TCQA?: A Tiered Conversational Q&A Agent in Gaming

Ze Chen, Chengcheng Wei, Jiewen Zheng, Jiarong He, Max Gao
Interactive Entertainment Group of Netease Inc., Guangzhou, China
{jackchen, weichengcheng, zhengjiewen02, gzhejiarong, jgao} @corp.netease.com

Abstract

This paper focuses on intelligent Q&A assis-
tants in gaming, providing timely and accurate
services by integrating structured game knowl-
edge graphs, semi-structured FAQ pairs, and
unstructured real-time online content. It offers
personalized emotional companionship through
customized virtual characters and provides
gameplay guidance, data queries, and product
recommendations through in-game tools. We
propose a Tiered Conversational Q&A Agent
(TCQA?), characterized by high precision, per-
sonalized chat, low response latency, efficient
token cost and low-risk responses. Parallel
modules in each tier cut latency via distributed
tasks. Multiple retrievers and short-term mem-
ory boost multi-turn Q&A. Hallucination and
safety checks improve response quality. Player
tags and long-term memory enable personaliza-
tion. Real-world evaluations show TCQA? out-
performs prompt-engineered LLMs and RAG-
based agents in gaming Q&A, personalized di-
alogue, and risk mitigation.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs), intelligent applications like question-
answering chatbots and Al assistants have seen
significant development (Guan et al., 2023). In
gaming, non-player characters (NPCs) are crucial
for enriching narratives, guiding tasks, and enhanc-
ing player interaction (Rao et al., 2024). How-
ever, most current NPCs are limited to specific
dungeons or levels, offering fixed instructions with-
out global game-knowledge question-answering,
tool assistance, or prolonged memory-based dia-
logues. Moreover, gaming terminology is highly
specialized, and game lore and mechanics differ
significantly from general domain knowledge. Con-
sequently, LLMs trained on generic datasets often
underperform in game-related question-answering
tasks.

The Retrieval-Augmented Generation (Gao
et al., 2024) method integrates domain-specific
knowledge into LLMs. However, conventional
RAG frameworks face limitations in fusing multi-
source knowledge. Agentic RAG (Singh et al.,
2025) addresses this by dynamically managing
retrieval strategies and refining contextual com-
prehension. While RAG agents can answer ques-
tions based on context, they lack natural multi-turn
conversation capabilities (Zahedi Jahromi, 2024)
and struggle to adapt to personalized or persona-
stylized interactions.

To address the aforementioned challenges, we
propose TCQA? for game-domain NPC dialogues,
which includes the following features:

e Low Latency and Efficient Token Cost:
TCQA? employs a three-tiered architecture
with parallel module execution, ensuring low-
latency interactions. Its intent router dynami-
cally allocates inquiries to designated agents,
reducing token consumption from RAG re-
trieval or redundant multi-module processing.

e High Precision: The game-specific knowl-
edge graph handles simple, fact-based in-
quiries, while FAQ pairs address complex
questions through semantic matching. Real-
time web search supports time-sensitive
queries with dynamically updated information.
This multi-source architecture ensures robust
accuracy through complementary knowledge
verification mechanisms.

e Personalized Chat: User profiles enable
preference-driven interactions, with conversa-
tional personalization achieved through hier-
archical memory modules that integrate tran-
sient context (short-term memory) and per-
sistent preferences (long-term memory). A
typical case is listed in A.5.

e Low Risk: Through multi-dimensional qual-
ity assessment, including hallucination detec-

289

Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025), pages 289-297
July 31, 2025 ©2025 Association for Computational Linguistics

tion (Wei et al., 2024), relevance evaluation,
and safety verification, the system ensures se-
cure and accurate responses while minimizing
misleading risks.

2 Methodology

The integrated agent framework, as illustrated in
Figure 1, adopts a three-tiered architecture: Pre-
process, Generator and Critic. Pre-process Layer
handles preliminary data conditioning and intent
routing. Generator Layer executes context-aware
response generation. Critic Layer conducts multi-
criteria quality evaluation.

2.1 Pre-process Layer

This layer primarily focuses on intent routing, user
tag acquisition, and related memory retrieval for
user inqueries. Intent routing involves allocat-
ing user inqueries to appropriate agent process-
ing pipelines. User tag acquisition mainly encom-
passes obtaining player interest preference tags and
game character-related information tags, facilitat-
ing the generation of content that aligns with user
interests or provides tailored assistance by subse-
quent agents. Related memory retrieval consists of
two modules: long-term memory and short-term
memory. The long-term memory module primarily
contains significant events from dialogue history,
while the short-term memory module incorporates
contextual information from the current session
and cached search results obtained during this con-
versational round.

2.2 Generator Layer

The Generator Layer comprises multiple special-
ized agents designed to handle different types of
conversation:

Chitchat Agent: Responsible for managing casual
dialogues related to in-game characters. For in-
stance, when users engage in daily conversations,
this agent produces lighthearted responses aligned
with character personas.

Out-Of-Character (OOC) Agent: Processes con-
versations requiring deviation from predefined char-
acter settings. This agent activates when users pose
queries unrelated to the current dialogue theme,
generating appropriate deflection strategies while
steering discussions toward game-relevant topics.
Agentic RAG: Enhances response accuracy and
timeliness through multi-source game knowledge
retrieval.

» Sparse Retrieval: Leveraging Elasticsearch!
for term frequency-based document matching.

* Dense Retrieval: Utilizing Qdrant? vector
databases for semantic similarity searches.

* KG Retrieval: Implementing Neo4j? for
knowledge graph traversal.

* Web Retrieval: Accessing real-time internet
information for dynamic updates.

Retrieved candidates undergo relevance optimiza-
tion via a Reranker module before final response
synthesis by the Generator, ensuring output coher-
ence and contextual alignment.

Risk Handling Agent: Identifies and addresses po-
tential risks and sensitive content, ensuring gener-
ated responses comply with safety and compliance
requirements. For example, when users raise sensi-
tive topics, this agent produces guarded responses
through predefined answers.

Tool Calling module: Executes in-game tool APIs
to acquire supplementary data or perform specific
operations, thereby enhancing dialogue agents’
functionality and responsiveness. Typical use cases
are listed in A.4.

2.3 Critic Layer

The Critic Layer employs three specialized mod-
ules to ensure the integrity of response:

Hallucination Detection: Identifies factual incon-
sistencies between responses and retrieved knowl-
edge. When responses contain unsubstantiated in-
formation, this module will guide users to clarify
their problems.

Response Quality Assessment: Evaluates whether
the response can answer user questions through
multi-dimensional metrics including relevance
scoring and contextual coherence analysis.

Safety Detection: Implements content filtering
pipelines combining lexical pattern matching
and neural classifiers to eliminate inappropriate
content.

When response generated, the current dia-
logue and retrieved knowledge will be stored
within the short-term memory, while significant
event information discussed during interactions
will be archived in the long-term memory.

"https://www.elastic.co/elasticsearch
*https://qdrant.tech/
3https://neodj.com/

290

Pre-process Generator Critic
> Router T_' Chitchat Agent Hallucination
e Out-of-Character Agent e ——
N User Tags = Elasticsearch @neoysj Agentlc RAG
: Sparse Retrieval KG Retrieval AT 2
Input > P r—— e — BUESIEG Response
Long Memory Dense Retrieval Web Retrieval
> Risk Handling Agent Safety
> Short Memory L, Detection

Tool Calling

Context/Retrieval content

Event

Figure 1: Overview of TCQA? Agent

3 Implementation and Experimentation

3.1 Implementation

For the proof-of-concept, Dify*, which is an open-
source platform for building Al applications, is
selected to rapidly build TCQA? agent system. And
we employ deepseek R1(Guo et al., 2025) along
with its distilled variant for comparative validation.
Prompt designed for each module can be found in
Appendix A.1-A.3.

3.2 Evaluation Metrics

The TCQA? framework evaluates responses using
four user-centric criteria (Yang et al., 2025; Wang
et al., 2024a): Relevance (alignment between re-
sponse and query, 0-2), Truthfulness (accuracy,
0-2), Usefulness (practical value, 0-3), and Expe-
rience (language quality, including word choice,
format, and grammar, 0-2). The Comprehensive
Score (0-3) combines these criteria to assess Al
response quality and user satisfaction, guiding sys-
tem optimization. All these metrics are manually
annotated by human evaluators.

3.3 Results and Analysis

3.3.1 Accuracy

We compare three methods: LLM + PE (LLM
with prompt engineering), LLM + RAG(using
knowledge base with RAG technology), and the
proposed TCQA? approach with Deepseek-R1 em-
ployed, across QA and Chat scenarios as shown
in Table 1. The test set consists of 500 samples,
evenly divided between QA and Chat scenarios.
The QA set consists of 300 test cases, which are
collected from real in-game question-answering

“https://docs.dify.ai/

291

scenarios using actual player queries. The Chat set
includes 200 test cases, also based on open-ended
conversational questions raised by players within
the game context.

In the QA scenario, TCQA? outperforms both
alternatives on most metrics. It shows significant
improvements over LLM + PFE across all indica-
tors, especially truthfulness, usefulness, and com-
prehensive score. Compared to RAG, TCQA? per-
forms better in relevance, usefulness, and compre-
hensive score, with slightly lower truthfulness. In
the Chat scenario, TCQA? substantially exceeds
LLM + PF across all metrics, particularly in truth-
fulness and usefulness.

TCQA? demonstrates superior performance in
both scenarios, delivering relevant, truthful and
useful responses, indicating its adaptability across
diverse language tasks. While RAG outperforms
LLM + PE, TCQA? surpasses RAG on most met-
rics, suggesting it both incorporates RAG’s advan-
tages and further enhances performance.

3.3.2 Response Safety

Table 2 illustrates the harmlessness rate results of
customer responses across various methods and
models. The test set used in this experiment is
consistent with the one employed in Table 1. The
experiment utilizes two distinct model bases for
validation: DeepSeek-R1-Distill-Qwen-32B and
DeepSeek-R1(671B). In their bare running environ-
ments, these models exhibited relatively low harm-
lessness rates of 95.6% and 96.9%, respectively.
Notably, the introduction of the safety detection
module and risk handling agent, led to a significant
improvement in harmlessness rates across all mod-
els. Our TCQA? system can achieve a harmless-
ness rate of 100% when DeepSeek-R1 employed.

Scene Methods Relevance Truthfulness Usefulness Experience Comprehensive Score
LLM + PE 1.244 0.147 0.232 1.541 0.137
QA LLM + RAG 1.657 0.917 1.310 1.773 1.269
TCQA? (Ours) 1.920 0.875 1.688 1.846 1.645
Chat LLM + PE 1.267 0.267 0.400 1.533 0.267
TCQA? (Ours) 1.910 0.945 1.705 1.955 1.695

Table 1: Performance Comparison of our TCQA? with Other Methods

w.0. Safety Detection

w.o. Risk Handling&Safety Detection

Model Name TCQA?
DeepSeek-R1-Distill-Qwen-32B 99.5%
DeepSeek-R1 (671B) 100%

98.8%
99.0%

95.6%
96.9%

Table 2: Harmlessness Rate of Responses Under Different Methods and Models

Module Accuracy Time
Qwen2.5-7B-Instruct 95.0% 2.1s
Qwen2.5-7B-Instruct (SFT) 95.7% 0.18s

Table 3: Accuracy and Time Consumption of Router

This experimental study conclusively demon-
strates that the safety detection module and risk
handling agent substantially enhance safety and
reliability in complex application scenarios.

3.3.3 Low Latency

To minimize computational latency, we have en-
hanced the intent routing module by fine-tuning the
LLM, supporting recognition based on the first to-
ken to compress the final response time. After fine-
tuning, the performance on the test set is shown
in Table 3. It is evident that the intent router mod-
ule, through fine-tuning the Qwen2.5-7B-Instruct’
model, significantly reduced the latency by 1.9s,
enhancing the user experience of this dialogue sys-
tem.

3.3.4 Comparison with Other Agents

Table 4 compares several agent models based
on LLMs, including MetaGPT (Hong et al.,
2023), MemoryBank (Zhong et al., 2024), Tool-
LLM (Qin et al.,, 2023), ChatDev (Hu et al.,
2023), ChatDB (Hu et al., 2023), and our proposed
TCQA?. These agents differ in aspects such as role
profiling, memory operations, memory structure,
planning feedback, tool usage in actions, and capa-
bility acquisition (whether fine-tuned or not) (Wang

>https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

et al., 2024b). For instance, MetaGPT and Chat-
Dev utilize hand-crafted role profiling, whereas
MemoryBank and ToolLLLM do not specify a role
profiling method; most models adopt a hybrid mem-
ory structure and support read/write/reflect opera-
tions; except for MemoryBank, all models receive
feedback during planning, but the use of tools in
actions and the method of capability acquisition
vary among models, with TCQA? all compared
capabilities across all dimensions.

4 Related Work

Traditional RAG systems are limited by static work-
flows and poor adaptability to complex reason-
ing(Hu et al., 2024). Agentic RAG addresses
these issues with autonomous agents that dynam-
ically manage retrieval, refine context, and opti-
mize workflows based on query complexity (Singh
et al., 2025). Its core paradigms include reflection,
planning , tool use, and multi-agent collaboration.
Agentic RAG excels in dynamic decision-making
and sophisticated reasoning, delivering context-
aware responses to new challenges.

Multi-agent frameworks in conversational QA
systems decompose tasks for specialized agents,
dynamically optimize workflows based on com-
plexity (e.g., Optima (Rasooli and Tetreault, 2015)),
and integrate external tools (e.g., search engines,
APIs) to enhance retrieval and processing.

Personalized dialogue systems aim to improve
user engagement by enabling agents to gener-
ate responses aligned with predefined charac-
ter traits (Wang et al., 2024c). RoleLLM inte-
grates character role information through few-shot

292

Agent Profile Memory Planning Action CA
Operation Structure Feedback Tools Fine-tuning
MetaGPT (Hong et al., 2023) handcrafting r/wirefl hybrid w/ w/ -
MemoryBank (Zhong et al., 2024) - r/wirefl hybrid - w/o -
ToolLLM (Qin et al., 2023) - - w/ w/ w/o
ChatDeyv (Qian et al., 2023) handcrafting r/wirefl hybrid w/ w/o w/
ChatDB (Hu et al., 2023) - r/w hybrid w/ w/ -
TCQA? (Ours) handcrafting r/wirefl hybrid w/ w/ w/

Table 4: Comparison of Different Agents. In the "Memory" Column, "Operation" Options Include r (read), w
(write), and refl (reflection). "CA" in the Table Header Denotes Capability Acquisition.

prompting, leveraging historical dialogue data to
mimic character styles (Wang et al., 2024a).
Integrating tool-use capabilities enables large
language models (LLMs) to tackle complex prob-
lems more effectively. (Mushtaq et al., 2025)
shows how multi-agent LLMs collaborate, lever-
aging diverse tools and expertise to mimic human
workflows and enhance problem-solving efficiency.

5 Conclusion

In this paper, we introduce a tiered conversational
QA agent(TCQAz) framework for intelligent as-
sistants in the gaming domain. We adopt agentic
RAG technology to generate high-quality QA re-
sponse, combine long/short memory with chitchat
agent to achieve personalized conversation, and em-
ploy multi-granularity quality evaluation approach
to ensure the safety of the responses. Experimen-
tal results demonstrate that TCQA? significantly
outperforms LLM with prompt engineering and
RAG-based LLMs, particularly in scenarios requir-
ing multi-source knowledge integration, contex-
tual conversation personalization, and stringent re-
sponse security protocols.

Current work still faces challenges such as in-
sufficient support for multi-modal interaction and
limitations in dynamic modeling of player profiles.
Future plans include expanding multi-modal in-
put and output capabilities and enhancing the auto-
mated modeling of player behavior patterns.

References

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2024. Retrieval-augmented gener-
ation for large language models: A survey. Preprint,
arXiv:2312.10997.

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang,

Feiyue Ni, Ruihua Song, Longfei Li, Jinjie Gu, and
Chenyi Zhuang. 2023. Intelligent virtual assistants
with llm-based process automation. arXiv preprint
arXiv:2312.06677.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, and 1
others. 2023. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint
arXiv:2308.00352, 3(4):6.

Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo
Zhao, and Hang Zhao. 2023. Chatdb: Augmenting
Ilms with databases as their symbolic memory. arXiv
preprint arXiv:2306.03901.

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen
Ling, and Liang Zhao. 2024. Grag: Graph retrieval-
augmented generation. Preprint, arXiv:2405.16506.

Abdullah Mushtaq, Muhammad Rafay Naeem, Ibrahim
Ghaznavi, Muhammad Imran Taj, Imran Hashmi,
and Junaid Qadir. 2025. Harnessing multi-agent
llms for complex engineering problem-solving: A
framework for senior design projects. Preprint,
arXiv:2501.01205.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023. Communicative agents for software de-
velopment. arXiv preprint arXiv:2307.07924, 6(3).

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, and 1 others. 2023. Toolllm: Facilitating
large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

Sudha Rao, Weijia Xu, Michael Xu, Jorge Leandro, Ken
Lobb, Gabriel DesGarennes, Chris Brockett, and Bill
Dolan. 2024. Collaborative quest completion with

293

https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2405.16506
https://arxiv.org/abs/2405.16506
https://arxiv.org/abs/2501.01205
https://arxiv.org/abs/2501.01205
https://arxiv.org/abs/2501.01205

llm-driven non-player characters in minecraft. arXiv
preprint arXiv:2407.03460.

Mohammad Sadegh Rasooli and Joel R. Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
Computing Research Repository, arXiv:1503.06733.
Version 2.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Ta-
laeci Khoei. 2025. Agentic retrieval-augmented

generation: A survey on agentic rag. Preprint,
arXiv:2501.09136.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan
Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu
Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao
Zhou, Xiaoran Fan, Zhiheng Xi, Jun Zhao, Xiao
Wang, Tao Ji, Hang Yan, and 8 others. 2024a. Se-
crets of rlhf in large language models part ii: Reward
modeling. Preprint, arXiv:2401.06080.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, and 1 others. 2024b. A survey
on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345.

Noah Wang, Z.y. Peng, Haoran Que, Jiaheng Liu,
Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo,
Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang,
Zhaoxiang Zhang, Wanli Ouyang, Ke Xu, Wenhao
Huang, Jie Fu, and Junran Peng. 2024c. RoleLLM:
Benchmarking, eliciting, and enhancing role-playing
abilities of large language models. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 1474314777, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Chengcheng Wei, Ze Chen, Songtan Fang, Jiarong
He, and Max Gao. 2024. Opdai at semeval-2024
task 6: Small 1lms can accelerate hallucination
detection with weakly supervised data. Preprint,
arXiv:2402.12913.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Ji-
axi Yang, Jingren Zhou, Junyang Lin, Kai Dang, and
23 others. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Seyedsajjad Zahedi Jahromi. 2024. Conversational QA
Agents with Session Management. Ph.D. thesis, Po-
litecnico di Torino.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and
Yanlin Wang. 2024. Memorybank: Enhancing large
language models with long-term memory. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 19724-19731.

A Appendix

A.1 Prompt for Character in Gaming

The following is character setting information to
be placed in the system content.

You are the Dream Spirit (Meng Huan Jing Ling)
from the PC game "Fantasy Westward Journey."
Please briefly answer the player’s (hereafter re-
ferred to as "Hero") questions. Target & Posi-
tioning: All-knowing spirit of the Three Realms.
Character Basic Information: Time Period: Tang
Dynasty Name: Dream Spirit Age: Level 200 Race:
Spirit of the Three Realms Gender: Female Person-
ality: Clever, quick-witted, and mischievous Iden-
tity: Spirit of the Three Realms Language: Chinese.
Language Characteristics: Self-reference: Little
Spirit, Dream Spirit How to address the player:
Hero Common language particles: "oh". Abili-
ties: Specialties: Helping Heroes solve common
gameplay/strategy/mode/system-related questions
in the game, and also answering everyday encyclo-
pedic questions. Interests and Hobbies: Favorite
transportation: Auspicious Beasts. Character Re-
lationships: Relationship with the Hero: Close
friends Best friend: Hero

A.2 Prompt for QA in Gaming

The following is QA prompt to be placed in the
user content.

Answer questions using background knowledge,
and the reply must meet the following requirements:
If the question is a single word, please explain the
relevant question based on background knowledge.
If you cannot answer, please reply "Please describe
your question in detail so that I can better under-
stand and respond". Do not mention background
knowledge content or specific game names.

A.3 Prompt for Intent Understanding

The following is intent understanding prompt.

Analyze the following sentence and determine
which type of content it belongs to.

Type 1 - Chat: Not related to game background
or customer service, just open-ended conversation;
including daily greetings, emotional expressions,
banter, etc.

Type 2 - QA in Gaming: Content related to the
game field, including in-game activities, game set-
tings, gameplay, etc.

Type 3 - Service: Content related to customer ser-
vice, including bug feedback, suggestions, penal-
ties and reports, client issues, operational errors,

294

http://arxiv.org/abs/1503.06733
https://arxiv.org/abs/2501.09136
https://arxiv.org/abs/2501.09136
https://arxiv.org/abs/2401.06080
https://arxiv.org/abs/2401.06080
https://arxiv.org/abs/2401.06080
https://doi.org/10.18653/v1/2024.findings-acl.878
https://doi.org/10.18653/v1/2024.findings-acl.878
https://doi.org/10.18653/v1/2024.findings-acl.878
https://arxiv.org/abs/2402.12913
https://arxiv.org/abs/2402.12913
https://arxiv.org/abs/2402.12913
https://arxiv.org/abs/2412.15115

product consumption, account anomalies, etc.
Type 4 - Network: Questions that require real-
time retrieval of network information to answer.

A.4 Tool Calling Example

This section demonstrates an example of a JSON
definition for a tool that calculates the experience
required to level up a character in a game. The tool
is defined as a function with specific parameters,
including the player’s current level (from_grade)
and target level (to_grade). This JSON structure
can be used in applications that require dynamic
level-up calculations based on user input.

tools = [{
"type": "function",
"function": {
"name": "Level Up
<~ Calculator",
"description": "Retrieve
the current level
and target level
from the player's
question about the
experience required
to level up a
character",
"parameters": {
"type": "object",
"properties": {
"from_grade": {"
typell B n
integer", "
description
n . IlThe
player's
current
level"},
"to_grade": {"type
": "integer

n n
>

LI L

TELLLLL

description
": "The
player's
target level
"}!

TELLLLL

},

"required": ["
<~ from_grade", "
— to_grade"]

H

A.5 Personalized dialogue

The following is a real personalized dialogue ex-
ample. Below is the user’s basic information:

{
nickname="davic",
birthday="2000.01.06",
gender="male",
relationship="friend"

Based on the historical conversations, the per-
sonalized user information we’ve extracted is as
follows:

{
preferred nickname: "young
— warrior",
favorite sport: "basketball",
favorite food: "spicy hot pot"
}

Based on the personalized information provided
above, here’s an example of a dialogue between the
user and the assistant:

User: I haven’t had much appetite lately.
Assistant: Oh no. That’s not good. I heard that
spicy hot pot is both spicy and numbing, which can
really stimulate your appetite! Since you usually
enjoy spicy hot pot, why not go for a meal? It
might help you regain your appetite. By the way,
was there any particular restaurant that you thought
was especially delicious when you had spicy hot
pot before?

From the example above, it can be seen that
the assistant can proactively guide the conversa-
tion based on the user’s personalized information,
thereby enhancing the user experience.

A.6 Case Study

Figure 2, 3, 4, 5, 6 show specific user cases in our
proposed TCQAZ2,

295

Use Case: Multi-turn QA

& Prompt: (Previous-turn) Advanced Agility; (Current-turn) How much speed to add

{®) System Process:

1
2.
3.

6.

Query Submission and Evaluation: The user submits the query, which is received by the agent.

Risk Detection: The system performs a risk detection on the prompt to ensure it is safe.

Intent Understanding: 1) The intent understanding module identifies the query as a question about
“QA". 2) This module rewrites the current query to " How much speed does Advanced Agility add? ".
Knowledge Source Selection: The system retrieves relevant information from the database.

Data Integration and LLM Synthesis: The relevant data is passed to the LLM, which synthesizes the
information into a coherent response.

Output Generation: The system generates an actionable response after risk detection.

() Response: Advanced Agility increases your speed by 20%, ...

Figure 2: Use Case 1, Multi-turn QA

Use Case: Tool Support

& Prompt: How much experience is required to go from level 40 to level 46?

{®) System Process:

1.

Determine if a Tool Is Needed: Since experience points calculation requires data from a game
database or an experience points calculation tool, the system decides that a tool is needed.
Retrieve the Tool and Extract Parameters: 1) The system retrieves a game experience points
calculation tool from the tool library. 2) Extract parameters: current level "40" and target level "46".
Request and Parse the Tool: 1) Send a request to the tool's APl with the extracted parameters. 2)
The API returns the total experience points needed.

Generate Response: Combine the experience points information with the user's prompt. Request

the dialogue model to generate the final response.

(= Response: To go from level 40 to level 46, you need 2,390,966 experience points.

Figure 3: Use Case 2, Tool Support

296

Use Case: Chat

& Prompt: | lost the basketball game today (__T7).

{®) System Process:
1. Query Submission and Evaluation: The user submits the query, which is received by the agent.
2. Risk Detection: The system performs a risk detection on the prompt to ensure it is safe.
3. Intent Understanding: The intent understanding module identifies the query as a "Chat" question.
4. LLM Generation and Output: The system generates an comforting response, after risk assessment,

then output.

() Response: Don't worry about the loss today; every game is a chance to learn and improve.

Figure 4: Use Case 3, Open-domain Chat

Use Case: Risk Detection

8) Prompt: Are there third-party services for recharging?

{&) System Process:
1. Query Submission and Evaluation: The user submits the query, which is received by the agent.
2. Risk Detection: The system performs a risk detection on the prompt and identify it as unsafe.
3. Access Pre-prepared Content Library: Retrieve and output responses related to third-party top-ups

from the content library.

(&) Response: Sorry, we do not support unofficial top-up platforms.

Figure 5: Use Case 4, Risk Detection

Use Case: Out of Character

& Prompt: Do you know how to level up in World of Warcraft?

{®) System Process:

1. Query Submission and Evaluation: The user submits the query, which is received by the agent.

2. Risk Detection: The system performs a risk detection on the prompt to ensure it is safe.

3. Intent Understanding: The intent understanding module identifies the query as a “QA" question.

4. Knowledge Source Selection: The system cannot retrieve World of Warcraft-related knowledge
from the Fantasy Westward Journey PC version knowledge base.

5. Model Thinking: The system further discovers that the user's prompt conflicts with the character of
LLM and decides to refuse to answer.

6. Output Generation: The system provides a response that is outside the character's scope of

understanding and is unable to answer..

() Response: Sorry, the question is beyond my scope.

Figure 6: Use Case 5, Out of Character

297

