
Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025), pages 184–199
July 31, 2025 ©2025 Association for Computational Linguistics

ToolReflection: Improving Large Language Models for Real-World API
Calls with Self-Generated Data

Gregory Polyakov1*, Ilseyar Alimova2*, Dmitry Abulkhanov3*, Ivan Sedykh4*,
Andrey Bout5*, Sergey Nikolenko6, Irina Piontkovskaya7

1University of Tübingen, 2Skoltech, 3Independent, 4MTS AI, 5Yandex,
6St. Petersburg Department of the Steklov Institute of Mathematics,

7AI Foundation and Algorithm Lab

Abstract

While open-source large language models
(LLMs) have advanced in leveraging third-
party tools, significant challenges remain in
real-world API usage, where behavior is unpre-
dictable or poorly specified. Existing bench-
marks often fail to capture this complexity. We
propose ToolReflection, a novel method that
improves LLMs’ ability to self-correct API
calls by utilizing real-time API feedback. We
also introduce new datasets specifically de-
signed to test model performance under re-
alistic conditions. In ToolReflection, models
undergo instruction tuning on a dataset aug-
mented with self-generated errors and correc-
tions. Our evaluation across ToolAlpaca, Tool-
Bench benchmarks, and three newly devel-
oped datasets (GPT4Tools-OOD, GPT4Tools-
OOD-Hard, and Multistep-100) demonstrates
its effectiveness. ToolReflection boosts over-
all success rates by 25.4% on GPT4Tools-
OOD, 56.2% on GPT4Tools-OOD-Hard, and
4% on Multistep-100, outperforming original
models. On ToolAlpaca, we show a 14%
improvement in the “Simulated” setting and
10.5% in the “Real-world” scenario. Our er-
ror analysis highlights ToolReflection signifi-
cantly enhances recovery from incorrect tool
calls, even with incomplete or erroneous API
documentation. We have released the code,
prompts, and data at https://github.com/
polgrisha/ToolReflection.

1 Introduction

Modern LLMs excel at various tasks, including text
generation, coding, question answering, and rank-
ing (Zhao et al., 2023; Minaee et al., 2024). How-
ever, the knowledge LLMs gain during pretraining
is often inadequate for tasks requiring precise al-
gorithmic reasoning, such as arithmetic, or those
dependent on real-time data, for example, travel
planning or weather updates. To bridge these gaps,

*Work done while at AI Foundation and Algorithm Lab.

Figure 1: Overview of ToolReflection. Given a retrieved
set of tools, the model fine-tuned with ToolReflection
selects a tool and its parameters, generates an API call,
and processes execution feedback. If an error occurs, it
provides a rationale and adjusts the call accordingly.

LLMs have been extended with third-party tools,
allowing them to execute complex actions using
API documentation included in their prompts.

Significant research has focused on improv-
ing LLMs’ tool-usage capabilities. Advances in-
clude instruction-tuned models for better tool calls
(GPT4Tools (Yang et al., 2023), ToolAlpaca (Tang
et al., 2023), Gorilla (Patil et al., 2024)) and so-
phisticated external frameworks for multi-step rea-
soning and planning (ToolChain* (Zhuang et al.,
2024), ToolLLaMA with depth-first search-based
decision tree (DFSDT) (Qin et al., 2023)). How-
ever, even with higher-level orchestration strategies,

184

https://github.com/polgrisha/ToolReflection
https://github.com/polgrisha/ToolReflection

the underlying ability of LLMs to robustly handle
individual API invocations in real-world settings re-
mains a considerable challenge. Models frequently
hallucinate tool names or parameters and fail to
recognize and correct API call errors. Existing so-
lutions to these granular errors, like guiding models
with a finite state machine (Zhang et al., 2024), sim-
plifying tool documentation (Yuan et al., 2024), or
incorporating external model feedback (Wang et al.,
2024b), are often impractical due to computational
demands or the need to rewrite tool documentation.

In this work, we explore tool-augmented LLMs’
ability to self-correct using feedback directly from
invoked tools. We focus on two key challenges: (1)
the lack of diverse, high-quality benchmarks that re-
flect real-world scenarios and (2) models’ frequent
failure in real-world tasks. To address these chal-
lenges, we propose two solutions. First, we extend
existing datasets and develop new, annotated evalu-
ation sets that better mimic real-world conditions,
specifically GPT4Tools-OOD and Multistep-100
based on GPT4Tools and ToolBench respectively.
Second, we enhance the models’ self-correction
abilities by introducing a fine-tuning phase using
self-generated examples of errors, tool responses,
and corresponding corrections. Our approach, eval-
uated on GPT4Tools, ToolAlpaca, and ToolBench,
shows consistent improvements across all settings.
Fig. 2 provides examples of how our method suc-
cessfully corrects tool usage errors. Notably, even
curated API sets often contain incomplete or incor-
rect documentation, making self-correction after
an error message the only viable solution.

Our main contributions are: (1) We analyse
three existing benchmarks for tool use and pro-
pose improvements to make them better adapted
to real-world tools, including the training dataset
(GPT4Tools), evaluation datasets (GPT4Tools,
ToolBench), data cleaning (ToolBench), and fixes
in dataset format and the evaluation approach
(GPT4Tools, ToolAlpaca). (2) We provide a
method to improve self-correction abilities of
LLMs after getting error messages from the exter-
nal tool via additional fine-tuning on self-generated
examples with error corrections. (3) We evaluate
and prove the effectiveness of our approach with a
comprehensive experimental study, which demon-
strates that the ability to correct the output based on
external error feedback is necessary for successful
communication with third-party APIs.

The rest of the paper is structured as follows:
Section 2 surveys related work, Section 3 discusses

benchmark improvements, Section 4 introduces our
ToolReflection method, Section 5 presents experi-
mental results, Section 6 provides error analysis,
and Section 7 concludes the paper.

2 Related work

Tool-augmented language models Significant
research has been devoted in recent years to en-
hancing the tool invocation capabilities of LLMs.
The Toolformer model (Schick et al., 2023) showed
that additional model fine-tuning on API calls in
a self-supervised way leads to improvements in
zero-shot performance of LLMs on downstream
tasks. Based on this idea, GPT4Tools (Yang et al.,
2023) fine-tuned compact models to incorporate
multi-modal tools and evaluated the tool usage ac-
curacy on an automatically generated benchmark.
The ToolAlpaca framework (Tang et al., 2023) has
been designed to address the issue of tool calling
abilities on previously unseen tools by massively
pretraining on a highly diversified tool use corpus.
The ToolLLaMA model (Qin et al., 2023) took a
step towards applying real-world APIs from the
RapidAPI Hub. ToolLLaMA demonstrates a re-
markable ability to execute complex instructions
and generalize to unseen APIs. To sum up, the
studies of tool enhanced LLMs have mostly fo-
cused on creating tool use datasets for fine-tuning,
while methods that construct chains of thought lead-
ing to the correct answer for tool calling remains
problematic. However, recent studies address this
challenge via external algorithms and structures.
For instance, ToolLLaMA proposes to improve its
reasoning strategy with DFSDT by allowing the
backbone model to choose between different rea-
soning chains using a tree structure. ToolChain*
(Zhuang et al., 2024) leverages the A* search al-
gorithm for the same purpose. Some works also
explore ways to improve the quality of tool-based
language models with external algorithms such as
finite state machines (Zhang et al., 2024) or feed-
back from an external model (Wang et al., 2024b).
In contrast, our ToolReflection approach focuses
on a complementary aspect: directly enhancing
the LLM’s intrinsic ability to understand and self-
correct individual API calls using real-time feed-
back. While these external frameworks could po-
tentially benefit from a base model improved by
ToolReflection, our primary focus is on enhancing
the model’s direct API engagement.

185

GPT4Tools ToolAlpaca ToolBench

Figure 2: Examples of successfully resolved mistakes after fine-tuning on self-generated examples of error
corrections. Model thoughts are shown in blue; model API calls after thoughts, in light; unsuccessful API
responses, in red; successful API responses, in green.

Self-correction from feedback Attempts to in-
corporate self-correction to LLMs have led to im-
provements across a variety of tasks including ques-
tion answering (Shinn et al., 2023), reasoning (An
et al., 2024), code generation (Zhang et al., 2023),
and summarization (Liu and Liu, 2021). Self-
correcting models apply two types of feedback:
self-feedback — feedback obtained from the LLM
itself, and external feedback — feedback derived
from external models, tools, or knowledge sources.
Self-feedback can involve asking the model itself
to evaluate the quality of generated outputs via
prompting (Madaan et al., 2023) or additional fine-
tuning of the model on automatically generated
self-correction samples (Ye et al., 2023). The ap-
proach of learning from external feedback is widely
used for code generation tasks since it is relatively
easy to receive such feedback through the execu-
tion of generated code with the corresponding com-
pilers or interpreters (Wang et al., 2024a; Chen
et al., 2023). The TRICE framework (Qiao et al.,
2024) recently proposed techniques for learning
from execution feedback in tool-enhanced models,
enabling a form of self-correction. While it’s a
notable step forward, TRICE mainly focuses on
single-step mathematical and question-answering
tasks using simple tools, where “execution feed-
back” mostly refers to the correctness of the final,
single-answer output. Our ToolReflection approach
builds on similar self-correction ideas but applies

them to API calls closer to real-world usage. It
focuses on direct, real-time error messages and
structured responses from tool invocations.

3 Datasets analysis and extensions

In this work, we focus on zero-shot realistic tool
support, where tools are provided as APIs or
Python functions with natural language descrip-
tions of their usage and parameters. At each
step, the LLM is presented with several unseen
tool descriptions and must select the appropriate
tool and fill in its parameters. This task is typi-
cally solved via instruction tuning, training models
on datasets of tool use examples formatted with
dataset-specific inputs, chain-of-thought steps, and
expected outputs. Each dataset includes its own
tool execution and evaluation framework. Table 1
provides an overview of the main datasets we con-
sider in this work. We identify key issues in these
datasets and their evaluation procedures, propos-
ing methods to better align them and the models
trained on them with real-world usage scenarios.

However, existing benchmarks present several
issues. First, they often rely exclusively on syn-
thetic data and assess models in environments with-
out real tool feedback. Second, some benchmarks,
which already use real-world tools, lack annotated
data; for instance metrics used in ToolBench, in-
cluding pass and win rates, are calculated via LLM

186

Dataset APIs Train Eval Real Eval Chain

GPT4Tools 23 71.4K 1170+652 ✗ 1.0
ToolAlpaca 426 3.9K 100+100 ✔ 1.7
ToolBench 16.5K 120K 200x5+100 ✔ 4.0

Table 1: Comparison of datasets based on the number
of APIs, train size, eval size, presence of real tools in
eval, and average tool chain length.

Model Accuracy Precision Recall

Llama2-7B-chat (FS) 0.81 0.73 0.78
Llama2-7B-chat (ZS) 0.89 0.96 0.72

Table 2: Performance of LLaMA2-7B-chat on the error
detection task in HTTP responses. ZS — zero-shot
setting; FS — few-shot setting.

prompting, making results hard to reproduce and
prone to variability. LLM-based evaluation may
also miss issues arising in real tool communication.
In this work, we aim to provide realistic evaluation
with callable tools for every setup.

For each dataset, we use its original prompting
with minor adjustments. For GPT4Tools and Tool-
Bench, we create novel evaluation sets enabling
actual tool invocation and exact output checks. For
GPT4Tools, we also generate additional training
data. Details on each dataset are discussed below.

3.1 GPT4Tools

GPT4Tools (Yang et al., 2023) is one of the earli-
est datasets featuring tool usage, containing 71.4K
instruction-following examples, 35.7K of which
involve tools. It includes a limited set of 23 tools
primarily focused on visual tasks like face detec-
tion, image generation, and object removal. While
effective for specialized visual tasks, these APIs
do not represent the broader range of real-world
tools. Moreover, tool parameters in GPT4Tools
are limited to simple text strings, restricting the
dataset’s ability to model complex tool interactions
in real-world applications.

Although GPT4Tools provides callable tools, its
evaluation is limited to single-step invocation and
neither extends to more nuanced API interactions
nor reflects the real success of tool calls. For ex-
ample, in image generation tasks, the framework
does not check whether the content of the gener-
ated image aligns with the user’s intent. To adapt
GPT4Tools to more realistic tool interactions, we
implemented several improvements: we refined the
prompt format for better evaluation, created a train-

ing dataset containing a wider range of tools with
more diverse tool signatures, and developed a test
set with callable tools, ensuring that outputs can be
verified against the intended results. Further details
are provided below.

Prompt format correction Examples from the
original dataset are organized so that each tool call
begins with the tool name followed by a list of
parameters. While suitable for simple textual pa-
rameters, this format may encounter parsing issues
with complex parameters like lists or floating-point
numbers. To address this, we convert the format
into Python function calls and utilize the Python
interpreter to parse tool calls. Our new instruction
prompt can be found in Appendix G.

Since GPT4Tools includes only 23 tools related
to image editing or generation, which typically re-
quire textual descriptions or paths to images as
parameters, we propose to extend it with new syn-
thetic but realistic tools to evaluate whether diverse
synthetic data improves out-of-domain quality.

We start with GPT4Tools tool descriptions as
a small seed set. In each iteration, we uniformly
sample a batch of random descriptions and prompt
ChatGPT (OpenAI, 2022) to generate more. To en-
sure diversity, we retain only those with a ROUGE-
L similarity below 0.7 to any existing descriptions.
This process resulted in 141 diverse tool descrip-
tions. We then apply the same procedure to gener-
ate tool usage examples, reformat them as Python
function calls, and clean non-parsable or incorrect
cases. The final dataset contains 636 instances.
Prompts for tool descriptions, queries, and usage
examples are in Appendix D. Since the original
GPT4Tools training set has 35.7K tool usage items,
we sample each generated instance five times, pro-
ducing 3180 additional samples. We refer to this
dataset as GPT4FakeTools.

GPT4Tools-OOD and GPT4Tools-OOD-Hard
To evaluate performance in a realistic setup, we
selected five open-source tools callable via APIs:
measurement conversion, time conversion, geolo-
cation information, nutrition analysis, and flight
schedules. We converted these APIs into exe-
cutable Python functions, manually wrote descrip-
tions, and created a set of queries that implicitly
require their invocation. The resulting dataset con-
tains 89 instances, with two versions: GPT4Tools-
OOD and GPT4Tools-OOD-Hard. The latter omits
tool usage examples in the prompt to test model

187

behavior in the case of poorly annotated documen-
tation. Examples are in Appendix F.

We evaluate on GPT4Tools-OOD and
GPT4Tools-OOD-Hard as follows: for each
query, the model has three attempts to call the
tool correctly. We report success rates after the
first (SRfirst) and last attempt (SRlast). For some
tools that accept multiple equivalent valid inputs,
we consider a tool call successful if the returned
answer is correct.

3.2 ToolAlpaca

ToolAlpaca (Tang et al., 2023) made a step for-
ward by introducing a framework for simulating
API responses. The dataset contains 3.9K tool us-
age instances from 400+ real-world APIs across
50 categories. It was created using a simulation
environment with three agents: a user generating
instructions, an assistant choosing tools, and a tool
executor simulating feedback, all emulated by the
language model. Emulating tool feedback with an
LLM has led to one of ToolAlpaca’s main limita-
tions: the tool provides an output regardless of any
errors occurring during the API call. The authors
included a function to check format correctness,
but it was disabled in the evaluation code.

Tasks in this dataset typically require 1–2 steps
to solve. The training set includes some examples
where the model receives an error from the tool
simulator (e.g., “Response 404”), prompting it to
make another tool call to obtain a correct response.
In addition to the emulated test set, where tool calls
are simulated and evaluated by the LLM agent,
ToolAlpaca provides a small test set of curated,
callable tools for a more realistic evaluation.

Changes in the Format Check Procedure The
ToolAlpaca framework includes a rule-based tool
format checker used during training data genera-
tion but disabled in evaluation. In training data
generation, this checker runs before LLM-based
evaluation, providing a structured response for API
name or parameter errors.

We modify this procedure in two ways. First,
we enable the format check in evaluation, which
lowers scores on the simulated test set but does
not affect the success rate in realistic evaluation.
Second, we unify error messages in the training
set by converting the format checker’s responses
into HTTP-style errors. Our experiments demon-
strate that this translation is necessary to adapt the
model to format-related responses from real tools,

especially when the tool description is incomplete.

3.3 ToolBench
ToolBench (Qin et al., 2023) represents an effort
to create a dataset grounded in real APIs, increas-
ing both the diversity of APIs and the complex-
ity of tasks compared to other benchmarks. The
authors collected over 16,000 REST APIs from
the RapidAPI Hub and used them to generate syn-
thetic instructions by prompting ChatGPT, which
also generated the corresponding solutions. How-
ever, this fully automatic dataset creation without
human verification leads to several issues. First,
errors returned by tools due to incorrect calls are
not handled, so the training set contains examples
where the model repeatedly encounters errors but
fails to rectify them. Second, the wide diversity
of APIs makes it difficult to consistently identify
steps where tools return errors, as each API has its
own format. Finally, relying on ChatGPT’s judg-
ment for evaluation lacks rigor and can lead to
inaccurate assessments of model performance. To
address these issues, we cleaned the dataset by fil-
tering incorrect tool usage examples, implemented
error-detection mechanisms, and created an evalua-
tion set with more challenging tool use cases and a
proper evaluation procedure.

Dataset Cleaning We use the latest dataset ver-
sion, which contains nearly 120K tool invocation
chains with reasoning traces. Since all solutions
were generated by ChatGPT, annotation errors are
possible. We filter out incomplete chains, those
with “give up and restart” messages, and those con-
taining tool errors. However, due to varying tool re-
sponse formats, rule-based error detection remains
challenging. Therefore, we apply LLM-based fil-
tering and assess its effectiveness on a manually
curated test set of 100 examples (36 with HTTP
tool errors, 64 without). Table 2 shows that Llama-
2-7B-chat (Touvron et al., 2023) achieves strong
performance in zero-shot and few-shot settings, so
we leverage it for error detection.

Multistep-100 The most challenging tasks re-
quire multiple steps of tool invocation, where each
step depends on the previous result. Evaluating
these tasks is difficult without actual tool outputs.
To address this, we construct fully annotated test
sets supporting multi-step tool calls. We select 16
APIs from ToolBench, absent from the training set,
that can be chained to solve a single task. Then,
we manually collect 10 query templates with miss-

188

Seen Unseen OOD Hard OOD
Method SRt SRact SRargs SR SRt SRact SRargs SR SRfirst/ SRlast SRfirst/ SRlast

GTP4Tools 98.7 97.6 91.4 94.1 98.2 97.0 92.2 90.6 45.9 / 47.5 6.7 / 6.7
+GPT4FakeTools 99.8 98.9 93.6 98.0 98.8 98.0 96.1 95.7 72.9 / 72.9 40.4 / 40.4

ToolReflection
Post-finetune 99.4 97.7 91.9 96.3 99.3 97.5 93.4 93.2 69.4 / 70.5 33.6 / 57.3
Fine-tune 99.2 97.9 91.8 96.2 98.9 97.7 95.0 94.3 72.9 / 72.9 44.9 / 62.9

Table 3: Results on seen and unseen test sets from GPT4Tools and in out-of-domain settings.

ing parameter values, requiring multiple steps to
complete; sample templates are in Appendix H.
We ask LLaMA-2-7B to rephrase these queries,
generating 100 examples. Next, we create a ta-
ble of actual parameters (names, IDs, numerical
values) and randomly fill in missing values using
these parameters in the query templates. Query
templates and ground-truth tool invocation chains
can be found in Appendix H.

4 ToolReflection

In the frameworks we considered, tools can be im-
plemented as Python functions (e.g., in GPT4Tools)
or as external API calls via HTTP (e.g., in Tool-
Bench and ToolAlpaca). If an error occurs, the
response often contains valuable semantic infor-
mation, such as the error type, description, or the
function where it was triggered. Although response
formats vary, we hypothesize that LLMs can lever-
age this feedback to improve their outputs. Our ex-
periments in Sections 5 and 6 support this intuition,
showing that (i) most errors generate feedback that
the model can use for corrections, and (ii) many
errors cannot be resolved without this feedback
since tool documentation is often incomplete. This
proves that understanding tool feedback is essential
for accurate problem-solving.

To enhance this capability, we propose the Tool-
Reflection method, applicable across frameworks.
The core idea of ToolReflection is to leverage the
model’s own errors and subsequent corrections for
additional fine-tuning. The key novelty of our ap-
proach lies not in the fine-tuning strategy itself,
but in the source of these error-correction pairs:
feedback obtained directly from the model’s self-
interactions with APIs or executable Python func-
tions.

Generating a dataset with error examples in-
volves three steps. First, we collect queries from
existing datasets that require tool use. Second, we
run a pretrained model on these queries and col-
lect samples where it made tool invocation errors.

We use feedback from the Python interpreter or
HTTP responses to identify errors. Finally, we
form a new example containing: (i) an incorrect
tool call, (ii) feedback from the tool, and (iii) the
correct tool call. We integrate this feedback into
the model’s reasoning process as a self-reflection
step (see Fig. 1 and Fig. 2 for examples). After gen-
erating this dataset, we fine-tune the model on it
and test it on out-of-domain examples (see below).

For synthetic datasets without executable tools,
we create dummy functions that check parameter
correctness, simulating feedback from tool calls.

We propose two setups for ToolReflection. In
both, we start with a model fine-tuned on tool us-
age instructions and use it to generate error cor-
rection examples. Then, we either (i) further fine-
tune on these examples with a smaller sample of
original data (Post-finetune), or (ii) augment the
original data with error corrections and fine-tune
from scratch (Fine-tune).

5 Experiments

5.1 GPT4Tools

We conducted experiments using the original seen
and unseen test sets from GPT4Tools, adjusting
prompts and tool calls to our format (see Section 3.1
and Appendix G).

Following the GPT4Tools setup, we evaluate sev-
eral metrics: SRt (Success Rate of Thoughts, i.e.
the accuracy of decisions whether to use tools or
not), SRact (Success Rate of Actions, accuracy of
tool names), SRargs (Success Rate of Arguments,
accuracy of tool arguments), and SR (overall Suc-
cess Rate). Details regarding the training proce-
dure, including the base model and hyperparame-
ters, are provided in Appendix A.1.

Table 3 shows the results. First, we present the
results on seen and unseen GPT4Tools evaluation
sets (“Seen” and “Unseen” columns in Table 3).
Adding GPT4FakeTools to the training data im-
proves all metrics and, importantly, the overall SR

189

by a large margin.
Next, the “OOD” columns present the results on

our collected GPT4Tools-OOD evaluation dataset.
The model fine-tuned only on GPT4Tools per-
forms poorly on out-of-domain test sets, achiev-
ing just 6.7% SR in the hardest setting with tool
invocation examples in the prompt (“Hard OOD”).
Adding a single example (“OOD”) improves SR to
47.5%. Fine-tuning on both GPT4FakeTools and
GPT4Tools significantly boosts performance—by
absolute 25.4% in OOD and 33.7% in Hard OOD.
Models trained without error correction fail to im-
prove after several iterations of calling and ob-
taining feedback from the same tool, as seen in
SRfirstand SRlastscores.

Finally, we evaluate the effect of our Tool-
Reflection approach. We test two variations
of ToolReflection: “Post-finetune” and “Fine-
tune” (see Section 4). While ToolReflection out-
performs the GPT4Tools baseline on the orig-
inal Seen and Unseen evaluation sets, its re-
sults are slightly worse than fine-tuning only on
GPT4Tools+GPT4FakeTools without error correc-
tion examples. However, since the GPT4Tools test
set lacks real callable APIs, the effect of ToolRe-
flection cannot be fully observed. This experiment
primarily ensures ToolReflection does not degrade
quality on the original test set; more realistic results
appear in the last two out-of-domain columns.

Incorporating error correction examples into
instruction tuning data significantly improved
performance on GPT4Tools-OOD-Hard (“Hard
OOD”): final SR increased by 16.9% after post-
finetuning the model already trained on GPT4Tools
and GPT4FakeTools on self-generated corrections
(“Post-finetune”) and by 22.5% when fine-tuned
from scratch (“Fine-tune”). The difference be-
tween first and last tool call accuracy (23.7% in
post-finetune, 18% in fine-tune) shows that ToolRe-
flection primarily enhances the model’s ability to
recover from initial errors.

5.2 ToolAlpaca
We follow the setting of ToolAlpaca and evaluate
our approaches on its original simulated and real-
world datasets. We measure procedure accuracy
(“Proc.” in Table 4), which evaluates action and
parameter selection, response accuracy (“Resp.”),
which measures whether the final response satis-
fies the user request, and overall accuracy (“Acc.”),
which requires both to be correct.

The ToolAlpaca corpus contains 3.9K instances.

Simulated Real-world
Method Proc. Resp. Acc. Proc. Resp. Acc.

Original ToolAlpaca
Train + Spec check 44.0 49.0 42.0 37.7 36.8 35.1

ToolReflection
Post-finetune

Synth on val 51.0 54.0 49.0 44.7 43.4 43.0
Synth on train+val 52.0 53.0 49.0 47.4 42.1 40.4

Fine-tune
Synth on val 57.0 66.0 56.0 50.8 47.4 43.9
Synth on train+val 52.0 61.0 49.0 52.6 48.2 45.6

Table 4: Results on simulated and real-world test sets
from ToolAlpaca.

We split its training set into training (2,261 ex-
amples) and validation (1,676 examples) subsets,
selecting the first 268 distinct API functions for
training and the remainder for validation.

We train the model on the training subset and
generate examples with error corrections on the
training and validation parts of the dataset. For
ToolReflection experiments, we use errors detected
by the internal format checker to generate self-
correction examples, including parsing issues, in-
correct API names, and incorrect API parameter
names or types. In addition to Post-finetune and
Fine-tune setups described in Section 4, we explore
generating synthetic data from either the validation
set only (“Synth on val” in Table 4) or both train-
ing and validation subsets (“Synth on train+val”).
Further details regarding training hyperparameters
are provided in Appendix A.2.

As a baseline, we reproduce the original pipeline
with the training set reduced as above and include
the parameter specification checker from ToolAl-
paca code (“Train + Spec check”). This checker is
necessary for simulated tools, as we cannot ensure
that the tool simulator (ChatGPT) follows the tool
description.

Table 4 shows that our ToolReflection approach
consistently outperforms the original setup with the
parameter checker, improving accuracy by 14 %
on simulated and 10.5 % on real-world datasets.

Similar to GPT4Tool results, Fine-tune outper-
forms Post-finetune, suggesting that mixing stan-
dard data with error reflection chains is more effec-
tive than separate fine-tuning stages.

For this fine-tuning approach, using a larger cor-
rection dataset (“Synth on train+val”) slightly im-
proves real-world performance. On synthetic eval-
uation data (“Simulated”), separating error correc-
tion and standard datasets (“Synth on val”) leads
to a surprising quality boost. Because this in-

190

crease does not generalize to the real setting (“Real-
world”), we believe that the model has managed to
learn a specific behaviour of the simulated evalua-
tion in this case (see also Section 6).

Overall, ToolReflection training significantly im-
proves real-world performance. The setup with
mixed training on a larger set of errors (Fine-tune,
train+val) slightly outperforms others.

5.3 ToolBench and Multistep-100

We follow the original ToolBench setup, measur-
ing Pass Rate (Passes; percentage of succesfully
completed user instructions) and Win Rate (Wins;
comparison of model solution paths to ChatGPT
results) across six evaluation sets (L1-Inst, L1-Tool,
L1-Cat, L2-Inst, L2-Cat, L3-Inst). Details regard-
ing training procedure and hyperparameters are
provided in Appendix A.3.

To apply the ToolReflection pipeline to Tool-
Bench, we need clean tool invocation chains with-
out any errors. To obtain a clean subset, we took the
already cleaned dataset and used the Llama-2-7B-
chat model to eliminate chains with errors resulting
from calling external tools (see also Section 3.3).
We then collected all distinct tools, allocating 1,629
to the training set and 702 to validation. To pre-
vent overlap, we split the training set into train and
validation based on tools in these datasets.

We also evaluate on our Multistep-100 bench-
mark. Unlike ToolBench, tool invocation steps in
this benchmark are interdependent, so it is suffi-
cient to check the correctness of the final tool calls
alone. Thus, we measure the success rate (SR) of
the last tool call.

Figure 3 and Table 5 show the results on the
ToolBench and Multistep-100 evaluation sets. On
the original ToolBench test set, the ToolReflection
pipeline improves the pass rate by 1.7% but does
not affect win rate. However, on the Multistep-100
dataset the overall success rate increases by 4%.

6 Error Analysis

In this section, we analyze the types of errors made
by the model, some of which were corrected using
ToolReflection, while others were not. Tool calls
can be generally categorized into three types: (1) a
correct tool call; (2) an incorrect tool call that pro-
duces error feedback from the tool; (3) a formally
correct tool call with no negative feedback, but with
wrong choice of tool or parameters. Both the sec-
ond and third types can be considered errors. Our

L1-Inst.

L1-ToolL1-Cat.

L2-Inst.

L2-Cat. L3-Inst.

0 10 20 30 40 50 60

L1-Inst.

L1-ToolL1-Cat.

L2-Inst.

L2-Cat. L3-Inst.

0 10 20 30 40 50 60

ToolLLaMA ToolReflection

Wins Passes

Figure 3: ToolBench results comparing ToolReflection
against ToolLLaMA baseline. Left: Win Rate (model
solutions vs. ChatGPT). Right: Pass Rate (successfully
completed user instructions). Radial axes represent per-
formance across six ToolBench evaluation sets (L1-Inst,
L1-Tool, L1-Cat, L2-Inst, L2-Cat, L3-Inst).

Table 5: Average results on ToolBench and MultiStep-
100 evaluation sets.

Model ToolBench Multistep
Passes Wins SR

ToolLLaMA 42.6 53.7 0.13
+ToolReflection, Synth on val, 44.3 53.8 0.17Post-finetune

method specifically addresses errors where the tool
(API or code snippet) returns non-fatal feedback,
focusing on correcting calls of the second type.

Table 6 shows that in the GPT4Tools +
GPT4FakeTools setup, 9% of the calls fell into
the third category, which is a relatively small frac-
tion. In contrast, 51% of the calls belong to the
second type, where feedback from the tool was pro-
vided. After applying ToolReflection fine-tuning,
the number of calls of the second type decreased
by an absolute 26%.

Fig. 2 (left panel) illustrates an important use
case which is successfully handled by the ToolRe-
flection-trained model. Here, the generated call is
semantically correct, but API requires strict input
format, which can be extracted from the API re-
sponse: the pintapi_convert_units tool accepts
Pa, but not Pascals.

For further details please refer to Appendix B.

7 Conclusion

In this work, we aim to improve tool invocation
by LLMs, a core technology in next-generation vir-
tual assistants and AI applications. Modern LLMs
support a paradigm where the backbone model
manages user communication and invokes exter-
nal tools as needed. For this paradigm to succeed,
the toolset must be extensible: an instruction-tuned
backbone should support new tools based on a sim-

191

ple paragraph of API documentation, learned in
context.

We demonstrated that existing solutions struggle
with complex real-world APIs, which often return
unpredictable or variable responses. This makes
it difficult to accurately evaluate the success of a
user request. Moreover, third-party APIs may be
costly, unstable, or subject to failure, making train-
ing on their outputs impractical. These issues are
pronounced when handling user queries requiring
multi-step solutions, where each tool call depends
on previous results.

Our analysis focused on the limitations of three
existing solutions: GPT4Tools, ToolAlpaca, and
ToolBench. We proposed methods to bridge the gap
between academic datasets and real-world applica-
tions. We developed realistic evaluation protocols
and showed that practical models can be built even
from entirely synthetic data and descriptions, as
shown in our GPT4Tools experiments. Addition-
ally, our ToolReflection approach proved effective
in recovering from errors using API feedback, and
our experiments show this compensates for insuffi-
cient tool documentation, a frequent challenge with
third-party APIs.

However, our error analysis highlights that Tool-
Reflection still cannot address certain error classes.
In future work, we plan to explore methods to re-
duce uncorrectable errors and further enhance LLM
self-correction capabilities.

Limitations

While our work demonstrates significant improve-
ments in LLM tool usage through the ToolReflec-
tion method and enhanced evaluation datasets, sev-
eral limitations should be acknowledged.

First, the focus on single-step correction. Our
implementation primarily addresses errors by cor-
recting the most recent tool invocation. This may
be insufficient for multi-step tasks where errors
propagate from earlier steps. Developing mech-
anisms for multi-step error diagnosis, potentially
involving backtracking, represents an important
direction for future research.

Second, computational overhead associated with
the method. ToolReflection requires generating
an error-correction dataset, adding computational
cost. Furthermore, adapting the method to diverse
API response formats across different benchmarks
(GPT4Tools, ToolAlpaca, ToolBench) and real-
world tools often requires significant manual ef-

fort. Future work could investigate more efficient
or even unsupervised methods for generating cor-
rection data.

Third, reliance on quality error feedback. The
effectiveness of ToolReflection is tied to the quality
and availability of error feedback from APIs. It per-
forms best with informative error messages. Future
work could explore training models to infer errors
even from implicit or subtle negative signals.

Fourth, limited comparison of feedback learning
strategies. Our current approach relies exclusively
on supervised fine-tuning using the generated error-
correction pairs. The nature of this feedback, par-
ticularly the comparison between corrected and
uncorrected tool invocations, naturally lends itself
to preference learning paradigms such as Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) or other methods inspired by Reinforcement
Learning from Human Feedback (RLHF) (Stiennon
et al., 2020). We acknowledge that our evaluation
does not currently include these alternatives, which
presents an avenue for future investigation.

Fifth, benchmark realism. Our enhancements
to the evaluation sets make them more realistic,
but they still necessarily simplify the complexities
and unpredictability of real-world tools. Future
work should continue to focus on developing more
realistic and comprehensive benchmarks that better
capture these nuances.

References

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
Jian-Guang Lou, and Weizhu Chen. 2024. Learning
from mistakes makes llm better reasoner. Preprint,
arXiv:2310.20689.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. Preprint, arXiv:2304.05128.

Yixin Liu and Pengfei Liu. 2021. Simcls: A simple
framework for contrastive learning of abstractive
summarization. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 1065–1072.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594.

192

https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. Preprint, arXiv:2402.06196.

OpenAI. 2022. Chatgpt: Optimizing language mod-
els for dialogue. https://openai.com/blog/
chatgpt/.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2024. Gorilla: Large language model
connected with massive apis. Advances in Neural
Information Processing Systems, 37:126544–126565.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai
Jia, Huajun Chen, and Ningyu Zhang. 2024. Making
language models better tool learners with execution
feedback. In Proceedings of the 2024 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 3550–
3568.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and
Maosong Sun. 2023. ToolLLM: Facilitating large
language models to master 16000+ real-world APIs.
Preprint, arXiv:2307.16789.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728–
53741.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539–68551.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in neural information processing systems, 33:3008–
3021.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. Preprint, arXiv:2306.05301.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and
Heng Ji. 2024a. Leti: Learning to generate from
textual interactions. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
223–239.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,
Lifan Yuan, Hao Peng, and Heng Ji. 2024b. Mint:
Evaluating llms in multi-turn interaction with tools
and language feedback. Preprint, arXiv:2309.10691.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching
large language model to use tools via self-instruction.
Advances in Neural Information Processing Systems,
36:71995–72007.

Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong
Kim, Hyeonbin Hwang, and Minjoon Seo. 2023.
Selfee: Iterative self-revising llm empowered by self-
feedback generation. Blog post.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction. Preprint,
arXiv:2401.06201.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023.
Self-edit: Fault-aware code editor for code genera-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 769–787.

Kexun Zhang, Hongqiao Chen, Lei Li, and William
Wang. 2024. Don’t fine-tune, decode: Syntax error-
free tool use via constrained decoding. Preprint,
arXiv:2310.07075.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and
3 others. 2023. A survey of large language models.
Preprint, arXiv:2303.18223.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra,
Victor Bursztyn, Ryan A. Rossi, Somdeb Sarkhel,
and Chao Zhang. 2024. Toolchain*: Efficient action
space navigation in large language models with a*
search. In The Twelfth International Conference on
Learning Representations.

A Hyperparameters

A.1 GPT4Tools
We use the same hyperparameters as the original
work, with Vicuna-13B as the base model. We tune

193

https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://kaistai.github.io/SelFee/
https://kaistai.github.io/SelFee/
https://arxiv.org/abs/2401.06201
https://arxiv.org/abs/2401.06201
https://arxiv.org/abs/2310.07075
https://arxiv.org/abs/2310.07075
https://arxiv.org/abs/2303.18223
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8

LoRa weights for query, key, value, and output
projection layers, using a LoRa rank of 16, batch
size 64, and AdamW optimizer with a learning rate
of 3 × 10−4. We reserve 2048 training examples
for validation, fine-tune for 5 epochs, and select the
best checkpoint on validation.

A.2 ToolAlpaca

We reproduce ToolAlpaca’s setup (Tang et al.,
2023), fine-tuning Vicuna-7B-v1.1 for three epochs
on 8 Nvidia V100 GPUs with a total batch size of
128 and a 2e-5 learning rate using the AdamW
optimizer.

A.3 ToolBench and Multistep-100

We fine-tune LLaMA 7B on instruction-solution
paths, using the original hyperparameters except
for context length. The model is trained for 2
epochs with a 5e-5 learning rate using the AdamW
optimizer on 8 Nvidia V100 GPUs (batch size 64).
We limit the context length to 4096 and use posi-
tional interpolation to extend the context length of
LLaMA 7B.

B Error Analysis

B.1 GPT4Tools

Table 7 provides a detailed breakdown of specific
types of errors corrected by ToolReflection on
the GPT4Tools-OOD-Hard evaluation set. After
analyzing model outputs on the GPT4Tools-OOD-
Hard dataset, we decided to divide type 2 errors
(with feedback) into the following categories:
(1) format errors (the model is unable to provide
a parsable API call; it either provides incorrect
Python code or hallucinates the tool name);
(2) errors in parameter format (the model either
provides nonexistent parameters, does not provide
required parameters, or provides parameters of
incorrect types, e.g., mixing strings and integers);
(3) errors in parameter values (the model provides
syntactically correct but semantically wrong pa-
rameters; in a real example, when asked to find the
coordinates for Rue de l’Église in Paris, the model
called geocoderapi_geocode(location="Rue
de l’Église") and received the coordinates
of Rue de l’Église in Boësses, a different city);
(4) meaningless output errors (sometimes the LLM
generates meaningless output such as cyclically
repeating the same words etc.).

Table 7 shows that the least corrected errors are
errors in parameter values and meaningless output.

The correction rate for meaningless output is a flat
0%: once the LLM begins generating meaningless
text, it cannot return to normal conversation. Errors
in parameter values are often hard to correct, be-
cause in such cases (see Fig. 2) the error feedback
is often useless. Parameter format errors should
be easier to fix with feedback, so the result of 57%
represents significant room for improvement in this
category.

B.2 ToolAlpaca
In the ToolAlpaca dataset, unlike the GPT4Tools
setup, it is harder to authomatically calculate the
number of all errors and corrections due to mul-
tiple tool calls needed to give an answer and the
nature of HTTP responses where the error format
may be different from tool to tool. To understand
typical errors for this benchmark, we analyse all
cases where tools return any code not equal to 200
(e.g. 400, 404). Although the original evaluation
of ToolAlpaca is entirely automated and depends
solely on external LLM judgments, this manual
analysis may provide additional insight.

Table 8 presents error analysis on simulated and
real evaluation sets for each API call in the format
of “First attempt / Last attempt”. Here “Meaning-
less” means errors caused by nonsense LLM output,
like hallucinations or cyclic generations; “HTTP
feedback” denotes normal response from the API or
simulator that contains a more or less informative
message. The middle column shows cases where
the response is incorrect: for real-world tools, these
are cases of internal API errors, for simulated tools,
cases of incorrect behaviour of the LLM checker.
A typical case for this dataset is when the LLM
incorrectly applies the requirements from API doc-
umentation. The most frequent case of such mis-
take is when there are several examples of possible
values provided in the documentation, but LLM
considers them as the only possible examples (e.g.,
assumes that “the color could be cyan, yellow, etc”
means that acceptable values for the color are only
[cyan, yellow]). It is clear from the table that even
uniniformative feedback from the tool, such as an
error message, may help the model to find another
solution and succeed. In general, the ToolReflec-
tion-trained model is often able to recover after
erroneous API feedback, even in case of compli-
cated APIs with several subfunctions with complex
parameter sets.

To illustrate the importance of the tool feed-
back, consider the set of tasks in ToolAlpaca

194

Last Tool Call GPT4Tools + GPT4FakeTools ToolReflection

Correct call, no error received 40% 63%
Incorrect call, error received 51% 25%

Incorrect call, no error received 9% 12%

Table 6: GPT4Tools-OOD-Hard error analysis.

Error Type Format Param. Format Param. Values Meaningless Output

% corrected 93% 57% 46% 0%

Table 7: Analysis of corrected errors on GPT4Tools-OOD-Hard.

Setup Examples Meaningless Check err. HTTP
Internal err. feedback

Sim 100 0/2 0/5 4/7
Real 114 0/3 2/2 6/10

Table 8: ToolAlpaca error analysis.

Real test set based on the chucknorris.io
API, developed to provide Chuck Norris
jokes for a given topic. The model is given
a choice of 4 functions: “jokes_random_get,
jokes_random_category_get, jokes_categories_get,
jokes_random_get, jokes_search_get”. Task 2 of
this subset has the following query: “I’m writing
a blog post about Chuck Norris and his impact
on pop culture. I need a joke related to ’music’.
Can you find one for me?”. The expected tool
call provided as the ground truth in the dataset
is jokes_random_category_get{“category”:
“music”}. But in practice, this call does not
work. The model starts from the exactly this
tool call, obtaining {status:404, error:Not
Found, path:/jokes/random/music}. Getting
this response, our ToolReflection-trained model
replaces the call by jokes_search_get{“query”:
“music”}, which returns the joke “Someone asked
Chuck Norris what kind of music he listened to. He
answered: I don’t listen to music, music listens to
me.”

B.3 ToolBench and Multistep-100

In this section, we examine errors made on the
Multistep-100 evaluation set. Similar to the ToolAl-
paca dataset, it is harder to examine errors auto-
matically for the ToolBench format, so we do it
manually. Due to the fact that the ToolBench eval-
uation set contains 1100 queries and tool invoca-
tion chains, and since only Multistep-100 has a

set of ground truth answers, we focus on examin-
ing errors on Multistep-100 only. Note that in the
ToolBench setup, we do not have a script-based
parameter checker, and all error feedback comes
from tool HTTP responses.

Table 9 indicates that 45% of cases failed due
to errors that did not get any feedback (we refer to
these calls as type 3 calls and do not aim to correct
them with our method). These errors include, for
instance, successfully calling a tool with incorrect
parameters, skipping the calling of the first tool
and calling the second one with hallucinated pa-
rameters, or not calling one of the tools at all and
finishing the conversation. By analyzing errors fur-
ther, we noticed that the model was able to correct
errors in 7% of cases; 2% of them led to a tool call
of the third type and 5% led to a successful correct
answer.

Surprisingly, the model is not able to correct a
significant amount of the 28% of errors with feed-
back. We noticed that in all cases, the model cor-
rectly identified an error, which could be noticed
by an internal thought such as “Tool call returned
an error. To correct it, I need to do the follow-
ing,” which has appeared between errors during the
fine-tuning stage. In some cases, after receiving an
error, the model simply terminated the generation
and called the “Finish” tool. In most cases, how-
ever, the model tried to generate another tool call
and made up the tool response by itself in the end,
making the parser unable to extract the tool call.
Such cases highlight that the fine-tuning procedure
in the case of ToolBench should be explored in
detail in the future.

C Changed GPT4Tools Prompts

Prompt for naive generation and fine-tuning with
tool usage instructions

195

Case type Correct Fatal Corrected Not corrected No feedback

% cases 12% 10% 5% 28% 45%

Table 9: Multistep-100 error analysis.

GPT4Tools can handle various tasks.
It generates human -like text and uses

tools to follow user instructions.
To call API tool it writes python code

according to the API tool 's
description.

TOOLS:

GPT4Tools has access to the following
API tools:

{tools}

To use a tool , please use the following
format:

```
Thought: Do I need to use a tool? Yes
Thought: Which tool should I use? the

action to take should be one of the
API tools

AI: python code according to the API
tool 's description , including python
function with the exact same name

as the action name and its
parameters

Output: the result of the action
```

When you have a response to say to the
human , or if you do not need to use
a tool , you MUST use the format:

```
Thought: Do I need to use a tool? No
Output: [your response here]
```

Follow the API tool description rules.
Do not make up function names and

parameters of those functions.

Previous conversation:

{previous_input}

Input: {input}
Begin! Let 's think step by step.

{previous_conversation}

Prompt for generation and fine-tuning with ToolRe-
flection

GPT4Tools can handle various tasks.
It generates human -like text and uses

tools to follow user instructions.
To call API tool it writes python code

according to the API tool 's
description.

TOOLS:

GPT4Tools has access to the following
API tools:

{tools}

To use a tool , please use the following
format:

```
Thought: Do I need to use a tool? Yes
Thought: Which tool should I use? the

action to take , should be one of the
API tools

AI: python code according to the API
tool 's description , including python
function with the exact same name

as the action name and it 's
parameters

Observation: the result of the action
```

If the tool returned an error and this
error is the mistake of GPT4Tools ,
use the following format:

```
Thought: Is the python code correct? No
Thought: Do I need to rewrite the code?

Yes
Thought: Do I need to use a tool? Yes
Thought: Which tool should I use? the

action to take
AI: correct python code according to the

API tool 's description
```

When you have a response to say to the
Human , or if you do not need to use
a tool , you MUST use the format:

```
Thought: Do I need to use a tool? No
Output: [your response here]
```

Follow the API tool description rules.
Do not make up function names and

parameters of those functions.

Previous conversation:

{previous_input}

Input: {input}
Begin! Let\'s think step by step.

{previous_conversation}

196

D GPT4FakeTools generation prompts

Example prompts for the tool description and
queries with examples of tool usage generation.

Try to come up with new tools and their
descriptions. Each tool description
should

follow the format Tool Name: usage
scenario. Parameter d e s c r i p t i o n s

1. Speech Recognition: useful when you
want to recognize speech from a
microphone

or audio file. The input to this tool
should be an audio file path or a
microphone

input.
2. Object Tracking in Image: useful when

you want to track the position of
an object

in an image across multiple frames. The
input to this tool should be a
string ,

representing the path of the image file
sequence.

3. Audio Speed Changer: useful when you
want to change the speed of an audio
file.

The input to this tool should be a
string , representing the path of the
audio file ,

and another string , representing the new
speed.

4. Video Editing: useful when you want
to edit a video by trimming ,
cropping , adding

music , or enhancing the video quality.
The input to this tool should be a
string ,

representing the path of the video file.
5. Background Removal: useful when you

want to remove the background from
an image

and create a transparent background. The
input to this tool should be a

string ,
representing the path of the image file.
6.

−−−
Please generate instruction for each of

the given tools.
Each tool is defined as "<Tool Name >: <

usage scenario >"
1. Speech Recognition: useful when you

want to recognize speech from a
microphone

or audio file. The input to this tool
should be an audio file path or a
microphone

input.
2. Object Tracking in Image: useful when

you want to track the position of
an object

in an image across multiple frames. The
input to this tool should be a
string ,

representing the path of the image file
sequence.

3. Audio Speed Changer: useful when you
want to change the speed of an audio
file.

The input to this tool should be a
string , representing the path of the
audio file ,

and another string , representing the new
speed.

4. Video Editing: useful when you want
to edit a video by trimming ,
cropping , adding

music , or enhancing the video quality.
The input to this tool should be a
string ,

representing the path of the video file.
5. Background Removal: useful when you

want to remove the background from
an image

and create a transparent background. The
input to this tool should be a

string ,
representing the path of the image file.

Here is an example for the tool "Video
Splitter" -- "Divide the video
located at

/path/to/video.mp4 into 10-second
intervals.",

[Video Splitter , "/path/to/video.mp4",
"10 seconds "]"

Try not repeating the words from tool
description , where possible.

Provide diverse instructions.

E Dummy functions generation prompt

You are provided with the list of
functions and the list of calls.
Your task is to write python
functions that will be executed by
provided calls.

These functions should have the same
signature as the calls. The
functions should not do anything ,
but check if the parameters have
correct types. If the parameters are
wrong , throw an error.

Write code of the functions only.
Functions should be separated by
'####################################### '

Do not wrap python code into ```
brackets

Function names and descriptions: {
descriptions}

Calls: {api_calls}

F GPT4Tools-OOD and
GPT4Tools-OOD-Hard example tool
descriptions

Examples of tool descriptions from GPT4Tools-
OOD-Hard
API Name: pintapi_convert_units
API Parameter: The input to this tool

should be the

197

from_value , from_unit , and to_unit.
API Description: Convert from one unit

to another.

API Name: geocoderapi_reverse_geocode
API Parameter: The input to this tool

should be two floats
representing the latitude and longitude

coordinates.
API Description: Reverse geocode a given

latitude and longitude
to obtain address information.

Examples of tool descriptions from GPT4Tools-
OOD
API Name: pintapi_convert_units
API Parameter: The input to this tool

should be the
from_value , from_unit , and to_unit.
API Description: Convert from one unit

to another.
Usage Example: Hey , how many kilometers

are there in 25 miles?
```python
pintapi_convert_units(from_value =25,

from_unit =\" miles\", to_unit =\"
kilometers \")```

API Name: geocoderapi_reverse_geocode
API Parameter: The input to this tool

should be two floats representing
the

latitude and longitude coordinates.
API Description: Reverse geocode a given
latitude and longitude to obtain address

information.
Usage Example: What is the address for

the location at coordinates 39.5501 ,
-105.7821?

```python
geocoderapi_reverse_geocode(latitude

=39.5501 , longitude = -105.7821)
```

G Prompt for ToolBench API error
detection

You will be given api calls from some
model and api outputs from rapidapi
apis.

Sometimes api return errors.
It is hard to parse them using rule -

based methods.
An api may respond with an empty output

(it could be empty list , or an empty
dict),

contain a field that states it is an
error or etc.

You will be given 5 examples. You should
respond only "Yes" if the response

does not
contain errors from an api and "No" if

not.
Please make sure that api returned what

the api call requested.
If not , return "No"
Examples:
API Call:

Thought: To fulfill the user 's request
for gathering user information and
recent

media posts from Instagram for a
specific username 'nike ', I
previously called the

'userinfo_for_instagram_cheapest '
function with the argument

{" username ": "nike "}. By doing so, I
efficiently retrieved the desired
user data ,

including their biography , bio links ,
biographical information , and other

relevant details. Now , to proceed with
accessing the user 's recent media
posts ,

I will call the '
user_medias_for_instagram_cheapest '
function with the argument

{" user_id ": "113294420064920"}. This
will allow me to retrieve the most
recent

media posts of the user 'nike ' and
provide the user with the requested

data effectively.
Action:

user_medias_for_instagram_cheapest
Action Input: {

"user_id ": "113294420064920"
}
API Response:
{"error ": "", "response ": "{'items ': [],

'num_results ': 0, 'status ': 'ok '}"}
Result:
No
###
API Call:
Thought: The user requested the list of

languages supported by the
LanguageTool

API for grammar and writing assistance.
To fulfill this request , I need to
call

the "list_of_languages_for_languagetool"
function without any arguments.

By doing so , I expect to receive the
complete list of supported languages
. This

information will be crucial for
implementing multilingual support in
the project ,

ensuring accurate grammar and writing
assistance for different languages.

Action:
list_of_languages_for_languagetool

Action Input: {}
API Response:
{"error ": "", "response ": {'name ': '

Arabic ', 'code ': 'ar ', 'longCode ': '
ar '},

{'name ': 'Asturian ', 'code ': 'ast ', '
longCode ': 'ast -ES '},

{'name ': 'Belarusian ', 'code ': 'be ', '
longCode ': 'be -BY '},

{'name ': 'Breton ', 'code ': 'br ', '
longCode ': 'br -FR '},

{'name ': 'Catalan ', 'code ': 'ca', '
longCode ': 'ca -ES '},

{'name ': 'Catalan (Valencian)', 'code ':
'ca ', 'longCode ': 'ca-ES-valencia '},

198



{'name ': 'Catalan (Balearic)', 'code ': '
ca ', 'longCode ': 'ca-ES-balear ...

Result:
Yes
###
API Call:
{api_call}
API Response:
{api_response}
Result:

H Multistep-100 example queries and
ground-truth answers

Here are examples of query templates
"I'm looking for details on the [

watch_brandName] [watch_family]
model [watch_model ].

Can you provide me with information on
the brand , release date , features ,

case material , dial color , movement type
, and market price in euros?"

"Could you please provide me with
information on the [watch_brandName]
[watch_family]

model [watch_model ]?
Specifically , I'm interested in knowing

the brand , release date , features ,
case material , dial color , movement type

, and market price in euros."

"I'm planning travel from [city &1] state
[state &1] to [city &2] city , which

is located in
[state &2], USA , could you provide me the

distance
between this two cities in miles and

then convert it to [metric_length ]?"

"I'm looking to travel from [city&1], [
state &1] to [city&2], [state &2] and
I need

to know the distance between them in
miles.

Could you also convert it to [
metric_length] for me?"

Here is an example of ground-truth multistep tool
invocation chain with a query
{"user": "Can you provide me with the

power reserve information for
the A. Lange & S\u00f6hne Lange 1

101.039 watch?
I need to convert it from hours to

seconds.",
"first_tool_name ": "

get_watches_by_brand_family_model_
for_watch_database",

"first_tool_params ": {
"watch_brandName ": "A. Lange & S\

u00f6hne", "watch_family ": "Lange
1",

"watch_model ": "101.039"} ,
"first_tool_response ": "[{
\"id \":309857 ,\
"title \":\"A. Lange \\ u0026 S\\ u00f6hne

101.039\" ,

\" watchName \":\" Lange 1 White Gold \\/
Silver\",

\" marketPriceEuro \":null ,\" brand \":\"A.
Lange \\u0026 S\\ u00f6hne\",

\" family \":\" Lange 1\",
\"model \":\"101.039\"...
"second_tool_params ": "{
\"value \": \"72\" ,
\" input_unit \": \"h\",
\" output_unit \": \"s\"
}"...
"second_tool_name ": "

convert_from_one_unit_of_measure
_to_another_for_measurement_units
_converter",
"second_tool_params ": "{
\"error \":\"\" ,
\" response \":\"{ 'input ': {'value ': '72',

'unit ': 'h'},
'output ': {'value ': 259200 , 'unit ': 's

'}}\"}"

199


