury et al., 2024). A crucial
yet underexplored component of Al agents is their
memory, which allows them to dynamically adapt
their behavior based on prior experiences. Early
approaches, such as ReAct (Yao et al., 2023b), rely
on the agent’s immediate trajectory or short-term
memory for decision-making. Reflexion (Shinn
et al., 2023) extends this by introducing long-term

"https://github.com/Ligs-v2/ctim-rover

memory in the form of self-reflections on past
failed task attempts, enabling agents to improve
their reasoning and planning on a single task in-
stance through In-Context Learning (ICL). While
this yields performance gains on the current task
instance, Reflexion discards these self-reflections
after task completion. This results in inefficient use
of computational resources and loss of valuable
cross-task-instance learning opportunities. Zhao
et al. (2024) address this limitation through Ex-
periential Learning (EL), which is learning from
past experiences across task instances. Their ap-
proach ExpeL achieves promising results on Hot-
potQA (Yang et al., 2018), WebShop (Yao et al.,
2023a), and Alfworld (Shridhar et al., 2021). To
better align with existing terminology, we name the
memory consisting of knowledge extracted with
EL “CTIM”. Our work investigates whether CTIM
generalizes to the more complex? domain of SE.
We choose SE because we expect EL to be par-
ticularly valuable for uncovering the structure of
a repository, reducing the number of turns taken
exploring the codebase.

To adapt EL to SE we extend it to a MoEs in-
spired Knowledge Distillation (KD) approach that
simultaneously captures high-level SE best prac-
tices and repository-specific details (e.g., project
structure). We experimentally evaluate this ap-
proach by augmenting AutoCodeRover (Zhang
et al., 2024) with CTIM, which we name “CTIM-
Rover”, and comparing the results of CTIM-Rover
with those of the AutoCodeRover on a subset of
SWE-bench Verified. We find that our adapted
CTIM does not generalize to SE and instead de-
grades performance in all configurations compared
to AutoCodeRover. Our detailed qualitative analy-
sis identifies noisy CTIM items as culprits and we
propose the use of embedding-based retrieval meth-

2CTIM-Rover’s mean context is = 4 times larger than
ExpeL’s on HotpotQA (Yang et al., 2018). Details in Table 3.
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Figure 1: CTIM-Rover Overview. Figure inspired by ExpeL (Zhao et al., 2024). CTIM-Rover first gathers new
experiences on the train set of SWE-bench Verified which we introduce in Section 3 (details in Appendix A). Then,
it combines these experiences with existing experiences of AutoCodeRover (Zhang et al., 2024) on SWE-bench
Lite (Jimenez et al., 2023). Next, it distills high-level and repository-level knowledge from these experiences. During
evaluation, it recalls a past experience and conditions on the distilled knowledge. Key departures from ExpeL or
AutoCodeRover in blue: (A) We extend AutoCodeRover with Reflexion (Shinn et al., 2023), allowing the agent
to retry an instance up to three times while learning from its mistakes through self-reflection. (B) Compared to
ExpeL, we also source experiences from past successful trajectories outside our system. (C) We introduce a novel
domain-specific Knowledge Distillation (KD) phase (Figure 2) that extracts repository-level insights (e.g., common

bug patterns).

ods to provide relevant, task-similar CTIMs items.
The potential of this approach in the SE domain
was recently demonstrated by (Su et al., 2025) who
provided relevant sub-trajectories for ICL at each
agent turn.

2 Related Work

2.1 Agentic Reasoning Frameworks

A core element of popular agentic reasoning frame-
works (Yao et al., 2023b; Shinn et al., 2023; Wang
et al., 2024) is the agent’s trajectory or short-term
memory, consisting of its past actions, reasoning
and environment observations. Shinn et al. (2023)
introduce a long-term memory consisting of self-
reflections over the short-term memory of unsuc-
cessful previous attempts. However, after conclud-
ing a task instance, existing reasoning frameworks
used in SE agents do not further use the short- or
long-term memory. Our work addresses this key
limitation by adapting ExpeL (Zhao et al., 2024) to
the SE domain.

2.2 SE Agents

SWE-agent (Yang et al., 2024) was the first openly
available SE agent and leverages the ReAct rea-
soning framework (Yao et al., 2023b). The agent’s
basic search tooling combined with its interleaved
bug localization and patch generation approach of-
fers flexibility, but results in long and expensive
trajectories. AutoCodeRover (Zhang et al., 2024)
on the other hand, explicitly structures the task

into two distinct phases: bug localization and patch
generation. Additionally, it provides sophisticated
search tooling during localization and constrains
the patch generation phase to a maximum of three
retry attempts. This ensures shorter, cost-efficient
trajectories and a guaranteed termination shortly
after the patch generation step. A key limitation of
this approach is that the agent cannot gather addi-
tional context once it enters the patch generation
phase. However, current SE agents are not yet ca-
pable of recovering from early mistakes, and their
performance stagnates at later turns (Yang et al.,
2025). Furthermore, neither of these agents employ
CTIM. Thus, our work expands the cost-efficient
AutoCodeRover with CTIM.

2.3 Concurrent Work

Lingam et al. (2024) perform self-reflection on
the same task instance while prompting for a di-
verse set of self-reflections and additionally en-
hance the context with exemplar trajectories from
other task instances. This approach demonstrates
performance gains on programming benchmarks
with comparatively short trajectories (e.g., Hu-
manEval (Chen et al., 2021)). Especially the latter
setup is closely related to CTIM-Rover with an ex-
emplar trajectory. However, we evaluate on SWE-
bench (Jimenez et al., 2023) which more closely re-
sembles real SE tasks. Instead of abstracting from
the trajectory by constructing a CTIM, (Su et al.,
2025) directly retrieve synthetic sub-trajectories at

412



each step of the agent and achieve strong perfor-
mance on SWE-bench. Furthermore, we provide
the full CTIM with the user prompt at the start of
an agent’s trajectory instead of select subset at each
turn.

3 Dataset

We use SWE-bench Verified (Chowdhury et al.,
2024) without samples from the pylint, astropy
and pydata/xarray repositories due to environ-
ment setup issues > as basis for our experiments.
For details see Section 6. For our experiments,
we rely on SWE-bench Verified, opposed to SWE-
bench (Jimenez et al., 2023), as it guarantees that
samples are theoretically solvable (Chowdhury
et al., 2024). For the collection of past successful
trajectories (Section 3.1) we use 401 samples from
this benchmark and for the evaluation 45 samples.

3.1 Systematic Collection of Past Successful
Trajectories

To construct a high quality CTIM, we require a
diverse and representative set of successful past
trajectories. These are past experiences on SWE-
bench in which the agent solved an instance. This
section details our systematic approach to collect-
ing these trajectories.

To generate as many successful past trajec-
tories as possible, we extend the baseline Au-
toCodeRover (Zhang et al., 2024) implementation
with self-reflection capabilities. Following Shinn
et al. (2023), we retry an instance up to three times
and allow self-reflections to inform each subse-
quent attempt. While AutoCodeRover allows up
to three patch generation attempts, this does not
entail a complete retry on the full trajectory, nor
a self-reflection between the patch generation at-
tempts. During training we reduce the patch gener-
ation retries of AutoCodeRover from three to two
to amortize some of the additional cost incurred
by Reflexion retries. With this setup we gather the
trajectories of 183 successfully solved instances.
To further increase our training set, we supple-
ment the collected trajectories with 53 success-
ful AutoCodeRover trajectories from SWE-bench
Lite. Because CTIM-Rover’s trajectories only dif-
fer from vanilla AutoCodeRover trajectories by the
addition of self-reflections, and both SWE-bench
Verified and SWE-bench Lite are subsets of SWE-

3Thanks to the AutoCodeRover authors for helping us
validate these.

bench we consider this operation valid with respect
to our data distribution. We use these 236 past
successful trajectories to construct our CTIM. For
details on their distribution see Appendix D.1.

4 Experiments

To adapt EL to SE, we extend the CTIM with
a MoE (Jacobs et al., 1991) inspired repository-
level CTIM (Section 4.1) and investigate ICL with
successful, task-similar exemplar trajectories (Sec-
tion 4.2). For distilling knowledge from trajec-
tories, we use the reasoning model ol (OpenAl,
2024b) because we suspect that its capabilities are
beneficial when identifying pivotal agent decisions
in complex SE agent trajectories (i.e., cause-effect
relationships). We use GPT-40 (OpenAl, 2024a)
to power the agent during training trajectory col-
lection and the final evaluations due to budget con-
straints.

4.1 Cross-Task-Instance Memory (CTIM)

Our approach shares the core principle of using
knowledge extracted from past successful trajec-
tories to guide the agent on future instance with
ExpeL (Zhao et al., 2024). We provide a high-
level system overview of in Figure 1. To adapt
this approach to SE, we extract repository-level
knowledge following and conditioned on general
SE knowledge in a two-phase approach detailed
below (Figure 2).

Repository-Level Knowledge Distillation Our
approach re-uses the KD methodology (extract-
ing knowledge from sets of successful trajectories
from distinct instances and tuples of successful and
failing attempts in the same instance) and opera-
tions (add, edit, upvote or downvote?) introduced
by Zhao et al. (2024) with the following modifi-
cations. First, we double the initial importance
value of CTIM items, because we expect longer
intervals between instances for which a CTIM item
is applicable. This is motivated by the limited
state space of Expel’s environments, compared
to the complexity of real world software reposito-
ries. Furthermore, some of our trajectories contain
self-reflections. We expect these trajectories to
produce especially high-quality CTIM items when
extracting knowledge from tuples of successful and
failing attempts in the same instance as they al-
ready contain the insights that lead to an eventual

*“If the importance of a CTIM item falls below 0, this
operation removes that item from the CTIM.
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Figure 2: CITM-Rover Knowledge Distillation (KD). Key departure from ExpeL (Zhao et al., 2024) in blue.
Top: (1) Distill generally applicable SE knowledge from pairs of successful trajectories from different task instances
and (2) tuples of a successful task instance and its self-reflection retries. Bottom: (3) Use the generally applicable
knowledge and past experience to distill repository-level knowledge from pairs of successful trajectories from
different task instances within the same repository and (4) tuples of a successful task instance and its self-reflection

retries for a given repository.

Configuration Django Matplotlib Mwaskom Pytest Scikit Sphinx Sympy | Overall
(22) 4) @ 3 @ %) 9 (45)
AutoCodeRover 50 25 0 33 100 0 56 42
CTIM-Rover 50 50 0 33 100 0 33 40
CTIM only 36 25 0 33 100 0 33 31
General CTIM only 55 0 0 33 100 0 22 36
Repo-level CTIM only 41 0 0 33 100 0 33 31
Exemplar only 50 25 0 67 100 0 33 40

Table 1: Success rates (%) on our test set across CTIM-Rover configurations and repositories. Values in parentheses
indicate the number of samples in our test set per repository.

resolution. After the first phase of general CTIM
construction, we build a repository-specific CTIM
by constraining all instances shown to the distilling
Large Language Model (LLM) (see Section 4) to be
from the same repository. Finally, we limit the max-
imum size of the CTIM to ¢(n) = [y/n], where n
represents the number of available successful tra-
jectories for constructing this CTIM. With this we
aim to iteratively refine the CTIM to contain a con-
cise set of high-quality insights and avoid degrad-
ing the agent’s performance with noisy knowledge.
For prompts see Appendix D.2, for sample CTIM
items Appendix D.3.

Using the repository-level knowledge, we expect
the agent will more efficiently explore its environ-
ment by re-using knowledge relating to previously
explored areas of its environment. This knowledge
may provide insights on (1) the structure of the
project, (2) entry points or data flow and architec-
tural patterns, (3) coding conventions encountered,
(4) common failure modes relating to the applica-
tion domain of the software (e.g., failure modes

for image processing in OpenCV), or (5) common
bugs that the agent encountered in that past.

4.2 Exemplar retrieval

In addition to providing the CTIM for ICL, we
investigate if ICL with the most task-similar past
successful trajectory improves performance. For
this, we construct a Milvus (Wang et al., 2021a)
index consisting of problem statement embeddings,
using Code-T5 (Wang et al., 2021b) base as the em-
bedding model. This model’s size allows local use
and it is trained for language and code, which our
problem statements consist of. During evaluation,
we retrieve the most task-similar past successful
trajectory based on cosine similarity scores with a
90% threshold. This ensures an exemplar is only
shown if a relevant one is available (= 62% of
samples).

5 Results

We evaluate CTIM-Rover’s performance across
the configurations listed in Table 1. CTIM-

414



Rover achieves only a 40% success rate, which
is two percent points worse than our baseline Au-
toCodeRover. Surprisingly, “Exemplar only” con-
figuration matches this performance. The “CTIM
only” configuration unexpectedly degraded the per-
formance to just 31%, 11 percent points less than
the baseline. Seeing how poorly CTIM-Rover per-
formed in the “Repo-level CTIM only” configura-
tion, we partially attribute the performance degra-
dation in the “CTIM only” configuration, to the
repository-specific CTIM. Moreover, we observe
a performance degradation even for the “django”
repository, which our train set is heavily skewed
towards (Figures 4 and 5). We expected instances
in this repository to disproportionally benefit from
the additional repository-level knowledge due to
the reasons discussed in Section 4.1. Surprisingly
the performance is somewhat stable compared to
the baseline, even for underrepresented repositories
(e.g., Pytest). This suggests source of the observed
performance degradation may relate to the CTIM
usage and quality rather than the quantity. We hy-
pothesize that (1) providing all CTIM items may
introduce unexpected noise because we do not filter
these items for relevance regarding the instance’s
context, and (2) our CTIM optimization constraint
leads to an overly smooth, uninformative and thus
noisy CTIM. To diagnose the reasons for the poor
performance, we next perform a detailed qualitative
investigation of two randomly chosen samples.

5.1 Qualitative Performance Degradation
Analysis

We first consider “django__django-13933”, a sam-
ple that our baseline solves, but CTIM-Rover
with “Repo-level CTIM only” does not. Initially,
both systems invoke the correct API returning
to_python, the function that needs a patch. How-
ever, our system decides to further investigate the
clean function, which is also returned by the API,
and does not further investigate to_python. This
indicates an unexpected bias towards the tokens
constituting “clean”. In the repository-level CTIM
for “django” we notice that the item in Figure 3
contains the word clean. Upon removing this item
from the CTIM and retrying, our system correctly
identifies the to_python function as the location
for the patch and solves the sample.

Next, we focus on “django__django-15987”, a
sample that both AutoCodeRover and CTIM-Rover
with “Repo-level CTIM only” solved, but CTIM-
Rover failed to solve in the “CTIM only” configu-

Problematic “django” CTIM Item

[...] Ensure to separate resolution from the final redi-
rect to keep path_info clean while preserving the
prefix in the final URL, preventing forced [...]

Figure 3: Excerpt of the repository-level CTIM item
that biased our system toward investigating the incorrect
clean function, demonstrating how seemingly innocu-
ous knowledge can misguide the agent.

ration. The problem statement of this sample ex-
plicitly mentions the constant FIXTURE_DIRS and
AutoCodeRover correctly searches the repository
for this constant. However, CTIM-Rover with the
“CTIM only” configuration does not. We notice
that our CTIM does not refer to any constants and
suspect that this biases our system towards lower
snake-case names. Upon adding the arbitrary, capi-
talized item “GRANDMA LIKES PASTA” to the
CTIM and retrying, our system again solves the
sample. This suggests noisy CTIM biases CTIM-
Rover toward suboptimal initial steps rather than
helping it skip initial exploration turns and further-
more hypothesize that lengthy exemplar trajecto-
ries likely cause similar issues.

6 Conclusion

In this work we extend ExpeL (Zhao et al., 2024),
which showed promising performance on Hot-
potQA (Yang et al., 2018), WebShop (Yao et al.,
2023a), and Alfworld (Shridhar et al., 2021) to
the SE domain. We introduce a repository-specific
CTIM and investigate its performance on a subset
of SWE-bench Verified (Chowdhury et al., 2024).
Our results show that this simple EL implemen-
tation does not generalize to the SE setting and
that the findings reported by Zhao et al. (2024)
and Lingam et al. (2024) are thus limited to sim-
pler environments with shorter trajectories. An
extension of a general CTIM with repository-level
CTIM or exemplar-based ICL does not suffice to
amend this. Our investigations reveal noisy CTIM
items as the likely culprit. We suggest removing
the maximum size constraint from CTIM and in-
stead focus on embedding-based retrieval of highly
relevant CTIM items with respect to the problem
statement. Furthermore, we suspect that the use of
the CTIM should not be limited to the initial con-
text, and instead a subset of relevant items should
be provided at each turn (Su et al., 2025).
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Limitations

Regarding our dataset a key limitation is that we
had to remove ~ 10% of samples from SWE-bench
Verified due to defective environment setup scripts.
We only removed these samples after validating
these issues with the AutoCodeRover authors. Fur-
thermore, while our ablation study and qualitative
analysis hint at a potential path towards a concise
and focused CTIM implementation that improves,
rather than degrades performance via embedding-
based retrieval of CTIM items, we do not investi-
gate such an approach. Future work may also con-
sider the re-use of self-reflections as CTIM items
more explicitly. In our work we only implicitly
distill knowledge from these in the success-failure
tuple setting.
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A Our Train and Test Sets Based on
SWE-bench Verified

We use the human-annotation data released with
SWE-bench Verified (Chowdhury et al., 2024)
for partitioning SWE-bench Verified into a train
and test set. For this, we first investigate the
statistical association of the underspecified,
false_negative and difficulty features from
the annotation data with the outcome of an in-
stance being solved by any competing system on
SWE-bench Verified, to inform our decision across
which fields to stratify during the dataset partition-
ing. We base this analysis on a snapshot of the

Number of Samples per Repository in Train-Split

816
30
31
209 39
66
Number of Samples per Repository in Test-Split
11
3
4
22 5
9
django scikit-learn psf
sympy matplotlib mwaskom
sphinx-doc pytest-dev pallets

Figure 4: The distribution of repositories across our
train and test sets.

SWE-bench Verified leader board from October 30,
2024. Table 2 presents the p-values for the inves-
tigated features. We find that the difficulty and
false_negative features are statistically signifi-
cantly associated with the resolution of an instance
at a significance level of a = 0.01. These fields cor-
respond to the subjective time required to resolve
an instance by human annotators and whether the
test suite mistakenly filters out successful solutions
due to overly specific tests (e.g., requiring specific
error messages), respectively. We did not find an
underspecifed problem statement to statistically
significantly affect instance resolution performance.
We thus stratify across the statistically significant
features to construct train and test sets that are
representative of the original dataset across these
success-related features.

In Figure 4, we show the distribution of repos-
itories across our train and test sets and observe
that data distribution of repositories decently ap-
proximated across both the train and test set even
without explicitly considering this in our stratifi-
cation process. However, some outliers exist (e.g.,
“pst” or “pallets”). For these all samples are con-
tained in the train set. Our partitioning approach
thus mostly maintains a repository overlap between
train and test sets, a critical prerequisite for the
cross-repository knowledge transfer of repository-
level knowledge in our CTIM approach.
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Feature p-value \’ statistic Used For Stratification
underspecified 0.6293 0.2329

false_negative 6.3-107% 11.6946 v
difficulty 3.4-107% 185154 v

Table 2: Chi-square analysis of SWE-bench Verified annotations and instance resolution status.

Number of Samples per Repository in Successful Trajectories
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Figure 5: The distribution of repositories across success-
ful solved instanced by CTIM-Rover on our train split
and by AutoCodeRover on SWE-bench Lite (Jimenez
et al., 2023). In total there are 236 solved instances
based on which we create our CTIM.

B Extended Related Work

B.1 Experiential Learning (EL)

One exciting advantage of EL and CTIM is that
they allow agents to continually augment their
knowledge of dynamic environments through ICL.
EL is loosely related to Continual Learning (CL).
However, typical EL methods require updating a
model’s weights or architecture (Shi et al., 2024).
This is often unfeasible and exposes the model
to the risk of catastrophic forgetting (Kirkpatrick
et al., 2017). While our implementation of EL
did not improve baseline performance, the findings
of Su et al. (2025) support our finding that noisy
context is the cause of the performance degrada-
tion and provide an actionable way forward for
tackling this issue: embedding-based retrieval of
CTIM items at every agent turn.

C Extended Results

To motivate the increased complexity of SE com-
pared to the domains investigated by ExpeL (Zhao

et al., 2024) we supplement our discussion of this
matter in Section 1 with statistics on turns taken
and tokens consumed (Table 3. Note that the con-
sumed tokens map to the context window at the
final step in which the agent generates its patch.

D Cross-Task-Instance Memory (CTIM)
Construction

In this section we provide further details on the
construction of our CTIMs. In Section 5 we discuss
the distribution of the trajectories that serve as basis
for KD and CTIM construction in relation to our
train and test set’s data distributions. Then, we
detail our prompt templates for CTIM creation in
Section D.2. Finally, we provide sample CTIM
items in Section D.3.

D.1 Distribution of Past Successful
Trajectories For Knowledge
Distillation (KD)

Compared to the distributions of our train and
test sets in Figure 4 the available past successful
trajectories for the actual CTIM construction are
even more heavily skewed towards the repositories
“django” and “sympy” (Figure 5). This is problem-
atic for the general-level CTIM because it makes
it challenging to distill knowledge that is gener-
ally relevant to SE. To amend this, we oversample
from all repositories except “django” in the “sets of
successful past trajectories” KD setting such that
we show an evenly balanced number trajectories
across “django” and all remaining repositories. For
the repository-specific CTIM on the other hand, we
expected the “django” repository to benefit from
the additional knowledge in particular due to this
heavy skew.

D.2 Knowledge Distillation Prompts

Figure 6 illustrates the prompt structure used in
the success-failure tuple setting. Both the gen-
eral and repository-level KD approaches enforce
a common structural framework for the distilled
knowledge and support identical operations on their
respective knowledge bases. However, they dif-
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Configuration Turns Tokens
Median Mean Min Max Median Mean Min Max
AutoCodeRover 9 11.16 4 20 10027 11414.02 3654 31408
CTIM-Rover 7 9.62 4 20 17807 1754493 4962 36250
CTIM only 8 10 4 20 10724 1320096 4438 46983
General CTIM only 9 10.31 4 20 9984 1227222 3594 37785
Repo-level CTIM only 8 9.67 4 20 10130  12139.87 3953 38730
Exemplar only 8 9.2 4 20 15579 16143.47 3365 43799

Table 3: Summary statistics for turn and token lengths on our test set (n = 45) across different configurations. All

numeric values are rounded to two decimal places.

fer notably in terms of input configuration and
focus: for general KD, the model is prompted
to extract broadly applicable software engineer-
ing best practices along with common error and
bug types, whereas repository-level KD explicitly
targets repository-specific information—such as
the repository’s structure, data flow patterns, and
localized characteristics. In the repository-level
phase, the prompt also incorporates the previously
extracted high-level general knowledge as a ref-
erence, ensuring that the new insights provide a
distinct, fresh perspective. Moreover, the distilling
LLM is restricted to modifying only the repository-
specific knowledge base for the repository currently
being processed, even though the general knowl-
edge base remains visible solely for comparison
purposes. For further details please refer to Fig-
ures 7 to 21 detailing our prompts below.

D.3 Sample CTIM Items

In this section we provide sample general and
repository-level CTIM items. We provide four
randomly selected general (Figure 22) and django
repository-level (Figure 23) items. Additionally,
we provide all repository-level CTIM items for psf
(Figure 24), an underrepresented repository.

Cross-Task-Instance Memory (CTIM)
Knowledge Distillation Prompts

General Knowledge
Distillation

Repository-Level [
Knowledge Distillation :

Input

e Success-failure trajectory

e Success-failure trajectory tuple

k tuple e Complete general :
. e Current general knowledge knowledge base (read-only) :
k base e Current repository-level
. e Remaining general knowledge base ;
: knowledge base capacity e Remaining repository-level :
knowledge base capacity
Focus Areas

e Project structure

e General reason & planning e Data flow and bug

SIS i localization patterns

f O Bzl app!mable Sl e Coding conventions &
and debugging best B
practices

o Application domain insights
and failure modes 5
e Common error modes, bug :
types and locations 5

© o Common SWE pitfalls and
generally applicable bug
types

Other Requirements

. e Knowledge must be concise (< 80 words) and singular

: Do not suggest testing the implementation

. o Generate knowledge must present a unique insight when
k contrasted with existing knowledge

Knowledge Base Operations

. e Add new knowledge to the knowledge base being constructed :
. (up to the knowledge base capacity) ;
' e Edit existing knowledge

. e Upvote or downvote knowledge to modify its importance and

: remove it if its importance falls to zero

Figure 6: Key differences in our prompting strategies
for general and repository-level Knowledge Distilla-
tion (KD). The general KD (left) captures broadly
applicable software engineering principles, while the
repository-level distillation (right) captures repository-
specific patterns. In the repository-level KD, we ensure
that all repository-specific data originate from the same
repository. In our implementation, we refer to knowl-
edge items as "rules" in prompting templates, but con-
ceptually they represent distilled knowledge.
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Knowledge Distillation System Prompt

You are an advanced reasoning agent that can ADD, EDIT, UPVOTE or DOWNVOTE rules from an existing rule
set, which is constructed by reflecting on and critiquing past successful task trajectories.

Figure 7: The system prompt we use for both KD phases and all KD settings.

CTIM Capacity Warning Prompt

You have reached the maximum ruleset size of {ruleset_cap}. The ADD operation is now INVALID. To
reduce the ruleset size, prune low-utility rules that overlap with others by performing the
DOWNVOTE operation on them.

Figure 8: The CTIM capacity warning prompt we use in both KD phases and all KD settings.

CTIM Capacity Information Prompt

You may add up to {remaining_slots} more rules to the ruleset before reaching the maximum
of {ruleset_cap} rules.

Figure 9: The CTIM capacity information prompt we use in both KD phases and all KD settings.

CTIM Operations Prompt - General KD (Phase 1)

Provide the operations as a list

containing JSON objects of the following schema:

{{

"operation_type": {{"enum”: ["ADD", "EDIT", "UPVOTE", "DOWNVOTE"]}},

"rule_id": {{"type": "integer"}},

"rule_content”: {{"type": "string"”}}

3}

The "operation_type"” field specifies the type of operation to perform on the rule with the given
"rule_id". The "rule_id"” must be an integer identifying a rule in the current
ruleset{ruleset_indices_hint}. If you are adding or editing a rule, additionally provide
the "rule_content” field with the new content of the rule.

Here is an example of a valid response:
{{"operations”:

[{{
"operation_type": "ADD",
"rule_content”: <Extracted insight, knowledge, tip or rule>
33
{{
"operation_type": "DOWNVOTE",
"rule_id": <Integer identifying an EXISTING rule that is contradictory to
another rule, this sample or too similar to another rule>
3%,
{{
"operation_type": "EDIT",
"rule_id": <Integer identifying an EXISTING rule>,
"rule_content”: <Extracted insight, knowledge, tip or rule to update and
enhance the EXISTING rule with>
33

i3

Figure 10: The CTIM operations prompt we use in the high level KD phase and both its KD settings.
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Do not mention the trajectories or their ids explicitly in your responses. Do not reference specific
file, class, function or variable names to ensure that your ruleset is general and transferable to
other task instances and repositories. You can use any of the valid operation types multiple times.

Each existing rule can be modified only once.

The following operations are valid:

- UPVOTE an EXISTING rule if it is strongly relevant in your current context and
trajectories. Valid fields: [operation_type, rule_id]

- DOWNVOTE an EXISTING rule if the rule contradicts your current context and
trajectories or is similar to or a duplicate

of another existing rule. Make use of this operation to achieve a concise ruleset

that is relevant across repositories and task instances.

If you downvote a rule often enough it will be removed from the ruleset. Valid

fields: [operation_type, rule_id]

- EDIT an EXISTING rule if it is not general enough or could be enhanced given your
current context by rewriting, adding or removing content. Valid fields:
[operation_type, rule_id, rule_content]

- ADD a NEW rule if you identified insights that are generally applicable and
transferable to other task instances. Make sure that the new rule is distinct

from existing rules. Valid fields: [operation_type, rule_content]

Key requirements:

- The only operation that is valid on rules that do not yet exist is ADD.

- If you have reached the maximum ruleset size, you must not add any new rules.
Instead, you must edit existing rules or upvote/downvote existing rules.

- You may provide between 1 and 4 operations.

Figure 11: The CTIM operations prompt we use in the high level KD phase and both its KD settings continued.

You are given a set of successful task trajectories that relate to fixing bugs in open-source code
repositories. During these trajectories you correctly identified the location of the buggy code,
wrote a patch which fixed the bug in the code and passed all test cases, meaning you also didn't in
introduce any new bugs.

Below follow the past successful task trajectories. The set of trajectories is delimited by the
<PAST_SUCCESSFUL_TRAJECTORIES> and </PAST_SUCCESSFUL_TRAJECTORIES> tags. Each trajectory is
wrapped by the <TRAJECTORY-i> and </TRAJECTORY-i> tags, where i identifies the i-th trajectory
in the set below:

<PAST_SUCCESSFUL_TRAJECTORIES>

{past_successful_trajectories}

</PAST_SUCCESSFUL_TRAJECTORIES>

Next, follow a set of rules that you have extracted so far. The ruleset is limited to {ruleset_cap}
rules. Any rules beyond {ruleset_cap} rules will be ignored:

{current_ruleset}

{remaining_slots_information}

By examining the successful trajectories, and the existing rules above you should update the
existing ruleset by adding, editing, upvoting or downvoting rules. The resulting ruleset must
consist of high-level knowledge, insights or tips that are generally applicable, covering

the following aspects:

1. Reasoning and planning strategies that serve as guiding signals for future task attempts,
especially with respect to identifying the locations of buggy code effectively.

2. Coding practices, patterns, and idioms that are generally applicable to writing high-quality,
staff senior level code, to fix bugs.

3. Common pitfalls and error patterns in software engineering that are relevant to identifying
and fixing buggy code.

Figure 12: The prompt describing the success-failure trajectory pair KD setting for the high level KD phase.
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Key requirements for rules:

- DO NOT suggest testing the implementation. The agent using your ruleset is UNABLE to test
its implementation. It must generate a correct patch on the first attempt.

- Generated rules must be concise (less than 80 words) and should be focused on a single,
specific aspect or insight.

- Generated rules must be unique with respect to other, existing rules and contribute a new,
unique piece of information, knowledge or perspective.

This ruleset should serve as the basis for guiding future task attempts in locating and
fixing bugs to a successful completion and empower the agent to improve its planning,
reasoning, coding skills, bug localization skills.

Figure 13: The prompt describing the success-failure trajectory pair KD setting for the high level KD phase
continued.

Below you will find multiple past attempts at fixing a bug in an open-source code repository.
The first few trajectories show failed attempts, the last trajectory shows a successful bug fix.
All attempts are related to fixing the same bug in the same codebase. Compare and contrast the
successful and failed attempts to understand why the initial attempts failed and which change
in the reasoning, planning, coding or bug localization strategy could have led to a correct
patch generation in the first attempt. Consider the self-reflections that took place between
the failed attempts to understand which changes were made in the reasoning, planning, coding
or bug localization strategy that led to the bug being fixed in the last trajectory.

Below follow the task attempts denoted by <FAILED_TASK_ATTEMPT-i> and </FAILED_TASK_ATTEMPT-i> tags
where i identifies the i-th failed attempt and the successful task attempt is denoted by the
<SUCCESSFUL_TASK_ATTEMPT> and </SUCCESSFUL_TASK_ATTEMPT> tags. Only failed task attempts contain
a self-reflection:

{success_failure_trajectory}

Next, follow a set of rules that you have extracted so far. The ruleset is limited to {ruleset_cap}
rules. Any rules beyond {ruleset_cap} rules will be ignored:
{current_ruleset}

{remaining_slots_information}

By examining and comparing the successful and failed attempts, and the existing rules above you
should update the existing ruleset by adding, editing, upvoting or downvoting rules. The resulting
ruleset must consist of high-level knowledge, insights or tips that are generally applicable,
covering the following aspects:

1. Reasoning and planning strategies that serve as guiding signals for future task attempts,
especially with respect to entifying the locations of buggy code effectively.

2. Coding practices, patterns, and idioms that are generally applicable to writing high-quality,
staff senior level code, to fix bugs.

3. Common pitfalls and error patterns in software engineering that are relevant to identifying
and fixing buggy code.

Key requirements for rules:

- DO NOT suggest testing the implementation. The agent using your ruleset is UNABLE to test
its implementation. It must generate a correct patch on the first attempt.

- DO NOT suggest reflecting on a past trajectory or attempt. The agent using your ruleset
is UNABLE to reflect on a past trajectory or attempt. It must generate a correct patch on
the first attempt.

Figure 14: The prompt describing the sets of successful trajectories KD setting for the high level KD phase.
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Sets of Successful Trajectories KD Setting - General KD (Phase 1) continued

- Generated rules must be concise (less than 80 words) and should be focused on a single,
specific aspect or insight.

- Generated rules must be unique with respect to other, existing rules and contribute a
new, unique piece of information, knowledge or perspective.

This ruleset should serve as the basis for guiding future task attempts in locating and fixing
bugs to a successful completion.

It should empower the agent to improve its planning, reasoning, coding, and bug localization
skills.

Figure 15: The prompt describing the sets of successful trajectories KD setting for the high level KD phase
continued.

CTIM Operations Prompt - Repository-Level KD (Phase 2)

Provide the operations as a list containing JSON objects of the following schema:
{{

"operation_type": {{"enum”: ["ADD", "EDIT", "UPVOTE", "DOWNVOTE"I}},

"rule_id": {{"type": "integer"}},

"rule_content”: {{"type": "string"}},

"knowledge_type": {{"enum”: ["repository_structure”, "architectural_pattern”,

"coding_convention”, "error_pattern”,
"application_domain”]}}
3}

The "operation_type"” field specifies the type of operation to perform on the rule with the given
"rule_id". The "rule_id"” must be an integer identifying a rule in the current
ruleset{ruleset_indices_hint}. If you are adding or editing a rule, additionally

provide the "rule_content” field with the new content of the rule. If you are adding

a rule, you must also specify the "knowledge_type” of the rule.

Here is an example of a valid response:
{{"operations”:

{{
"operation_type"”: "ADD",
"rule_content”: <Extracted insight, knowledge, tip or rule>,
"knowledge_type": "error_pattern”
1%
{{
"operation_type": "ADD",
"rule_content”: <Knowledge about the application domain of the project and typical
edge cases resulting from this.>
"knowledge_type": "application_domain”
1%
{{
"operation_type": "DOWNVOTE",
"rule_id": <Integer identifying an EXISTING rule that is contradictory to another
rule, this sample or too similar to another rule>
1%
{
"operation_type": "EDIT",
"rule_id": <Integer identifying an EXISTING rule>,
"rule_content”: <Extracted insight, knowledge, tip or rule to update and enhance
the EXISTING rule with>
3]

13

Figure 16: The CTIM operations prompt we use in the repository-level KD phase and both its KD settings.
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CTIM Operations Prompt - Repository-Level KD (Phase 2) continued

Do not mention the trajectories or their ids explicitly in your responses. You may reference specific
file, class, function names, but keep in mind that the repository evolves over time and files,
classes or functions may be renamed, removed or refactored. You can use any of the valid operation
types multiple times. Each existing rule can be modified only once. The following operations

are valid:

- UPVOTE an EXISTING rule if it is strongly relevant in your current context and trajectories.
Valid fields: [operation_type, rule_id]

- DOWNVOTE an EXISTING rule if the rule contradicts your current context and trajectories or it
is similar to or a duplicate of another existing rule (including general purpose rules).
Make use of this operation to achieve a concise ruleset that is relevant across
repositories and task instances. If you downvote a rule often enough it will be
removed from the ruleset. Valid fields: [operation_type, rule_id]

- EDIT an EXISTING rule if it is not general enough or could be enhanced given your current
context by rewriting, adding or removing content. Valid fields: [operation_type, rule_id,
rule_content]

- ADD a NEW rule if you identified insights that are generally applicable and potentially
beneficial to other task instances in the same repository. Make sure that the new rule is
unique. Valid fields: [operation_type, rule_content, knowledge_type]

Key requirements:

- The only operation that is valid on rules that do not yet exist is ADD.

- If you have reached the maximum ruleset size, you must not add any new rules. Instead, you
must edit existing rules or upvote/downvote existing rules.

- You may provide between 1 and 4 operations.

Figure 17: The CTIM operations prompt we use in the repository-level KD phase and both its KD settings.
Continued.

Success-Failure Trajectory KD Setting - Repository-Level KD (Phase 2)

You are given a set of successful task trajectories that relate to fixing issues the real-world
repository '{repository_name}'. During these trajectories you correctly identified the location
of the buggy code, wrote a patch which fixed the bug in the code and passed all test cases,
meaning you also didn't in introduce any new bugs. Due to the natural evolution of software over
time the state of the repository when you carried out the tasks in the example trajectories below
may differ slightly. You might encounter differences with respect to the project structure, and
file, class, method or variable names. If you encounter conflicting information, do not record
any rules regarding the conflicting elements.

Below follow the past successful task trajectories. The set of trajectories is delimited by the
<PAST_SUCCESSFUL_TRAJECTORIES> and </PAST_SUCCESSFUL_TRAJECTORIES> tags. Each trajectory is
wrapped by the <TRAJECTORY-i> and </TRAJECTORY-i> tags, where i identifies the i-th trajectory
in the set below:

<PAST_SUCCESSFUL_TRAJECTORIES>

{past_successful_trajectories}

</PAST_SUCCESSFUL_TRAJECTORIES>

Next, follows the frozen set of high-level, general purpose rules that you have extracted previously.
These rules are READ-only, you must not perform any operations on them. You may refer to these rules
directly in the repository level rules as 'GENERAL PURPOSE RULE-i' to highlight their specific
application, knowledge gaps or discrepancies with respect to the current repository:
{general_ruleset}

Figure 18: The prompt describing the sets of successful trajectories KD setting for the repository-level KD phase.

424



Success-Failure Trajectory KD Setting - Repository-Level KD (Phase 2) continued

Below follows the modifiable set of repository-level rules that you have extracted so far. The
repository-level ruleset is limited to {ruleset_cap} rules. Any rules beyond {ruleset_cap} rules
will be ignored:

{current_repository_level_ruleset}

By examining the successful trajectories, and the existing general purpose and repository-level
rules above you should update the repository-level ruleset by adding, editing, upvoting or downvoting
repository-level rules. The resulting ruleset must consist of repository-specific knowledge,
insights or tips that are unique to this codebase and provide new insights that are distinct from the
general purpose rules. Repository-level rules may cover the following aspects:

1. Repository-level bug localization and environment exploration patterns that help locate relevant
code sections quickly, including key file locations, module relationships.

2. Repository-level coding conventions, architectural principles, design patterns, and
implementation approaches that are consistently used across the codebase and should be followed
when making changes.

3. Repository-level error or exception handling strategies, including custom errors or exceptions
4. The application domain of the project (e.g., Does the software handle images or text and what
kind? Is it a command line application or does it have a GUI? Does it handle HTTP requests? Is it a
highly technical, mathematical application?)

5. Common edge cases or failure modes related to the project's specific application domain. What
are common errors or potential pitfalls in these application domains?).

Key requirements for rules:

- DO NOT suggest testing the implementation. The agent must generate correct patches on the first
attempt by leveraging general and repository-specific rules identified above.

- Generated rules must be concise (less than 80 words) and should be focused on a single, specific
aspect or insight.

- Generated rules must be unique with respect to other, existing rules and contribute a new, unique
piece of information, knowledge or perspective.

This ruleset serves as the basis for guiding future task attempts within this repository in locating
and fixing bugs to a successful completion. It should empower the agent to improve its planning,
reasoning, coding, and bug localization skills.

{remaining_slots_information}

Figure 19: The prompt describing the sets of successful trajectories KD setting for the repository-level KD phase.
Continued.

Success-Failure Trajectory KD Setting - Repository-Level KD (Phase 2)

Below you will find multiple past attempts at fixing a bug in an open-source code repository. The
first few trajectories show failed attempts, the last trajectory shows a successful bug fix.

All attempts are related to fixing the same bug in the same codebase. Compare and contrast the
successful and failed attempts to understand why the initial attempts failed and which change in
the reasoning, planning, coding or bug localization strategy could have led to a correct patch
generation in the first attempt.Consider the self-reflections that took place between the failed
attempts to understand which changes were made in the reasoning, planning, coding or bug localization
strategy that led to the bug being fixed in the last trajectory.

Below follow the task attempts denoted by <FAILED_TASK_ATTEMPT-i> and </FAILED_TASK_ATTEMPT-i> tags
where i identifies the i-th failed attempt and the successful task attempt is denoted by the
<SUCCESSFUL_TASK_ATTEMPT> and </SUCCESSFUL_TASK_ATTEMPT> tags. Only failed task attempts contain a
self-reflection:

{success_failure_trajectory}

Next, follows the frozen set of high-level, general purpose rules that you have extracted previously.
These rules are READ-only, you must not perform any operations on them. You may refer to these rules

Figure 20: The prompt describing the success-failure trajectory pair KD setting for the repository-level KD phase.
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Success-Failure Trajectory KD Setting - Repository-Level KD (Phase 2) continued

directly in the repository level rules as 'GENERAL PURPOSE RULE-i' to highlight their specific
application, knowledge gaps or discrepancies with respect to the current repository:
{general_ruleset}

Below follows the modifiable set of repository-level rules that you have extracted so far. The
repository-level ruleset is limited to {ruleset_cap} rules. Any rules beyond {ruleset_cap} rules
will be ignored:

{current_repository_level_ruleset}

Figure 21: The prompt describing the success-failure trajectory pair KD setting for the repository-level KD phase.
Continued.

Sample General CTIM Items

- Perform targeted input validations, ensuring each parameter or feature aligns with immediate needs
and preventing unwanted callability, type-mismatch, or boundary issues.

- Examine error messages to locate the failing logic. Also confirm if the framework\u2019s checks
might be incomplete or incorrectly flag valid usage, especially for advanced lookups or
edge cases.

- Always confirm that referenced methods or variables exist, are spelled correctly, remain valid,
and that decorators or partials do not obscure them.

- Focus changes on the minimal relevant locations, referencing existing methods or design
patterns to maintain consistency, reduce duplication, and lower risk of new bugs.

Figure 22: Four random general CTIM samples.

Sample Django Repository-Level CTIM Items

- When refactoring special-case or zero-quantity paths in the app\u2019s code

(like max_post_process_passes=0), skip irrelevant steps entirely to avoid referencing uninitialized
variables. If the field or setting indicates no passes or empty states, ensure the logic short-circuit
properly. This avoids spurious errors from referencing variables that never get assigned.

- When unregistering or registering custom lookups in RegisterLookupMixin, always call
_clear_cached_lookups afterward to avoid stale lookup references and maintain consistency
with register_lookup.

- When retrieving fields from database insert operations using returning_fields, ensure

from_db_value or equivalent logic is consistently applied, matching standard retrieval.

This prevents raw values from bypassing normal conversions, especially for custom fields
that rely on from_db_value to transform them into appropriate Python objects.

- When customizing admin logic in Django, including catch-all or fallback views, confirm usage of
request.path vs request.path_info. request.path preserves the script name prefix required in certain
redirects, while request.path_info omits it. Ensure to separate resolution from the final redirect
to keep path_info clean while preserving the prefix in the final URL, preventing forced script
name issues. Additionally, ensure admin checks referencing placeholders or fields include

the actual field name in error messages for clarity.

Figure 23: Four random django CTIM samples.
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- In 'prepare_headers' (requests/models.py::PreparedRequest), headers with a None value become
the literal 'None' string if not filtered out. Always remove such keys to avoid invalid headers.

- When unregistering or registering custom lookups in RegisterLookupMixin, always
call _clear_cached_lookups afterward to avoid stale lookup references and maintain consistency
with register_lookup.

- When retrieving fields from database insert operations using returning_fields, ensure

from_db_value or equivalent logic is consistently applied, matching standard retrieval.

This prevents raw values from bypassing normal conversions, especially for custom fields
that rely on from_db_value to transform them into appropriate Python objects.

- When customizing admin logic in Django, including catch-all or fallback views, confirm usage of
request.path vs request.path_info. request.path preserves the script name prefix required in certain
redirects, while request.path_info omits it. Ensure to separate resolution from the final redirect
to keep path_info clean while preserving the prefix in the final URL, preventing forced script
name issues. Additionally, ensure admin checks referencing placeholders or fields include

the actual field name in error messages for clarity.

Figure 24: All psf repository-level CTIM samples.

427



