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Introduction

Welcome to the Sixth Workshop on Privacy in Natural Language Processing. Co-located with NAA-
CL 2025 in Albuquerque (NM), USA, the workshop is scheduled for April 4, 2025. To facilitate the
participation of the global NLP community, we continue running the workshop in a hybrid format.

Privacy-preserving language data processing has become essential in the age of Large Language Models
(LLMs) where access to vast amounts of data can provide gains over tuned algorithms. A large proportion
of user-contributed data comes from natural language e.g., text transcriptions from voice assistants. It
is therefore important to curate NLP datasets while preserving the privacy of the users whose data is
collected, and train ML models that only retain non-identifying user data. The workshop brings together
practitioners and researchers from academia and industry to discuss the challenges and approaches to
designing, building, verifying, and testing privacy preserving systems in the context of Natural Language
Processing.

Our agenda features a keynote speech, hybrid talk sessions both for long and short papers, and a poster
session. This year we received 13 submissions. We accepted 9 submissions after a thorough peer-review.
One accepted submissions has been withdrawn by the authors.

We would like to deeply thank to all the authors, committee members, keynote speaker, and participants
to help us make this research community grow both in quantity and quality.
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TUNI: A Textual Unimodal Detector for Identity Inference in CLIP Models

Songze Li1,∗,†, Ruoxi Cheng1,*, Xiaojun Jia2

Abstract

The widespread usage of large-scale multi-
modal models like CLIP has heightened con-
cerns about the leakage of PII. Existing meth-
ods for identity inference in CLIP models re-
quire querying the model with full PII, includ-
ing textual descriptions of the person and cor-
responding images (e.g., the name and the face
photo of the person). However, applying im-
ages may risk exposing personal information to
target models, as the image might not have been
previously encountered by the target model. Ad-
ditionally, previous MIAs train shadow mod-
els to mimic the behaviors of the target model,
which incurs high computational costs, espe-
cially for large CLIP models. To address these
challenges, we propose a textual unimodal de-
tector (TUNI) in CLIP models, a novel tech-
nique for identity inference that: 1) only uti-
lizes text data to query the target model; and 2)
eliminates the need for training shadow models.
Extensive experiments of TUNI across various
CLIP model architectures and datasets demon-
strate its superior performance over baselines,
albeit with only text data.

1 Introduction

Recent years have witnessed a rapid development
of large-scale multimodal models, such as Con-
trastive Language–Image Pre-training (CLIP) (Rad-
ford et al., 2021). These models synthesize in-
formation across different modalities, particularly
text and images, facilitating applications from au-
tomated image generation to sophisticated visual
question answering systems. Despite their potential,
these models pose significant privacy risks (Inan
et al., 2021; Carlini et al., 2021; Leino and Fredrik-
son, 2020; Rigaki and Garcia, 2023; Helbling et al.,
2023; Rahman et al., 2024; Rahman, 2023) as the

*Contributed equally to this work. 1Southeast University,
Nanjing China. 2Nanyang Technological University, Singa-
pore. †Corresponding authors: songzeli@seu.edu.cn.

vast datasets used for training often contain person-
ally identifiable information (PII) (Schwartz and
Solove, 2011; Abadi et al., 2016; Bonawitz et al.,
2017), raising concerns (Xi et al., 2024) about PII
leakage and misuse (Hu et al., 2023; Yin et al.,
2021). Therefore, it is extremely important to de-
velop tools to detect potential PII leakage from
CLIP models. Specially, as the first step, we would
like to address the identity inference problem, i.e.,
to determine if the PII of a particular person was
used in training of a target CLIP model.

Traditional methods, like Membership Inference
Attacks (MIAs) (Shokri et al., 2017), have focused
on determining whether a specific data sample was
used for model training. When applied to CLIP
models, these approaches typically involve query-
ing the model with both texts and images of the
target individual (Ko et al., 2023), and exposing
images of a person the CLIP model may have not
seen in the training set brings new privacy leak-
age risk (He et al., 2022). Hence, it is desirable to
have a detection mechanism for ID inference that
does not query the CLIP model with real images of
the person (see an example in Figure 1). Further-
more, traditional MIAs often rely on constructing
shadow models that mimic the behaviors of the tar-
get model to obtain training data to construct attack
models (Hu et al., 2022a), which demands exten-
sive computational resources and is less feasible in
environments with limited computational capabil-
ities (Mattern et al., 2023; Hisamoto et al., 2020;
Jagielski et al., 2024). Alternative methods for
shadow models in MIAs, such as those based on co-
sine similarity (Ko et al., 2023) and self-influence
functions (Cohen and Giryes, 2024), exhibit either
lower accuracy or still necessitate substantial com-
putational resources (Oh et al., 2023).

To address these limitations, we propose a tex-
tual unimodel detector (TUNI) for identity infer-
ence in CLIP models, which queries the target
model with only text information during inference.

1

mailto:songzeli@seu.edu.cn


Figure 1: Current methods query LLMs with both text and image, while our goal is to conduct identity inference with only
textual data.

Figure 2: Features of textual descriptions extracted from the
optimized images guided by a CLIP model with ResNet50x4
architecture, trained on a dataset where each person has 75
images. The cosine similarity between the embeddings of opti-
mized image and the tested text, and the distance between the
embeddings of the optimized images, can clearly distinguish
between the samples within and outside the training dataset
of the target CLIP model.

Specifically, we first propose a feature extractor,
which maps a textual description to a feature vector
through image optimization guided by the CLIP
model; then, we randomly generate a large amount
of textual gibberish, which we know do not match
any textual descriptions in the training dataset. As
shown in Figure 2, we make the key observation
that the feature distributions of textual gibberish
and member samples in the training set are well
distinguishable.

Leveraging this property, we use the feature vec-
tors of the generated textual gibberish to train mul-
tiple anomaly detectors to form an anomaly de-
tection voting system. At test time, TUNI simply
feeds the feature vector of the test text to the voting
system, and determines that if the corresponding
PII is included in the training set (abnormal) or
not (normal). The training of the anomaly detec-
tor in TUNI costs only several hours with four
NVIDIA GeForce RTX 3090 GPUs, avoiding train-

ing shadow models with the size of the CLIP model
in traditional MIAs, which can cost over 18 days
even with hundreds of advanced GPUs (Gu et al.,
2022; Ko et al., 2023; Hu et al., 2022b).

Our contributions are summarized as follows:

• We propose a textual unimodal detector,
dubbed TUNI, which is the first method to
conduct identity inference in CLIP models
with unimodal data, preventing risky exposure
of images to the target model;

• We find that the feature distributions of texts
that are in and out of the target CLIP model
are well separated, and propose to adopt ran-
domly generated text to train anomaly detec-
tors for ID inference, avoiding the need for
computationally intensive shadow models in
traditional MIAs.

• Extensive experiments conducted across six
kinds of CLIP models have indicated that the
proposed TUNI achieves better performance
than current methods for identity inference,
even when using only textual data.

2 Related Work

2.1 Privacy Leakage in CLIP Models

CLIP model exemplifies modern multimodal inno-
vation by integrating an image encoder and a text
encoder into its architecture (Radford et al., 2021).
These encoders transform inputs into a shared em-
bedding space, enabling effective measurement of
semantic similarity (Ramesh et al., 2022). Despite
the significant advances and expansive applicability
of CLIP models, the vast and diverse datasets uti-
lized for training such models could potentially in-
clude sensitive information, raising concerns about
privacy leakage (Hu et al., 2022b). Various infer-
ence attacks, including model stealing (Dziedzic
et al., 2022; Liu et al., 2022; Wu et al., 2022),
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knowledge stealing (Liang et al., 2022), data steal-
ing (He and Zhang, 2021), and membership in-
ference attacks (Liu et al., 2021; Ko et al., 2023),
have been developed for CLIP, exposing poten-
tial vulnerability in privacy leakage. These privacy
concerns underscore the necessity for developing
robust defense mechanisms to safeguard sensitive
information in CLIP models (Golatkar et al., 2022;
Jia et al., 2023; Huang et al., 2023).

2.2 Personally Identifiable Information and
Leakage Issues

Personally Identifiable Information (PII) is defined
as any data that can either independently or when
combined with other information, identify an indi-
vidual. Training Large Language Models (LLMs)
often utilizes publicly accessible datasets, which
may inadvertently contain PII. This elevates the risk
of data breaches that could compromise individual
privacy and entail severe legal and reputational con-
sequences for the deploying entities (Lukas et al.,
2023; Abadi et al., 2016; Bonawitz et al., 2017;
Rahman et al., 2020; Shamshad et al., 2023). Vari-
ous attacks have been developed to reveal PII from
LLMs. A method is proposed in (Panda et al., 2024)
to steal private information from LLMs via crafting
specific queries to GPT-4 that can reveal sensitive
data by appending a secret suffix to the generated
text; Zhang et al. introduced the ETHICIST method
for targeted training data extraction, through loss
smoothed soft prompting and calibrated confidence
estimation, significantly improving extraction per-
formance on public benchmarks (Zhang et al.,
2023); Carlini et al. also studied training data ex-
traction from LLMs, emphasizing the predictive
capability of attacks given a prefix (Carlini et al.,
2021); ProPILE, proposed in (Kim et al., 2024),
probes privacy leakage in LLMs, by assessing the
leakage risk of PII included in the publicly avail-
able Pile dataset; Inan et al. investigated the risks
associated with membership inference attacks us-
ing a Reddit dataset, further emphasizing the per-
sistent threat of PII leakage in various data environ-
ments (Inan et al., 2021).

2.3 Current Identity Inference Methods and
Their Limitations

Identity inference, critical in privacy-preserving
data analysis, has garnered significant attention
across domains, such as genomic data (Erlich et al.,
2018), location-based spatial queries (Kalnis et al.,
2007), person re-identification scenarios (Karaman

and Bagdanov, 2012), computer-mediated commu-
nication (Motahari et al., 2009)and face recogni-
tion (Zhou and Lam, 2018; Prince et al., 2011;
Sanderson and Lovell, 2009). Membership Infer-
ence Attacks (MIAs), which determine if specific
data points were in a model’s training dataset, can
be used to perform identity inference. Traditional
MIAs often require constructing shadow models to
mimic the target model’s behavior, posing computa-
tional efficiency challenges for large models (Truex
et al., 2019; Ye et al., 2022; Meeus et al., 2023; Xue
et al., 2023).

While identity inference has been mainly per-
formed on unimodal models, it is recently extended
to CLIP models. Identity Detection Inference At-
tack (IDIA) (Hintersdorf et al., 2022) does not need
shadow models; it involves providing real photos
of the tested individual and 1000 prompt templates
including the real name to choose from. The at-
tacker generates multiple queries by substituting
the <NAME> placeholder and analyzes the model’s
responses to calculate an attack score based on cor-
rect predictions. If the correct name is predicted for
a threshold number of templates, the individual is
inferred to be in the training data. Cosine Similarity
Attacks (CSA) (Ko et al., 2023) uses cosine simi-
larity (CS) between image and text features to infer
membership, as CLIP is trained to maximize CS
for training samples. Based on CSA, Weak Super-
vision Attack (WSA) uses a new weak supervision
MIA framework with unilateral non-member in-
formation for enhancement. Both IDIA and WSA
avoid the high costs associated with shadow mod-
els, but require querying the target model with real
images the model may have never seen, raising new
privacy concerns.

3 Methodology

3.1 Problem Setup and Threat Model

Consider a CLIP model M trained on a dataset
Dtrain. Each sample si = (ti, xi) in Dtrain records
the personally identifiable information (PII) of an
individual person, and consists of a textual descrip-
tion ti (e.g., name of the person) and a correspond-
ing image xi (e.g., face photo of the person). For
distinct indices i ̸= j, it is possible that ti = tj
and xi ̸= xj , indicating that multiple non-identical
images of the same person may exist.

A detector would like to probe potential leakage
of a person’s PII through the target CLIP model M ,
via conducting an identity inference task against
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M , to determine if any PII samples of this person
were included in the training set Dtrain.

Detector’s Goal. For a person with textual de-
scription t, a detector would like to determine
whether there exits a PII sample (ti, xi) ∈ Dtrain,
such that ti = t.

Note that rather than detecting for a particular
text-image pair (t, x), our goal is to detect existence
of any (one or more) pair with a textual description
of t. This is because that multiple images of the
same person can be used for training, and any one
of these images may lead to potential PII leakage.

Detector’s Knowledge and Capability. The de-
tector can query M and observe the output, includ-
ing extracted image and text embeddings as well
as their matching score, but does not know the
model architecture of M , the parameter values, or
the training algorithms. For the target textual de-
scription t, depending on the application scenarios,
the detector may or may not have actual images
corresponding to t. Nevertheless, in the case where
the detector knows corresponding images, due to
privacy concerns, it cannot include them in the
queries to M . The detector cannot modify M or
access its internal state.

3.2 TUNI: Textual Unimodal Detector for ID
Inference

We design a textual unimodal detector for ID infer-
ence (TUNI), to determine whether the PII of a per-
son is in the training set of the target CLIP model
M , with the restriction that only the textual descrip-
tion of the person can be exposed to M . Firstly, for
a textual description t, we develop a feature ex-
tractor to map t to a feature vector, through image
optimization guided by the CLIP model. Then, we
make the key observation that textual gibberish like

“D2;l-NOXRT”—random combinations of numbers
and symbols clearly do not match any textual de-
scriptions in the training set, and hence the detector
can generate large amount of textual gibberish that
are known out of Dtrain. Using feature vectors ex-
tracted from these textual gibberish, the detector
can train multiple anomaly detectors to form an
anomaly detection voting system. Finally, during
the inference phase, the features of the target tex-
tual description are fed into the system, and the
inference result is determined through voting. Ad-
ditionally, when the actual images of the textual
description is available to the detector, they can be
leverage to perform clustering on the feature vec-
tors of the test samples to further enhance detection

Algorithm 1: CLIP-guided Feature Extraction
Input: Target CLIP model M , textual description t
Output: Mean optimized cosine similarity S, stan-
dard deviation of optimized image embeddings D

1: n← number of epochs
2: m ← number of optimization iterations per

epoch
3: S ← ∅, V ← ∅
4: vt ←M(t) ▷ Obtain text embedding from M
5: for i = 1 to n do
6: x0 ← Rand() ▷ Randomly generate an

initial image
7: for j = 0 to m− 1 do
8: vxj ←M(xj) ▷ Obtain image

embedding from M
9: xj+1 ← argmaxxj

vt·vxj
∥vt∥ ∥vxj ∥

▷

Update image to maximize cosine similarity
10: end for
11: Si ← vt·vxm

∥vt∥ ∥vxm∥ ▷ Optimized similarity
for epoch i

12: S ← S ∪ {Si}, V ← V ∪ {vxm}
13: end for
14: S ← 1

n

∑
Si∈S Si

15: v̄ ← 1
n

∑
v∈V v

16: D ←
√

1
n

∑
v∈V ∥v − v̄∥2

17: return S, D

performance. An overview of the proposed TUNI
framework is shown in Figure 3.

Feature Extraction through CLIP-guided Im-
age Optimization. The feature extraction for a
textual description t involves iterative optimiza-
tion of an image x, to maximize the correlation
between the embeddings of t and x out of the tar-
get CLIP model. The extraction process, described
in Algorithm 1, iterates for n epochs; and within
each epoch, an image is optimized for m itera-
tions, to maximize the cosine similarity between
its embedding of the CLIP model and that of the
target textual description. The average optimized
cosine similarity S and standard deviation of the
optimized image embeddings D are extracted as
the features of t from model M .

Generation of Textual Gibberish. TUNI starts
the detection process with generating a set of ℓ
gibberish strings G = {g1, g2, . . . , gℓ}, which are
random combinations of digits and symbols with
certain length. As these gibberish texts are ran-
domly generated at the inference time, with over-
whelming probability that they did not appear in
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Figure 3: Overview of TUNI.

the training set. Applying the proposed feature ex-
traction algorithm on G, we obtain ℓ feature vectors
F = {f1, f2, . . . , fℓ} of the gibberish texts.

Training Anomaly Detectors. Motivated by the
observations in Figure 2 that the feature vectors
of the texts that are in and out of the training set
of M are well separated, we propose to train an
anomaly detector using F , such that texts out of
Dtrain are considered “normal”, and the problem of
ID inference on textual description t is converted to
anomaly detection on the feature vector of t. More
specifically, t is detected to be in Dtrain, if its fea-
ture vector is detected “abnormal” by the trained
anomaly detector. Specifically in TUNI, we train
several anomaly detection models on F , such as
Isolation Forest, LocalOutlierFactor (Cheng et al.,
2019) and AutoEncoder (Chandola et al., 2009).
These models constitute an anomaly detection vot-
ing system that will be used for ID inference on the
test textual descriptions.

Textual ID Inference through Voting. For each
textual description t in the test set, TUNI first ex-
tracts its feature vector f using Algorithm 1, and
then feeds f to each of the obtained anomaly de-
tectors to cast a vote on whether t is an anomaly.
When the total number of votes exceeds a prede-
fined detetion threshold N , t is determined as an
anomaly, i.e., PII with textual description t is used
to train the CLIP model M ; otherwise, t is consid-
ered normal and no PII with t is leaked through
training of M .

Enhancement with Real Images. At inference
time, if real images of the test texts are available
at the detector (e.g., photos of a person), they can
be used to extract an additional feature measuring
the average distance between the embeddings of
real images and those of optimized images using
the CLIP model, using which the feature vectors
of the test texts can be clustered into two partitions
with one in Dtrain and another one out of Dtrain.
This adds an additional vote for each test text to the
above described anomaly detection voting system,

potentially facilitating the detection accuracy.
Specifically, for each test text t, the detec-

tor is equipped with a set of c real images
{x1real, x2real, . . . , xcreal}. Similar to the feature ex-
traction process in Algorithm 1, over k epochs with
independent initializations, k optimized images
{x1opt, x2opt, . . . , xkopt} for t are obtained under the
guidance of the CLIP model. Then, we apply a
pretrained feature extraction model F (e.g., Deep-
Face (Taigman et al., 2014) for face images) to the
real and optimized images to obtain real embed-
dings {v1real, v2real, . . . , vcreal} and optimized embed-
dings {v1opt, v2opt, . . . , vkopt}. Finally, we compute
average pair-wise ℓ2 distance between real and op-
timized embeddings, denoted by R, over c · k pairs,
and use R as an additional feature of the text t.

For a batch of B test texts (t1, t2, . . . , tB),
we start with extracting their features
((S1, D1, R1), (S2, D2, R2), . . . , (SB, DB, RB)).
Feeding the first two features Si and Di into
the trained anomaly detection system, each text
ti obtains an anomaly score as the number of
anomaly detectors who believe that it is abnormal.
Additional, the K-means algorithm with K = 2 is
performed on the feature vectors {(Si, Di, Ri)}Bi=1

to partition them into a “normal” cluster and an
“abnormal” cluster, adding another vote on the
anomaly score of each test instance. Then, the ID
inference of each text is performed by comparing
its total number of received votes and a detection
threshold N ′.

4 Evaluations

We evaluate the performance of TUNI, for the task
of ID inference from the name of a person, with
the corresponding image being the face photo of
the person.

4.1 Setup

Our experiments leverage datasets and target CLIP
models from (Hintersdorf et al., 2022).
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Table 1: Performance comparison with baseline methods across different CLIP models. ∆ indicates the improvement of TUNI.

Architecture Number of photos per Method Precision ∆ Recall ∆ Accuracy ∆
person in training set

ResNet-50

1
WSA 0.6653 ± 0.0032 0.1979 0.2925 ± 0.0045 0.6896 0.6675 ± 0.0037 0.2497
IDIA 0.6922 ± 0.0023 0.1712 0.4032 ± 0.0027 0.5789 0.6836 ± 0.0034 0.2336
TUNI 0.8634 ± 0.0031 - 0.9821 ± 0.0042 - 0.9172 ± 0.0028 -

75
WSA 0.6625 ± 0.0018 0.2017 0.2867 ± 0.0061 0.6968 0.6710 ± 0.0043 0.2322
IDIA 0.6901 ± 0.0024 0.1741 0.3998 ± 0.0049 0.5837 0.6907 ± 0.0075 0.2125
TUNI 0.8642 ± 0.0057 - 0.9835 ± 0.0019 - 0.9032 ± 0.0033 -

ResNet-50x4

1
WSA 0.6712 ± 0.0029 0.1901 0.2912 ± 0.0048 0.6835 0.6808 ± 0.0031 0.2547
IDIA 0.6625 ± 0.0036 0.1963 0.3980 ± 0.0031 0.5267 0.6957 ± 0.0029 0.2398
TUNI 0.8613 ± 0.0033 - 0.9747 ± 0.0013 - 0.9355 ± 0.0038 -

75
WSA 0.6724 ± 0.0022 0.1988 0.2935 ± 0.0054 0.6981 0.6685 ± 0.0047 0.2777
IDIA 0.7085 ± 0.0021 0.1627 0.3904 ± 0.0018 0.6012 0.7167 ± 0.0035 0.2295
TUNI 0.8712 ± 0.0043 - 0.9916 ± 0.0037 - 0.9462 ± 0.0029 -

ViT-B/32

1
WSA 0.6323 ± 0.0064 0.0268 0.2964 ± 0.0052 0.3421 0.6812 ± 0.0045 0.0025
IDIA 0.6783 ± 0.0047 0.0308 0.3746 ± 0.0033 0.2639 0.6772 ± 0.0041 0.0065
TUNI 0.7091 ± 0.0056 - 0.6385 ± 0.0062 - 0.6837 ± 0.0044 -

75
WSA 0.7045 ± 0.0075 0.0137 0.2806 ± 0.0048 0.3566 0.6895 ± 0.0052 0.0052
IDIA 0.6890 ± 0.0051 0.0292 0.3811 ± 0.0063 0.2561 0.6927 ± 0.0045 0.0020
TUNI 0.7182 ± 0.0068 - 0.6372 ± 0.0046 - 0.6947 ± 0.0078 -

Dataset Construction. The datasets for train-
ing and ID inference are constructed from three
datasets: LAION-5B (Schuhmann et al., 2022),
Conceptual Captions 3M (CC3M) (Changpinyo
et al., 2021), and FaceScrub (Kemelmacher-
Shlizerman et al., 2016). Specifically, 200 celebri-
ties—100 for training and 100 for validation, with
their face photos accompanied by labels contain-
ing their names are selected from the FaceScrub
dataset; then these data samples are augmented by
additional photos of the selected celebrities found
in LAION-5B, such that each person has multi-
ple photos; finally these augmented data points are
mixed with the CC3M dataset to form the training
set of the CLIP model. By doing this, we have the
ground truth on which people are in the training
set and which are not. In our experiments, we con-
struct two datasets, one with a single photo for each
person, and another with 75 photos for each person.
Samples of this dataset are shown in Figure 4 and
a more detailed description is given in appendix.

Models. Our analysis involves ID inference from
six pre-trained target CLIP models, categorized
into ResNet-50, ResNet-50x4, and ViT-B/32 archi-
tectures. The ResNet-50 and ResNet-50x4 models
are based on the ResNet architecture (He et al.,
2016; Theckedath and Sedamkar, 2020); and ViT-
B/32 models employ the Vision Transformer archi-
tecture (Chen et al., 2021). DeepFace (Serengil and
Ozpinar, 2020) is used for facial feature extraction
for enhancement with real images.

Evaluation Metrics. TUNI’s effectiveness is as-
sessed using Precision, Recall, and Accuracy met-
rics, measuring anomaly prediction accuracy, cor-
rect anomaly identification, and overall prediction
correctness, respectively.

Baselines. Current ID inference detection meth-
ods for CLIP models typically require detector to
query target model with corresponding real images.
Most MIAs involve training shadow models and
related methods like shadow encoders (Liu et al.,
2021), which can be particularly costly for large-
scale multimodal models. We empirically compare
the performance of TUNI with the following SOTA
inference methods, which both avoid using shadow
models, but still require submitting both text and
image to the target CLIP model for inference.

• Identity Inference Attack (IDIA) (Hinters-
dorf et al., 2022) detects with a list of 1000
names to choose from and 30 real photos for a
tested person. In IDIA, the attacker (detector)
selects candidate names as prompt templates,
and predicts names for each image and prompt.
Once the correct name is predicted, it’s in-
ferred that the target individual is in training
dataset. We compare IDIA using 3 photos for
each test sample with TUNI using only text.

• Weakly Supervised Attack (WSA) (Ko
et al., 2023) uses cosine similarity between
image and text features to infer membership,
and adds a weak supervision MIA framework
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Figure 4: Samples from the dataset for training CLIP models.

based on non-member data generated after the
release of the target model.

All experiments are performed using four
NVIDIA GeForce RTX 3090 GPUs. Each exper-
iment is repeated for 10 times, and the average
values and the standard deviations are reported.

4.2 Results

On training anomaly detectors, we randomly gen-
erated ℓ = 50 textual gibberish (some of them are
shown in Table 3).

The image optimization was performed for n =
100 epochs; and in each epoch, m = 1000 Gradient
Descent (GD) iterations with a learning rate of 0.02.
Four anomaly detection models, i.e., LocalOutlier-
Factor (Cheng et al., 2019), IsolationForest (Liu
et al., 2008), OneClassSVM (Li et al., 2003; Khan
and Madden, 2014), and AutoEncoder (Chen et al.,
2018) were trained, and N = 3 was chosen as the
detection threshold.

As shown in Table 1, TUNI, even with only text
information, consistently outperforms WSA and
IDIA in all metrics by a large margin, across all
model architectures and datasets, demonstrating its
superior performance.

We also evaluate the effect of providing the
TUNI detector with an real photo of the inferred

person. In this case, the embedding distances be-
tween the real and optimized images of the test
samples are used to perform a 2-means clustering,
adding another vote to the inference result. We
accordingly raise the detection threshold N ′ to 4.
As illustrated in Table 2, the given photo helps
to improve the performance of TUNI across all
tested CLIP models. While recalls in some ResNet
models experience minor declines attributed to the
raised threshold, all remain above 94%. Conversely,
the ViT-B models exhibit an almost 11% increase
in recall. A lower detection threshold aids recall
enhancement but may concurrently lead to declines
in other metrics.

4.3 Ablation Study
We further explore the impacts of different system
parameters on the detection accuracy.

Figure 5: Detection accu-
racy for different numbers of
optimization iterations per
epoch.

Figure 6: Detection accu-
racy for different numbers
of epochs.

Figure 7: Detection accu-
racy with name only.

Figure 8: Detection accu-
racy with a face photo.

Figure 9: Detection accu-
racy for different numbers
of gibberish.

Figure 10: Detection accu-
racy for different number of
real photos.

Optimization parameters. Figure 5 and 6 show
that during feature extraction, optimizing for n =
100 epochs, each with m = 1, 000 iterations, offers
the optimal performance. Additional epochs and
optimization iterations, while incurring additional
computational cost, do not significantly improve
the detection accuracy.
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Table 2: Detection performance with a given photo during inference. ∆ indicates performance improvement.

Architecture Number of photos per TUNI Precision ∆ Recall ∆ Accuracy ∆
person in training set

ResNet-50
1

Text only 0.8634 ± 0.0031 0.1019 0.9821 ± 0.0042 -0.0396 0.9172 ± 0.0028 0.0303
With 1 photo 0.9653 ± 0.0032 - 0.9425 ± 0.0057 - 0.9475 ± 0.0041 -

75
Text only 0.8642 ± 0.0057 0.1183 0.9835 ± 0.0019 -0.0188 0.9032 ± 0.0033 0.0538

With 1 photo 0.9825 ± 0.0031 - 0.9467 ± 0.0024 - 0.9570 ± 0.0038 -

ResNet-50x4
1

Text only 0.8613 ± 0.0033 0.1290 0.9747 ± 0.0013 -0.0183 0.9355 ± 0.0038 0.0317
With 1 photo 0.9923 ± 0.0011 - 0.9564 ± 0.0044 - 0.9672 ± 0.0028 -

75
Text only 0.8712 ± 0.0043 0.0912 0.9916 ± 0.0037 0.0019 0.9462 ± 0.0029 0.0323

With 1 photo 0.9624 ± 0.0042 - 0.9935 ± 0.0029 - 0.9785 ± 0.0037 -

ViT-B/32
1

Text only 0.7091 ± 0.0056 0.1432 0.6385 ± 0.0062 0.1084 0.6837 ± 0.0044 0.0975
With 1 photo 0.8523 ± 0.0038 - 0.7469 ± 0.0078 - 0.7812 ± 0.0031 -

75
Text only 0.7182 ± 0.0068 0.1353 0.6372 ± 0.0046 0.1086 0.6947 ± 0.0078 0.1148

With 1 photo 0.8535 ± 0.0042 - 0.7458 ± 0.0039 - 0.8095 ± 0.0063 -

Table 3: Samples of randomly generated gibberish.

+
¯
7IKXb2Y FR!pnI<5xS euiT_;yw/
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Detection threshold. Figure 7 and 8 show that
the system attains higher accuracy, when it adopts
a threshold of three votes for considering an input
as an anomaly with text only, and four votes with
an added detection model using an additional given
photo. Setting a high threshold may result in failing
to detect an anomaly, while setting a low one may
lead to identifying a normal one as anomaly.

Number of textual gibberish. As shown in Fig-
ure 9, for different target models, the detection
accuracies initially improve as the number of gib-
berish texts increases, and converge after using
more than 50 gibberish strings.

Number of real photos. As shown in Figure 10,
integrating real photos can enhance the detection
accuracy; however, the improvements of using
more than 1 photo are rather marginal.

5 Defense and Covert Gibberish
Generation

In real-world scenarios, target models being de-
tected may deploy defense mechanisms to recog-
nize anomalous inputs like gibberish and provide
misleading outputs, causing TUNI to misjudge in-
clusion of PII.

To generate more covert gibberish data, we can
create strings resembling normal text, with a few
characters replaced by syllables from another lan-
guage. For instance, the detector can craft query
texts, by randomly combining English names with
syllables from Arabic medical terminology. One

Table 4: Covert gibberish that seem to be real names.

Karinix Zylogene Glycogenyx
Zylotrax Vexilith Dynatrix
Exodynix Novylith Glycosyne
Xenolynx Rynexis Delphylith

way to do this is to start by prompting LLMs like
GPT-3.5-turbo to create lists of common initial and
final syllables in English words. These syllable lists
are then extracted and refined to ensure diversity
and eliminate duplicates. Next, the refined sylla-
ble combinations are randomly paired to create
pseudo-English names, such as “Karinix”, “Zylo-
gene”, “Glycogenyx”, and “Renotyl”. It’s crucial
to verify the novelty of these names by checking
against a database of real names to avoid collision.
Then by prompting the LLM to generate strings
using the refined syllable combinations, covert gib-
berish strings resembling real names are produced
(some examples are given in Table 4).

6 Conclusion

In this paper, we propose TUNI, the first method to
conduct identity inference without exposing acutal
images to target CLIP models. TUNI turns infer-
ence problem into anomaly detection, through ran-
domly generating textual gibberish that are known
to be out of training set, and exploting them to train
anomaly detectors. Furthermore, the incorporation
of real images is shown to enhance detection perfor-
mance. Through evaluations across various CLIP
model architectures and datasets, we demonstrate
the consistent superiority of TUNI over baselines.
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7 Limitations

Due to constraints resources, we conducted experi-
ments using the name of the individual as textual
descriptions. This approach may not fully encapsu-
late the complexities and nuances of real-world PII
leakage including addresses, phone numbers, and
other sensitive information.

8 Ethics and Social Impact

The development of TUNI highlights crucial ethi-
cal considerations in identity inference using mul-
timodal models like CLIP. By enabling identity
inference with only textual data, TUNI reduces the
risks associated with exposing PII through images.
This approach not only helps protect individual pri-
vacy but also minimizes the potential for misuse in
harmful applications. As such technologies evolve,
it is essential for researchers to adhere to ethical
guidelines and promote transparency, ensuring that
advancements in AI prioritize user privacy and fos-
ter responsible usage in society.

9 Potential Risks

TUNI aims to bolster privacy by aiding in identity
inference and safeguarding personal identifiable
information within AI systems. While mindful of
the risk of misuse, TUNI should adhere to data
regulations and be employed only with explicit
consent from involved data subjects, promoting
privacy and security in AI practices.
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A Dataset Description

We utilized the datasets from previous work (Hin-
tersdorf et al., 2022).

LAION-400M (Schuhmann et al., 2021), com-
prising 400 million image-text pairs, primarily em-
ployed for pre-training the CLIP model, offering
a wide array of visual content and textual descrip-
tions to facilitate the model’s learning of relation-
ships between images and text, including direct
associations between specific individuals and im-
ages. In the experiment, this dataset is used to ana-
lyze the frequency of individuals appearing within
it to identify individuals with lower frequencies
of appearance, thereby avoiding the use of those
individuals that appear very frequently to prevent
skewing the experimental results. A threshold is
set to only use individuals with fewer than 300 ap-
pearances for the experiments to ensure that the
experimental results would not be dominated by
individuals with very high occurrence frequencies,
thus ensuring the accuracy and reliability of the
experimental outcomes.

LAION-5B (Schuhmann et al., 2022), contain-
ing over 5.8 billion pairs and LAION-400M is its
subset. In the experiment, LAION-5B is used to
expand the CC3M dataset, enriching and increas-
ing the sample size and diversity of the dataset.
LAION-5B is used to find similar pairs to those in
the FaceScrub dataset for each of the 530 celebri-
ties. After confirming the presence of these celebri-
ties’ names in the captions of the found images,
these image-text pairs were added to the CC3M
dataset for training the target CLIP models.

Conceptual Captions 3M (CC3M) (Changpinyo
et al., 2021), consisting of 2.8 million image-text
pairs, anonymizes image captions by replacing
named entities (e.g., celebrity names) with their
hypernyms (e.g., "actor"). This dataset was also
employed for pre-training the CLIP model. How-
ever, in this experiment, researchers analyzed the
dataset using facial recognition technology to deter-
mine if specific celebrity images were present, and
selectively added image-text pairs for model train-
ing adversarial attacks. As the named entities in
CC3M dataset are anonymized in image captions,
i.e., specific celebrity names replaced with their
hypernyms like "actor," after confirming the pres-
ence or absence of specific celebrity images in the
CC3M dataset, controlled additions of image-text
pairs were made to the CC3M dataset.

FaceScrub (Kemelmacher-Shlizerman et al.,

2016), containing images of 530 celebrities, was
used to ascertain whether the identities one intends
to infer are part of the training data. Celebrities
were chosen due to the wide availability of their
images in the public domain, minimizing privacy
concerns associated with using their images.

To accurately calculate evaluation metrics, it was
necessary to analyze which individuals were al-
ready part of the dataset and which were not. For
the LAION-5B dataset, names of the 530 celebri-
ties from the FaceScrub dataset were searched
within all captions, and corresponding image-text
pairs were saved, which were then added to the
CC3M dataset. This was done to train the CLIP
model and evaluate the effectiveness of IDIA under
controlled conditions. In the experiments with the
CC3M dataset, a total of 200 individuals were used,
with 100 added to the dataset for model training and
the remaining 100 held out for model validation.
The selection of data in this process was balanced
in terms of gender, with an equal distribution of
male and female individuals to enhance the persua-
siveness of the results. We construct two datasets
for training the CLIP models of three architectures
relatively, one with a single photo for each per-
son, and another with 75 photos for each person.
Samples of the datasets are shown in Figure 4.
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Abstract

Authorship obfuscation aims to disguise the
identity of an author within a text by altering
the writing style, vocabulary, syntax, and
other linguistic features associated with the
text author. This alteration needs to balance
privacy and utility. While strong obfuscation
techniques can effectively hide the author’s
identity, they often degrade the quality and
usefulness of the text for its intended purpose.
Conversely, maintaining high utility tends to
provide insufficient privacy, making it easier
for an adversary to de-anonymize the author.
Thus, achieving an optimal trade-off between
these two conflicting objectives is crucial.
In this paper, we propose TAROT: Task-
Oriented Authorship Obfuscation Using Policy
Optimization, a new unsupervised authorship
obfuscation method whose goal is to optimize
the privacy-utility trade-off by regenerating the
entire text considering its downstream utility.
Our approach leverages policy optimization
as a fine-tuning paradigm over small language
models in order to rewrite texts by preserving
author identity and downstream task utility. We
show that our approach largely reduces the ac-
curacy of attackers while preserving utility. We
make our code and models publicly available.1

1 Introduction

Text is a primary medium for storing user data, train-
ing machine learning models, and interacting with
large language models (LLMs) during inference.
However, it also poses significant privacy risks, as
sensitive or personal information contained within
text can be exposed or misused. Text anonymization
is a vital technique to address these concerns by
removing or obfuscating personal information. This
process protects individual privacy while ensuring
that machine learning models can still derive
meaningful insights and patterns from anonymized
data, preserving its utility.

1https://github.com/hornetsecurity/tarot

LM“It’s all in the 
cards”

“Within the cards 
lies all truth.”

R(xori,xobf)

xori xobf

TAROT-PPO

LM“It’s all in the 
cards”

“Within the cards 
lies all truth.”

TAROT-DPO R(xori,xobf)

xori

“All lies in the 
cards.”

LM

Reinforcement Learning using pretrained reward model

Generation ranking and preference optimization 

Figure 1: Illustration of the two versions of TAROT:
We generate obfuscation candidates and optimize the
best policy using reinforcement learning and preference
optimization.

Currently, most work done on text anonymization
focuses on redacting sensitive entities in a given doc-
ument (Lison et al., 2021). This is sufficient for texts
where the only private aspects are named entities,
such as medical reports, court cases, or biographies.
But it is inadequate for removing the author’s
writing style, or the weak signals that can be used
as hints for identification, which is, for example, the
case for blog articles or emails. Redacting entities
in text while keeping stylometric features linked
to a specific individual would eventually result in
a leak of information. Indeed, the writing style is
a strong indicator of a person’s identity (Mosteller
and Wallace, 1963). Previous work on authorship at-
tribution highlights the large amount of information
that can be extracted from seemingly anonymized
texts and the ease of identification of authors,
especially for long documents (Fabien et al., 2020).

To solve this issue, authorship obfuscation (AO)
aims to hide the author’s identity by replacing some
part of the text associated with authorship indicators.
Modifying the original text can impact its usability
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for specific tasks (i.e. utility), and therefore badly af-
fects the downstream performances and text compre-
hension of machine learning models. The enforce-
ment of privacy creates a trade-off between privacy
and utility, where keeping the original text preserves
the unchanged utility of the text, while not defending
against attribution attacks. On the other hand, obfus-
cating the entire text guarantees privacy, but leads to
unusable text in practice. Previous approaches de-
sign their obfuscation by maximizing the preserved
text content. They limit the modifications to small
and targeted edits in order to preserve text meaning
and keep textual content as close as possible to the
original. While this strategy is necessary to main-
tain the exact content and ensure that we convey
the exact same message (before publishing the text
online for example), those approaches often lead
to insufficient modification in the text, especially
against realistic attack scenarios (Zhai et al., 2022).

To address these limitations, we reframe the AO
problem into an adversarial problem between two
adversaries (e.g. machine learning models): one
attacker model whose goal is to reveal the identity
of a given author from written texts, and one utility
model that aims to perform a given task using
authors’ data. The goal is to provide a modified ver-
sion of the original text such that the utility model
can accurately perform its task while preventing
the attacker from identifying the author, making the
obfuscation task-oriented. This perspective is more
angled towards data users who need to privately
perform utility tasks on the data, where some
degree of content alteration may be acceptable if it
enhances privacy. The notion of task-oriented obfus-
cation/anonymization also takes its origin in the law.
As stated by GDPR (European Parliament and Coun-
cil of the European Union, 2016), the collection
and processing of personal information (including
written texts) must be specified for a given usage.

In order to learn this privacy-utility trade-off,
we use the combination of supervised fine-tuning
(SFT) and policy optimization (PO) to guide a
generative model into generating privacy- and
utility-preserving outputs. Our model learns to
rewrite the text while removing potential authorship
signals, and preserving the text utility for a
downstream task. This rewriting goal is further
validated by the conclusion of Weitzenboeck
et al. (2022) which showed how difficult it is to
comply with GDPR requirements concerning text
anonymization without changing the entire text.

We fine-tune a text simplification model for
AO using a customized reward model. We design
an unsupervised reward model for PO using two
pretrained sentence embedding models. The utility
reward penalizes the fact that the General Text
Embeddings (Li et al., 2023) of the anonymized sen-
tence is too far removed from that of the original sen-
tence. The author rewards does the opposite on the
embedding built by the Universal Authorship Repre-
sentation model from Rivera-Soto et al. (2021). Our
final models are trained in an open-world setting
where the number of authors is not defined, the same
goes for the end utility for our model to work on a
multi-task setting. We also provide experimentation
on three different datasets, movie reviews, blog
articles and scholar documents. We show that
TAROT can be used on multiple datasets targeting
different tasks while protecting authorship.

In summary, we list the main contributions as
follows:

• We design a new framework for task-oriented
AO by leveraging PO algorithms to maximize
the end usage of data. The objective is to help
reduce the traditional constraints associated
with utility preservation in the literature (strict
content preservation and semantic quality) by
looking for a downstream classification task
to achieve with the anonymized data.

• Starting from this framework, we propose
TAROT, a task-oriented generation model
aiming to obfuscate text without any prior
knowledge of the author (making it unsu-
pervised, and usable on any dataset, even if
the authors are not clearly indicated) while
maximizing the utility for a variety of tasks.
We release two versions of TAROT from
two different fine-tuning PO algorithms:
TAROT-PPO and TAROT-DPO.

• We further evaluate TAROT on three datasets
associated with different classification tasks,
using different authorship attackers and
downstream usage scenarios.

2 Related Work

Authorship Obfuscation Obfuscation tech-
niques can be regrouped into two categories,
depending on their implementation. Generic
methods, on one hand, are methods that were not
explicitly designed for AO, but show interesting
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performance. These methods include machine
translation (Altakrori et al., 2022; Keswani et al.,
2016), paraphrasing (Krishna et al., 2023), or
synonym replacements (Potthast et al., 2016).

More recently, advanced techniques were built
explicitly for AO, often relying on a trained attacker
performing authorship attribution attacks on the
obfuscated text. Then, they perform accurate
adversarial text edits from the attacker knowledge
on authors in order to obtain a privatized output.
Mutant-X (Mahmood et al., 2019), is a genetic
algorithm that utilizes GloVE (Pennington et al.,
2014) word embeddings selected from an SVM
or Random Forest attacker to replace words in a
document with similar ones.

Jamdec (Fisher et al., 2024) is an unsupervised ap-
proach for obfuscating the writing style of text while
preserving semantics. It uses embedding-based
and likelihood-based methods, rather than attacker-
based methods, to extract keywords, then generates
multiple text variations using Constrained Diverse
Beam Search on GPT2-XL (1.61B parameters). Fi-
nally, the candidates are filtered using Natural Lan-
guage Inference (NLI) and Corpus of Linguistic
Acceptability (CoLA) metrics to ensure coherence,
content preservation, and grammatical correctness.

Recently, ALISON (Xing et al., 2024) employs
a lightweight multilayer perceptron classifier using
part-of-speech sequences to guide obfuscation,
and leverages a BERT pre-trained language model
to generate replacement sequences. By ranking
and replacing important part-of-speech n-grams,
ALISON obfuscates text uniformly, reducing
classifier confidence.

Related studies share a common approach to
evaluating privacy: they measure it through the
performance of authorship attribution classifiers
against obfuscated texts. Zhai et al. (2022) push
forward this evaluation framework by introducing
adversarial attackers that can resist obfuscation
techniques. For measuring utility, the standard is
to treat AO as a reference-less natural language
generation problem, and to rely on standard metrics
used for similar tasks such as machine translation
and summarization (Altakrori et al., 2022).

Reinforcement Learning In NLP, reinforcement
learning (RL) is often used to capture small
signals over word or sentence embedding. For
example, Mosallanezhad et al. (2019) proposes a
text representation anonymization approach that
employs deep reinforcement learning to detect

and modify text embeddings to maintain a good
privacy-utility trade-off.

With the development of Reinforcement Learn-
ing from Human Feedback (RLHF) as a LLM
fine-tuning paradigm, RL techniques have been
leveraged to improve language models with scalar
metrics by optimizing rewards from (human)
feedback. It has emerged as a prominent tool for
tackling undesirable behaviors such as toxicity,
social biases, and offensive language (Ouyang et al.,
2022). This is accomplished by implementing PO
algorithms to optimize a language model (LM) by
associating a reward with each generation, derived
from a trained reward model.

Very recently, Liu et al. (2024) introduced an
authorship style transfer method using PO. They op-
timize style transfer generation using style similarity
reward models. Authorship style transfer is similar
to AO in the way those task’s goal is to change
within a text the author writing style. However, style
transfer assumes a distinct target style to achieve,
whereas AO assumes a lack of distinct style. Fisher
et al. (2024) also showed the ineffectiveness of style
transfer for AO. To the best of our knowledge, our
work is the first one applying PO algorithms on AO.

Private Synthetic Text Generation Our work
lies at the frontier between private text editing and
synthetic text generation. Creating private synthetic
data often relies on established frameworks such
as differential privacy (Dwork, 2006). In contrast to
these approaches, we focus on the implementation
of a single text-to-text transformation specifically
designed for authorship obfuscation, rather than
on the generation of new textual data derived from
potentially multiple sources (Mattern et al., 2022a).

Differential privacy traditionally targets noise
addition in documents to produce useful and private
text representations (Feyisetan et al., 2019; Fernan-
des et al., 2019). Applying differential privacy to
document rewriting primarily serves to mitigate
membership inference attacks, addressing a distinct
threat model compared to the authorship attribution
attacks targeted by our approach. While these tech-
niques exhibit emergent capabilities for masking
authorship signals (Igamberdiev and Habernal,
2023; Weggenmann et al., 2022; Utpala et al., 2023),
they typically do so at a substantial cost to text
utility, both at the task-level and the syntactic-level
(Mattern et al., 2022b). This approach introduces
unnecessary noise to semantic content not relevant
to authorship identification, often degrading the
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overall coherence and readability of the text. In
contrast, our obfuscation methodology implements
targeted modifications to stylometric features while
maintaining the overall integrity of the source text.

3 Methodology

3.1 Problem Formulation

Letxori represent the original document authored by
a specific author a∈A. A denoting a predetermined
set of authors. The objective of authorship obfusca-
tion is to generate a new document, denoted as xobf,
which cannot be attributed to the original author
a. To assess the effectiveness of obfuscation, we
employ a classification model, denoted as fattr(·)
(i.e. an authorship attribution model), which has
been trained to distinguish documents based on
their respective authors within A. The goal of
authorship obfuscation is to design an obfuscation
methodO(·), such that fattr(O(xori)) ̸=fattr(xori).

In addition, a successful obfuscation algorithm
would not only trick an attacker into predicting
the wrong author, but also preserve the document
utility for downstream usage. In this paper, instead
of mainly measuring this utility change though
various semantic or content preservation metrics
(i.e. METEOR score, BERT score, etc.) we
highlight the selection of a prior task T in order to
evaluate obfuscation with respect to T . We denote
as fT (·) the classification model used for a utility
task. An ideal O(·) would preserve the original
label fT (O(xori))=fT (xori).

Note that T is likely not known when we train the
obfuscation model, underscoring the necessity for
a versatile obfuscation strategy. This task-agnostic
approach prevents the obfuscation model from
learning to transform the text specifically to fit the
label of T , which would compromise its generality
across different tasks.

3.2 Framework Overview

Our task-oriented framework can be decomposed
in two steps. First, we initialize our generation
model from a SFT baseline, this will first guide
our LM to generate modified versions of the input
text instead of proceeding text copy. Second, we
apply a PO algorithm to fine-tune our SFT model.
We experiment with two different PO algorithms,
Proximal Policy Optimization (Schulman et al.,
2017) and Direct Preference Optimization (Rafailov
et al., 2023) (see Figure 1). We optimize our SFT
generations using a reward model composed of

both privacy and content preservation components.

3.3 SFT Initialization
First, we use a fine-tuned LM to initiate our text
generation task. We employ the Keep It Simple2

simplification model (Laban et al., 2021) as an
SFT baseline. This model is a fine-tuned version
of GPT2-medium on the Newsela3 dataset for text
simplification. The utilization of a simplification
model encourages a reduction in the amount of
information conveyed by a sentence, thereby af-
fording the opportunity to eliminate author-specific
features4. To our knowledge, this is the first time
that a simplification model has been used for AO.
Moreover, our framework is broadly compatible
with any autoregressive LM, and can be adapted
with larger architectures and other generation tasks.

3.4 Policy Optimization Algorithms
We use two different PO algorithms to optimize
generations of our SFT baseline. The Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
algorithm is a policy gradient method whose goal
is to optimize a policy with respect to continuous
rewards. In our case, a policy is a generation
strategy, i.e. a final LM. Initialized from the SFT
policy, we sample completions y given prompts x
and the reward model parametrized by ϕ produces
a score rϕ(x,y) based on these completions. The
reward score rϕ(x, y) is then combined with a
Kullback–Leibler (KL) penalty to ensure the policy
does not deviate too much from the SFT policy
(leading to unusable generations). Specifically, the
reward of the RL problem is:

R(x,y)=rϕ(x,y)−βDKL
[
πθ(y |x) ||πSFT(y |x)

]

where β is a parameter controlling the strength
of the KL penalty, θ the parameters of RL policy πθ,
and rϕ the reward model with parameters ϕ. Then,
PPO is used to maximize the following objective:

max
πθ

Ex∼DSFT,y∼πθ(y|x)R(x,y)

whereDSFT is the prompts in the SFT dataset.
Rafailov et al. (2023) later introduced the Direct

Preference Optimization (DPO) algorithm, which
2https://hf.co/philippelaban/keep_it_simple
3https://newsela.com/
4Our preliminary experiments revealed that using a

simplification model outperformed comparable models of
similar size for copy, paraphrasing, back-translation, and
summarization, delivering superior privacy and utility.
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Dataset Authors Texts Avg. Texts / Author
(std)

Avg. Words / Text
(std)

Avg. Tokens / Text
(std)

Avg. Chars / Text
(std)

IMDb
10 10000 1000(±0) 364(±209) 393(±228) 1869(±1077)
20 20000 1000(±0) 345(±209) 371(±225) 1767(±1081)

BAC
10 23534 2353(±639) 118(±195) 120(±236) 524(±1027)
20 39379 1969(±599) 118(±175) 123(±214) 529(±921)

AMT
10 196 20(±2) 497(±14) 592(±41) 2956(±194)
20 362 18(±2) 502(±102) 590(±38) 2956(±207)

Table 1: Dataset statistics

implicitly optimizes the same objective as PPO.
DPO directly optimizes the model by a straight-
forward contrastive loss, boosting the reward of the
preferred generation yc and penalizing the one of
the non-preferred generation yr from a prompt x.
DPO is a RL-free approach which has the following
loss:

−logσ
(
βlog

πθ(yc |x)
πSFT(yc |x)

−βlog πθ(yr |x)
πSFT(yr |x)

)

whereσ is the sigmoid function, andβ the scaling
parameter. In this study, we lack access to a pref-
erence dataset for DPO fine-tuning. Consequently,
following the methodology of Rafailov et al. (2023),
we generate this dataset by sampling responses from
the same SFT dataset, and we rank those preferences
using the same reward model (see Appendix A.3).
This is justified as it is not possible to obtain a prefer-
ence dataset from human feedback in the AO setting.

4 Experimental Setup

In this section, we describe the datasets involved
for training and evaluation of our resulting models,
and present our custom reward targeting the
open-world authorship verification and multi-task
text embeddings to learn this AO task. We then
evaluate the resulting obfuscation against text
edition and rewriting baselines.

4.1 Datasets

Training We use a separate dataset to train our
PO models. We fine-tune our base simplification
model on the Yelp reviews dataset5 (Zhang et al.,
2015) composed of reviews from Yelp. The dataset
is extracted from the Yelp Dataset Challenge 2015.
This dataset is employed in an unsupervised way,
to ensure we train our models on a large number of
authors.

5https://hf.co/datasets/yelp_review_full

Evaluation To evaluate our obfuscation models,
we use three different datasets. (i) IMDb626, is a
subset of the IMDb Authorship Attribution dataset
initially presented by Seroussi et al. (2014). It con-
sists of 62 authors with 1,000 texts per author taken
from IMDb movie reviews. The utility task asso-
ciated with this dataset is the review sentiment. For
this, we map the movie rating between 0 and 10 asso-
ciated with each review to a sentiment between posi-
tive and negative. A positive review occurs when the
review rating is strictly larger than 5. (ii) The Blog
Authorship Corpus7 dataset (Schler et al., 2006)
consists of aggregated blog posts from 19,320 blog-
gers gathered from blogger.com. We pick the list of
13 topics present in the dataset as the utility task. (iii)
The Extended-Brennan-Greenstadt8 dataset (Bren-
nan et al., 2012) is composed of short paragraphs
about scholar subjects gathered from 42 different
authors from Amazon Mechanical Turk. The utility
task of this dataset is indicated by the “background”
column, as a binary classification problem.

For all datasets, we create two subsets containing
the texts from 10 and 20 authors. For the Blog
Authorship Corpus, we select the authors with
the highest number of texts. We select the 10
(resp. 20) first authors listed in IMDb62 and
Extended-Brennan-Greenstadt. We report summary
statistics of each dataset in Table 1 and refer to
every dataset as IMDb, BAC, and AMT followed
by the number of considered authors. In summary,
IMDb has rather long texts, numerous texts per
author with a large associated standard deviation.
BAC texts are shorter, with a higher number of texts
per author compared to IMDb. Finally, for the AMT
dataset, the texts are the longest with few variations,
and the number of texts per author is the smallest.

6https://hf.co/datasets/tasksource/imdb62
7https://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
8https://hf.co/datasets/tasksource/Drexel-AMT
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4.2 Reward Models

To perform PO, we build a reward model from two
different rewards components targeting respectively
text semantics and text authorship, aiming to dis-
entangle privacy and utility to control the trade-off.

For utility, we use a pretrained General Text
Embeddings (GTE) (Li et al., 2023) to represent the
reward as a cosine similarity between GTE before
and after obfuscation9. Denote as GTE(x) the
embedding vector of size 1024, our utility reward
is defined as:

Rutil=cossim(GTE(xori),GTE(xobf ))

For the privacy reward, we use the Learning Uni-
versal Authorship Representations model (LUAR),
from Rivera-Soto et al. (2021). LUAR’s goal is
to transform a given text into a 512 dimensions
embedding, such that representations of texts by
the same author are closer, according to cosine
similarity, than those by other authors.

Denote as LUAR(x) the embedding vector
given by the LUAR model, our privacy reward is
defined as:

Rpriv=1−cossim(LUAR(xori),LUAR(xobf ))

where cossim denotes the cosine similarity.
We obtain our final reward by summing the

two previous rewards R = Rutil + Rpriv. All
implementation details are listed in Appendix A.1.

4.3 Evaluation

Privacy Metrics The goal for obfuscation is to
change the text in order to reduce as much as pos-
sible the attacker accuracy. We employ authorship
attribution as an evaluation attacker to simulate
an attack scenario when the attacker has already
access to some sample data of targeted authors
to train an attacker classifier. This is a stronger
scenario than directly using the reward model
as evaluation, since it only assumes one-to-one
comparison between texts. For each evaluation
dataset, we train a DeBERTa-v3 (He et al., 2021)
model as an authorship attribution classifier. We
split each evaluation dataset in 80%, 10% 10% for
training, validation and testing.We measure the
accuracy of the attacker model on each test set.

9We use the gte-large-en-v1.5 from
sentence-transformers https://hf.co/Alibaba-NLP/
gte-large-en-v1.5

Utility Metrics We evaluate the utility loss when
performing obfuscation similarly to the privacy
classifier. For each downstream task dataset,
we train a DeBERTa model to quantify utility
preservation after text obfuscation. In addition, we
also measure the impact on content preservation
and soundness (see Appendix B).

Baselines We use the following baselines:

Original Text We measure the performance
of utility / privacy classifiers when evaluated on
original data, the goal of AO would be to decrease
the performance of privacy classifiers without de-
creasing too much the accuracy of utility classifiers.

Synonyms As a baseline, we perform a naive
text edition using synonyms. We use GPTZzzs10

to process original texts, it employs a dictionary of
synonyms to replace a given proportion of words
with their counterparts. The goal of this baseline
is to evaluate the attacker behavior when very small
edits are made in the original text.

ALISON We use ALISON, a recent state-of-
the-art text edition AO model leveraging small
replacements using a pretrained BERT model.
Replacements spans are computed using a threshold
on the explanations of an adversarial authorship
attribution classifier trained on each evaluation
dataset. We train this classifier on each training and
validation set before evaluation.

GPT-3.5 Lastly, we include a comparison with
GPT3.5 (gpt-3.5-turbo) (Ouyang et al., 2022)
as a text generation baseline. We use a simple text
obfuscation prompt to capture zero-shot capabilities
of GPT-3.5 to perform AO. The prompt used can
be found in Appendix A.2.

4.4 Realistic Attackers
So far, the considered privacy evaluation adopts the
perspective of an attacker who does not have any
knowledge about the obfuscation algorithm used.
In a more realistic setting, the attacker can likely
identify and reproduce the AO model, and perform
more advanced attacks by creating adversarial
threat models. Following Zhai et al. (2022), we
also evaluate our obfuscation models against two
enhanced authorship attribution attackers, better
suited to simulate real-world attack scenarios. We
list the different attackers and their specific aspects
based on adversarial training:

10https://github.com/Declipsonator/GPTZzzs
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IMDb BAC AMT
Method 10 Authors 20 Authors 10 Authors 20 Authors 10 Authors 20 Authors

Util. ↑ Attr. ↓ Util. ↑ Attr. ↓ Util. ↑ Attr. ↓ Util. ↑ Attr. ↓ Util. ↑ Attr. ↓ Util. ↑ Attr. ↓
Original 73.51 99.78 79.46 99.80 46.73 61.05 53.80 61.14 100 70.37 86.11 42.86
Synonyms 70.38 94.52 76.60 96.08 46.24 59.06 51.20 58.18 91.67 64.81 86.11 36.90

ALISON 61.88 89.59 65.72 91.02 40.70 40.67 41.00 39.22 91.67 70.37 73.33 35.84
GPT-3.5 63.33 66.67 47.37 35.00 37.20 42.73 44.74 31.27 60.00 44.44 61.11 31.14
SFT 64.51 62.50 39.47 80.00 40.41 32.44 40.10 28.28 90.00 26.85 75.00 21.23
TAROT-PPO 63.54 88.89 47.37 71.67 35.38 29.14 42.30 33.62 90.00 35.19 72.22 17.86
TAROT-DPO 57.14 34.74 60.72 17.34 24.57 23.97 28.39 16.42 86.67 22.22 64.18 16.67

Table 2: Evaluation results (Util: classifier accuracy on utility labels, Attr: authorship attribution accuracy) Best
values are bolded.

• Mix of original and obfuscated texts: The
attacker knows which AO algorithm was used
and leverages this knowledge to create a new
attribution model. This model is trained on
a combination of original source texts and
obfuscated texts generated by the known
AO algorithm. We use a 50/50 distribution
between original and obfuscated data to train
this attacker.

• Only obfuscated texts: While the attacker is
also aware of the AO algorithm, they train their
authorship attribution classifier exclusively
on the obfuscated samples. Zhai et al. (2022)
demonstrated that this attack setting achieves
the highest performance against text edition
obfuscations.

For each attack scenario, we train a new author-
ship attribution classifier using the same parameters
(see Appendix A.4 for hyperparameters) and com-
pare the accuracy change from the original attacker.

4.5 Training
new utility models with obfuscated texts

We experiment with a second use case to evaluate
the downstream utility of obfuscated texts. We
use the obfuscated texts of each method as a new
training set for our utility classifier. This is useful to
evaluate each method capability to generate useful
training data that can be further used to train a new
classifier on the same utility task.

5 Results

Downstream Effectiveness In Table 2, we
present the accuracy change of privacy and utility
classifiers. We observe that both SFT, PPO and
DPO reduce the attacker accuracy compared to text
edition methods (Synonyms and ALISON). PO

helps to learn a good privacy-utility trade-off by
largely improving the privacy of obfuscated texts
compared to baselines, while preserving similar util-
ity. We observe that DPO consistently outperforms
the PPO algorithm on privacy preservation, while
using the same base reward model. DPO is also the
best-performing privacy preservation over all base-
lines, with a notable drop of 82,46% on IMDB-20.
Note that the utility decrease is larger for the BAC
dataset, which could be explained by the number
of short texts contained in the dataset, whose edits
affect a lot more the end utility. TAROT-DPO
also outperforms GPT-3.5 by providing more utility
and less attribution on IMDB-20, AMT-10 and
AMT-20. The effectiveness of TAROT-PPO lays in
its utility preservation capabilities. While not being
as private, the utility drop is reduced on nearly each
dataset compared to TAROT-DPO.

Adversarial Attackers Figure 2 highlights the
accuracy of adversarial threat models on the IMDb-
10 dataset. This attack strategy is effective against
text edition approaches (Synonyms and ALISON)
as shown by the accuracy gain compared to the base
attack only trained on original texts. However, text
generation methods (GPT-3.5, SFT, TAROT-PPO
and TAROT-DPO) show resistance to adversarial
threat models, and only GPT-3.5 and TAROT-DPO
are susceptible to the attacker trained on a mix of
original and obfuscated texts. This encourages the
path of generation methods as promising obfusca-
tors. Note that this is the first obfuscation approach
that is shown to be resistant to threat models.11

Utility Preservation After Retraining Figure 3
presents the accuracy of a new utility classifier
once trained with obfuscated texts. We observe

11Zhai et al. (2022) did not include generation models in
their study of AO evaluation.
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Method Output

Original I loved the whole story even though it was a tad corny at times . I think great acting and the content of the
story kept it going.

Synonyms I loved the quite whole story very even though it was a tad corny at times. I imagine too outstanding playing
and the contents of the story kept it sledding.

ALISON I thoroughly enjoyed the entire story even it did have a tad corny at times. I believe the great acting and the
story’s content were the main reasons to keep it going.

GPT-3.5 The entirety of the narrative was quite delightful, despite occasional moments of cheesiness. I believe the
stellar performances and the substance of the storyline sustained its momentum.

SFT I loved the whole story. It had many good parts and the writing was excellent. I think great acting and the
subject matter of the story kept it going.

TAROT-PPO I loved the whole thing. It was a good story and well-written. It also kept me going at times. I think great
acting and the content of the story kept me going.

TAROT-DPO I love the whole story. It’s full of action, personality and humour. It keeps me going, though, and the content
keeps me going.

Table 3: Obfuscation example from the IMDb dataset.
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Figure 2: Authorship adversarial training accuracy
results on IMDB-10 (lower is better). Generation models
are resistant to adversarial training, compared to text
edition methods.

that the drop in accuracy caused by obfuscation can
be compensated by training a new classifier, with
an accuracy increase for all methods. Moreover,
generation methods are even better candidates for
training data, as the final accuracy is higher than
the original classifier accuracy. TAROT-PPO and
TAROT-DPO are the best-performing approaches
on this dataset. This highlights the possibility of cre-
ating obfuscation methods that are both preserving
privacy and keeping utility for training purposes.

Qualitative Analysis We show an obfuscation
example in Table 3 for each method. The base
Synonyms obfuscation results in awkward phrasing
and less natural language, compromising readabil-
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Figure 3: Utility classifier accuracy once trained on
IMDB-10 obfuscated texts (higher is better). The red
line indicates the classifier accuracy when trained and
evaluated on original data. The overall utility always
increases after training on obfuscated texts, this is key
to compensate the utility drop of generation methods.

ity. ALISON maintains coherence and clarity with
slight formalization (“thoroughly enjoyed” instead
of “loved”). GPT-3.5 significantly rephrases the
text using sophisticated language. SFT simplifies
and shortens the text, retaining clarity but reducing
stylistic nuances. TAROT-PPO simplifies further,
introducing some repetition, which makes the text
less formal but still clear. TAROT-DPO alters the
content more significantly, introducing new themes
and repetition that can distract from the original
meaning. The application of PO assists the text
simplification SFT model in making additional
modifications to the text. Although these changes in
some cases alter the text’s meaning, they preserve its
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overall utility. Appendix F provides more obfusca-
tion examples from proposed and baseline methods.

Ablation Study As a complement, we perform
an ablation study of each component of our reward
model in Appendix D. It confirms the importance
of using a combination of both privacy and utility
rewards to learn this trade-off for obfuscation,
especially for PPO.

6 Conclusion

We introduced a novel authorship obfuscation
framework that focuses on optimizing the privacy-
utility trade-off for a specific downstream data usage.
We fine-tuned a text simplification model using two
policy optimization algorithms to obfuscate the au-
thorship of a given text, while preserving utility for
multiple tasks. Our end-models are tuned using two
sentence embedding rewards, one for content preser-
vation and one for privacy, resulting in an unsuper-
vised approach made for the open-world authorship
setting. The results obtained help to improve the
privacy from state-of-the-art AO methods, while pre-
serving task utility. Our findings suggest that editing
approaches are not suitable for privacy, especially
against realistic attack settings. Additionally, we
show that generated texts can be used to retrain util-
ity classifiers and increase their performances, while
limiting the accuracy of more advanced attackers.
Ultimately, the performance of obfuscation methods
largely varies depending on the downstream task
choice, as does the resulting privacy-utility trade-off,
highlighting the importance of selecting an appro-
priate model based on the specific requirements
of the intended application. This calls for more
research to design robust evaluation benchmarks
for obfuscation systems, to assess and catch failure
cases that can map to different real-world scenarios.

7 Limitations

The use of LM as text generators for obfuscation
is not without risks, LM are known for their hallu-
cination capabilities, so even if the downstream task
is not affected, there is still a possibility that the
trained LM generated plausible but false text from
the original text. As we did not study the content
preservation of resulting texts, we do not emphasize
the risk of spread of misinformation or harm that
can be generated by our fine-tuned LM.

Another limitation of our approach is that we rely
on very small language models (380M parameters

for GPT2-medium, our SFT baseline), which
benefits from limited memory usage but suffers
from a restricted context size for generation. As a
result, our method tends to reduce the text length,
especially for longer texts. This limitation could be
mitigated by increasing the size of the SFT model.

Finally, these methods can be limited when
applied to short texts, as the replacements create sig-
nificant changes that directly affect the utility task.

8 Ethical Considerations

In this work, we present authorship obfuscation
methods that are intended for beneficial purposes
(learning insights from data while preserving
privacy). But we recognize that this task presents
some risks of misuse. It can facilitate harmful
activities such as posting misinformation, spam, or
harmful content, without accountability because
of obfuscation. Moreover, these techniques might
infringe on intellectual property rights by obscuring
the authorship of creative works, depriving creators
of their deserved credit. We strongly encourage
users to carefully consider these potential dangers
before employing such methods.
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A Experimentation Details

A.1 Hardware and code

We conducted all experiments with Nvidia A30
GPU card with 24GB memory and Intel Xeon
Gold 5320 CPU. The main libraries used include
Pytorch 2.2.2, Huggingface transformers 4.39.3,
datasets 2.19.0, tokenizers 0.15.2, trl 0.8.6,
evaluate 0.4.1 and sentence-transformers
3.0.0. Due to memory constraints, models are
loaded with float16 mixed precision.

Training time for PPO ranges from 15-20 hours,
while time for DPO ranges from 6-12 hours. Evalu-
ation time ranges approximately from 19-32 hours.

A.2 GPT-3.5 prompt

In our study, we compare with zero-shot prompting
using GPT-3.5, a model with approximately 175
billion parameters. We obfuscate each text on a
paragraph level, where the entire text is obfuscated
as a unit. We use the following prompt to generate
obfuscated texts: "Rewrite the following paragraph
so that the author’s style is obfuscated."

A.3 DPO training

While both PPO and DPO algorithms methods aim
to optimize a model’s performance based on a re-
ward function, they differ in their approach to policy
optimization. PPO uses a surrogate objective func-
tion that approximates the true objective function,
while DPO directly optimizes the likelihood of gen-
erating a response chosen from a preference dataset
over another response. This preference dataset is
typically collected by having human annotators
compare pairs of responses generated by a model
and indicate which one is preferred. However, this
protocol is impractical for authorship obfuscation
because it is difficult to evaluate with human annota-
tions. Therefore, we apply an initial preprocessing
step to generate the preference dataset before DPO
fine-tuning. We generate preference pairs from SFT
outputs, and rank these preferences using the same
reward model as PPO. Algorithm 1 outlines our
method for creating this preference dataset for DPO.
Preliminary experiments showed that removing
samples with closely similar authorship rewards
accelerates training convergence. So we specify
filtering thresholds ϵpriv and ϵutil. After testing
multiple values, we set ϵpriv=0.10 and ϵutil=0.05
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Algorithm 1 Preference Dataset Generation
Require: SFT dataset D, privacy threshold ϵpriv,

utility threshold ϵutil
prompts = []
chosen = []
rejected = []
for prompt∈D do

left, right = generations from the SFT model
Rutil−left, Rpriv−left = privacy and utility

rewards from the left obfuscation candidate
Rutil−right, Rpriv−right = privacy and utility

rewards from the right obfuscation candidate
if ∥Rpriv−right - Rpriv−left∥ > ϵpriv and

∥Rutil−right - Rutil−left∥<ϵutil then
if Rpriv−right > Rpriv−left then

prompt.append(prompt)
chosen.append(right)
reject.append(left)

else
prompt.append(prompt)
chosen.append(left)
reject.append(right)

return prompts, chosen, rejected

A.4 Hyperparameters

Table 4 and Table 5 present hyperparameters
used for PO algorithms and evaluation classifiers.
Due to limited time and computational resources,
we are unable to conduct an exhaustive search
across all hyperparameters. Instead, we report the
best-performing hyperparameters we identified.

TAROT-PPO TAROT-DPO

learning rate 1.47e-5 2.96e-5
batch size 16 32
# epochs 3 3
KL coef / beta 0.2 0.1
top p 1.0 1.0
temperature 1.0 1.0

Table 4: Training hyperparameters for PO algorithms.

DeBERTa (Privacy) DeBERTa (Utility)

learning rate 2e-5 2e-5
batch size 8 8
# epochs 3 3

Table 5: Training hyperparameters for evaluation
models.

A.5 Baseline implementation details

Synonyms We use GPTZzzs to process
original texts, it employs a dictionary of synonyms
to replace a given proportion of words with their
counterparts. The goal of this baseline is to evaluate
the attacker behavior when very small edits are
made in the original text. We use the FinNLP
synonym list and ask the algorithm to change up
to 90% of words, and 80% of adjectives.

ALISON We use the author’s code imple-
mentation of ALISON, we use the largest edition
parameters (L=250 and c=1) to edit the final text
as much as possible.

GPT3.5 We use the gpt-3.5-turbo API
endpoint from OpenAI to compute obfuscation,
with default temperature, max_tokens and top_p.

B Content
preservation and soundness study

We also study the impact on content preservation
when obfuscating the text with generation models,
including TAROT. Table 6 presents multiple
content preservation metrics on the IMDB-10
dataset. Naturally, text edition methods obtain the
best content preservation scores, compared to gener-
ation methods. In contrast, generation methods are
superior in terms of linguistic acceptability (CoLA),
since they generate the complete text as a whole.
TAROT-DPO outperforms other methods on this
metric.

C Complete Evaluation Results

Figure 4 presents the complete evaluation results
of adversarial training on all datasets.

Figure 5 presents the complete utility evaluation
after retraining on each dataset. The findings pre-
sented for IMDb-10 persist for IMDB-20 and AMT-
20. We observe a smaller change in utility over the
AMT-10 dataset due to the high base accuracy of
the original classifier (1.0). However, this result
does not hold for the BAC-10 and BAC-20 datasets,
which is due to the lack of utility preserved after ob-
fuscation. The blog authorship corpus dataset con-
sists mainly of short texts, making it challenging for
rewriting methods to transform the text without sig-
nificantly affecting utility. This issue persists even
after retraining the classifier on the obfuscated data.
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Rouge-1 Rouge-2 Rouge-L BLEU METEOR BERT Score CoLA

Original - - - - - - 69.31
Synonyms 83.86 68.61 83.68 64.64 92.41 94.61 30.20

ALISON 98.24 97.08 98.19 67.48 97.61 99.01 43.88
GPT-3.5 38.13 11.90 29.15 6.81 33.61 81.81 73.82
SFT 55.69 34.04 43.20 24.06 41.13 85.58 66.66
TAROT-PPO 51.33 29.36 38.67 20.77 37.93 84.50 74.46
TAROT-DPO 42.52 17.27 29.14 10.77 30.04 80.56 81.10

Table 6: Content preservation scores on the IMDB-10 dataset.
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Figure 4: Adversarial training accuracy results (lower is better).
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Figure 5: Utility classifier accuracy once trained on obfuscated texts (higher is better). The red line indicates the
classifier accuracy when trained and evaluated on original data.
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D Reward model ablation study

We perform a reward model ablation study to
evaluate the importance of each reward component.
Table 7 presents the reward value after training
on different setups. We observe that the utility
preservation and privacy components are both
necessary to balance the privacy-utility trade-off.
When we remove the LUAR-based reward, it leads
to better GTE similarity at the expense of privacy.
Similarly, removing the GTE reward leads to better
privacy scores at the expense of utility. In practice,
removing the privacy reward leads to models that try
to copy the original text. While removing the utility
reward leads to very short text, with only few words.

Method TAROT-PPO TAROT-DPO
LUAR GTE LUAR GTE

No privacy 0.975 0.993 0.983 0.977
No utility 0.403 0.421 0.706 0.633

No ablation 0.931 0.825 0.915 0.738

Table 7: Reward model values when removing one
component. A high LUAR value indicates low privacy,
and a high GTE value high utility.

E Scientific Artifacts

We list in this section the licenses used in this paper:

Models DeBERTa-v3 (MIT) Keep It Simple
(apache-2.0) LUAR (apache-2.0) GTE (apache-2.0)

Software GPTZzzs (GPL-3.0) ALISON
(MIT) GPT-3.5 (Terms of use12) Pytorch
(BSD-3) Huggingface transformers,
transformers, datasets, trl, evaluate
and sentence-transformers (apache-2.0)

12https://openai.com/policies
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F Additional Obfuscation Examples

Dataset: IMDB

Method Output

Original Walter Matthau was great as an aging man who lives to hang out in Central Park and tell outrageous lies.
He strikes up a relationship with a man whom he drives nuts with his outlandish yarns. Matthau tries a
con on several people trying to help them and himself out, but they all backfire . This film had a story that
had me riveted to my chair. The entire production was filmed in Central Park, the scenery was beautiful,
with many shots of the surrounding buildings. Wonderful movie - 5 stars.

Synonyms Walter Matthau was really great as an aging man who lives to fall out in Central Park and evidence
outrageous lies. He strikes up a relationship with a man whom he drives nuts with his outlandish yarns.
Matthau tries a con on several people trying to assist them and himself out, but they all backfire. This film had
a story that had me riveted to my chairman. The very full production was filmed in Central Park, the scenery
was too beautiful, with extremely many shots of the surrounding buildings. Wonderful movie - 5 stars.

ALISON Walter Matthau was great as an aging man to hang out in central park and tell outrageous lies. he strikes
up a relationship with a man whom he drives nuts with his outlandish yarns. Matthau tries a con on several
people trying to help them and himself out, but they all backfire. this film had a story that had me riveted
to my chair. the entire production vet vet in central park, the scenery was beautiful, with many shots of
the surrounding buildings. wonderful movie - 5 stars.

GPT-3.5 In portraying a mature chap who thrives on loitering in the heart of Central Park, Walter Matthau delivered an
exceptional performance filled with fanciful fables. His character forms a peculiar bond with an individual
who becomes perturbed by his fantastical tales. Matthau embarks on a series of deceits aimed at aiding both
himself and others, all of which result in unfortunate outcomes. This cinematic masterpiece captivated me,
ensuring I remained glued to my seat throughout. The entirety of the picture was shot within the confines of
Central Park, showcasing its exquisite landscapes and featuring numerous glimpses of the adjacent edifices.
A delightful piece of cinema - a resounding five-star rating.

SFT Walter Matthau was wonderful as an aging man who lives in Central Park. He’s a regular at the bar where he
tells outrageous stories and tells wild stories. He strikes up a good relationship with a man whom he drives
nuts with: his yarns. This film is shot in Central Park, with the backdrop of a long-running feud between
Matthau and his friends. Wonderful movie.

TAROT-PPO Walter Matthau was a joy to watch as an aging man who lives out in Central Park. He regularly tells wild
stories about how he used to drive around town and tell wild lies. But he strikes up a good relationship
with one person who wants to help him out and himself. This film has a lot going for it, with lovely scenery
and lots of action. Wonderful film - 5 stars.

TAROT-DPO Walter Matthau is one of those people who can never quite find the right balance between being a good
friend and being funny. Though he lives in Central Park, he spends a lot of time telling his friends outrageous
stories. This time, though, the relationship is quite straightforward. He strikes up a few conversations with
people trying to help them get ahead of the game and, at the same time, he strikes up a relationship with
a man who drives him nuts.

Dataset: BAC

Method Output

Original Is anyone else gonna actually blog? It would be helpful you know!

Synonyms Is anyone else gonna really blog? It would be very helpful you know!

ALISON Is anyone else gonna actually blog? It would be helpful you know

GPT-3.5 Does the inclination exist for any additional individuals to engage in the act of blogging? Such contributions
would undoubtedly prove advantageous, do you not concur?

SFT Any other person writing about something like this? It would be helpful to know what other people are
saying about the matter.

TAROT-PPO Any other person blogging about something? it would be helpful to know who else is going to actually blog?

TAROT-DPO Any other person on the list of potential bloggers? it would be helpful to know what they write about.
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Dataset: AMT

Method Output

Original The interplay between ""new"" and ""old"" ideas, methods, and forms in gothic literature gave it the intrinsic
contradictory nature it retains today. The definition of ""gothic"" can never seemed to be agreed upon, the
story within a gothic novel still seems to lost track of itself occasionally, the conflict between the emotional
effect of terror, and the desire for a logical explanation (science and reason gradually began to replace the
supernatural as the driving force behind the horrific) all remain. Neither the ancient nor the modern can
be removed from the gothic without sacrificing something essential to the genre. [...]

Synonyms The interplay between ""new"" and ""old"" ideas, methods, and forms in Gothic lit gave it the intrinsical
contradictory nature it retains today. The definition of ""Gothic"" can never seemed to be agreed upon, the
story within a Gothic refreshing relieve seems to missed cartroad of itself occasionally, the conflict between
the emotional gist of terror, and the want for a logical account (science and intellect gradually began to
replace the occult as the impulsive thrust behind the horrific) all remain. Neither the antediluvian nor the
very modern can be removed from the Gothic without sacrificing something essential to the genre.

ALISON The interplay between ""new"" and ""old"" ideas, methods, and forms in gothic literature gave it the intrinsic
contradictory nature it retains today. The definition of ""gothic"" can never seemed to gothic gothic upon, the
story within a gothic novel still seems to lost track of itself occasionally, the conflict between the emotional
effect of terror, and the desire for a logical explanation (science and reason gradually began to replace the
supernatural as the driving force behind the horrific) all remain. neither the ancient nor the modern can
neither neither from the gothic without sacrificing something essential to the genre.

GPT-3.5 The perplexing interplay betwixt the ""novel"" and the ""antique"" concepulations, methodologies, and
configurations in Gothic penmanship hath imbued it with a most incongruous essence that endures unto
this day. The elucidation of ""Gothic"" hath forever eluded consensus, the narrative ensconced within a
Gothic tome oft doth meander astray, the discord betwixt the emotive impact of dread, and the craving for
a reasoned explication (where science and rationale inexorably supplanted the otherworldly as the impelling
impetus behind the macabre) doth persevereth. Ne’er can the hoary nor the contemporaneous be excised
from the Gothic sans forfeiting somewhat indispensable to the genre.

SFT The interplay between new and old ideas is what gives gothic fiction its unique character. Methods and
forms of storytelling, such as novel characters and their relationship to nature, give it a contradictory nature.
The definition of gothic, however, cannot be agreed upon, the story within a gothic novel still seems to lack
logic and reason, with terror still guiding the characters’ actions and choices (science and reason gradually
replaced the supernatural as the driving force, not just emotions).

TAROT-PPO the interplay between ""new"" and ""old"" ideas, methods, and forms in gothic literature gave it the intrinsic
contradictory nature it still retains today. the definition of ""gothic"" is never clearly agreed upon, the story
within a gothic novel still seems to lack a logical foundation, and the desire for a logical explanation often
clashes with the character’s emotions and mental state. both the ancient and the modern are incompatible
with the genre.

TAROT-DPO But the two ideas are not linked by a common underlying logic. The definition of ""gothic"" can never seem
to agree with reality. It can only seem to be full of contradictions and inconsistencies, with ideas such as
new and old, new and old, about which there is never a clear line between right and wrong.

Dataset: BAC

Method Output

Original New F-Zero title GBA bound - F-Zero: Falcon Densetsu News for Game Boy Advance at GameSpot yeah
out this week to but overseas based on the anime btw which unfortunately is bad

Synonyms New F-Zero claim GBA bound - F-Zero: Falcon Densetsu News for Game Boy Advance at GameSpot yeah
out this week to but abroad based on the anime btw which regrettably is bad

ALISON New F-Zero title GBA bound - F-Zero: Falcon Densetsu news for game boy advance at GameSpot yeah
out this week to but overseas based on the anime btw which unfortunately is bad

GPT-3.5 A brand-new installment in the F-Zero franchise is set to debut on the Game Boy Advance, known as F-Zero:
Falcon Densetsu. The release is anticipated this week, with availability limited to specific regions tied to
its anime adaptation, which has been critically panned.

SFT New title is GBA, a reference to falcon - a news service for game boy advance for the past three years. Yeah,
out this week, though, overseas based on the anime btw which is just rubbish.

TAROT-PPO New F-Zero title is a straight up rip-off of GBA. It features falcon news for the game boy advance, which
again is crap online. Out this week, though, the anime btw are obviously not very good.

TAROT-DPO An updated F-Zero title, this time with GBA, the title of a news show that the game boy advance on is. Yeah,
out this week to news shows like F-Zero but overseas based on the anime, which is bad.
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Dataset: AMT

Method Output

Original Organisms would have the abilities to move, eat, hunt, and think. These functions would be optimized
by genetic algorithms. To create this simulation, there were several steps. The first was to decide upon a
programming language. The C++ programming language was chosen for its versatility and large pool of
tutorial resources. The next step involved writing pseudo-code, or planning out the program itself. The actual
program was broken into several functions. The first function, a global function that provided access to all
other parts of the program, generated an arbitrary number of environments and filled them with a random
number of food items that had a varying energy level based on the environment.

Synonyms Organisms would get the abilities to go, eat, hunting, and think. These functions would be optimized by
genetical algorithms. To make this simulation, thither were several steps. The 1st was to decide upon a
programing speech. The C++ programing speech was elect for its versatility and really big kitty of tutorial
resources. The next stair mired penning pseudo-code, or preparation out the programme itself. The factual
program was crushed into several functions. The really first function, a worldwide function that provided
approach to all other parts of the program, generated an arbitrary number of environments and filled them
with a random figure of food items that had a variable vigor raze based on the environs.

ALISON Organisms would have the abilities to move, eat, hunt, and think. these functions would be optimized
by genetic algorithms. To create this simulation, there were several steps. The first was to decide upon
a programming language. The C++ programming language for its versatility and large pool of tutorial
resources. The next step involved writing pseudo-code, or planning out the program itself. The actual
program planning planning into several functions. The first function, a global function that provided access
to all other parts of the program, generated an arbitrary number of environments and filled them with a
random number of food items that had a varying energy level based on the environment.

GPT-3.5 Living beings posses a range of functionalities, such as mobility, sustenance consumption, predatory
behaviors, and cognitive processes, that are fine-tuned through complex genetic algorithms. To initiate the
simulation, several procedural stages were undertaken. Initially, a choice was made regarding the selection of
a programming language. Eventually, the decision was made to utilize the versatile and well-documented C++
language for its wide range of resources. Subsequently, the process involved the formulation of pseudo-code,
a strategic blueprint for the development of the program. The program itself was compartmentalized into
multiple functions. The primary function, acting as a global facilitator, was designed to generate artificial
environments and populate them with random assortments of food items possessing varying energy levels
depending upon the environment.

SFT These organisms would have the ability to move, eat, hunt and think. These functions would be better
optimized by genetic algorithms. These algorithms would be able to predict what environment a given
creature would encounter next, and so on, generating different environments for each task. To create this
simulation, programming language was used. Programming languages are usually designed to allow flexible
programming of tasks for different stages in a person’s life, like diet and training. These environments are
then tested out in a variety of ways, like hunting or training. Tucking these algorithms into the program
also meant creating more environment specific.

TAROT-PPO These organisms would have the ability to move, eat, hunt and think. these functions would be optimized
by genetic algorithms. These functions would be triggered by training programs that specifically targeted
specific traits, such as hunger and thirst. To create this simulation, these would include programming
languages for different types of environments, such as languages for animals and plants. These training
programs would be tested against real-world situations and filled with different food types.

TAROT-DPO These organisms are capable of thinking and eating. They can move and hunt, and they have even been ob-
served to think about their environment. These functions, which would normally be optimized by a computer,
are now well-suited for creating life on the planet. To train these organisms to perform these functions, for
example, is to have a programming language that can be easily adapted to new situations. To put together a
simulation of a particular environment, it would need to provide for training a range of animals, from which to
choose. These kinds of simulations, which are relatively simple, would be ideal for training mental processes.
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Dataset: IMDB

Method Output

Original Funny romance / comedy with some well written lines for everybody . I especially enjoyed the give and
take between Tony Randall and the Rock . Doris Day is soooooo cute ; I had a major crush on her during
my junior high years . I liked Lynde’s character , but I prefer his more sarcastic roles . 3 stars .

Synonyms Funny latin / comedy with some swell written lines for everybody . I especially enjoyed the dedicate and
take ’tween Tony Randall and the Rock . Doris Day is soooooo very cute ; I had a major smash on her during
my junior so high years . I liked Lynde’s character , but I favour his more sarcastic roles . 3 stars

ALISON Funny romance / comedy with some well written lines for everybody. I especially enjoyed the give and
take between Tony Randall and the rock. Doris Day is soooooo cute; I had a major crush on her during
my junior high years. I liked Lynde’s character, but I prefer his more sarcastic roles. 3 stars

GPT-3.5 A delightful tale of amusement and affection with a sprinkling of finely crafted dialogue that will appeal
to all. The banter shared between the one called Tony Randall and the individual known as the Rock was
particularly engaging. Doris Day exuded a charm that was utterly endearing; during my formative years, a
deep infatuation for her blossomed. The portrayal by Lynde was rather enjoyable, though I find myself partial
to his portrayals imbued with a sense of sarcasm. A rating of three stars is the verdict bestowed upon this film.

SFT Funny romance / comedy with some funny lines. I loved the give-and-take between Tony Randall and the
Rock, which was great to watch as I got older. Doris Day is soooooo cute ; she’s always been this way,
and I like her more in my junior high years. 3 stars.

TAROT-PPO Funny romance / comedy with some well-written lines for everybody. I really enjoyed the give-and-take
between Tony Randall and Doris Day. I loved her personality and her reaction to situations. They’re both
cute, but not as smart as Tony Randall. 3 stars.

TAROT-DPO Funny romance. It’s a good combination of comedy and give-and-take. There’s always something interesting
to say in front of the camera, or in front of the audience, about how they feel about someone else. Doris
Day is soo cute, and soo funny. She’s very much like me at my younger years, when I played sport. 3 stars."

Table 8: Additional qualitative examples for each obfuscation method.
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Abstract 

Large language models (LLMs) are widely 

used for personalized tasks involving 

sensitive information, raising privacy 

concerns. While anonymization techniques 

exist, their impact on response quality 

remains underexplored. This paper 

introduces a fully automated evaluation 

framework to assess anonymization 

strategies in LLM-generated responses. We 

generate synthetic prompts for three 

personal tasks—personal introductions, 

cover letters, and email writing—and apply 

anonymization techniques that preserve 

fluency while enabling entity 

backmapping. We test three anonymization 

strategies: simple masking, adding context 

to masked entities, and pseudonymization. 

Results show minimal response quality loss 

(roughly 1 point on a 10-point scale) while 

achieving 97%-99% entity masking. 

Responses generated with Llama 3.3:70b 

perform best with simple entity masking, 

while GPT-4o benefits from contextual 

cues. This study provides a framework and 

empirical insights into balancing privacy 

protection and response quality in LLM 

applications. 

1 Introduction 

The intersection of AI governance and data 

protection has garnered significant attention from 

academia (Yermilov et al., 2023; Staab et al. 2023), 

industry, (AWS, 2023; Azure, 2024) and regulatory 

bodies (European Data Protection Supervisor, 

2025). As large language models (LLMs) become 

widely adopted, concerns regarding privacy risks 

in user interactions have increased. Particularly, the 

substantial costs of hosting LLMs, along with 

restricted access to certain proprietary models, pose 

significant challenges for individuals and small 

enterprises seeking to deploy LLMs locally. As a 

result, many rely on external LLM services, 

increasing privacy risks (Mao et al., 2024). 

Moreover, LLMs are frequently used in tasks that 

involve sensitive personal or corporate 

information, such as their names, company 

information, or location information. This raises 

critical questions about how anonymization 

strategies impact both privacy protection and 

response quality in these real-world use cases. 

Existing research has primarily focused on 

privacy protection from adversarial attacks, such as 

attribute inference and re-identification risks (Staab 

et al., 2023; Chen et al., 2023). Approaches like 

differential privacy (Igamberdiev and Habernal, 

2023) and prompt obfuscation (Sun et al, 2024) 

have been explored to mitigate these risks. 

However, these methods often concentrate on 

preventing external inference attacks rather than 

evaluating the direct trade-offs between 

anonymization and response quality in personal 

tasks. 

While some studies have examined the utility of 

anonymized text, they often primarily focus on 

traditional NLP benchmarks like text classification 

or summarization (Yermilov et al., 2023; Riabi et 

al., 2024). However, the impact of anonymization 

on personalized, user-driven tasks, where 

coherence and contextual relevance are crucial, 

remains underexplored. Moreover, existing 

anonymization methods can degrade response 

quality, limiting real-world usability. Many 

privacy-enhancing techniques also rewrite entire 

user inputs, making it harder to retain original 

context and provide users with responses that align 

with their initial prompts. 

In practice, however, many users engage large 

language models (LLMs) for tasks that involve 
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sensitive personal or corporate information, such as 

drafting personal introductions, job applications, or 

emails. This raises concerns about how 

anonymization techniques affect the quality of 

LLM-generated responses in these personalized 

contexts, as there may be a trade-off between AI 

governance practices and response quality (Pasch, 

2025). 

In this paper, we analyze the effect of different 

anonymization techniques on personalized tasks 

and their impact on response quality. We introduce 

an automated end-to-end workflow to evaluate 

LLM-generated responses, encompassing the 

following steps: 

1. Creation of Synthetic Personal 

Prompts: We generate prompts using 

LLMs for three writing tasks involving 

personal information: personal 

introductions, cover letters, and emails. 

2. Entity Identification: Utilizing a BERT-

based Named Entity Recognition (NER) 

model, we identify entities within these 

generated prompts. 

3. Anonymization Strategies: We employ 

various anonymization techniques, 

enriching the initial entities using a local 

guardrail model to either provide context 

or substitute them with comparable 

pseudonyms. 

4. LLM Response Generation: The 

anonymized prompts are input into LLMs 

to generate responses, simulating behavior 

in an unprotected environment. 

5. De-Anonymization: We replace the 

masked entities in the responses with their 

original values. 

6. Evaluation: We assess response quality 

using the LLM-as-a-Judge method and 

evaluate privacy by examining entity 

matches and LLM inference capabilities. 

Our findings indicate that anonymization only 

slightly impacts response quality, with most 

settings showing a decrease of less than one point 

on a ten-point scale after de-anonymization. 

Notably, 97% to 99% of entities are effectively 

anonymized, demonstrating significant privacy 

enhancements. For responses generated by the 

Llama 3.3:70b model, a straightforward 

anonymization and de-anonymization approach 

outperforms more complex methods involving 

contextualization or pseudonymization. 

Conversely, for GPT-4o-generated responses, 

adding context further improves response quality. 

This study contributes to the literature on LLM 

privacy in two major ways: 

• Providing an end-to-end framework to 

evaluate anonymization strategies for 

personal writing tasks with LLMs. 

• Assessing the effectiveness of various 

anonymization techniques in both privacy 

and response quality in personal writing 

tasks. 

Figure 1. Overview of end-to-end anonymization and de-anonymization workflow 
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2 Methodology 

Our approach presents a fully automated end-to-

end workflow for evaluating anonymization 

strategies in LLM-based interactions, as depicted in 

Figure 1. Moreover, Figure 2 illustrates the 

different anonymization strategies. The pipeline 

spans synthetic prompt generation, guardrail-based 

anonymization, response generation, de-

anonymization, and evaluation, ensuring a 

systematic assessment of privacy protection and 

response quality. To achieve this, we leverage two 

main categories of models: 

  Main LLM Models (Response 

Generation): These models are responsible for 

generating responses to user prompts. They reflect 

how proprietary AI systems process user inputs in 

real-world applications. We experiment with two 

state-of-the-art LLMs to evaluate the effects of 

anonymization on response quality: (i) ChatGPT 

4o, and (ii) Llama 3.3:70b. While Llama can be 

locally deployed, we use it primarily to mimic 

proprietary AI systems, given its state-of-the-art 

performance, ensuring a controlled yet 

representative evaluation of anonymization effects. 

Guardrail models: These models 

anonymize the text input. This first includes a NER 

model for entity masking and different LLMs to 

provide context or pseudonymize the entities. We 

specifically select open-source models for the 

guardrail tasks to enable deployment in controlled 

environments. The models used for these tasks are: 

Llamac3.3:70b, Llama 3.1:8b-instruct, Phi4:14b, 

and Mistral:7b. 

2.1 Synthetic Prompt Generation 

The first step in our workflow involved creating 

a dataset of prompts designed to assess response 

quality for personal tasks. Existing datasets in LLM 

anonymization research primarily focus on 

inferring personal information from text data or 

prompts (Yukhymenko et al., 2024). However, to 

the best of our knowledge, no dataset exists where 

user prompts explicitly request assistance for 

personal tasks that necessitate the inclusion of 

personal details such as names, locations, and 

affiliated organizations. We focus on three distinct 

personal tasks—personal introductions, cover 

letters, and business emails—as they represent 

common real-world scenarios in which users seek 

AI-generated text assistance while involving 

sensitive personal information.  

Personal Introduction: Personal introductions 

are frequently used in professional and social 

settings, including networking events, biographies, 

and job-seeking platforms (Xu et al., 2023). These 

introductions typically contain personally 

identifiable information (PII) such as names, 

current and past employers, and locations. 

Figure 2. Overview of Anonymizations and Pseudonymizations 

34



 
 

Cover Letter: Cover letters are a critical 

component of job applications and have been 

increasingly generated or refined using AI-

powered writing assistants (Zinjad et al., 2024). 

Since cover letters include personal details such as 

work history, employer names, and sometimes 

personal aspirations, they provide a rich context for 

studying anonymization strategies in structured yet 

personalized texts. 

Business Email: Email communication is a 

widely studied domain in NLP, particularly in 

business and professional settings (Jovic and 

Mnasri, 2024). Emails often contain sensitive 

information about organizations, job roles, and 

ongoing projects, making them a relevant task for 

evaluating anonymization methods while 

preserving coherence and intent. 

By selecting these tasks, we aim to explore how 

anonymization affects the quality of LLM-

generated outputs in contexts where personal 

information is integral to the content.  

To create this dataset, we employed a meta-

prompting approach, where an LLM was prompted 

to generate a single synthetic prompt for a given 

task. This process was repeated 50 times per task, 

resulting in a total of 150 prompts per LLM model. 

Importantly, all experimental steps were conducted 

twice, using two different LLMs—Llama3.3:70B 

and ChatGPT-4o—to generate independent prompt 

datasets.  

Each meta-prompt included: 

• Explicit task instructions (e.g., generating 

a personal introduction, cover letter, or 

email). 

• A requirement to include realistic names, 

locations, and organizations that actually 

exist. 

• A directive to ensure prompts were 

formulated from the perspective of a user 

seeking quick assistance, rather than 

overly refined or context-heavy 

instructions. This was done because initial 

trials revealed that the generated prompts 

were often too polished and provided a lot 

of context, resembling pre-written 

templates rather than spontaneous user 

queries. 

2.2 Anonymize Prompts 

In this study, we employ a BERT-based transformer 

model for Named Entity Recognition (NER) to 

anonymize prompts. Specifically, we utilize the 

XLM-RoBERTa-large-finetuned-conll03-english 

model (Conneau et al., 2020). Our choice of a 

BERT-based NER model is motivated by two 

primary factors: First, BERT-based models have 

achieved state-of-the-art results in various NER 

benchmarks (Conneau et al., 2020). Second, 

BERT-based models are increasingly being 

integrated into guardrail solutions to ensure safety 

and compliance in AI applications (Zheng et al. 

2024). 

Once the entities are identified, we anonymize 

the prompt text by systematically replacing each 

detected entity with a structured placeholder that 

preserves its semantic role. Specifically, named 

entities are substituted with generic category-based 

markers to maintain coherence and allow for later 

de-anonymization. Each entity type is assigned a 

unique identifier that follows a consistent pattern 

across all prompts. For instance, a detected 

organization (e.g., Google) is replaced with 

ORG_1, a location (e.g., New York) is replaced with 

LOCATION_1, and a person's name (e.g., John 

Doe) is substituted with PERSON_1. If multiple 

entities of the same category appear in a prompt, 

they are enumerated sequentially.  

This structured anonymization approach ensures 

that the prompts retain their original syntactic and 

semantic integrity while eliminating personally 

identifiable information (PII). The placeholders 

allow for the preservation of relationships between 

entities. 

2.3 Contextualization of Entities 

Anonymization of entities often results in loss of 

contextual information, which can affect the 

quality and coherence of generated responses. For 

example, both Google and Stanford University 

would be anonymized as ORG_X, obscuring the 

distinction between a large software company and 

a university. To mitigate this issue, we implement a 

contextualization step where guardrail LLMs 

provide enriched descriptions of the masked 

entities. This approach ensures that the semantic 

role of entities remains intact, allowing the main 

LLM models to generate more coherent and 

informative responses despite anonymization. 

Each anonymized entity is passed to the 

guardrail LLM, which is prompted to generate a 

concise description of the entity without revealing 

its name. For instance: 

• Google → "a large software company" 
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• Stanford University → "a private research 

university" 

For personal names, the contextualization is 

limited to gender classification, where the guardrail 

model predicts whether the name is typically male 

or female. This step helps in preserving pronoun 

consistency in text generation while avoiding re-

identification of individuals. 

2.4 Pseudonymization of Entities 

In an alternative anonymization setup, instead of 

contextualizing the masked entities, we apply 

pseudonymization, where each entity is replaced 

with a comparable but non-identical alternative. 

This approach retains the structural integrity of the 

text while obfuscating specific details. 

To achieve this, we prompt our guardrail LLM 

models to generate substitutes for entities identified 

by the NER model. The replacements are chosen to 

be semantically similar but distinct from the 

original entity. For example: 

• John Doe → Frank Miller  

• Google → Microsoft 

• New York → Chicago 

The goal of this approach is to preserve the 

context of the text while preventing direct entity 

recognition. Unlike contextualization, where 

descriptions replace entity names, 

pseudonymization maintains the original sentence 

structure, allowing the text to remain fluent and 

natural without explicit entity masking. 

2.5 LLM Response Generation 

After setting up the different prompts with various 

anonymization techniques, we input these prompts 

into the main LLM models to generate responses. 

In the system prompt, we inform the model that the 

input contains entity markers (with contextual 

information where applicable) or pseudonyms. 

Additionally, we instruct the model not to modify 

the format of these entity markers to ensure that 

they can be accurately mapped back in later stages. 

Overall, responses are generated for four different 

anonymization setups: (i) The original prompts (no 

anonymization), (ii) the anonymized prompts with 

simple masking, (iii) the anonymized prompts with 

contextualized information, and (iv) the 

pseudonymized prompts. 

2.6 De-Anonymization 

For prompts that underwent entity masking, each 

anonymized entity (e.g., ORG_1, LOCATION_1, 

PERSON_1) is replaced in the LLM responses 

with its original name based on the entity mapping 

from the anonymization step. Similarly, in the 

pseudonymized setup, each substituted entity (e.g., 

Microsoft in place of Google) is reverted to its 

original counterpart. 

This step ensures that we can evaluate the 

quality of the generated text in its original form 

while analyzing whether anonymization strategies 

introduced any distortions or inconsistencies in the 

output. 

2.7 Evaluating the Response Quality 

To assess the quality of the generated responses, we 

use an automated evaluation approach based on the 

LLM-as-a-Judge method (Zheng et al., 2023), a 

widely used technique for evaluating LLM-

generated text. 

For the primary evaluation, we adopt the 

single answer grading approach, where the LLM is 

presented with a single prompt-response pair and 

asked to rate the response on a scale from 1 to 10. 

To ensure consistency, we use the official single 

answer grading prompt from Zheng et al. (2023). 

While LLM-as-a-Judge typically provides an 

overall quality score, anonymization techniques 

may affect different aspects of response quality in 

varying ways. Therefore, in addition to a single 

score, we follow Zhong et al. (2022) and evaluate 

responses across four key dimensions: 

• Coherence – Logical structure and 

connectedness of ideas. 

• Consistency – Internal consistency and 

factual alignment with the prompt. 

• Fluency – Grammatical correctness and 

naturalness of the language. 

• Relevance – Appropriateness and 

relevance of the response to the given 

prompt. 

We compute an average of these four scores to 

provide a secondary measure of overall quality. 

Based on recent findings, we use GPT-4o as the 

evaluation model, as it has been shown to exhibit 

high alignment with human preferences in LLM-

as-a-Judge comparisons (Raju et al., 2024).  

2.8 Privacy Evaluation 

In addition to assessing response quality, we 

evaluate whether the anonymized text effectively 

preserves privacy. To measure this, we use two 

complementary approaches: 
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1. Entity Matching – We conduct a simple 

entity match by comparing the originally 

identified entities with those present in the 

anonymized prompts and responses. This 

allows us to check if any masked entities 

leak into the anonymized versions. 

2. LLM-Based Inference Attacks – 

Inspired by Staab et al. (2023), we test 

whether an LLM (ChatGPT-4o) can infer 

masked or pseudonymized entities. The 

model is prompted to guess the original 

entities based on the anonymized text, 

simulating a potential privacy risk where 

an AI system could re-identify 

anonymized information.  

Since the entities in our dataset were originally 

generated by LLMs, they tend to be commonly 

known entities (e.g., Harvard University or 

Google). This likely overestimates the model’s 

ability to predict masked entities, as real-world 

anonymization would often involve more unique or 

less widely known names. Nevertheless, this 

measure provides a useful benchmark for 

comparing the relative differences between 

anonymization setups, particularly in assessing 

whether adding contextual descriptions or 

pseudonyms increases the likelihood of entity re-

identification. 

For both privacy measures, we define privacy as 

the inverse of the number of identified entities, 

calculated as: 

𝑃𝑟𝑖𝑣𝑎𝑐𝑦 =  1 −
𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠
 

When comparing the effectiveness of different 

anonymization strategies, we measure privacy 

before de-anonymization since de-anonymization 

occurs outside the “unsafe environment” in our 

setup.  

3 Results 

3.1 Evaluation of Anonymization Strategies 

Table 1 presents the results for utility and privacy 

across different anonymization strategies. As 

expected, responses to original (non-anonymized) 

prompts achieve the highest scores across utility 

metrics, with an LLM-as-a-Judge score of 9.95 

(ChatGPT-4o) and 9.76 (Llama 3.3:70B). Privacy 

scores are naturally low, as all original entities 

remain intact.  

Across all specifications, we observe that 

anonymized and pseudonymized responses 

(without de-masking) exhibit lower quality scores. 

For example, basic anonymization results in a drop 

in utility, with ChatGPT-4o scoring 3.09 and Llama 

3.3:70B scoring 3.19 in overall LLM-as-a-Judge 

evaluations. This is unsurprising, as these 

transformations alter the structure of the original 

prompt, potentially reducing the coherence and 

contextual accuracy with the initial prompt.  

However, once the initial entities are reinserted 

into the anonymized or pseudonymized responses 

(i.e., after de-anonymization), response quality 

significantly improves. The LLM-as-a-Judge score 

of de-anonymized responses reaches 9.37 

(ChatGPT-4o) and 8.41 (Llama 3.3:70B), 

indicating that while anonymization impacts output 

quality, de-anonymization can effectively restore 

much of the lost information. 

When comparing different anonymization 

techniques, we find that simple anonymization 

followed by de-anonymization performs 

surprisingly well. Notably, for Llama 3.3:70B-

generated responses, this basic anonymization-de-

anonymization approach outperforms all other 

anonymization strategies. 

For GPT-4o-generated responses, however, the 

results vary depending on the guardrail model used. 

We find that for all guardrail models except Mistral 

7B, contextualized anonymization slightly 

outperforms the simple masking technique. For 

instance, the contextualized de-anonymized 

responses using Phi-4 14B achieve an LLM-as-a-

Judge score of 9.70 (ChatGPT-4o), slightly higher 

than 9.37 for basic de-anonymization. 

Regarding privacy scores, we observe that 

Llama-generated contextualization perform 

comparable to simple anonymization-de-

anonymization when assessed using entity 

matching. Specifically, Llama 3.3:70B 

contextualized anonymization retains a privacy 

score of 0.99 (entity match), similar to basic 

anonymization. However, for Phi-4 and Mistral-

generated contexts, a slightly higher number of 

tagged entities appear in responses, suggesting an 

increased risk of entity leakage when adding 

contextual information. For instance, the privacy 

score (entity match) of Phi4:14b drops to 0.95. 

Similarly, we find high risk of revealing entities for 

Phi and Mistral generated pseudonymization.  

Using the LLM inference method to assess 

privacy risks, we find an increased privacy risk for 

all contextualization methods. For example, 

ChatGPT-4o contextualization (Phi-4 14B) has an 
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LLM inference score of 0.46, while basic 

anonymization is at 0.83, suggesting that adding 

descriptions makes it easier for an LLM to 

reconstruct the original entities. In contrast, 

pseudonymization decreases this risk, with 

Llama3.3:70b pseudonymization reaching privacy 

scores of 0.98 (ChatGPT-4o) and 0.99 (Llama 

3.3:70B), indicating that substituting entities with 

comparable alternatives can be an effective method 

to obscure true entities. 

3.2 Evaluation by Task Type 

We also analyzed differences in response quality 

and privacy scores across task types. Figure 3 

presents response quality (measured as the average 

score across four dimensions) and privacy 

(measured using LLM inference) for selected 

anonymization strategies. 

Overall, we found that results remained 

consistent across task types. However, for both 

GPT-4o and Llama-generated responses, the drop 

in response quality of anonymized prompts was 

most pronounced in cover letter. This is 

unsurprising, as cover letters require personalized 

and highly structured writing, making 

anonymization more disruptive to specific entity 

information. Consistent with this, we observe that 

contextualization had a strong positive effect on 

cover letters, particularly for GPT-4o, where it 

outperformed simple masking. For Llama-

generated responses, contextualization also had a 

Table 1: Utility and Privacy Scores by Anonymization Strategy 

LLM Response Model ChatGPT Llama 

Dimension Utility Privacy Utility Privacy 

Metric 
Avg 

4D  

Score Entity 

Match 

LLM 

Inf. 

Avg 

4D  

Score Entity 

Match 

LLM 

Inf. 

Baseline: Original Response  9.97 9.95 0.00 0.10 9.89 9.76 0.00 0.11 

Basic Anonymization         

Anonymized Response 6.72 3.09 0.97 0.83 6.35 3.19 0.99 0.86 

De-Anonymized Response 9.75 9.37 0.97 0.83 9.41 8.41 0.99 0.86 

Contextualization (Anonymized)         

Contextualization: Phi4 14b 7.18 3.18 0.88 0.46 6.50 3.49 0.95 0.42 

Contextualization: Llama3.3 70b 7.10 3.20 0.97 0.62 6.48 3.47 0.99 0.61 

Contextualization: Llama3.1 8b 7.07 3.17 0.97 0.59 6.49 3.37 0.99 0.58 

Contextualization: Mistral 7b 7.18 3.19 0.94 0.54 6.13 3.24 0.97 0.53 

Contextualization (De-Anonymized)         

Contextualization: Phi4 14b 9.86 9.70 0.88 0.46 9.17 8.03 0.95 0.42 

Contextualization: Llama3.3 70b 9.83 9.53 0.97 0.62 9.11 7.51 0.99 0.61 

Contextualization: Llama3.1 8b 9.82 9.60 0.97 0.59 9.16 7.72 0.99 0.58 

Contextualization: Mistral 7b 9.72 9.46 0.94 0.54 8.79 7.14 0.97 0.53 

Pseudonymization (Pseudonyms)         

Pseudonymization: Phi4 14b 3.86 1.58 0.78 0.85 3.64 1.32 0.82 0.87 

Pseudonymization: Llama3.3 70b 3.81 1.48 0.97 0.98 3.64 1.23 0.98 0.99 

Pseudonymization: Llama3.1 8b 3.85 1.60 0.95 0.97 3.61 1.23 0.98 0.98 

Pseudonymization: Mistral 7b 3.93 1.79 0.77 0.87 3.60 1.23 0.78 0.82 

Pseudonymization (De-Anonymized))         

Pseudonymization: Phi4 14b 7.77 6.04 0.78 0.85 7.27 5.06 0.82 0.87 

Pseudonymization: Llama3.3 70b 9.29 8.57 0.97 0.98 9.01 7.43 0.98 0.99 

Pseudonymization: Llama3.1 8b 9.37 8.69 0.95 0.97 8.75 7.03 0.98 0.98 

Pseudonymization: Mistral 7b 6.65 4.61 0.77 0.87 5.38 3.21 0.78 0.82 

Utility reflects response ratings using the LLM-as-a-Judge method. Avg. 4D corresponds to the average score of 4 

dimensions of response quality: Coherence, consistency, fluency, and relevance. Score reflects a single overall score for the 

output. 
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moderate positive effect on cover letters, though its 

impact was smaller than for GPT-4o. 

However, for Llama-generated responses, we 

found a notable drop in response quality for 

personal introductions when using 

contextualization. This suggests that while 

contextual descriptions help preserve coherence in 

structured tasks where tailoring responses for 

entities matters like cover letters, they may 

introduce unintended biases or distortions in more 

flexible, open-ended tasks like personal 

introductions.  

Regarding privacy, we found that for both GPT-

4o and Llama models, cover letters had the lowest 

privacy scores. This indicates that the contextual 

and job-specific details present in cover letter 

prompts may make it easier for LLMs to infer the 

original entities, reducing the effectiveness of 

simple anonymization strategies. Hence, for cover 

letters, we require strategies that better obscure 

entity identities, such as pseudonymization, which 

proved to be effective in preventing LLM 

inferences across all task types. 

4 Discussion 

Our results demonstrate that anonymization can 

effectively protect sensitive information while 

maintaining response quality in personalized LLM 

tasks. Across different anonymization strategies, 

we observe a minimal reduction in response quality 

(roughly 1 point on a 10-point scale), while 

achieving 97%-99% entity masking, indicating a 

strong privacy gain. 

Interestingly, simple anonymization and de-

anonymization methods (e.g., direct entity masking 

and backmapping) yield the best results for Llama-

generated responses, suggesting that additional 

context can introduce unnecessary variability. 

Although prompts clarify that contextual 

information is provided solely as background 

information, we found that models often over-

integrate these details into responses, such as 

mentioning that the user lives in an East Coast city 

in a cover letter. In contrast, GPT-4o benefits from 

contextualized anonymization, where entity 

replacements include descriptive labels. This 

indicates that some models may better leverage 

contextual cues to compensate for missing specific 

entity references. 

Our findings highlight the importance of 

tailoring anonymization strategies to specific LLM 

architectures and task types, as different models 

interpret masked entities and contextual 

information differently. Additionally, we show that 

effective anonymization does not necessarily 

require complex transformations, as simpler 

Figure 3. Evaluations by Task Type 
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techniques achieve comparable privacy protection 

with minimal response degradation. 

This study underscores the feasibility of 

deploying automated anonymization workflows 

for real-world, privacy-sensitive LLM 

applications. Future work could explore adaptive 

anonymization techniques, where models 

dynamically adjust anonymization levels based on 

task sensitivity and model behavior.  

5 Limitations 

While our study provides valuable insights into the 

effects of anonymization on LLM-generated 

responses, several limitations should be considered 

when interpreting our findings. 

First, our analysis is limited to ChatGPT-

4o and Llama models, meaning the results may not 

generalize to other large language models, such as 

Claude, Gemini, or Mistral, which may process 

anonymized prompts differently. Different LLM 

architectures may exhibit varying sensitivity to 

entity masking, contextualization, or 

pseudonymization, potentially leading to different 

response quality and privacy trade-offs. Future 

work could expand the analysis to a broader range 

of models to assess generalizability across LLM 

ecosystems. 

Second, while we employ the LLM-as-a-

Judge method to automate response quality 

evaluation, our study does not incorporate human 

raters. Although recent work suggests that ratings 

with GPT-4o align well with human preferences, 

LLM-based scoring may not fully capture nuances 

such as subtle coherence issues, tone, or factual 

correctness. Similarly, our evaluation does not 

explicitly assess truthfulness or detect 

hallucinations in de-anonymized responses. For 

example, a de-anonymized cover letter could 

introduce fabricated details not present in the 

original prompt. Future research could incorporate 

human evaluations and factual consistency checks 

to ensure that anonymization does not introduce 

unintended distortions or hallucinated content that 

may not be detected by AI-based scoring. 

Third, our dataset consists of synthetically 

generated prompts rather than real user queries. 

While this allows for an automated workflow, real-

world user prompts may introduce greater 

variation, ambiguity, or complexity that could 

affect both anonymization performance and 

response generation. In particular, one challenge is 

anonymizing lesser-known entities, such as small 

businesses or less prominent organizations, which 

LLM-based techniques may struggle to recognize. 

Since our synthetic prompts are LLM-generated, 

they may overrepresent well-known entities, 

whereas real-world inputs may include more 

unique or less widely recognized names that could 

be more challenging to identify and anonymize 

effectively. Future research could explore real-

world anonymization cases to assess how different 

anonymization strategies perform in practical 

applications. 

Moreover, while our privacy evaluation 

effectively quantifies entity masking and assesses 

re-identification risks using LLM inference, it does 

not fully capture the severity of a single entity 

leakage. The current approach assumes that privacy 

loss is proportional to the number of entities 

disclosed, but in real-world applications, even a 

single leaked entity (such as a person’s name) could 

constitute a significant privacy risk. This is 

particularly critical in tasks like cover letters and 

business emails, where context may allow an 

adversary to infer personal details even if only one 

entity is revealed. 

Finally, our study employs a single 

anonymization approach, using a BERT-based 

NER model for entity recognition. While this 

approach is effective for structured anonymization, 

other anonymization techniques exist, including 

LLM-based NER. In addition, recent privacy-

preserving prompt sanitization techniques, such as 

Casper (Chong et al., 2024), extend beyond NER 

by incorporating topic-based anonymization and 

rule-based filters. Future research could explore 

how different anonymization methods interact with 

various LLMs, assessing trade-offs between 

privacy effectiveness and response degradation. 
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Abstract

Transformer-based Large Language Models
(LLMs) have achieved remarkable success
across various domains, including clinical lan-
guage processing, where they enable state-of-
the-art performance in numerous tasks. Like
all deep learning models, LLMs are suscepti-
ble to inference attacks that exploit sensitive
attributes seen during training. AnonCAT, a
RoBERTa-based masked language model, has
been fine-tuned to de-identify sensitive clinical
textual data. The community has a responsibil-
ity to explore the privacy risks of these models.
This work proposes an attack method to infer
sensitive named entities used in the training of
AnonCAT models. We perform three experi-
ments; the privacy implications of generating
multiple names, the impact of white-box and
black-box on attack inference performance, and
the privacy-enhancing effects of Differential
Privacy (DP) when applied to AnonCAT. By
providing real textual predictions and privacy
leakage metrics, this research contributes to un-
derstanding and mitigating the potential risks
associated with exposing LLMs in sensitive do-
mains like healthcare.

1 Introduction

Various fields have seen the benefits of applying
transformer-based Large Language Models (LLM)
to NLP tasks (Wang et al., 2018). The medical do-
main is one such field that has applied LLMs to vari-
ous tasks and achieved state-of-the-art performance
(Peng et al., 2019). Due to the increased number of
training parameters; training such models can be
expensive in terms of computation, data, and time.
To alleviate these issues, pre-training is done via
a general language modelling task, and this “base”
model is distributed to be fine-tuned (Devlin, 2018).
The result of the pre-training and fine-tuning pro-
cess is a language model that achieves a high level
of performance for a specific task within a specific
domain.

AnonCAT is a RoBERTa-based LLM that has
been fine-tuned for the task of de-identifying clini-
cal textual data (Kraljevic et al., 2023; Liu, 2019).
The purpose of AnonCAT is to protect patient pri-
vacy within healthcare records and to provide a
framework that is adaptable between hospitals, de-
partments, and other healthcare agencies. Anon-
CAT is available through the MedCAT GitHub1

(Kraljevic et al., 2021).
Textual data containing sensitive personal infor-

mation can be encoded in the model during pre-
training (Huang et al., 2022) and fine tuning (Qi
et al., 2023), and this may be exploitable by infer-
ence attacks. Clinical textual data will often have
highly sensitive attributes that a model will see
during training, such as names, dates of birth, med-
ications, family, and lifestyle. Motivated attackers
may be able to infer such sensitive attributes via
white-box (direct access to the model) (Wang et al.,
2024) and black-box (access to model outputs only)
attacks (Huang and Zhang, 2019). Inference at-
tempts are more commonly applied to generative
models in comparison to alternative textual mod-
els (such as masked language models) (Gu et al.,
2023).

Efforts have been made to reduce the amount of
training that can be leaked from inference attacks;
such as regularization, differential privacy, con-
fidence masking, and knowledge distillation (Hu
et al., 2022). In particular, differential privacy (DP)
is a common defence against data leakage from
LLMs (Anil et al., 2021), where individual data
points are aimed at being obfuscated while main-
taining the statistical information of the underlying
dataset.

In this work, our aim is to look at AnonCATs
susceptibility to a “name inference attack“, a vari-
ant of an attribute inference attack. We also provide
two methods to measure the privacy of the model.

1https://github.com/CogStack/MedCAT
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A name inference attack is an attempt by a moti-
vated attacker to infer the named entities of a given
de-identified text. We look to answer the following
questions:

1. Can a decoder architecture be used to attack
AnonCAT via a name inference attack, extract-
ing names from de-identified text?

2. Are there additional privacy leaks from gener-
ating multiple names?

3. How does a name inference attack perform as
a white-box attack compared to a black-box
attack?

4. What are the privacy benefits of a model that
has been trained with Differential Privacy
when subject to a name inference attack?

2 Related Works

Language models have been well established
in their susceptibility to inference attacks
(Mireshghallah et al., 2022). Among large lan-
guage models, causal language models have been
shown to leak more information compared to
masked language models (Jagannatha et al., 2021).

Membership inference attacks are a somewhat
common method of attack explored. The work
focuses mainly on inferring if the samples were
part of the victim models training set (Duan et al.,
2024). This attack will not directly infer sensitive
attributes and will instead attempt to ascertain only
the presence of the sample being in the training set.
“Group” level attacks infer sensitive information
with a higher privacy leakage compared to a single
sample.

Attribute inference attacks are an alternative
method in which an attacker can infer sensitive fea-
tures from samples (Jayaraman and Evans, 2022).
These samples are assumed to be from the train-
ing set, or at least statistically similar to training
samples.

Another method of attack is embedding inver-
sion, where, given the embedding parameters, sen-
sitive tokens or phrases can be recovered (Morris
et al., 2023).

These methods generally do not target the most
sensitive of training information - such as names
and dates of birth. Some works look at inferring
sensitive information at a “group” level as opposed
to a single sample, which achieves a higher leakage
of relative privacy (Jagannatha et al., 2021).

Attackers also have multiple avenues to ex-
pose vulnerabilities and gain access to training
data. White-box and black-box attacks cover large
amounts of potential attacks, with varying levels
of access to victim models and source weights
(Chen et al., 2021; Song and Raghunathan, 2020).
Datasets used in the attack are similarly varied ac-
cording to their task and availability (Yeom et al.,
2018).

To combat this, work has been done to enable
the application of DP in deep learning on a large
scale, where privacy is maintained and the impact
on predictive performance is minimised (Abadi
et al., 2016). This has been extended to the realm of
NLP, where DP has been deployed in an attempt to
preserve the privacy encoded in hidden states while
maintaining the utility of the model(Coavoux et al.,
2018). Efforts have also been made to ensure the
privacy of fine-tuning datasets through techniques
applied during the fine-tuning process (Yu et al.,
2021).

2.1 AnonCAT

Figure 1: Sunburst hierarchical ontology structure of
terms for redaction from the AnonCAT de-identification
model. There is a shared root concept, with leaf nodes
being more specific than its inherited parent.

“AnonCAT” is a transformer language model
approach to text redaction (Kraljevic et al., 2023).
It employs localised fine-tuning of a pre-trained
model to improve performance of de-identifying
clinical text, to further improve the performance
at local sites. AnonCATs transformer model is a
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masked language model based on RoBERTa (Liu,
2019). The method is proposed to enhance the
privacy protection of all entities within healthcare
organisations and contribute to the safety of health-
care data when used in research and development.

3 Methods

3.1 Attack Definition

Algorithm 1 Attribute Inference Attack
Inputs: AnonCAT model Φ with:

output hidden representation h,
Textual sample x which contains:
non-sensitive attributes xns and
sensitive attributes xs

Obtain h(xns) via querying Φ(xns)
Train: Train an attack model ϕ that aims to predict
xs

Output: x̂s = ϕ(h(xns))

Given a sample x which is comprised of it’s
sensitive and non-sensitive attributes (in this case
tokens) such that: x = [xns, xs] where xns refers
to its non-sensitive attributes and xs refers to its
sensitive counterparts. We define the attack algo-
rithm in Alg. 1.

The hidden states h(xns) provided by Φ are used
as input for the attribute inference attack, where
the trained parameters of Φ are frozen so as not to
poison the attack model with ground truth from the
attack dataset.
ϕ represents the learned name attack model to

infer sensitive attributes that have been used as part
of the training of the AnonCAT model Φ. The
model weights are updated for each training sam-
ple of non-sensitive and sensitive textual pairs. x̂s

is the predicted textual sensitive attributes that a
potential attacker would aim to be xs.

3.2 Attack Model Architecture

Fig. 2 describes the model architecture for perform-
ing an attribute entity attack on an AnonCAT /
masked language model. Before the attack model
is used the de-identified text will be passed through
the victim AnonCAT model. The raw AnonCAT
architecture without being part of an attack is de-
scribed in App. A.

The attack model encodes and embeds the prefix
and suffix entries to be fed along with the AnonCAT
models hidden states. The attack model parameters
are randomly initialised, as a pre-trained models

training would not be beneficial to the hidden states
passed from the victim model.

The attack model uses a causal language model
(or a “decoder model”) which is used to predict
the next token given previous tokens. In a stan-
dard setup for causal language models, next token
predictions will occur for each token given the pre-
ceding tokens. In the attack model variant, the only
tokens generated are those that contain the sensitive
names in the suffix.

3.3 Generation

3.3.1 Generation Sampling
Various generation strategies, such as greedy sam-
pling, multinomial sampling, or beam search, still
consider all possible tokens where the tail distri-
bution heavily outweighs likely tokens. The large
number of potential samples from the tail distribu-
tion will also include tokens that are impossible to
include in the prediction. To force these more likely
tokens to be sampled, we will remove the less likely
tokens from consideration by top-K sampling, as
first performed in (Gu et al., 2023):

C = argsort(P)[: k] (1)

qi =
ePci/t

∑
j e

Pcj /t
∀ci ∈ C (2)

P ′ = [q1, q2, ...qk] (3)

The top-k most likely indices are retrieved by
sorting by logits, giving us C. The probabilities
for each potential token are then returned via the
softmax function. We denote our top-k tokens to
be sampled as P ′. For our experiments, we set k at
50 and the temperature (t) at 3.

We scaled the logits for each potential token by
a temperature value (to promote diversity when
choosing from the top-k predicted tokens). The
diversity of an increased temperature value is better
suited to generating the first few tokens. We reduce
the temperature for each token after the first linearly
until the 10th token, where it is 1 for the remainder
of the generation process.

We limit the length of all generated text to a
maximum of 15 tokens. The maximum number
of tokens required to encode a name in the dataset
is 11. The ability to correctly generate consistent
words or phrases is also greatly reduced after 15
tokens.
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Figure 2: A single sample of the proposed decoder model for a name entity attack predicting the de-identified
name. The blue represents a standard AnonCAT model that performs entity recognition, and the parameters in this
model are frozen. The predictions for entities are ignored, and the hidden states are passed to the attack model. The
attack model also has prefixes and suffixes that are concatenated to sample of de-identified text before predicting the
entities name.

3.3.2 Top n sampling
At each forward step that generates text, there are
tens of thousands of potential tokens at a single
forward step and multiple consecutive tokens to be
generated. This results in a large number of po-
tential names being generated as part of the attack.
Depending on the motivations of an attacker, par-
tial predictions or predictions that are highly likely
but not the first prediction may be “good enough“.

To simulate this, we will continue to predict with
the n most likely tokens at each forward step. After
the final tokens have been generated, the n most
likely sequences will be used as the final names
inferred. The values of n used in this work are 1,2,5
and 10. These values have been explicitly chosen
to see the impact of n on attack performance.

4 Experiments

4.1 Datasets

4.1.1 AnonCAT Dataset
The model is initialised with the “RoBERTa-base”
pre-trained model, which was trained on five
datasets (BookCorpus, English Wikipedia, CC-
NEWS, OpenWebText, Stories) (Liu et al., 2019).
The dataset that was used in the process to fine-tune
the AnonCAT de-identification models has been in-

dependently validated and approved for ongoing
usage as part of a de-identification pipeline for on-
going research studies at University College Lon-
don Hospital. This dataset was generated through
two rounds of annotation sessions, focusing on 10
critical Personally Identifiable Information (PII)
concepts in accordance with the Health Insurance
Portability and Accountability Act (HIPPA) guid-
ance on de-identification and privacy rules. This
dataset consists of 560 documents in which the
10 PII concepts were manually annotated. The
AnonCAT model achieved >0.95 F1 across all PII
categories.

4.1.2 Attack Dataset

The attack model is randomly initialised, so no
dataset is used in the pre-training step of the attack
model. The dataset for the “fine-tuning” step of the
attribute inference attack is from the 2014 i2b2 /
UTHealth shared task of natural language (Stubbs
and Uzuner, 2015; Stubbs et al., 2015). One track
of the shared task focuses on a set of 1304 lon-
gitudinal medical records describing 296 patients,
where the task is de-identification for longitudinal
clinical records. This corpus has since been used
commonly in de-identification tasks as a gold stan-
dard dataset.
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4.2 Experimental Setup

The following hyper-parameters are set for each
model created for a fair comparison between them.
The models are trained for 64 epochs, with a batch
size of 8. The learning rate is set to 5e-5 and the
weight decay is set to 0.01. Due to the length of
some documents and multiple names that exist in
most documents, a maximum window size of 200
has been chosen. This window size is empirically
chosen based on the expected best performance so
multiple entities don’t have identical text entered
into the model and to avoid some documents being
too long to fit all text. In these experiments, the
only de-identified attributes predicted across all
models are patient names.

Tab.1 shows a textual example of a training sam-
ple. When generating predictions outside of the
training set, the label is not provided. The model
also only performs backpropagation on the label
tokens during training. Some files have multiple
occurrences of patient names, along with different
variants of the patient’s name (i.e., "John Doe",
"John", "Mr. Doe" all being present within the
same document). In the interest of fairness, these
variants have been altered to the full name as the
ground truth label.

4.2.1 White-Box Attack
The white-box attack model has access to 771 files
where patient names are available and labelled. We
perform an 80/20 train/test split to have 616 train-
ing files and 155 test files. We split at the file level
to avoid poisoning the model with ground truth la-
bels from the test dataset in the training step. With
our split of 771 files we have 1079 training samples,
and 236 testing samples.

4.2.2 Black-Box Attack
If the model weights are not exposed and access to
the victim model is limited via an API a white-box
attack is impossible. In this case a model extrac-
tion attack is performed on the black-box API, this
will generate a model where the attribute inference
attack can instead be performed on this generated
model. Fig. 3 demonstrates the process used in a
model extraction attack to generate labels that will
be used to generate labels for a training dataset.

To generate a model for the black-box attack,
we need a textual dataset that can be used to query
the API to obtain labelled data. This dataset must
still have names present in the dataset. “n2c2”
has hosted multiple clinical challenges in the past,

Figure 3: The workflow of a model extraction attack
to be used when white-box access to the model is not
available and only prediction labels are returned to the
attacker. This will be used to create a model which
will then be used as part of an attribute inference attack.
Queries are fed to the black-box API, where predictions
are paired with their corresponding queries to make
input and label pairs.

and two challenges still have names in the dataset
(Uzuner et al., 2011, 2010b,a). After querying the
API with these samples, the generated labels will
be used as ground-truth labels to pair with their
respective texts. These pairs will be used to train
another AnonCAT model.

4.2.3 Differential Privacy Models

The AnonCAT model is a RoBERTa transformer
model, trained via the masked language model
method. To fine-tune the model with differential
privacy (DP), we employed dp-transformers (Yu
et al., 2021)2, which provides a high-level inter-
face for conducting DP-related operations such as
adding a noise multiplier and clipping gradients at
the lower level of the training loop.

Three variants of the DP model were fine-tuned,
where the target epsilon (privacy budget) is set to
0.1, 2 and 8. All other configurable parameters are
constant throughout the three training rounds to
ensure a fair comparison. We observed that as the
epsilon values decreased (with an increased level
of privacy), the utility of the model degraded on
the basis of the evaluation metrics.

Tab. 2 shows the performance of multiple models
used with varying levels of privacy. As the privacy
budget decreases, more noise is introduced to the
model weights during training and is considered to
have increased privacy at the cost of model utility.
In real-world usage of DP models, values of epsilon
above 1 are considered to be insufficiently private,
while values below 1 are considered safer.

2https://github.com/microsoft/dp-transformers
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Prefix "<s> Predict the name of the person in the following text: </s>"
De-identified text "<s> ...seeing your patient Mr in followup for episodes of dyspnea... </s>"

Suffix "<s> Name of the person is: </s><s>
Label John Doe</s>

Table 1: A textual example of what is passed to the model during a training step. The sample will be in the order of;
prefix, de-identified text, suffix, and label. The model only learns from predicting tokens that occur in the label,
previous tokens in the input are ignored. When using the model outside of training, text is generated after the final
<s> token in the suffix.

Model Precision Recall F1
No privacy 0.965 0.989 0.976
epsilon 8 0.760 0.781 0.769
epsilon 2 0.760 0.784 0.770

epsilon 0.1 0.636 0.699 0.653

Table 2: Performance metrics of models with varying
privacy budgets. Generally, a lower epsilon results in in-
creased privacy, at the cost of performance. An epsilon
lower than 1 is generally considered "suitably private".

4.3 Model Evaluation

Evaluation loss isn’t a suitable metric for evaluat-
ing model performance; in a forward step tokens
are generated given a perfect ground truth of pre-
ceding tokens. Later tokens will be poisoned by
earlier predictions, being replaced by the ground
truth. To fairly evaluate the models ability to in-
fer names, names should be generated given a test
sample with personal information removed. Our
generation method as described in Sec. 3.3.1 is
used. Two metrics are measured to evaluate the
performance of a model. A binary classification
metric, and a sliding Hamming distance. The bi-
nary classification metric is derived from seeing if
the true label is a sublist of the predicted tokens.
The Hamming distance will be formed via a slid-
ing window; with the ground truth being compared
to all consecutive sublists of the predicted tokens.
Examples of this are provided in Tab. 3.

These metrics were chosen manually through ex-
periments that generate text using the model. Often,
the model and generation method would not priori-
tise generating an end-of-string token. This would
often result in repeating tokens after a name has
been fully predicted. On other occasions, the cor-
rect full entity would be predicted part way through
a generated prediction. The sliding Hamming dis-
tance is included for partial predictions of names.

4.4 Results

4.4.1 Top n Samples
Generating specific token sequences is inherently
challenging, as there are many potential labels at
each step, and later labels depend on preceding
predictions, which can propagate and amplify un-
certainty. As potential attackers will not know the
names of potential victims during attacks, they
could generate multiple names to increase their
chances of success.

Fig. 4a and Fig. 4d show the performance of var-
ious values of the n most likely names inferred by a
white-box attack model. Smaller values of n are al-
ways subsets of larger values, so an increase in the
number of most likely predictions can only result
in an increase or equal predictive performance.

Both the Hamming distance and the binary clas-
sification performance show a similar pattern of
performance, between all values of n. Perfor-
mance peaks at the 22nd epoch, and decreases and
plateaus. This may be a sign of over-fitting from
the model. A deviation in later epochs shows in-
creases in binary classification performance that
is not matched in the average sliding Hamming
distance.

4.4.2 White-Box vs Black-Box
We contrast the performance of a white-box model
attack versus a black-box model attack. The black-
box model has been generated via a model extrac-
tion attack as explained in Sec. 4.2.2. The source
model is the same as the model used in the white-
box attack. Fig. 4b and Fig. 4e compare the per-
formance of a black-box and white-box name in-
ference attack. In this experiment n is set to 5 for
both models.

Both Hamming distance and binary classifica-
tion performance show that the white-box attack
model outperforms the black-box attack model at
inferring names from de-identified text, as should
be expected. Although binary classification does
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Prediction Tokenised Binary Hamming Distance
"John Doe" [610, 28484] 1 0

"John Doe Doe Doe" [610, 28484, 28484, 28484] 1 0
"Jane Doe" [7343, 28484] 0 0.5

Table 3: Examples of predictions for the ground truth label "John Doe". Metrics are generated during evaluation of
name inference models. The tokens ids from a generated name are compared to the ground truth label tokens ids.
There are two methods of evaluation - a binary evaluation and a hamming distance. The binary classification checks
if the ground truth list of tokens is a sublist of the generated set. The hamming distance metric creates a rolling
window over the predicted text, and returns the largest hamming distance value normalised by the length of the
label.
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(a) Top-n performance in binary
classification for correctly infer-
ring names from de-identified text.
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(b) Comparison of binary classifica-
tion performance between black-box and
white-box name inference attacks (n=5).
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(c) Comparison of binary classification
performance of models with varying lev-
els of privacy (defined by “epsilon“) and
a baseline model (n=5).
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(d) Top-n average sliding Ham-
ming distance for correctly in-
ferring names from de-identified
text.
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(e) Average sliding Hamming distance for
name inference from de-identified text
using white-box and black-box models
(n=5).
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(f) Comparison of average sliding Ham-
ming distance across models with varying
privacy levels (defined by Epsilon) and a
baseline model (n=5).

Figure 4: Performance metrics comparing predictions of names between various models. Fig.4a and Fig.4d show
the attack performance when returning the models n most likely names as generated by the attack model from a
single model with no additional privacy considerations.

not have a large performance gap, the Hamming
distance shows a larger difference.

4.4.3 Differential Privacy
We compare three models that employ differential
privacy, where the privacy parameter, epsilon, is set
to 0.1, 2, 8. A lower epsilon results in a more "pri-
vate" model. We also compare this with attacking
a model with no differential privacy as a baseline
comparison. In this experiment n is set to 5 for all
models.

Fig. 4c and Fig. 4f show the performance of mul-
tiple name inference attacks on models with vary-
ing levels of privacy. The baseline model outper-
forms all the models in which DP is deployed. Fur-
thermore, as epsilon decreases (and privacy should
increase), the predictive performance of the mod-
els is also degraded. This also shows a trade-off
balance between varying levels of epsilon and the
desired performance.
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5 Conclusion

We have demonstrated the “named inference at-
tack”, an attribute inference attack that focuses on
generating the names that were used as part of the
training process. We demonstrated our attack on
de-identification models trained using “AnonCAT”,
showing that we can predict approximately 2% of
names from an attack dataset when using only the
most likely generated label. Finally, we compared
the performance of the attack with models with dif-
fering levels of privacy, such as a black-box attack
or differential privacy.

Various works have presented different methods
of inference attacks on machine learning models
(Chen et al., 2021; He et al., 2022; Yeom et al.,
2018). All of these works show a small, but poten-
tially significant, data leakage. The same has been
demonstrated in this work, with perhaps the most
sensitive attribute - names.

When only the most likely prediction is gen-
erated, name inference attacks perform similarly
(~2%) to other works that attempt to infer sensi-
tive attributes in similar masked language models
(Jagannatha et al., 2021).

Although generating multiple predictions for a
single input is not standard practice in traditional
machine learning models, this approach can be
particularly useful in attribute inference attacks.
By generating more names for a single input, the
model’s performance improves, potentially increas-
ing the risk of sensitive attribute disclosure. This
may also show that generating text via a causal lan-
guage model is a difficult task compared to other
tasks where output labels are limited.

This type of attack is measured in terms of ab-
solute leakage. Conventionally, leakage is mea-
sured in relative terms compared to random guess-
ing (Guo et al., 2023; Song and Mittal, 2021; Feng
et al., 2022). The attribute space for the type of
attack demonstrated here has too many possibili-
ties. Random guessing can be assumed to have a
performance of 0%, and thus absolute performance
is a suitable metric.

Consensus on an acceptable level of informa-
tion leakage may be difficult to reach. Although
any level of leakage is not ideal, different fields
may have different tolerances for privacy leakage.
Ultimately, acceptable leakage is contextually de-
fined by the interaction of technical limits, risk
assessments, regulatory requirements, and specific
downstream use.

Whilst there is no direct ’acceptable’ level of
leakage or privacy, the UK’s Information Commis-
sioner’s Office has previously suggested in corre-
spondence that 95% accuracy of the de-id model
itself would be acceptable given that these models
are being deployed into environments with many
additional security and privacy constraints. Hospi-
tals such as University College London Hospitals
are using these guidelines as part of their informa-
tion governance.

There is a minor improvement in privacy dur-
ing the black-box attack compared to a white-box
attack using the binary classification metric. The
rolling hamming distance shows greater privacy
provided by limiting access to model weights.

Differential privacy shows a trade-off between
model utility and privacy. As inference attack per-
formance degrades in line with privacy budget in-
crease, the predictive performance decreases when
attempting to de-identify text. The small differ-
ences in attack model performance between differ-
ent budgets may indicate that the inherent difficulty
of inference attacks on masked language models
may only require a smaller allocation of a privacy
budget compared to other models.

Consideration should be given to the goals and
objectives of potential attackers, especially in fields
such as healthcare, where there is low tolerance for
information leakage. Little has been formalised
about hypothetical attackers conducting inference
attacks, and less about real-world attackers per-
forming real attacks. Are they seeking to infer as
much private information as possible or targeting
specific individuals? Are their motivations finan-
cial, political, or something else?

This work can validate models and APIs, en-
abling their secure external exposure while using
real-world data. By understanding the risk of shar-
ing data and models, information governance teams
can define tolerable thresholds of privacy risk, facil-
itating access to resources for fields such as health-
care and research.

In our experiments, we assume that the attack
training data follows a distribution similar to the
victim model’s data. Although this assumption can-
not be guaranteed, it provides some security, as
an information leakage ceiling of 2− 8% reduces
the confidence of potential attackers. Moreover, if
a large-scale attack were to take place, it would
be difficult for such an attack to isolate the true
positives from the false positive results. However,
further attacks that target both true and false posi-
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tives may achieve some success.
Future work could explore vulnerabilities be-

yond names, such as addresses, ages, and other
sensitive attributes that may also be inferable. Iden-
tifying these risks is critical to protecting privacy
and equipping policy makers to make informed
decisions.

This work has focused on inferring names that
have been used in the process of training AnonCAT;
where the pre-training step is a masked language
model. Other models can be explored in future
work, such as generative language models, which
have become more prevalent as conversational AIs
become more common.

For a fully secure environment, we recommend
that red-team inference attacks not be the sole focus
of security considerations. This approach should be
used in conjunction with other measures to ensure
both model and data privacy. AnonCAT is deployed
within secure data environments and enhanced with
additional security measures, such as restrictive
access controls and active monitoring of access and
usage.

5.1 Limitations
The data used to train victim models comes from
hospitals based in the United Kingdom, where the
inference attack models data are from n2c2, which
is predominantly a US based dataset. Clinical texts
may come from different distributions. Future work
could investigate differences in the geographic dis-
tributions of clinical texts.

Name inference attacks only focus on names,
as opposed to all potential personality identifiable
data. Other types of attributes may be better suited
to different model architectures (such as a regres-
sion head for numbers like age).

Finally, the attack model has been trained only
for transformer model architectures. This work can-
not indicate whether these types of attack models
can generalise to other architectures.
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A Standard AnonCAT Model

Figure 5: A standard AnonCAT model that would be
used for identifying sensitive personal entities within
text.
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Abstract

Differential Privacy (DP) for text has recently
taken the form of text paraphrasing using lan-
guage models and temperature sampling to
better balance privacy and utility. However,
the geometric distortion of DP regarding the
structure and complexity in the representation
space remains unexplored. By estimating the
intrinsic dimension of paraphrased text across
varying privacy budgets, we find that word-
level methods severely raise the representation
manifold, while sentence-level methods pro-
duce paraphrases whose manifolds are topo-
logically more consistent with human-written
paraphrases. Among sentence-level methods,
masked paraphrasing, compared to causal para-
phrasing, demonstrates superior preservation
of structural complexity, suggesting that autore-
gressive generation propagates distortions from
unnatural word choices that cascade and inflate
the representation space.

1 Introduction

Language Models (LMs) (Chowdhery et al., 2023)
are trained on extensive corpora of text contain-
ing sensitive information. Several studies demon-
strated that sensitive information can be extracted
from LMs (Song and Shmatikov, 2019; Pan et al.,
2020; Nasr et al., 2023; Carlini et al., 2023), rais-
ing significant privacy concerns and prompting the
integration of privacy mechanisms.

To protect against unintended disclosure of in-
formation, Differential Privacy (DP) (Dwork et al.,
2006) has been tailored to raw text (Fernandes et al.,
2019; Feyisetan et al., 2020). Through a random-
ized mechanism, DP formalizes privacy through a
notion of indistinguishability, ensuring that texts
remain statistically unaffected by the addition or
removal of individual samples in the text corpus.

While early randomized mechanisms exploit the
distances between words in the embedding space
(Mikolov et al., 2013) to replace words with a noisy

approximation of their nearest neighbor, grammati-
cal constraints associated with word-level privati-
zation (Mattern et al., 2022) has led to a shift to-
wards paraphrasing text at sentence-level by lever-
aging LMs (Igamberdiev and Habernal, 2023; Ut-
pala et al., 2023; Meisenbacher et al., 2024).

Contribution. We inspect the representation ge-
ometry of text paraphrased under the privacy con-
straints of DP, accounting for different levels of
privacy. Ansuini et al. (2019) discovered that high-
dimensional signals reside on low-dimensional
manifolds, a property that holds across neural rep-
resentations (Tulchinskii et al., 2024). Building on
Intrinsic Dimensionality (ID), we estimate the ID
of texts and interpret ID shifts as a proxy for dis-
tortions on their structure and complexity. Specifi-
cally, we compare differentially-private transforma-
tions operating on word-level and sentence-level.
We find that word-level DP deviates the most from
human-authored paraphrases, significantly altering
the underlying representation space. Concerning
sentence-level DP, we argue that bidirectional para-
phrasing based on masked substitution mitigates
cascading errors that arise in sequential generation.

2 Background

We briefly provide the necessary foundations for
differential privacy and intrinsic dimensionality.

2.1 Differential Privacy

Differential Privacy (DP) is a notion of privacy in-
troduced by Dwork et al. (2006) under the term
ε-indistinguishability. DP operates on the princi-
ple of adding noise calibrated to the sensitivity of
adjacent datasets that differ by at most one record.
The level of indistinguishability can be controlled
by the privacy budget ε ∈ (0,∞], with declining
privacy guarantees as ε→∞.

To mitigate the disclosure of authorship (Song
and Shmatikov, 2019), DP is applied to perturb raw
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text either at word level or sentence level through
noise injected into embedding models (Mikolov
et al., 2013) and language models (Peters et al.,
2018; Radford et al., 2018), respectively.

Word-level DP. Feyisetan et al. (2020) intro-
duced a randomized mechanism in which a text
is perturbed at the word level by mapping each
word to another word located within a radius de-
rived from an embedding space and governed by
the privacy budget ε. This randomized mechanism
was termed MADLIB. By scaling the notion of in-
distinguishability by a distance, MADLIB satisfies
the axioms of metric DP (Chatzikokolakis et al.,
2013). Despite many refinements regarding the
preservation of utility (Carvalho et al., 2021; Xu
et al., 2021b; Yue et al., 2021) and privacy (Xu
et al., 2020, 2021a), MADLIB continues to suffers
from syntactic errors (Mattern et al., 2022) and
semantic drift (Arnold et al., 2023).

Sentence-level DP. Given the shortcomings of
MADLIB and its recent refinements (Yue et al., 2021;
Chen et al., 2023), researchers conceptualized the
privatization of text as paraphrasing by utilizing
sequence-to-sequence models (Bo et al., 2021; Kr-
ishna et al., 2021; Weggenmann et al., 2022; Igam-
berdiev and Habernal, 2023). Unlike word-level
mechanisms, which perturb text on a word-by-word
basis, sentence-level mechanisms paraphrase entire
sentences. A defining characteristic shared is the
injection of noise into the encoder representations,
and learning of the decoder to generate fluent para-
phrases while obfuscating stylistic identifiers that
could otherwise compromise privacy.

Mattern et al. (2022) conjectured that temper-
ature sampling in LMs can be interpreted as an
instance of the exponential mechanism (McSherry
and Talwar, 2007), where the scoring function cor-
responds to most probable word given a context.
The probability of selecting a word follows the soft-
max distribution over the logits, which represent
the likelihood of each word occurring in a given
context. Since DP requires the sensitivity to be
bounded, these logits are clipped in range.

Since paraphrasing is contingent upon the resem-
blance between the training text and the text sub-
jected to privatization, Utpala et al. (2023) leverage
the generalization capabilities of large-scale pre-
trained LMs to generate paraphrases via zero-shot
prompting. Meisenbacher et al. (2024) depart from
autoregressive generation and instead adopted the
idea of temperature sampling to masked LMs. Un-

like causal LMs, which sample text sequentially,
this approach masks words and predicts its substi-
tution bidirectionally from context.

2.2 Intrinsic Dimensionality

Grounded on the manifold hypothesis (Fefferman
et al., 2016), the concept of intrinsic dimensional-
ity characterizes the number of degrees of freedom
for data in a representation space. Unlike extrinsic
dimensionality, which corresponds to the overall
dimensionality of the representation space, the in-
trinsic dimension (ID) corresponds to the minimum
number of coordinates which are necessary to ap-
proximately capture the variability, revealing the
structure and complexity of the manifold. This ren-
ders the ID as a geometric property (Valeriani et al.,
2023) that describes how data points are distributed
within the representation space.

Several methods have been developed to esti-
mate intrinsic dimensionality, each differing in its
underlying assumptions and formulations. Levina
and Bickel (2004) uses maximum likelihood esti-
mation to fit the likelihood on the distances from
one point to each point within a fixed neighborhood
structure. If the neighborhood is set too small in a
dense region, the dimensionality might be under-
estimated. If the neighborhood is set too large in
a sparse region, it might be overestimated. Farah-
mand et al. (2007) adapts the size of the neighbor-
hood based on the geometry of the manifold.

Facco et al. (2017) exploits the expected ratio of
distances between closest neighbors, observing that
the distribution of distances of a point to its first
neighbor is significantly smaller than to its second
neighbor in lower dimensions, while in higher di-
mensions, the distance ratio is relatively close. By
relying on the minimal information needed from
the neighborhood, this approach alleviates the ef-
fects of variations in densities and curvatures within
the manifold, providing stable ID estimates.

Recent studies have investigated how intrinsic
dimensionality evolves and manifests through the
layers (Ansuini et al., 2019), with connections to
learning dynamics (Aghajanyan et al., 2021; Pope
et al., 2021) and generalization (Birdal et al., 2021).
Ansuini et al. (2019) demonstrated that data embed-
ded in a high-dimensional space is progressively
compressed into low-dimensional manifolds.
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Table 1: Overview of prominent techniques for differentially-private text rewriting. Scope specifies whether the
method applies DP at the word-level or sentence-level. Mechanism indicates the type of privacy mechanisms.
Budget refers to the recommended range of the privacy budget. Approach describes the underlying substitution
mechanism, including word embeddings, causal LMs, conditional LMs, or masked LMs. Fine-tuned specifies
whether the LM was explicitly fine-tuned for paraphrasing or only leveraged pre-trained representations.

Scope Mechanism Budget Approach Fine-tuned

Feyisetan et al. (2020) Word-level Exponential ∼ 10 Word Embedding no

Mattern et al. (2022) Sentence-level Exponential ∼ 100 Causal LM yes

Igamberdiev & Habernal (2023) Sentence-level Gaussian ∼ 1000 Conditional LM no

Utpala et al. (2023) Sentence-level Exponential ∼ 100 Causal LM no

Meisenbacher et al. (2024) Sentence-level Exponential ∼ 100 Masked LM no

3 Methodology

We aim to investigate how privacy-preserving trans-
formations alter the geometry of paraphrases rela-
tive to those generated without privacy guarantees.

For our experiments, we utilize MRPC (Dolan and
Brockett, 2005), a dataset containing sentence pairs
labeled for semantic equivalence. We selected sen-
tence pairs that provide a reference and paraphrase
to ensure a controlled basis for assessing geometric
distortions in representation subspaces.

3.1 Selection of Privacy Mechanisms

Table 1 outlines key characteristics of prominent
approaches for differentially-private rewriting. To
ensure comparability across privacy budgets, we
focus on randomized mechanisms that implement
the exponential mechanism. For word-level para-
phrasing, we select Madlib (Feyisetan et al., 2020),
which perturbs individual word in embedding
space. For sentence-level paraphrasing, we select
DP-PARAPHRASE (Mattern et al., 2022), DP-PROMPT
(Utpala et al., 2023), and DP-MLM (Meisenbacher
et al., 2024), covering causal and masked paraphras-
ing with temperate sampling. DP-PARAPHRASE and
DP-PROMPT are powered by fine-tuned GPT-2 (Rad-
ford et al., 2019) and pre-trained LLaMA-3 (Tou-
vron et al., 2023), respectively. DP-MLM employs
RoBERTa (Liu et al., 2019). Table 2 presents an
example sentence from MRPC along with its human-
authored and differentially-private paraphrases.

3.2 Estimation of Intrinsic Dimension

Following Tulchinskii et al. (2024), we obtain em-
beddings for each word in a text using BERT (Devlin
et al., 2019), treating each text as a point cloud of
words spanning a manifold in the representation
space. The ID of this point cloud is then estimated

using TwoNN (Facco et al., 2017). To ensure that ID
estimations reflect meaningful linguistic properties
rather than artifacts of tokenization, we drop demar-
cation tokens as <CLS> and <SEP>. We also filtered
short text sequences with less than 15 words and
truncated long text sequences at 128 words. This
stabilizes ID estimates by ensuring that estimations
are based on sufficiently rich representations, while
avoiding outlier effects from excessively short or
long sentences.

Our investigation spans a range of privacy bud-
gets ε ∈ {10, 15, 20, 25, 50, 100}, allowing us to
weigh the geometric distortions with respect to the
desired level of privacy. Since temperature sam-
pling is probabilistic, we repeat the paraphrasing
process three times per sample at each privacy level,
ensuring robust ID estimations across multiple tri-
als and reducing variance in the distortions.

4 Findings

Figure 1 presents the deviation in the number of ID
as a function of the privacy budget. To establish a
lower bound for ID shifts, we measure the ID differ-
ence between reference sentences and their human-
authored paraphrases from MRPC. This yields an ID
shift of approximately 0.12, indicating that natu-
rally occurring paraphrasing introduces only min-
imal geometric distortions in the representation
space. Any privacy-preserving transformation that
deviates strongly from this baseline alters the struc-
ture and complexity of text representations beyond
natural variation, potentially affecting readability.

Word-Level Perturbation. Since MADLIB is ap-
plied at word-level, its randomized mechanism
perturbs words independently, disregarding sen-
tence structure and grammatical coherence. This
results in fragmented and disorganized text, a phe-
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Table 2: Example from MRPC showing a sentence and its human-authored paraphrase. Note that differentially-private
paraphrases at word-level are obtained using a privacy budget of ε = 25, whereas differentially-private paraphrases
at sentence-level are obtained using a privacy budget of ε = 100.

Sentence Amrozi accused his brother, whom he called " the witness ", of deliberately distorting his evidence.

Paraphrase Referring to him as only " the witness ", Amrozi accused his brother of deliberately distorting his evidence.

Feyisetan et al. (2020) Amrozi accused his brother , Tyler he warn the witness confined deliberately discolored muse evidence.

Mattern et al. (2022) The person is Amrozi . aggression is evident even illustrates its extreme inflections over their close relative.

Utpala et al. (2023) The witness had said his wife had left him when his wife was pregnant, his second daughter was not Alis.

Meisenbacher et al. (2024) He alleged his nephew, whom he named _ the witness " of specifically distracting his testimony.
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Figure 1: Shift in the estimated number of intrinsic
dimensions, with a horizontal line representing a lower
bound derived from human-authored paraphrases.

nomenon that can be observed through the highest
ID shifts among all approaches. This observation
reinforces a fundamental limitation of word-level
perturbations, which induce severe distortions in
representation subspaces, making them unsuitable
for privacy-preserving paraphrasing.

Sentence-Level Perturbation. Unlike MADLIB,
which perturbs words in isolation, sentence-level
perturbation incorporates context when generating
paraphrases. Across all privacy budgets, sentence-
level perturbation introduces significantly less dis-
tortion, as indicated by their consistently lower ID
shifts. This demonstrates that leveraging LMs pro-
duces more natural paraphrases.

Among causal paraphrasing, a mixed pattern
emerges depending on the privacy regime. The ID
shift of DP-PARAPHRASE remains stable across pri-
vacy budgets, whereas DP-PROMPT declines more
sharply. At strict privacy regimes, DP-PARAPHRASE,
which is explicitly fine-tuned for paraphrasing,
outperforms DP-PROMPT, which learns paraphras-
ing implicitly from pre-training. At more relaxed
privacy regimes, however, DP-PROMPT surpasses
DP-PARAPHRASE by operating more within human-

like representation geometry. Since privacy is en-
forced via temperature sampling, this trend sug-
gests differing sensitivity to temperature values.
DP-PARAPHRASE handles high temperatures more
effectively, whereas DP-PROMPT tends to gener-
ate excessively complex paraphrases. Unlike au-
toregressive paraphrasing, DP-MLM adopts masked
paraphrasing, reconstructing words bidirectionally
rather than generating words sequentially. DP-MLM
clearly excels across all privacy budgets, yielding
more stable representation geometry.

Error Propagation We argue that a key factor
driving the divergence between causal and masked
paraphrasing stems from error propagation. Causal
paraphrasing perturbs text in a fixed order, where
each word conditions the selection of the next word,
whereas masked paraphrasing operate bidirection-
ally, conditioning each word substitution on both
preceding and following context. When differen-
tial privacy is enforced through temperature sam-
pling, it introduces randomness, destabilizing gen-
eration by increasing the likelihood of unnatural
word choices. Once a word has been poorly sub-
stituted, the language model must compensate to
maintain fluency, leading to cascading errors which
manifest in the form of drastic changes in the rep-
resentation subspace. Since masked paraphrasing
is not constrained by sequential consistency, distor-
tion from a poorly chosen word does not propagate
along the sentence, preventing error accumulation
and producing more stable paraphrases.

5 Conclusion

We analyze the transformative effects of applying
DP to text, focusing on how privacy constraints
induce geometric distortions in the representation
space. By leveraging the ID as a measure of struc-
tural complexity, we assess the extent to which
prominent DP mechanisms alter latent subspaces
and reshape linguistic representations. Our find-
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ings reveal that word-level DP introduces severe
ID shifts, leading to drastically inflated representa-
tion manifolds. For sentence-level DP, we observe
distinct differences between their representation
geometry, depending on how words are substituted
and whether errors from suboptimal word choices
accumulate and propagate throughout a sentence.

Limitations. A limitation of our inspection is
that ID estimation, while a powerful tool for in-
specting representation geometry of text, does not
directly capture linguistic quality. Although ID
shifts provide evidence of geometric distortions,
connecting these distortions to measures of fluency
(Salazar et al., 2020) and adequacy (Zhang et al.,
2019; Yuan et al., 2021) would complement our un-
derstanding of alterations induced by DP rewriting.
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Abstract

Due to the sensitive nature of clinical letters,
their use in model training, medical research,
and education is limited. This work aims to gen-
erate diverse, de-identified, and high-quality
synthetic clinical letters to enhance privacy
protection. This study explores various pre-
trained language models (PLMs) for text mask-
ing and generation, employing various masking
strategies with a focus on Bio_ClinicalBERT.
Both qualitative and quantitative methods are
used for evaluation, supplemented by a down-
stream Named Entity Recognition (NER) task.
Our results indicate that encoder-only models
outperform encoder-decoder models. General-
domain and clinical-domain PLMs exhibit com-
parable performance when clinical information
is preserved. Preserving clinical entities and
document structure yields better performance
than fine-tuning alone. Masking stopwords en-
hances text quality, whereas masking nouns
or verbs has a negative impact. BERTScore
proves to be the most reliable quantitative eval-
uation metric in our task. Contextual infor-
mation has minimal impact, indicating that
synthetic letters can effectively replace orig-
inal ones in downstream tasks. Unlike pre-
vious studies that focus primarily on recon-
structing original letters or training a privacy-
detection and substitution model, this project
provides a framework for generating diverse
clinical letters while embedding privacy de-
tection, enabling sensitive dataset expansion
and facilitating the use of real-world clinical
data. Our codes and trained models will be
publicly available at https://github.com/
HECTA-UoM/Synthetic4Health

1 Introduction

Electronic clinical letters play a crucial role in
healthcare communication. However, their sen-
sitive nature makes them challenging to share and
limits their adoption in clinical education and re-
search (Tarur and Prasanna, 2021; Tucker et al.,

Figure 1: An Example of the Objective: generating
more clinical letters from the original anonymised clini-
cal letter segment with clinical soundness

2016; Spasic and Nenadic, 2020). Although pub-
lic datasets such as MIMIC and i2b2 provide de-
identified clinical data, they are often restricted
to specific regions and institutions, limiting their
representativeness of diverse clinical conditions
(Humbert-Droz et al., 2022).

To address these challenges, synthetic clinical
letter generation has attracted growing interest.
While existing methods primarily rely on structured
data, Natural Language Generation (NLG) models
provide a promising alternative by integrating lin-
guistic and clinical knowledge (HÜSKE-KRAUS,
2003; Amin-Nejad et al., 2020a; Tang et al., 2023).
Unlike previous studies, we go beyond training
de-identification models to detect and substitute
private information. This work focuses on lever-
aging NLG methods to generate synthetic clinical
letters while indirectly minimising privacy risks.
Although the dataset we used has been anonymised,
we additionally apply a privacy detection and mask-
ing process as an additional verification step to fur-
ther enhance the security of synthetic letters. Our
findings contribute to bridging the gap in privacy-
aware clinical letter generation, facilitating a more
effective approach to processing real-world clinical
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letters and addressing data scarcity in the medical
domain.

A brief example of our objective is shown in
Figure 1. To achieve this, we investigate different
model architectures, segmentation strategies, and
masking techniques and evaluate their effectiveness
both qualitatively and quantitatively. Additionally,
we assess their usability in downstream NLP tasks
such as Named Entity Recognition (NER). We en-
sure compliance with ethical guidelines by using
only de-identified clinical data and adhering to all
data use agreements.

2 Related Work

Biomedical patient data privacy protection has
been an important task for clinical research, es-
pecially when it comes to big data era. Developing
privacy-preserving decision support tools has been
a challenge for statisticians and clinical researchers
(Tucker et al., 2016; Claerhout and DeMoor, 2005;
Terry, 2012; Liu et al., 2015).

Recent studies in clinical Natural Language Pro-
cessing (NLP) explored various tasks, including
NER, de-identification, and NLG. Several tools,
such as SciSpacy (Dernoncourt et al., 2017; Ko-
vačević et al., 2024), are designed to enhance
domain-specific entity recognition, while Philter
(Norgeot et al., 2020) combines both traditional
and modern NLP models to identify and remove
Protected Health Information (PHI). Transformer-
based architectures are widely used in clinical
NLG, particularly in text rewriting, discharge sum-
mary generation, and data augmentation, (Vaswani
et al., 2017). For instance, LT3 (Belkadi et al.,
2023) improves label-to-text generation, while
DeID-GPT (Liu et al., 2023) employs GPT-4 to
identify and generate substitute words for private
information. Micheletti et al. (2024) demonstrate
that Masked Language Models (MLMs) outper-
form Causal Language Models (CLMs) in text
masking tasks. Existing studies either focus on
training models, utilize existing LLMs identify to
identify private information, or concentrate solely
on NLG without much attention in privacy. How-
ever, few studies integrate clinical text generation
with privacy-preservation and diversity considera-
tions, which is the focus of this study.

3 Methodology

To generate clinical letters that retain the original
clinical narrative without being exact duplicates,

we employed various PLMs. Sensitive data is
masked by and substituted with contextually pre-
dicted tokens using PLMs. Additionally, we evalu-
ate different masking strategies to de-identify po-
tentially sensitive information as an additional vali-
dation step. We also considered how non-sensitive
elements, such as stopwords, indirectly influence
the effectiveness of de-identification. A brief work-
flow is presented in Figure 2.

3.1 Dataset
The dataset used in this research comprises 204
clinical letters and 51,574 manually annotated clin-
ical entities from the SNOMED CT Entity Linking
Challenge (A et al., 2000; Johnson et al., 2024,
2023). Protected health information (PHI) was
manually reviewed and replaced with underscores
to ensure privacy. The length of the clinical let-
ters ranges from 360 to 3,329 words, with an aver-
age length of approximately 1,450 words. Each
letter contains patient information, medical his-
tory, and follow-up instructions. They are also
stored in CSV format with unique identifiers and
textual content. Given the input constraints of lan-
guage models, clinical letters are tokenised and
segmented into smaller chunks for processing be-
fore being merged. The entity annotations, sourced
from SNOMED CT, cover 5,336 distinct clinical
concepts and are stored in CSV format. These an-
notations map entity positions in the text to their
corresponding SNOMED CT concepts. An excerpt
from the dataset is shown in Figure 3.

3.2 Clinical Information Preserving
3.2.1 Experimental Setup
The collected dataset consists of raw clinical letters
and annotations, which were first merged into a uni-
fied DataFrame. Manually annotated entities were
then extracted based on their index. Since PLMs
such as BERT, RoBERTa, and T5 have a token limit
(typically 512 (Zeng et al., 2022)), we employed
a variable-length chunking strategy (Subsection
3.2.2) rather than fixed-length truncation. All ex-
periments were conducted using Google Colab
Pro+ environment equipped with a T4 GPU (16GB
VRAM), 52GB of system RAM, and 225GB of
disk space, running Python 3.10, PyTorch 2.3.1,
and Hugging Face Transformers 4.42.4.

For feature extraction, we used word_tokenize
to preserve word integrity, which is crucial for re-
taining clinical entities. For masking and gener-
ation, we followed each model’s native tokeniza-
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Figure 2: Overall Workflow

Figure 3: Text Excerpt from the Original Letter (A et al.,
2000; Johnson et al., 2024, 2023) (‘note_id’: ’17656866-
DS-6’)

tion method. BERT-based models utilize Word-
Piece tokenization, which is effective for handling
out-of-vocabulary words and masked predictions.
T5-based models employ Sentence-Piece tokeniza-
tion, which better handles abbreviations and non-
standard characters (e.g., “COVID-19”)—common
in clinical letters—as it does not rely on spaces for
splitting. The pre-processing pipeline is shown in
Figure 4.

Figure 4: Pre-Processing Pipeline

3.2.2 Splitting Letters into Variable-Length
Chunks

As mentioned above, pre-trained language models
(PLMs) such as BERT, RoBERTa, and T5 have a to-
ken limit (typically 512 (Zeng et al., 2022)), requir-
ing an effective strategy to process longer clinical
letters. To preserve the full semantics of medical
text, we adopted a Variable-Length Chunking ap-
proach based on semantic boundaries, instead of
using tradition truncation methods like fixed-length
or discarding tokens (Hou et al., 2022).

Initially, each letter was processed at the sen-
tence level. However, this approach proved inef-
ficient and lacked sufficient contextual informa-
tion for inference. To address this, we segmented
letters into paragraph-sized chunks while main-
taining sentence integrity. Rather than strictly re-
stricting each paragraph by ‘max_tokens’ limit for
each paragraph, we prioritised preserving com-
plete sentences. To constrain fragmenting sen-
tences, we introduced a ‘max_lines’ threshold. If
adding a sentence exceeds either the ‘max_lines’
or max_tokens limit, it is moved to the next chunk.
However, adhering to the max_tokens constraint
should be our primary consideration due to model
requirements. Therefore, if a single sentence
does not exceed ‘max_lines’ but surpasses the
‘max_tokens’ limit, it is further segmented based
on ‘max_tokens’. To detect sentence boundaries,
we used the NLTK library. Figure 5 illustrates this
process.
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Figure 5: Text Chunking Workflow

3.2.3 Feature Extraction
To generate de-identified clinical letters while main-
taining clinical narratives, we extracted key fea-
tures before masking and generation. These fea-
tures include:

• Document Structure: structural elements
often correspond to capitalized headers and
colons (:). They should be preserved as they
define the document’s format.

• Privacy Information Identification: An
NER model (Stanza (Qi et al., 2020)) detected
entities such as Name, Date, and Location,
while regex masked structured data like phone
numbers and emails.

• Medical Terminology: An NER model pre-
trained on i2b2 (Zhang et al., 2021) supple-
mented manual annotations by recognizing
medical terms (e.g., Test, Treatment, Prob-
lem).

• Special Patterns: Medication dosages (e.g.,
enoxaparin 40 mg/0.4 mL) and abbreviations
(e.g., b.i.d.) were retained unless classified as
private.

• POS Tagging: To assess the impact of POS
tagging on the model’s understanding of clin-
ical text, we employed a MIMIC-III-based
model (Zhang et al., 2021), which outper-
formed NLTK and SpaCy in clinical syntactic
comprehension.

3.3 Clinical Letters Generation
Our objective is to generate synthetic clinical let-
ters that differ from the originals rather than pro-
ducing near-identical copies, as repeated statement

may indirectly reveal the patients’ privacy. While
fine-tuning improves precision and semantic com-
prehension, it risks overfitting, leading to outputs
too closely aligned with the original dataset and
reducing generalisability. Therefore, simply fine-
tuning a model is suboptimal if PLMs can already
generate readable text. Instead, the focus should be
on protecting clinical terms and narratives while
preventing privacy breaches. Since decoder-only
models struggle with long-text processing (Amin-
Nejad et al., 2020b) and require substantial compu-
tational resources, we explored both encoder-only
and encoder-decoder PLMs with random mask-
ing. After evaluating their ability to generate syn-
thetic letters, we selected Bio_ClinicalBERT for
its strong domain adaptation and tested various
masking strategies, as detailed in Appendix A. Ad-
ditionally, given the discussion in Subsection 3.2.2,
we assessed the impact of variable-length chunking
on generation quality with Bio_ClinicalBERT.

3.3.1 Encoder-Only Models

Standard masked language modelling (MLM) was
used in this study. First, tokens were selected for
masking and then corrupted, resulting in masked
text containing both masked and unmasked to-
kens. The model then predicted the masked to-
kens, replacing them with the most probable can-
didates. We predict all masked tokens in paral-
lel within a single forward pass for each clini-
cal letter. If processed sequentially, it might gen-
erate more coherent text, but the computational
complexity would increase significantly (from
O(N) to O(N!)). Given the clinical focus of this
task, we explored models fine-tuned on clinical
or biomedical datasets. However, since no clini-
cally fine-tuned RoBERTa (Zhuang et al., 2021)
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Figure 6: Comparison of Encoder-Only and Encoder-
Decoder Model Architectures

variant was available, RoBERTa-base was used
for comparison. The encoder-only models we
evaluated include Bio_ClinicalBERT (Alsentzer
et al., 2019), medicalai/ClinicalBERT (Wang et al.,
2023), RoBERTa-base (Zhuang et al., 2021), and
Clinical-Longformer (Li et al., 2023).

3.3.2 Encoder-Decoder Models

Although encoder-decoder models are not typically
used for MLM, they excel in coherent text gener-
ation, particularly T5. Therefore, we included T5
family models in our comparisons. Unlike BERT,
which replaces masked tokens with ‘<mask>’, the
T5 family models indexing masked words as ‘ex-
tra_id_x’. The text, with these words removed,
serves as input for generation, referred to as "text
with blanks". For consistency, ‘<mask>’ was later
used when displaying masked text. Additionally,
a structured prompt was required, formatted as
"Fill in the blanks in the following sentence in clin-
ical background" + text with blanks. Like encoder-
only models, masked tokens are predicted in par-
allel across clinical letters. In this part, we experi-
mented with T5-base (Raffel et al., 2020), Clinical-
T5-Base (Eric and Johnson, 2023; Goldberger et al.,
2000), Clinical-T5-Sci (Eric and Johnson, 2023;
Goldberger et al., 2000), and Clinical-T5-Scratch
(Eric and Johnson, 2023; Goldberger et al., 2000)
for comparison. The architectures of encoder-only
and encoder-decoder models are shown in Figure
6.

3.4 Evaluation
Both quantitative and qualitative methods are used
to evaluate performance. Additionally, a down-
stream NER task assesses whether synthetic clin-
ical letters can replace raw data. The evaluation
pipeline is illustrated in Figure 8 of the Appendix.

3.4.1 Quantitative Evaluation
To assess the quality of synthetic letters, we con-
duct quantitative evaluation across multiple dimen-
sions, including inference performance, readability,
and similarity to raw data.

• Standard NLG Metrics: ROUGE, BERT
Score, and METEOR assess textual similar-
ity while ensuring generated text differs from
the original. Synthetic text is compared with
the original, and a baseline is established by
comparing masked text to the original. The
evaluation score should exceed the baseline
but stay below 1.

• Readability Metrics: SMOG, Flesch Read-
ing Ease, and Flesch-Kincaid Grade Level as-
sess readability, with SMOG prioritised for
clinical relevance.

• Advanced Text Quality Metrics: Perplexity,
subjectivity, and information entropy are used
to evaluate informativeness and subjectivity.

• Invalid Prediction Rate: Measures the ratio
of invalid token predictions (e.g., subwords,
punctuation) to assess the model’s ability to
generate meaningful text.

• Inference Time: Records generation time
per letter, with shorter times indicating im-
proved computational efficiency for large-
scale deployment.

3.4.2 Qualitative Evaluation
While some synthetic texts performed well on most
metrics, they did not always appear satisfactory
upon visual inspection, whereas others with aver-
age scores appeared more natural. Although human
evaluation is the most reliable method for assessing
clinical letters, it is limited by time constraints and
workload demands. Thus, combining qualitative
and quantitative evaluations helps the identification
of the most effective quantitative metrics for model
evaluation. Once identified, one metric can serve
as the benchmark standard, while others function
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Model Evaluation
RoBERTa-base medicalai / Clini-

calBERT
Clinical-
Longformer

Bio _ Clinical-
BERT

ROUGE-1
Generation Performance 86.54 88.46 89.52 84.91

Baseline 84.91 84.91 84.91 84.91
ROUGE-2

Generation Performance 74.51 78.43 79.61 73.08
Baseline 73.08 73.08 73.08 73.08

ROUGE-L
Generation Performance 86.54 88.46 89.52 84.91

Baseline 84.91 84.91 84.91 84.91
BERTScore F1

Generation Performance 0.81 0.83 0.84 0.85
Baseline 0.79 0.65 0.79 0.65

METEOR
Generation Performance 0.87 0.88 0.90 0.86

Baseline 0.85 0.85 0.85 0.85
Flesch Reading Ease

Generation Performance 10.24 18.70 9.22 16.67
Baseline (Original) 8.21 8.21 8.21 8.21

Baseline (Mask) 16.67 16.67 16.67 16.67

Table 1: Encoder-Only Models Comparison at the Sentence Level (The ‘Baseline’ without annotations was calculated
by comparing masked text to the original text)

as complementary indicators. To address this, we
selected a representative sample of clinical letters
based on evaluation results, analysed the impact of
different generation methods on these outcomes,
and validated the findings with six additional sam-
ples to verify their consistency with quantitative
metrics.

3.4.3 Downstream NER task
Beyond qualitative and quantitative evaluation, syn-
thetic clinical letters were tested in a downstream
NER task to assess their quality and potential as
replacements for real clinical data. As shown in
Figure 7, entities were first extracted from clinical
letters using ScispaCy 1 and then used to train a
base SpaCy 2 model. The trained model was ap-
plied to the test set, and the extracted entities were
compared with those initially identified by Scis-
paCy to evaluate the consistency of entity recogni-
tion between synthetic and original clinical letters.

4 Results and Discussion

4.1 Model Comparison and Evaluation
Metric Selection

4.1.1 Qualitative Results
Among encoder-only models, all four success-
fully generated meaningful words for masked
input, correctly inferring ’r’ from ’R ankle’,

1https://allenai.github.io/scispacy/
2https://spacy.io/

demonstrating strong contextual understanding.
Bio_ClinicalBERT further introduced relevant
words absent from the input (e.g., "admitted")
while maintaining clinical coherence, producing
clinically sound sentences even without direct to-
ken matches, and effectively retaining clinical in-
formation while introducing diversity.

For encoder-decoder models, T5-base outper-
formed other variants but produced irrational out-
puts, including incomplete or nonsensical phrases
(e.g., "open is a ___ yo male"). The other
three T5 family models frequently generated de-
identification (DEID) tags instead of meaningful re-
placements due to corpus biases. Overall, encoder-
only models outperformed encoder-decoder mod-
els, aligning with previous research (Micheletti
et al., 2024) showing that Masked Language Mod-
elling (MLM) outperforms Causal Language Mod-
elling (CLM) in medical text generation.

4.1.2 Quantitative Results

For sentence-level results, among encoder-only
models, clinical-related models consistently out-
perform general domain RoBERTa-base, aligning
with qualitative observations. Bio_ClinicalBERT,
despite having no word overlap in this sample,
achieves the highest BERTScore while maintain-
ing a clinically coherent output. The encoder-
decoder models generally perform poorly in most
metrics compared to encoder-only models, except
for METEOR. Their BERTScores are significantly
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Figure 7: Workflow of Downstream NER Task

lower than the baseline, suggesting a large devia-
tions from the original meaning. These findings
further support the validity of BERTScore as the
primary evaluation metric, with other metrics serv-
ing as supplementary references.

On the full dataset, all encoder-only models
performed similarly, contradicting our hypothesis
that clinical-related models would outperform base
models. This suggests that training in clinical data
does not significantly improve synthetic letter qual-
ity, likely because most clinical tokens were pre-
served, leaving only general tokens masked in our
settings. BERTScore remains a reliable primary
metric, as qualitative and quantitative evaluations
align at both the sentence and dataset levels.

4.2 Variable-Length Chunk Segmentation

As mentioned in Subsection 3.2.2, we set
‘max_lines’ as a variable parameter and assigned
a fixed value of 256 to ‘max_tokens’. We tested
increasing ‘max_lines’ values until the average to-
kens per chunk peaked, indicating that more clin-
ical information could be preserved. Due to time
constraints, the initial experiment on seven letters
showed that 41 was the optimal ‘max_lines value’,
where inference time decreased up to this point but
rose beyond it (Table 3). This trend was consistent
in 10- and 30-letter samples. However, inference
time reflects only a general trend rather than pre-
cise measurements, as it is influenced by multiple
factors, including chunk size and network condi-

tions.

4.3 Masking Strategies

4.3.1 Random Masking
We evaluated the impact of masking ratios (i.e.,
masked tokens / total tokens) on the quality of syn-
thetic clinical letters using Bio_ClinicalBERT. As
expected, higher masking ratios led to lower sim-
ilarity metrics, but all evaluation values remained
above the baseline while staying below 1.0, indi-
cating that the model preserves clinical context and
generates understandable text. Notably, at a 1.0
masking ratio, BERTScore increased from 0.29 to
0.63, demonstrating Bio_ClinicalBERT’s ability
to retain meaningful clinical information despite
extensive masking.

4.3.2 Masking Only Nouns
Masking nouns, which often correspond to Per-
sonally Identifiable Information (PII), helps verify
de-identification while retaining clinical context.
We found that masking fewer nouns led to better
performance across all metrics, consistent with
random masking. When the noun masking ratio
reached 1.0, BERTScore increased from 0.70 to
0.89, indicating meaningful noun predictions. All
evaluations are higher than the baseline but lower
than 1.0. However, as the noun masking ratio in-
creased further, BERTScore decreased significantly.
To generate synthetic clinical letters that retain clin-
ical information while being distinguishable, we
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Model Evaluation
T5-base Clinical-T5-base Clinical-T5-

Scratch
Clinical-T5-Sci

ROUGE-1
Generation Performance 86.79 85.19 87.38 80.36

Baseline 73.77 73.77 73.77 73.77
ROUGE-2

Generation Performance 75.00 71.70 75.25 69.09
Baseline 63.33 63.33 63.33 63.33

ROUGE-L
Generation Performance 84.91 83.33 87.38 80.36

Baseline 73.77 73.77 73.77 73.77
BERTScore F1

Generation Performance 0.44 0.40 0.45 0.40
Baseline 0.50 0.50 0.50 0.50

METEOR
Generation Performance 0.85 0.83 0.83 0.82

Baseline 0.85 0.85 0.85 0.85
Flesch Reading Ease

Generation Performance 8.21 8.21 19.71 8.21
Baseline (Original) 8.21 8.21 8.21 8.21

Baseline (Mask) 8.21 8.21 8.21 8.21

Table 2: Encoder-Decoder Models Comparison at the Sentence Level (The Baseline without annotations was
calculated by comparing masked text to the original text)

max_lines 10 20 30 35 40 41 42 45 50
Inference
Time
(min)

13:47 8:10 6:44 5:24 5:10 5:01 5:12 5:54 6:05

Average
Tokens
Per
Chunk

51.59 90.23 131.26 136.55 144.34 146.43 146.43 146.43 146.43

Table 3: Comparison for different Chunk Size

recommend masking around 80% of nouns to main-
tain balanced evaluation scores. Full noun masking
significantly reduces synthetic letter quality.

4.3.3 Masking Only Verbs

Masking verbs also help identify appropriate token
types for masking while retaining clinical meaning.
Although verbs are crucial for describing clinical
events, they can often be inferred from context.
Therefore, masking verbs may have a slight effect
on the synthetic clinical letters quality, but can also
introduce some variation. From our experimental
investigations, masking verbs followed a similar
trend to other masking strategies, with both invalid
prediction rates and NLG metrics decreasing as
the masking ratio increased. This is likely due
to two factors: the model prioritises generating
coherent sentences and may be less sensitive to
verbs due to their relative scarcity in the raw data.
BERTScore remained high at 0.95 when all verbs
were masked, compared to 0.89 when all nouns
were masked.

4.3.4 Masking Only Stopwords

Masking stopwords aims to reduce noise, allow-
ing the model to focus on clinically relevant in-
formation while enhancing generalisation in syn-
thetic clinical letters to distinguish them from ac-
tual letters. Additionally, varying syntax by mask-
ing stopwords mitigates the risk of PHI reconstruc-
tion from adversarial attacks. It is often combined
with other masking strategies to strengthen privacy
protection. From our experiments, the results fol-
low a similar trend to random masking, where a
higher masking ratio leads to lower ROUGE Score
and BERTScore. Notably, the Invalid Prediction
Rate is lowest at a medium masking ratio, as higher
ratios cause information loss, while lower ratios
make small prediction errors more impactful. The
overall low Invalid Prediction Rate and high
BERTScore suggest that stopwords have minimal
influence on the model’s contextual understanding.

4.3.5 Comparison of Identical Actual
Masking Ratios

To further observe how different masking strate-
gies influence the generation of clinical letters,
we compared the results using the same actual
masking ratios but with different strategies, where
the number of masked tokens remained constant.
Masking only stopwords resulted in the highest
BERTScore and lowest invalid prediction rate, con-
firming that stopwords have minimal impact on
meaning. Conversely, masking nouns and verbs
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performed worse than random masking, suggest-
ing that excessive masking of these token types can
compromise the clinical information preservation.

4.3.6 Hybrid Masking
Hybrid masking strategies are compared at the
same actual masking ratio. Masking only stop-
words yielded the best performance, while adding
noun masking reduced performance, confirming
that masking nouns negatively affects results. How-
ever, it still outperformed random masking, sug-
gesting that stopwords have a greater influence
than nouns. Additionally, when verbs were fur-
ther masked alongside nouns and stopwords, per-
formance deteriorated further, indicating that verbs
also negatively impact model performance.

4.3.7 Comparison with and without Entity
Preservation

To assess the impact of entity preservation, we com-
pared results with a baseline model that did not
retain entities. When 40% of nouns were masked
while preserving entities, the models outperformed
those without entity preservation. Additionally,
with a 0.3 masking ratio, entity-preserving mod-
els had lower ROUGE-1 and ROUGE-2 scores but
higher ROUGE-L and BERTScores, indicating less
direct overlap with the original text but better nar-
rative retention. These findings confirm that pre-
serving entities and document structure enhances
model performance, matching our goal of generat-
ing clinically coherent yet diverse synthetic letters.

4.3.8 Downstream NER Task
We evaluated whether synthetic letters can replace
original (anonymised) clinical letters in NER tasks
for research and model training. SpaCy models
trained on synthetic letters performed similarly to
those trained on original letters, achieving compara-
ble evaluation scores with an F1 score close to Scis-
paCy’s 0.843. This suggests that unmasked context
does not significantly impact model understanding.
Therefore, synthetic letters can be effectively used
in NER tasks to replace real-world clinical letters,
ensuring data privacy.

5 Conclusion

This study explores de-identified synthetic clinical
letters that preserve document structure and clini-
cal narratives while enhancing diversity. Encoder-
only models outperformed encoder-decoder mod-
els, with base models performing comparable to

Metric spaCy
Trained on
Original
Letters

spaCy
Trained on
Synthetic
Letters

Performance
Delta (∆)

F1 0.855 0.853 -0.002
P 0.865 0.863 -0.002
R 0.846 0.843 -0.003

Table 4: Comparisons on Downstream NER Task (Pre-
cision, Recall, F1)

clinical-specific models when clinical terms were
preserved. Variable-length chunking strategy ef-
fectively maintained sentence meaning, and POS-
based masking influenced output quality. Masking
stopwords improved text quality, whereas masking
nouns and verbs had negative impacts. BERTScore
was identified as the primary evaluation metric,
aligning well with both quantitative and qualitative
evaluations. A downstream NER task demon-
strated the feasibility of replacing real-world let-
ters with synthetic ones for this task. Unlike exist-
ing research that focuses on improving similarity
through model fine-tuning or training a privacy
detection and substitution model, this study em-
phasises preserving clinically relevant information
while maintaining diversity. It provides a frame-
work for better utilisation of real-world datasets
while mitigating privacy risks.

Limitations

Although the strategies outlined above facilitate
the generation of diverse, de-identified synthetic
clinical letters, several limitations remain. One pri-
mary concern is the quality of the data set, which is
affected by spelling errors, ambiguous polysemous
words, and limited data volume, potentially impact-
ing generalisability. Additionally, the model strug-
gles with long-tail phenomena, frequently failing
to comprehend novel words that are common in the
clinical domain. Moreover, processing shorthand
and abbreviations presents an additional challenge,
often resulting in misinterpretations of key medical
terms.

Moreover, the limited scope of the dataset, which
includes only 204 letters, constraints generalising
the findings to broader clinical scenarios. Further-
more, the evaluation framework, primarily based
on BERTScore, focuses on textual similarity and
fails to comprehensively evaluate other critical as-
pects such as privacy protection efficacy, text diver-
sity, and clinical soundness.

Future work should focus on evaluating de-
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identification performance using non-anonymous
datasets, developing a comprehensive evaluation
benchmark and enhancing clinical and general
knowledge integration, e.g. (Shaji et al., 2025).
The evaluation benchmark should include:

• Privacy protection evaluation using alternative
PHI detection models, Membership Inference
Attacks, and Model Inversion Attacks (Fang
et al., 2024; Ying et al., 2020).

• Diversity evaluation through TF-IDF cosine
similarity or Dependency Tree Edit Distance
(Thompson et al., 2015; Tsarfaty et al., 2012).

• Clinical soundness evaluation using MEDNLI
(Medical Natural Language Inference) or
GPT-based assessments (Romanov and Shiv-
ade, 2018).

Additionally, techniques such as synonymous sub-
stitution, entity linking to SNOMED CT, and spe-
cialised spelling correction could be leveraged to
enhance the quality and diversity of synthetic clin-
ical letters, e.g. (Romero et al., 2025). Another
potential direction is leveraging models to predict
and replace privacy-sensitive content that was orig-
inally substituted with underscores.

Impact Statement

We use only de-identified clinical data from
MIMIC and strictly adhere to all data use agree-
ments. The dataset has already been anonymised,
and in this project, we further applied dual
anonymisation and re-generation techniques to en-
hance privacy protection. These strategies are de-
scribed in Appendix A.

All code used in this project, which will be re-
leased, is adapted from well-known language mod-
els open-sourced in Hugging Face. However, if
applied to real-world clinical letters, it must be re-
viewed prior to release to mitigate potential data
privacy risks. Synthetic clinical letters can be repro-
duced using the MIMIC-IV dataset and the code
provided. However, if users apply this method
to process privately collected clinical letters, they
should ensure compliance with data protection reg-
ulations and clarify copyright ownership.

Our findings help bridge the gap in NLG-based
clinical letter generation, facilitating better utilisa-
tion of real-world clinical letters by re-generating
text while masking sensitive information. This
approach helps address data scarcity in medical

research and education. However, challenges inher-
ent to LLMs, such as hallucinations and data bias,
still persist.
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A Different Masking Strategies

To make the synthetic letters more readable, clini-
cally sound, and privacy-protective, different mask-
ing strategies are experimented based on the fol-
lowing principles.

• Retain Annotated Entities: Preserve clinical
knowledge and context.

• Preserve Extracted Structures: Keep tem-
plates for clinical letters intact.

• Mask Detected Private Information: Useful
for de-identification, especially in real-world
applications.

• Preserve Medical Terminology: Ensure es-
sential clinical terms remain unmasked.

• Preserve Non-Private Numbers: Keep
medical-related numbers (e.g., dosage, heart
rate) while masking private ones (e.g., phone
numbers, postal codes).

• Preserve Punctuation: Maintain punctua-
tion marks such as periods (‘.’) and under-
scores (‘___’) to improve text clarity and co-
herence (Lamprou et al., 2022).

• Retain Special Patterns in Samples: Retain
clinically relevant patterns (e.g. ‘Ibuprofen
> 200 mg’, etc) identified from raw sample
letters to preserve important clinical details.

Based on the principles above, different masking
strategies were experimented with:

• Mask Randomly: Tokens are randomly
masked in 10% increments (0%-100%) to as-
sess how the number of masked tokens affects
synthetic letter quality and provides a baseline
for other masking strategies.

• Mask Based on POS Tagging: Tokens are
masked based on their part-of-speech (POS)
category (e.g., only nouns, only verbs) in 10%
increments to analyse POS influence on con-
text understanding.

• Mask Stopwords: Stopwords are masked to
reduce noise and enhance text diversity while
ensuring that crucial clinical information re-
mains intact. This approach can also serve
as an indirect strategy to prevent reconstruc-
tion by attackers leveraging the same syntactic
patterns.
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• Hybrid Masking Using Different Ratio Set-
tings: Combines different masking strategies
at varying ratios (e.g., 50% nouns + 50% stop-
words) to evaluate their combined effects.

B Evaluation Pipeline

The detailed evaluation pipeline is shown in Figure
8.

C More Evaluation Details

We evaluated the performance of encoder-only and
encoder-decoder models at both the sentence level
(using the sample sentence in Table 1 and Table
2) and the full dataset level in Table 5. Although
SMOG is commonly used for medical datasets, it
is less suitable for sentence-level analysis; thus,
Flesch Reading Ease was used instead.

As shown in Table 7 and Table 8, readability
metrics showed minor variations, with SMOG and
Flesch-Kincaid scores occasionally falling below
both the masked and original baselines, likely due
to punctuation or spacing errors at high masking
ratios. Perplexity remained stable, suggesting that
synthetic letters are effective for training clinical
models, while information entropy was preserved
regardless of masking ratios. Subjectivity scores
remained consistent, mitigating concerns about
model bias.
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Figure 8: Evaluation Pipeline

Model Evaluation
RoBERTa-base medicalai / Clini-

calBERT
Clinical-
Longformer

Bio_ Clinical-
BERT

ROUGE-1
Generation Performance 92.98 93.63 94.66 93.18

Baseline 85.64 85.44 85.64 85.61
ROUGE-2

Generation Performance 86.10 87.42 89.50 86.50
Baseline 74.96 74.64 74.96 74.92

ROUGE-L
Generation Performance 92.54 93.22 94.38 92.71

Baseline 85.64 85.44 85.64 85.61
BERTScore F1

Generation Performance 0.91 0.90 0.92 0.90
Baseline 0.82 0.63 0.82 0.63

Table 5: Encoder-Only Models Comparison on the Full Dataset with Masking Ratio 0.4 (The Baseline was calculated
by comparing masked text to the original text)
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Bio_ClinicalBERT Masking Ratio
1.0 0.8 0.6 0.4 0.2 0.0

ROUGE-1
Generation Performance 76.28 83.75 88.91 93.18 96.76 99.51

Baseline 64.05 71.56 78.56 85.61 92.63 99.22
ROUGE-2

Generation Performance 62.60 70.77 78.81 86.50 93.42 99.02
Baseline 51.72 57.88 65.38 74.92 86.27 98.61

ROUGE-L
Generation Performance 74.33 81.69 87.71 92.71 96.65 99.50

Baseline 64.05 71.56 78.56 85.61 92.63 99.22
BERTScore

Generation Performance 0.63 0.75 0.83 0.90 0.95 0.99
Baseline 0.29 0.39 0.50 0.63 0.79 0.98

METEOR
Generation Performance 0.70 0.80 0.87 0.93 0.97 1.00

Baseline 0.66 0.72 0.78 0.85 0.92 0.99

Table 6: Standard NLG Metrics Across Different Masking Ratios Using Bio_ClinicalBERT (The Baseline was
calculated by comparing masked text to the original text)

Bio_ClinicalBERT Masking Ratio
1.0 0.8 0.6 0.4 0.2 0.0

SMOG
Generation Performance 8.91 9.18 9.50 9.79 10.00 10.13

Baseline (Original) 10.16 10.15 10.15 10.15 10.15 10.15
Baseline (Mask) 9.04 9.29 9.52 9.74 9.95 10.13

Flesch Reading Ease
Generation Performance 63.77 63.44 61.41 59.54 58.06 57.02

Baseline (Original) 56.85 56.87 56.87 56.87 56.87 56.87
Baseline (Mask) 70.11 67.39 64.75 62.15 59.62 57.13

Flesch-Kincaid Grade
Generation Performance 7.32 7.70 8.24 8.66 9.01 9.22

Baseline (Original) 9.26 9.26 9.26 9.26 9.26 9.26
Baseline (Mask) 7.41 7.79 8.16 8.52 8.87 9.22

Table 7: Readability Metrics Across Different Masking Ratios Using Bio_ClinicalBERT (The Baseline without
annotations was calculated by comparing masked text to the original text)

Bio_ClinicalBERT Masking Ratio
1.0 0.8 0.6 0.4 0.2 0.0

Perplexity
Generation Performance 2.24 2.32 2.31 2.30 2.29 2.29

Baseline (Original) 2.22 2.28 2.28 2.28 2.28 2.28
Baseline (Mask) 250.37 65.42 24.29 8.95 4.03 2.39

Information Entropy
Generation Performance 5.46 5.80 5.92 5.96 5.98 5.98

Baseline (Original) 5.98 5.98 5.98 5.98 5.98 5.98
Baseline (Mask) 4.51 4.93 5.29 5.60 5.85 5.97

Subjectivity
Generation Performance 0.32 0.32 0.32 0.32 0.33 0.33

Baseline (Original) 0.33 0.33 0.33 0.33 0.33 0.33
Baseline (Mask) 0.41 0.39 0.38 0.37 0.35 0.33

Table 8: Advanced Text Quality Metrics Across Different Masking Ratios Using Bio_ClinicalBERT (The Baseline
without annotations was calculated by comparing masked text to the original text)
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Abstract

Sharing sensitive texts for scientific purposes
requires appropriate techniques to protect the
privacy of patients and healthcare personnel.
Anonymizing textual data is particularly chal-
lenging due to the presence of diverse unstruc-
tured direct and indirect identifiers. To miti-
gate the risk of re-identification, this work in-
troduces a schema of nine categories of indi-
rect identifiers designed to account for different
potential adversaries, including acquaintances,
family members and medical staff. Using this
schema, we annotate 100 MIMIC-III discharge
summaries and propose baseline models for
identifying indirect identifiers. We release the
annotation guidelines, annotation spans (6,199
annotations in total) and the corresponding
MIMIC-III document IDs to support further
research in this area.1

1 Introduction

Access to data remains a major bottleneck in de-
veloping machine learning models for healthcare.
Since data contains sensitive details about individ-
uals, it cannot be shared readily outside hospitals.
Interactions with legal departments and data se-
curity can be cumbersome, and regulations are
somewhat unclear, particularly where text is con-
cerned. However, the concept of de-identification
is well-defined: according to HIPAA,2 it requires
the removal of a list of direct identifiers, known
as protected health information (PHI),3 including
names and addresses.

Classical de-identification of text data has been
explored for many years with various approaches
(Sweeney, 1996; Gupta et al., 2004; He et al.,
2015; Kocaman et al., 2023) and state-of-the-art de-
identification systems achieve an F1-score ≥ 95%

1https://zenodo.org/records/15044596
2The U.S. Health Insurance Portability and Accountability

Act of 1996.
3https://www.hhs.gov/hipaa/for-professionals/

special-topics/de-identification/index.html

[...] Patient is a 33-year-old male, admitted at 12:20
after a motor vehicle accident.
[...] He works as a carpenter and lives with his 28-
year-old girlfriend in assisted living. No known
health insurance, and he is currently on disability
assistance. [...] He was noted to be obese (BMI 32)
with a height of 178 cm and weight of 110 kg.
[...] He was evaluated by the Emergency Department
team and consulted with Orthopedics for suspected
fractures. [...] Patient reports playing basketball once
a week [...].

Figure 1: A snippet of a fictitious discharge summary
with annotations according to our IPI schema in red.

on academic benchmarks (Kocaman et al., 2023;
Yogarajan et al., 2020). However, additional man-
ual effort is needed to remove remaining PHIs, and
more importantly, unstructured text often contains
additional information beyond PHIs that can re-
veal an individual’s identity (Feder et al., 2020),
making the manual inspection process even more
complex.

The concept of anonymization goes further: it
is defined as an irreversible procedure that is ap-
plied to the data such that no information can be
linked to any specific individual anymore (Meystre
et al., 2010). While the terms de-identification and
anonymization are often used interchangeably, they
refer to distinct concepts (Chevrier et al., 2019).
De-identification focuses solely on removing di-
rect identifiers, whereas anonymization must also
address indirect identifiers. Indirect identifiers are
pieces of information that are potentially publicly
known about an individual but do not lead to rei-
dentification when considered alone. However, in
combination with other background or external
knowledge, they can be used to uniquely identify
an individual (Pilán et al., 2022). Figure 1 shows a
synthetic discharge summary with highlighted in-
formation (beyond direct identifiers) that may help
reveal a person’s identity.
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Despite the importance of anonymization, rel-
atively few studies have systematically addressed
text anonymization beyond traditional PHI detec-
tion. Gardner and Xiong (2008) developed a sys-
tem for extracting and suppressing sensitive infor-
mation other than PHIs, but it was limited to di-
agnoses. Kolditz et al. (2019) created a dataset
with PHIs and added more categories, namely med-
ical units, relatives and typists. Feder et al. (2020)
annotated a set of demographic traits in clinical
notes and proposed a framework for detecting sen-
tences that include such traits. Pilán et al. (2022)
presented a benchmark dataset comprising anno-
tations of court cases and evaluation metrics to
assess the performance of anonymization methods.
The annotations cover categories such as names
and quantities, and annotators mark each of the
entities as a direct or indirect identifier. Moreover,
Yang et al. (2024) proposed a framework for text
anonymization based on large language models
(LLMs). This framework measures anonymization
success simply by checking whether an adversarial
LLM can guess the name of the person to whom
the text belongs.

Building on prior work, our study defines and
identifies information beyond traditional personal
health identifiers within a controlled framework.
We introduce a schema of indirect personal iden-
tifiers (IPIs) optimized for a medical context and
apply it to annotate relevant spans in discharge
summaries from the Medical Information Mart for
Intensive Care (MIMIC-III) dataset (Johnson et al.,
2016). We define the problem of structurally iden-
tifying IPIs as a span classification problem, rather
than a sentence classification problem as in Feder
et al. (2020), to avoid removing whole sentences
(which might include other medical information)
and to reduce information loss during anonymiza-
tion. Finally, we evaluate the performance of vari-
ous models in detecting the annotated identifiers.

2 Indirect Personal Identifiers (IPI)

The type of information that may lead to re-
identification in a given text is domain-dependent
and requires unique analysis (Sweeney, 2000). In
the following, we introduce a schema covering as-
pects of indirect personal identifiers (IPI) and use
it to annotate spans in discharge summaries from
MIMIC-III. To construct our dataset, we randomly
sampled 100 summaries with lengths ranging from

500 to 2,500 words.4

2.1 IPI Schema

Our proposed schema builds on related work by
Kolditz et al. (2019) and Feder et al. (2020), as
well as our own manual analysis of discharge sum-
maries. From prior work, we incorporate concepts
like medical unit (Kolditz et al., 2019), expanding
it to include medical services, teams and medical
personnel. We adapt family structure from Feder
et al. (2020), broadening it to include family deci-
sions. We also integrate living arrangements into
a new category, DETAILS, which covers indirect
identifiers such as addresses (e.g., ‘lives in prison’),
dates (‘he turned 18 right before COVID started’),
and references to other PHIs like license numbers.

Additionally, we adapt the category occupation
into SEC, which covers socio-economic and crim-
inal history. Our LFSTL category includes habits,
sports and diet alongside the drug category from
Feder et al. (2020). We redefine the category ca-
sually noticeable in our category APPEARANCE

to specifically cover body piercings, tattoos and
scars. Based on our manual analysis, we introduce
TIME to capture time-related expressions such as
timestamps for taking lab values, admission days
and time references around events such as surg-
eries. A brief overview of our final categories is
provided below,5 with further details available in
Appendix A.

APPEARANCE Descriptions of appearance, e.g.
freshly healed scar behind right ear, and men-
tions of weight, height or body modifications.

CIRCUMSTANCES Any mention of an event (e.g.
an accident) that caused an injury or happened
in a medical facility. This category also in-
cludes specific statements or behavior, e.g.
crashed his car into a dumpster or refused
medication because she does not believe in it.

SEC Mentions of information concerning socio-
economic or criminal history, such as employ-
ment (e.g. is a retired police officer), health
insurance (e.g. has no health insurance) or so-
cial/legal status (does not have valid papers).

FAMILY Any mention of family-related informa-
tion, such as being adopted, as well as the

4More details on the dataset in Appendix B.
5The following examples were created by the authors to

avoid presenting data from MIMIC-III directly.
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family’s medical history or involvement (e.g.
daughter serves as her health care proxy).

FCLT_PERSONNEL Mentions of healthcare fa-
cilities (ICU) or medical personnel (nursing
team).

TIME All mentions of age or time-related infor-
mation (e.g., postoperative day number 5).

LFSTL Regular activities and habits, such as
sports or diet (e.g. reports sticking to low-
sodium diet), but also tobacco, alcohol or sub-
stance use.

DETAILS All mentions of PHIs that were not de-
tected, or a description of a PHI (e.g. lives in
a halfway house, which reveals information
about the person’s address).

OTHER All other kinds of non-medical but infre-
quent information that might be sensitive, e.g.
languages, ethnicity or sexual orientation.

2.2 Data Annotation

Two annotators independently labelled the same
set of 100 de-identified discharge summaries using
the nine categories described above. The anno-
tations were then consolidated, meaning that all
annotations from both annotators were discussed
and resolved into one final version of the corpus
presented here. Inter-annotator agreement (IAA)
was calculated using the average pairwise relaxed
F1-score between the annotators’ marked entities.6

We chose F1-score for calculating agreement as
it proved to be a more usable and interpretable
measure for annotations such as span classification,
where the number of negative examples is very
large (or unknown) and the probability of chance
agreement on positive examples (the desired spans)
is close to zero (Hripcsak and Rothschild, 2005).
The overall agreement resulted in an F1-score of
0.87. Table 4 in Appendix B lists the scores for
each category. The annotators achieved the high-
est agreement in the categories TIME (F1 = 0.89),
LFSTL (F1 = 0.88) and FAMILY (F1 = 0.87), and
the lowest on DETAILS (F1 = 0.41).

The finalized dataset consists of 6,199 annota-
tions, the majority of them belonging to the cat-
egories TIME (64.62%) and FCLT_PERSONNEL

(22.92%). This is expected, as most discharge
6Details about the annotators and IAA can be found in

Appendix B.

summaries contain detailed temporal descriptions,
department consultations and precise timestamps,
such as when lab values were recorded. In contrast,
information such as spoken languages or accident
details appeared less frequently, as they were case-
dependent and varied based on the typist’s prefer-
ence. Table 1 shows the number of annotations
per category and their percentage in the overall
annotations.

Category #Annotations Proportion

FAMILY 273 4.4%
APPEARANCE 132 2.13%
CIRCUMSTANCES 99 1.6%
SEC 59 0.95%
FCLT_PERSONNEL 1421 22.92%
TIME 4006 64.62%
LFSTL 144 2.32%
DETAILS 32 0.52%
OTHER 33 0.53%

Table 1: Number of annotations per category in 100
discharge summaries from MIMIC-III.

2.3 Data Characteristics

Overall, we focused on identifying indirect identi-
fiers on the span level that may either be publicly
known or describe a person’s status, behaviour
or appearance. Our final curated annotations re-
veal various such risks. For example, spans la-
beled as CIRCUMSTANCES contain descriptive in-
formation about accidents that could facilitate re-
identification by witnesses. These details may en-
able an adversary to retrieve additional information
about the patient, e.g. by searching online to find
reports about the incident. Moreover, this category
might encompass other sensitive or memorable de-
scriptions, such as instances of patient aggression
toward staff or refusal of medication.

The 59 annotations from the SEC category re-
veal information about a person’s criminal history,
which is public information in the U.S. (Jacobs and
Larrauri, 2012) and therefore easy to look up even
for a layperson. This category covers mentions
of the patient being incarcerated, which may, in
some cases, reveal the patient’s exact address. Fi-
nally, the annotations include various information
about patients’ social status, such as being home-
less or not having health insurance, or lifestyle,
such as information about drinking, smoking or
sports. Although these mentions are relatively in-
frequent in the dataset, they may pose a high re-
identification risk. Unique or rare characteristics –
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especially those that distinguish an individual from
the broader population – can drastically narrow
down the pool of potential matches, making re-
identification more feasible.

3 Experiments

To provide a first baseline for the automatic detec-
tion of the proposed set of indirect identifiers in
medical texts, we experimented with BERT (De-
vlin et al., 2019) as well as open-source LLMs.
We split the data into training (60%), development
(15%) and test (25%) sets, and used the dev set
for hyperparameter optimization. Table 2 shows
statistics about the final data split.

We fine-tuned a BERT model for span clas-
sification using the HuggingFace library (Wolf
et al., 2020). For the LLM experiments, we
used Llama-3.1-8b-Instruct, Mistral-7B-Instruct-
v0.3 and Qwen2.5-14B-Instruct in both zero-shot
and three-shot settings leveraging Declarative Self-
improving Python (DSPy) (Khattab et al., 2024) to
automatically refine and optimize the prompt and
Pydantic7 to obtain structured and type-validated
output from the LLMs. An example prompt is
shown in Appendix E. We implemented an LLM
agent for each category and provided DSPy with
the description of each category as defined in the
annotation guidelines. Model performance was as-
sessed using relaxed precision, recall and F1-score.
Further details on data preprocessing, model fine-
tuning and evaluation can be found in Appendix C.

train dev test total

#documents 60 15 25 100
#sections 592 162 253 1007
#annotations 3712 927 1560 6199

Table 2: Statistics for the train, development and test
sets. ‘#sections’ represents the number of sections the
documents were split into for each set.

3.1 Results

Detailed evaluation results for the BERT model
can be found in Table 3. Notably, recall
is higher than precision in almost all cases.
Phrases containing socio-economic or criminal in-
formation (SEC), medical facilities and personnel
(FCLT_PERSONNEL) and time expressions (TIME)
achieve higher scores than the other categories;

7https://pypi.org/project/pydantic/

i.e. less frequent categories tend to have a lower
F1-score, which was also true for the IAA scores.
The lightweight LLMs, which are explored here
for the first time for this specific task, performed
poorly on the test set with F1-score ≤ 51% (mi-
cro) and recall ≤ 47% (more details in Table 5).
The 3-shot setting did not always improve perfor-
mance. Interestingly, performance dropped in some
cases when providing the models with examples.
A similar phenomenon was also observed in Kwon
et al. (2024) when using Llama3 for information
extraction: the model achieved better results in
some cases in the zero-shot setting in comparison
to few-shot. This and the overall low performance
of the LLMs in comparison to BERT highlights our
doubts about the suitability and effectiveness of
using LLMs for extracting our proposed categories
of indirect identifiers. Moreover, our evaluation
showed that the LLMs sometimes failed to follow
the pre-defined output format and preserve the orig-
inality of the spans in the original texts. Moreover,
they frequently hallucinated and extracted irrele-
vant or non-existent information.

Category P R F1 Support

DETAILS 0.13 0.50 0.21 4
FAMILY 0.67 0.96 0.79 73
APPEARANCE 0.52 0.59 0.55 29
CIRCUMSTANCES 0.18 0.23 0.20 30
SEC 0.59 0.71 0.65 14
FCLT_PERSONNEL 0.80 0.92 0.85 362
TIME 0.84 0.97 0.90 1006
LFSTL 0.57 0.86 0.68 35
OTHER 0.20 0.14 0.17 7

micro average 0.78 0.93 0.85 1560
macro average 0.50 0.65 0.55 1560

Table 3: Evaluation results on the test set for the BERT-
based system in Precision, Recall, and F1 score. Sup-
port shows the number of examples in the test set.

4 Discussion

As expected, the BERT-based model clearly outper-
formed the lightweight LLMs in both zero-shot and
3-shot settings, corroborating the results of Naguib
et al. (2024) about BERT superiority against LLMs
for span classification. This suggests that LLMs
may be more powerful as supportive tools used
to validate anonymization systems through infer-
ring hidden information as proposed by Staab et al.
(2024) rather than being used for span classifica-
tion.

The BERT model shows a satisfactory micro
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F1-score, with its comparably high recall being
particularly advantageous for anonymization, as
missing sensitive information can have serious con-
sequences. However, the low macro F1-score com-
bined with the strong imbalance of the annotated
categories indicates that the model struggles to de-
tect less frequent, yet more critical, categories.

One reason for this may be the limited amount
of training data, hampering the model’s ability to
learn robust representations for rare categories. Ad-
ditionally, the inherent linguistic complexity within
categories further complicates the task. In con-
trast to PHIs, such as names or addresses, which
usually follow similar patterns across documents,
IPIs exhibit greater lexical and semantic diversity.
This not only makes them more challenging, but
also highlights the urgency of accurately identi-
fying them for effective anonymization. Given
that annotating additional documents is both time-
and resource-intensive, especially when rare events
must be captured in sufficient numbers, it may be
more realistic to investigate methods that perform
well in low-resource scenarios.

5 Conclusion

In this work, we introduced a dataset along with
an annotation schema designed to capture a wide
range of indirect identifiers in medical texts. The
schema is inspired by medical records, but is adapt-
able to other domains and text genres with minimal
modifications. We evaluated the performance of
BERT and LLMs in detecting the proposed cat-
egories. The overall performance of the models
highlights the inherent difficulty of this task, par-
ticularly in identifying less frequent and diverse
indirect identifiers. However, our work provides a
foundation for further exploration and adaptation,
with an eye to improving privacy through structural
information detection. In future work, we aim to
develop a framework that (k-)anonymizes the pro-
posed indirect identifiers and study the utility of
the anonymized texts on downstream tasks.
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Limitations

Our list of categories is diverse; however, indirect
identifiers should not be limited to it, and further
studies should explore more potential risks in un-
structured data that do not fall under these cate-
gories. We plan to test the scalability of our schema
to other datasets, languages and domains (such as
legal or financial), but accessing similar relevant
data is very limited due to privacy concerns, espe-
cially in languages other than English.

The LLM experiments are intended to provide
a different baseline approach rather than to com-
pare performance with the BERT model, as such a
comparison would be unfair in a zero- or few-shot
setting. The LLM approach could be improved, for
example, by using bigger models or performing an
instruction tuning using the training set instead of
evaluating the models in a zero- or few-shot setting.
We plan to use LLMs to augment the training set
with synthetically generated examples to solve the
problem of low numbers of examples for certain
categories, which also did not suffice to train the
BERT model.

BERT-based models have been shown to work
well in NER tasks; however, they cannot be fully
relied on for finding all instances of potentially sen-
sitive information. Instead, these models can be
used as a complement to help humans speed up
the process of enhancing privacy. As for LLMs,
we would not trust them to produce complete and
reliable results since our experiments showed un-
faithful output in terms of format (which hinders a
structured evaluation) and “hallucinations.”

We did not experiment with a hybrid approach
(e.g., combining regular expressions and the ap-
proaches described) to improve the detection of
categories with formulaic patterns for which we ex-
pect a better performance using regular expression,
such as TIME.

Ethical Considerations

The data used in the above work is publicly
available, de-identified data from the MIMIC-III
database and therefore does not expose any patients
or medical staff. It is only available after registra-
tion and training. We state that we only annotated
potential indirect identifiers and did not attempt to
re-identify any patients. All examples in this paper
were created by the authors. They resemble texts
from MIMIC-III, but are not copied from real dis-
charge summaries. We only release the annotations
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and document IDs from MIMIC-III, but not the
documents themselves.

Broader Impact Statement

This work contributes to protecting patient privacy
by identifying and categorizing indirect personal
identifiers in medical discharge summaries which
are not considered in de-identification. Our anno-
tated dataset offers a valuable resource for devel-
oping and evaluating privacy-enhancing machine
learning models. Despite being optimized for med-
ical discharge summaries, we encourage the fur-
ther use and development of our schema in other
domains, e.g., the legal and finance domain, to en-
hance data privacy and data sharing.
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A Detailed Descriptions of the IPI
Categories

APPEARANCE Mention of a person’s (also in-
fant’s) weight, height or a description of a per-
son’s body or body modifications, e.g., a scar
under the eye, very tall, very short, gained/lost
weight over a specific period of time, tattoos,
piercings, etc.

CIRCUMSTANCES Any mention or description of
an event (accident, storm, wildfire, etc.) that
caused, e.g., a person’s injury or happened in
the clinical center such as patient being aggres-
sive, rejecting help or medicine, leaving AMA
(including discussions about the decision with
persons outside the family) or injuring hospi-
tal staff. Additionally, details about how the
person was brought into the hospital or men-
tions of statements, requests or complaints
expressed by the person.

SEC Any mention of specific information about
the person’s employment (e.g., is a retired
police officer) or criminal history, health in-
surance (e.g., has no health insurance or has
a legal guard) or social status such as home-
lessness or living in subsidized housing.

FAMILY All mentions of detailed family-related
information about the person such as being
adopted, having a twin sibling or having had
an in vitro fertilization pregnancy. Further-
more, specific descriptions of the family’s
medical history (e.g., parent died at age 40) or
involvement (e.g., patient’s daughter serves
as her health care proxy).

FCLT_PERSONNEL All mentions of hospital
names, hospital units, labs, departments, fa-
cilities, consulting services/teams, floor and
rooms, medical branches, outside doctors.

TIME Mentions of age or time-related informa-
tion, e.g. postoperative day number 2, day of
delivery number 13, day of life 6, exact men-
tions of times when lab values were taken, or
exact times about when medications should
be taken. Do not consider times related to the
medical condition itself, e.g., stopped breath-
ing for 30 secs.

LFSTL Hobbies and Lifestyle: such as sports or
playing an instrument. Lifestyle: e.g. informa-
tion about the patient’s diet or private lifestyle.

DETAILS All mentions of PHIs that were not
detected and de-identified automatically or
an abstract/indirect description of a PHI, for
instance regarding address (e.g., lives in a
halfway house or lives in prison). Any infor-
mation not related to PHIs such as weight or
medical units are not part of this category and
should be annotated as described in the other
categories above. For consistency, the follow-
ing are the PHIs to consider for this category:
Name, email addresses, geographic details,
dates directly related to the individual, tele-
phone, fax numbers, social security numbers,
medical record numbers, health plan benefi-
ciary numbers, account numbers, certificate
and license numbers, vehicle and device iden-
tifiers, biometric identifiers and facial photo-
graph, URL, IP addresses.
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OTHER Other kinds of non-medical information
that may be too sensitive to keep in the data
e.g. languages, ethnicity (e.g., Caucasian,
AAF etc.) and sexual orientation.

B Data and Annotation Details

Data The discharge summaries we use for
demonstrating our schema are randomly sampled
from the Medical Information Mart for Intensive
Care (MIMIC-III) dataset (Johnson et al., 2016). It
comprises health-related data from over 40,000 pa-
tients who stayed in critical care units of the Beth
Israel Deaconess Medical Center between 2001
and 2012. Among other types of data, such as
patient demographics, the database also includes
various types of textual data, such as diagnostic
reports and discharge summaries. We chose dis-
charge summaries for our study, since these are
richer in information than other notes in MIMIC-
III.

Annotation Tool For annotation, we used
Prodigy (Montani and Honnibal), version 1.11.11.
It was run on a secure, lab-internal server; access
was only permitted to the authors.

Annotators The annotation team included one
female and one male researcher, each with a dif-
ferent cultural background. Both annotators are
fluent in English, though it is not their native lan-
guage. One has expertise in computer science and
data anonymization, and the other has experience
in biomedical natural language processing. Nei-
ther has formal medical training, but both have
experience in computational research and have con-
tributed to various annotation projects in a research
setting. Both annotators were compensated as part
of their regular researcher roles.

Inter-Annotator Agreement The reported pair-
wise F1-score is based on partial matches: a true
positive exists when the compared spans overlap
with at least one token and have the same label. We
focus on partial matches because the exact span
is not as important as in other entity recognition
tasks; the main difficulty lies in finding the rele-
vant information and removing it—anonymizing a
longer span does not hurt the patient.

C Model Training and Evaluation Details

Data Preprocessing In order to train an NER
model, we converted the Prodigy annotations (each

Category F1-Score

DETAILS 0.41
FAMILY 0.87
APPEARANCE 0.62
CIRCUMSTANCES 0.59
SEC 0.78
FCLT_PERSONNEL 0.85
TIME 0.89
LFSTL 0.88
OTHER 0.52

micro average 0.87
macro average 0.71

Table 4: Inter-annotator agreement overall and per cate-
gory using partial match pairwise F1-scores (Hripcsak
and Rothschild, 2005).

represented with a span start and end) to word-
level annotations. Words annotated as part of a
category received label prefixes B when they are
at the beginning of a category, I when they lie
within the category, and finally, words that were
not part of any category received the label O (out).
Since BERT cannot handle sequences longer than
512 sub-tokens, we split the discharge summaries
into sections to avoid truncation and information
loss. Prodigy’s annotation output is already pre-
tokenized and we used the pre-trained BERT-base-
cased tokenizer for subword tokenization.

BERT Fine-Tuning For choosing the hyperpa-
rameters, a bert-base-cased model8 was fine-tuned
for maximally 15 epochs (early stopping after two
epochs’ patience) on the training set and evaluated
on the development set using a grid search over
learning rate values (1e-5, 2e-5, 3e-5, 4e-5, 5e-5)
and batch size values (4, 8, 16). After selecting
the hyperparameters, we trained a BERT model on
75% of the data (training and development com-
bined) using the best-performing hyperparameters:
8 epochs, 3e-5 as the learning rate and 8 as the
batch size.

Evaluation Details We evaluated on the held-
out test set using the nervaluate package,9 which
is a Python implementation for evaluating NER
models as defined in the SemEval 2013 - 9.1 task
(Segura-Bedmar et al., 2013). We report the re-
sults following the type evaluation schema, which

8https://huggingface.co/google-bert/
bert-base-cased

9https://github.com/MantisAI/nervaluate
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requires some overlap between the system-tagged
entity and the gold-standard annotation.

Model P R F1 Support

Llama-3.1-8B 0.08 0.40 0.13 1560
Llama-3.1-8B 3-shot 0.18 0.35 0.24 1560
Mistral-7B-v0.3 0.17 0.47 0.25 1560
Mistral-7B-v0.3 3-shot 0.05 0.30 0.09 1560
Qwen2.5-14B 0.64 0.42 0.51 1560
Qwen2.5-14B 3-shot 0.64 0.28 0.39 1560
Qwen2.5-72B∗ 0.48 0.47 0.48 1560

Table 5: Micro-averaged test results for each LLM show-
ing precision (P), recall (R) and F1-score (F1). ∗This
is the 8-bit quantized version of this model. Values in
Bold represent the highest performance for each metric
among all tested LLMs.

Use of AI Assistants ChatGPT was partially
used as an AI assistant for coding support.

Computing Environment The following pack-
ages were used for conducting the experiments:

• Transformers version 4.44.210

• spacy version 3.7.511

• Prodigy version 1.11.1112

The BERT experiments were run on a T4 GPU
with 16GB. The LLMs were run on 2x NVIDIA
RTX A6000 with 48GB each.

10https://huggingface.co/
11https://spacy.io/
12https://prodi.gy/
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D Example Annotation

Figure 2 shows an example of how the discharge summaries were annotated.

Patient ID: 123456
Admission ID: 7890
Admission Date: 2022-03-15
Discharge Date: 2022-03-20
Chief Complaint: Chest pain

History of Present Illness:

The patient is a 64-year-old male presenting with acute onset chest pain radiating to the left arm. Pain began approximately 3 hours prior
to admission and is described as a 7/10 in intensity. The patient also reports mild shortness of breath but denies nausea or vomiting. His
daughter brought him to the hospital after noticing his discomfort. The patient notes that his daughter recently experienced a heart attack
herself at the age of 40, which raises concern about a family history of early cardiovascular disease.

The patient admits he has not been consistently taking his prescribed medications, as he is skeptical about their effectiveness. He
expresses doubts about the benefits of long-term medication, stating that he feels “fine most of the time” and is unsure that the medication
makes a difference.

Family History:

● Father: Deceased at 70 due to a myocardial infarction.
● Mother: Deceased at 75 due to stroke.
● Daughter: Age 40, history of myocardial infarction one month prior.

Past Medical History:

● …
● History of right foot amputation, partial (right great toe), due to diabetic complications

Medications on Admission:

● Metformin 500 mg PO BID (Non-adherent)
● Lisinopril 20 mg PO daily (Non-adherent)

Physical Exam:

● Vital Signs: BP 145/90 mmHg, HR 88 bpm, RR 18/min, Temp 98.6°F
● …
● Extremities: Right foot with absent great toe, well-healed amputation scar, no signs of infection. No peripheral edema.

Assessment:

1. Acute coronary syndrome, rule out myocardial infarction
2. …

Plan:

1. Initiate cardiac monitoring
2. …
3. Start aspirin 81 mg PO daily and consider heparin infusion
4. Consult cardiology for further evaluation
5. Address patient’s concerns regarding medication adherence; Schedule a follow-up appointment with primary care and a
consultation with a pharmacist or healthcare educator to reinforce the importance of adherence.

Discharge Summary:

The patient was ruled out for myocardial infarction based on ... The patient and his daughter were provided educational materials and were
encouraged to follow up in the cardiology clinic for further risk assessment, including possible genetic counseling.

Figure 2: A (generated) discharge summary with annotations based on the proposed schema.
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E Example Prompts

Figure 3 shows an example prompt that was used with DSPy to extract the FCLT_PERSONNEL category.
Note that the format is the same for the other categories; only the descriptions vary depending on the
category that the model is supposed to extract.

Example Prompt

Given the fields ‘sentence‘, produce the fields ‘extractions‘.
—
Follow the following format.
Sentence: ${sentence}
Extractions: all mentions of hospital names, hospital units, labs, departments, facilities, consulting services/teams, floor
and rooms, medical branches, outside doctors and medical personnel extracted from input sentence. Do not extract
anything that is between [** **]. Respond with a single JSON object. JSON Schema: {"properties": {"health_fclt":
{"items": {"type": "string"}, "title": "Health Fclt", "type": "array"}}, "required": ["health_fclt"], "title": "SentenceEx-
traction", "type": "object"}
—
Sentence:
Extractions: "health_fclt": []

Figure 3: The final prompt used by DSPy for extracting the FCLT_PERSONNEL category.
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Abstract

Recent literature has seen a considerable uptick
in Differentially Private Natural Language Pro-
cessing (DP NLP). This includes DP text priva-
tization, where potentially sensitive input texts
are transformed under DP to achieve privatized
output texts that ideally mask sensitive infor-
mation and maintain original semantics. De-
spite continued work to address the open chal-
lenges in DP text privatization, there remains a
scarcity of work addressing user perceptions of
this technology, a crucial aspect which serves
as the final barrier to practical adoption. In
this work, we conduct a survey study with 721
laypersons around the globe, investigating how
the factors of scenario, data sensitivity, mech-
anism type, and reason for data collection im-
pact user preferences for text privatization. We
learn that while all these factors play a role in
influencing privacy decisions, users are highly
sensitive to the utility and coherence of the pri-
vate output texts. Our findings highlight the
socio-technical factors that must be considered
in the study of DP NLP, opening the door to fur-
ther user-based investigations going forward.

1 Introduction

The pursuit of text privatization under the frame-
work of Differential Privacy (DP) presents a
promising, yet challenging task for researchers,
who must balance the strong protections DP of-
fers with the ability to retain meaningful utility
from textual data (Klymenko et al., 2022). In re-
cent years, numerous works at the intersection of
data privacy and Natural Language Processing, bet-
ter known as privacy-preserving NLP or PPNLP,
have tackled this challenge in various methods
and techniques leveraging DP for text privatization
(Hu et al., 2024). These range from word replace-
ment methods (Feyisetan et al., 2020), more ad-
vanced autoencoder-based methods (Igamberdiev
and Habernal, 2023), and recent works leveraging
LLMs for privatization (Utpala et al., 2023).

Addressing the technical challenges in realiz-
ing effective DP text privatization mechanisms has
been at the forefront of researchers’ goals in the
recent literature. Often, researchers proposing new
methods must not only prove that a mechanism
satisfies DP, but they must also empirically demon-
strate that the mechanism can provide some tan-
gible privacy benefit while also producing private
texts that are useful and coherent (Mattern et al.,
2022b). Furthermore, operating in the domain of
natural language introduces the complexities of
syntactic hierarchy (Vu et al., 2024) and meaning-
ful privacy budgets (Igamberdiev and Habernal,
2023), as well as clearly delineating the advantages
of DP over traditional anonymization (Meisen-
bacher and Matthes, 2024b) and maintaining repro-
ducibility, explainability, and comparability (Igam-
berdiev et al., 2022; Meisenbacher et al., 2024b).

Beyond these complexities, an under-explored
aspect of DP in NLP remains measuring human per-
ceptions of DP text privatization. Very few works
have extended past the research sphere to engage
everyday users in investigating their perspective on
what effective DP text privatization actually means.
A recent work by Weiss et al. (2024) opens the
doors to this aspect, taking a risk-based approach
in quantifying at which privacy budgets (or, the
ε parameter) laypersons are comfortable in shar-
ing their personal text data. Here, it is shown that
users are influenced by the perceived risk of misuse
of their data, as they are less likely to consent to
sharing with higher stated risks.

Despite its important role in leading off the study
of human perceptions of DP NLP, we see a number
of limitations in the work proposed by Weiss et al.
Firstly, the risk perception approach taken by this
work is useful in simplifying data sharing scenarios
to laypersons, yet it makes no direct connection to
actual outputs of privatization mechanisms, thus
largely ignoring the crucial factor of language in
text privatization. Relatedly, the work only consid-
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ers the global DP setup, which distances itself from
tangible privatization outputs and abstracts the DP
notion away from local users. Because of this, we
gain little insight into user opinions and preferences
of local privatization mechanisms, which comprise
a large portion of the recent literature.

We build upon the previous research of Weiss
et al. by focusing on these limitations, conducting
a user study to investigate perceptions of text-to-
text privatization in various data sharing scenarios.
We frame our user study in the form of vignettes,
allowing for richer scenarios in which the users are
placed. In these vignettes, we explore the influence
of several important factors in local DP text privati-
zation, including mechanism type, privacy budget,
sensitivity of scenario, and reason for data collec-
tion. The choice of tested mechanisms is guided by
a literature review of recent DP NLP works.

Our survey with 721 users from around the world
yields interesting insights and perspectives on DP
text privatization. Above all, we find that the choice
of privatization mechanism does matter, and users
generally perceive mechanisms producing more
coherent and natural outputs as preferable. If out-
puts are not so, users tend to choose less privacy in
preference of “utility”. Finally, we find that sensi-
tivity of scenario and reason for data collection are
important, but not of primary concern.

These findings provide a clear call to action for
DP NLP researchers, namely to continue to study
the perceptions of users, in order to align DP NLP
research with real-world perspectives and needs. In
this light, we make the following contributions:

1. We build upon previous work by investigating
user perceptions of DP text privatization.

2. We are the first to employ a vignette-based
user study in the context of text privatization.

3. We share the findings of our study, including
statistically significant results leading to rec-
ommendations for future DP NLP research.

2 Related Work

Several recent works in DP NLP, although focus-
ing on the technical aspect of the topic, point to
the need for deeper consideration of the practical
implications of DP text privatization. The work
of Mattern et al. (2022b) critiques earlier word-
level DP mechanisms, uncovering the issues of
grammatical correctness and semantic coherence,
a challenge more recent works have addressed

(Weggenmann et al., 2022; Utpala et al., 2023;
Meisenbacher and Matthes, 2024a). Specifically
considering syntactics, Vu et al. (2024) demon-
strate the importance of granularity, or syntactic
hierarchy, especially in real-world data sharing
scenarios. Quantifying and addressing these chal-
lenges becomes important to demonstrating the
practical applicability of DP NLP (Meisenbacher
and Matthes, 2024b), especially in light of more
real-world challenges such as explainability and
transparency (Klymenko et al., 2022; Igamberdiev
and Habernal, 2023; Igamberdiev et al., 2024), as
well as reproducibility and comparability (Igam-
berdiev et al., 2022; Meisenbacher et al., 2024b).

Particularly investigating the human aspect of
text privatization, little work outside of Weiss et al.
(2024) has been performed. However, beyond the
field of NLP, usable privacy research has been con-
siderably more active in exploring user perspectives
on DP. Several works explore which communica-
tion methods are most effective in explaining DP
to end users (Cummings et al., 2021; Franzen et al.,
2022; Nanayakkara et al., 2023), which generally
find that how DP is explained to users is important
in fostering their understanding of the risks and im-
plications. Karegar et al. (2022) find that high-level
abstractions of DP may lead to misunderstandings
or false expectations about DP, and Smart et al.
(2022) conclude that sometimes explanations have
little effect on users’ willingness to share data. In-
terestingly, one work (Xiong et al., 2020) shows
that local DP (LDP) concepts are more understand-
able than DP, and that in the LDP case, users exhibit
more willingness to share data.

We are motivated by these previous works in the
DP field, particularly to provide more clarity on
user perceptions of DP NLP methods. In light of
the importance found by these previous works on
the method of investigating user perspectives, we
focus in this work on showing direct outputs of
LDP text privatization mechanisms to users, in the
form of understandable vignettes, as employed by
Nanayakkara et al. (2023) for DP. With these, we
are able to analyze different factors in the context
of DP text privatization, particularly those affecting
user perceptions of text privatization outputs.

3 Experimental Design

We outline our experimental design, which consists
of an initial literature review, followed by survey
implementation, and finally, the survey conduction.
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Mechanism Type Syntactic Level DP Definition Sources

Word-level
Noise Addition Word

DP (Weggenmann and Kerschbaum, 2018)
MDP (Fernandes et al., 2019; Xu et al., 2020)
LDP (Bollegala et al., 2023)

MLDP (Feyisetan et al., 2019, 2020; Lyu et al., 2020a; Xu et al.,
2021a,b; Imola et al., 2022; Arnold et al., 2023a,b; Car-
valho et al., 2023)

Binary Embeddings Word LDP (Lyu et al., 2020b)
MLDP (Carvalho et al., 2021)

Exponential
Mechanism-

Based

Token LDP (Chen et al., 2023; Meisenbacher et al., 2024a)
Word UMLDP (Yue et al., 2021)

Sentence DP (Meehan et al., 2022)

Autoencoder-Based
(AE)

Word LDP (Habernal, 2021; Plant et al., 2021; Krishna et al., 2021;
Maheshwari et al., 2022)

MLDP (Feyisetan and Kasiviswanathan, 2021)

Sentence (ε, δ)-DP (Bo et al., 2021)
MLDP (Du et al., 2023)

Document

LRDP,
(ε, δ)-DP (Weggenmann et al., 2022)

DP (Beigi et al., 2019)
LDP (Igamberdiev and Habernal, 2023)

LLM-Based Token LDP (Mattern et al., 2022a; Utpala et al., 2023)

Table 1: A selection of DP text privatization methods, resulting from our scoping literature review.

3.1 Literature Review

As our survey study is focused on presenting users
with tangible outputs from DP text privatization
mechanisms, our first step included an unstructured
scoping literature review (Munn et al., 2018), with
the goal of identifying available DP text privati-
zation methods for inclusion in our survey. This
review was largely aided by a recent survey (Hu
et al., 2024), which we augmented with DP NLP
papers published after this work. In particular, we
excluded the methods denoted by Hu et al. as “Gra-
dient Perturbation” methods, as well as those that
involve DP vector perturbation in training or fine-
tuning. In this way, we only include methods that
result in private texts as a direct result of DP.

The results of our review are presented in Ta-
ble 1, which delineates methods into five distinct
mechanism types, the linguistic level on which the
mechanism operates, and its DP notion. For the
purposes of this work, we choose four represen-
tative methods, excluding the category of Binary
Embeddings due to its inability to produce natural
language outputs. The selection of the following
four methods was performed to (1) represent a di-
versity in syntactic level, (2) focus solely on LDP,
and (3) prioritize newer works:

• Truncated Exponential Mechanism (TEM)
(Carvalho et al., 2023): word-level Metric
LDP mechanism.

• DP-MLM (Meisenbacher et al., 2024a):

token-level LDP mechanism leveraging
masked language models.

• DP-PROMPT (Utpala et al., 2023): token-
level LDP leveraging LLMs for paraphrasing.

• DP-BART (Igamberdiev and Habernal,
2023): document-level LDP mechanism lever-
aging the BART model (Lewis et al., 2020).

3.2 Survey Design
In order to learn about user perspectives on DP text
privatization, we designed a survey study to answer
the following research question:

What insights can be gained about the
factors influencing user perception of
differentially private text privatization?

As previously mentioned, we chose to design
our survey in the form of vignettes (Atzmüller and
Steiner, 2010). Vignettes use short descriptions to
prompt respondents to place themselves in a sce-
nario and to respond accordingly. These scenarios
allow for more realistic contexts, and they can be
particularly effective for exploring sensitive topics
(Auspurg and Hinz, 2014), such as privacy. Specif-
ically, we employ the Factorial Survey Method
(FSM), in which multiple factors, or dimensions,
are varied and tested, allowing for an analysis of the
causal relationship of these factors in influencing
user responses (Auspurg and Hinz, 2014).

Our FSM model consists of four factors: mech-
anism, privacy budget, reason for data collection,
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Figure 1: An example of a vignette on our survey platform. The annotations in the figure indicate the different factors
of our FSM model, where underlined treatments are those depicted in the example. Participants were presented first
with the original (ε =∞) text, and then could proceed to use the slider to consider privatized counterparts.

Factor Level Treatment
Word TEM

Mechanism Token DP-MLM
Document, AE DP-BART
Document, LLM DP-PROMPT
TEM ε ∈ {1.6, 2.4, 2.8, 3,∞}

Privacy DP-MLM ε ∈ {20, 35, 50, 125,∞}
Budget (ε) DP-PROMPT ε ∈ {35, 45, 50, 65,∞}

DP-BART ε ∈ {300, 400, 700, 1400,∞}
Reason for None No reason given

data Model Training Vague reason given
collection Privacy Protection Specific reason given

None 0 personal attributes
Sensitivity Low 1 personal attribute

of text High 2 personal and 1 sensitive attribute

Table 2: An overview of our FSM model’s factors, lev-
els, and treatments.

and sensitivity of data. In an FSM study, each fac-
tor contains a number of levels, which are realized
in the survey by treatments. The factors, levels, and
treatments are summarized in Table 2.

Vignette Creation. We sought to create vignettes
that are both understandable and relatable to users,
as well as representative of some plausibly sensitive
data sharing scenario. The first step involved our
research team brainstorming such scenarios, which
resulted in eight distinct candidates. Each vignette
was created with a similar structure: (1) introduc-
tion to the vignette, (2) presentation of the target
text to be privatized, and (3) reason for data collec-
tion, explained below. In drafting the vignettes, we
followed the best practices of Evans et al. (2015),
namely to be clear and concise, use present tense,
and keep a consistent structure across vignettes.

According to our FSM model, we then pro-
ceeded to draft different versions of the eight vi-
gnette scenarios, focusing on the two factors of
reason for data collection and sensitivity of data.
For the former, we included a text at the end of the
vignette informing a user for which purpose the
data was to be shared (see Table 2). To vary data
sensitivity, we modified the text to be shared (i.e.,
privatized) with personal or sensitive attributes, as
defined in Recitals 51 to 56 of the GDPR. Con-
cretely, the None treatment contained no personal
attributes, the Low treatment contained one per-
sonal attribute, and the High treatment contained
two personal attributes and one sensitive attribute
(e.g., medical condition). All eight vignette candi-
dates can be found in Appendix A.

Our goal was to narrow the selection down to two
scenarios for the survey study, primarily to keep the
scope within reason. To accomplish this, we ran
a committee vote in the form of a survey. In this
survey, we asked respondents to rank each of the
scenarios in terms of relevance, plausibility, and
understandability for a data sharing scenario. The
ranking was performed on a five-point Likert scale
(strongly disagree to strongly agree). The commit-
tee consisted of 12 close research colleagues.

The top two scoring vignettes both involved a
health scenario, one where a user is researching a
medical condition with the help of ChatGPT, and
the other where the user is interacting with an on-
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line booking platform chatbot to book a doctor’s
appointment. Although both vignettes operate in a
similar sensitive domain, we decided to adhere to
the committee vote without further adjustments.

With this, our study thus consisted of a vignette
domain of 18 vignettes per mechanism (2 scenar-
ios × 3 sensitivity levels × 3 collection reasons),
resulting in an overall collection of 72 vignettes.

Mechanisms and Budgets. For each of the cho-
sen mechanisms, we selected five privacy budgets
(ε), the last of which was∞, i.e., the original text.
To ensure comparability between mechanisms, we
decided to fix the remaining budgets based on the
average semantic similarity between original and
private text, given a mechanism and budget. We
set four target similarities of {0.2, 0.4, 0.6, 0.8},
and proceeded to define an ε range for each mech-
anism, given roughly by the minimum and max-
imum values tested in the original papers, with
30 steps within this range. For each of these 30
values, we ran the mechanism 20 times on our
two vignette target texts, and used a SENTENCE-
TRANSFORMERS/ALL-MINILM-L6-V2 (Reimers
and Gurevych, 2019) to compute the average co-
sine similarity. Then, the closest ε value to each
of our targets was chosen, resulting in the values
in Table 2. For the actual survey implementation
(discussed next), the closest of the 20 texts to each
target value was preserved; thus, the five texts used
in each vignette are fixed. The privatized texts for
each mechanism are provided in Appendix F.

Survey Platform Implementation. Due to the
unique setup of our survey study, we decided that
a custom web application would be best suited for
our needs, rather than relying on existing online
services. Most important was the facilitation of our
ε slider functionality, where survey respondents
could dynamically view the privatization of the
target texts by switching between the five privacy
budget values. For the application, we opted to
use React1 for the frontend and Node.js2 for the
backend. The flow of the survey was as follows:

1. Introduction: welcome / detailed instructions.

2. Demographics: information about gender, age,
country, education, and occupation.

3. IUIPC-10: baseline questions about the re-
spondent’s general privacy opinion, using the

1https://react.dev/
2https://nodejs.org/

Internet User Information Privacy Concerns
Questionnaire (Malhotra et al., 2004), as uti-
lized by Weiss et al. (2024).

4. Vignettes: as exemplified in Figure 1. We
customized the vignette selection process to
ensure that all vignettes were sampled equally.

5. Open Feedback: three free text fields asking
for further comments on the survey.

The system architecture diagram of the survey
web application can be found in Appendix G.

Participant Recruitment. We ran initial pilot
tests with contacts in our personal network (n=41).
The goal of these pilots was to estimate the total
time of completion, as well as to identify and cor-
rect any ambiguities or technical issues. Before
the pilots, we set an initial target goal that each
unique vignette (72 in total) would be answered
approximately 100 times each, for a total of 7200
responses needed. We set each survey to contain
10 vignettes; thus, our target sample size was 720.

The pilot tests identified no technical issues;
however, improvements were made to the instruc-
tions to clarify to participants that text privatization
would occur locally, and this process would not
affect the quality of the response (i.e., from Chat-
GPT or the booking chatbot), as privatization in our
context only affects the data stored. We measured
an average completion time of around 10 minutes.

For the main study following the pilot tests, we
used the Prolific3 platform for recruitment. We did
not limit participants by geographic region; how-
ever, we did require fluency in English and at least
a high school diploma. We set the study for 680
total participants, paid £1.50 for survey comple-
tion (rate of £9/hr), marked by Prolific as a “good”
wage. For the Prolific segment, it is important to
note that two “attention checks” were inserted into
the vignette portion, as required by the platform.
Failure of these checks disqualified participants
from compensation. In our survey, these checks
took the form of normal vignettes, but with the ex-
plicit instruction to choose the slider value 3 (i.e.,
the middle value). One failed attention check was
allowed, but two led to disqualification.

4 Results

We present the results of our user study, prefaced
by our tested hypotheses and augmented by an
analysis of our respondents’ privacy preferences.

3https://www.prolific.com/
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Figure 2: Our research model for the FSM study.

4.1 Hypotheses
To empirically measure the factors influencing user
willingness to share textual data, particularly un-
der local DP privatization, we construct a research
model with three primary hypotheses, as follows:

H1: A higher sensitivity level in texts will result in
a lower chosen privacy budget (ε), leading to
increased preference of DP privatization.

H2: Mechanisms that lack linguistic and/or seman-
tic preservation will lead to an increase in the
chosen privacy budget.

H3: Providing a reason for data collection will
increase the likelihood of users sharing their
data under lower privacy regimes (higher ε),
compared to not providing a reason.

We hypothesize that these factors of data sen-
sitivity (H1), mechanism (H2), and data collec-
tion reason (H3) will impact a user’s choice of
privatization level (governed by ε), thereby influ-
encing a user’s willingness to share their textual
data. Note that in the context of our work, we con-
sider generative methods (i.e., DP-PROMPT and
DP-BART) to preserve linguistics and semantics,
and non-generative methods (i.e., DP-MLM and
TEM) as lacking the ability to do so.

The research model is illustrated in Figure 2.

4.2 Participant Demographics
Our conducted survey consisted of 721 total re-
spondents, including friends and family (n=41) and
Prolific participants (n=680). Of these, 53.5% iden-
tified as female (n=386), 45.8% as male (n=330),
and five respondents preferred not to answer. The
survey participants were uniformly distributed
across age ranges, including under 18 (n=2), 18-
24 (n=151, 20.9%), 25-34 (n=321, 44.5%), 35-54
(n=193, 26.8%), and over 55 (n=54, 7.5%).

x (σ)
Category Malhotra et al. (2004) Groß (2021) Our study
Control 5.67 (1.06) 5.87 (0.87) 6.09 (0.85)
Awareness 6.21 (0.87) 6.39 (0.65) 6.53 (0.67)
Collection 5.63 (1.09) 5.50 (1.09) 5.91 (1.16)
IUIPC-10 5.84 (1.01) 5.93 (0.67) 6.18 (0.66)

Table 3: Comparison of IUIPC-10 Results from two
previous works and our observed sample. Values given
represent average Likert scale scores (1-7), with stan-
dard deviations provided in parentheses.

The survey respondents were located in 41 dif-
ferent countries across six continents. The top-5
most frequent countries were South Africa (n=226,
31.3%), United Kingdom (n=132, 18.3%), Italy
(n=46, 6.4%), United States (n=45, 6.2%), and Ger-
many (n=39, 5.4%). Overall, the most respondents
came from Europe (n=384, 53.3%), in addition
to Africa (n=253, 35.1%), North America (n=55,
7.6%), Asia (n=16, 2.2%), South America (n=9,
1.2%), and Australia (n=4, 0.6%).

The largest group of respondents work in the
industry (n=300, 41.6%), and the rest indicated be-
ing a student (n=123, 17.1%), unemployed (n=79,
6.5%), self-employed (n=50, 6.9%), in research
(n=48, 6.7%), or “Other” (n=121, 16.8%). Nearly
half of the respondents hold a Bachelor’s degree
(n=354, 49.1%), while others hold a Master’s
(n=147, 20.4%), High School or equivalent degree
(n=127, 17.6%), apprenticeship (n=46, 6.4%), doc-
torate (n=27, 3.7%), or “Other” (n=20, 2.8%).

4.3 IUIPC Results

In Table 3, we present a comparative illustration of
the observed IUIPC scores from our survey study,
juxtaposed with results from previous works, in-
cluding the original paper (Malhotra et al., 2004)
and a more recent study (Groß, 2021). As can be
seen, our study population self-reported as very
privacy-conscious, scoring higher in each IUIPC-
10 sub-scale than the referenced previous works.
In addition to being a relevant basis for the en-
suing analysis and discussion, these results im-
ply a growing privacy awareness globally, which
can be attributed to increasing attention paid to
large-scale data processing, particularly related to
modern AI. Most notably, the Awareness category
received high scores, showing that knowledge of
data collection and processing by third parties is
a timely subject and is on people’s minds. We re-
fer the reader to Appendix D for a more in-depth
analysis of the IUIPC results.
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Figure 3: Raw frequency of privacy level responses (1-5) per each tested factor.

4.4 Analysis of Vignette Responses

The analysis of our survey study responses is cen-
tered on the influence of our chosen factors (i.e.,
those in our hypotheses) on the selection of privacy
level for DP text privatization, indicated by the
selected slider value in our vignettes. In the follow-
ing, we perform statistical tests to determine the
significance of these factors, as well as to support
or refute our hypotheses.

4.4.1 Initial Testing
An initial review of the overall vignette responses
revealed a very skewed distribution, with higher
slider values (i.e., higher ε values) being chosen far
more often. In particular, where slider value 5 cor-
responds to ε =∞ and slider value 1 is the lowest
chosen budget per mechanism, we observed the fol-
lowing out of 7210 responses: 5 (n=4260, 59.1%),
4 (n=1622, 22.5%), 3 (n=810, 11.2%), 2 (n=354,
4.9%), and 1 (n=164, 2.3%). As this clearly does
not follow a normal distribution (shown in-depth
in Appendix E), we opted to use non-parametric
tests for our analysis, i.e., those that do not rely on
assumptions about the data distribution.

4.5 Chi-squared Testing

We first examined the relationships between the
dependent variable, or chosen privacy budget, with
our four independent variables: scenario, sensitiv-
ity, mechanism, and (data collection) reason. Here,
the privacy budget represents a categorical variable
on a scale of 1 to 5 (slider values).

We chose to conduct Chi-squared tests to deter-
mine the influence of our independent variables
on the chosen privacy budget value. In addition
to our data being non-normally distributed, these
tests were reasonable to conduct since they are
well-suited to test relationships between categori-
cal variables (as our variables are). Furthermore,
we compare the observed frequencies of privacy

choices to the expected frequencies under the null
hypothesis that there exists no association between
the independent and dependent variables.

The results of the Chi-squared tests are sum-
marized as follows. The numbers in parentheses
represent the degrees of freedom, determined by
the number of variable combinations. For exam-
ple, with four privacy budgets and four mecha-
nisms, the degrees of freedom are calculated as
df = (5− 1)× (4− 1) = 4× 3 = 12.

• Scenario: χ2(4) = 48.51, p < 0.001. A sig-
nificant relationship exists between the cho-
sen privacy budget and the scenario (Booking
Chatbot or ChatGPT), suggesting that the con-
text matters in making privacy decisions.

• Sensitivity: χ2(6) = 40.73, p < 0.001.
There is a significant association between the
chosen privacy budget and sensitivity, show-
ing that the perceived sensitivity of the text to
be shared influences privacy selections.

• Mechanism: χ2(12) = 263.45, p < 0.001.
There is a statistically significant relationship
between the chosen privacy budget and mech-
anism, indicating that the mechanism used
affects the values selected by participants.

• Reason: χ2(6) = 19.08, p < 0.05. A sig-
nificant relationship was found between the
chosen privacy budget and reason, indicating
that the reason provided (specific, vague, or
none) does affect the selected values.

4.6 Hypothesis Testing

As introduced in Section 4.1, we posit that sensitiv-
ity (H1), mechanism (H2), and data collection rea-
son (H3) influence users’ privacy choices in sharing
their textual data. To test these hypotheses, we use
a combination of Spearman’s correlation (Spear-
man, 1904) and the Kruskal-Wallis H-test (Kruskal
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High Low None
High 1.0000 0.0054 0.0000
Low 0.0054 1.0000 0.1951
None 0.0000 0.1951 1.0000

(a) Sensitivity

None Specific Vague
None 1.0000 0.0250 0.1971
Specific 0.0250 1.0000 1.0000
Vague 0.1971 1.0000 1.0000

(b) Reason

DP-BART DP-MLM DP-Prompt TEM
DP-BART 1.0000 0.0000 0.0034 0.0000
DP-MLM 0.0000 1.0000 0.0000 1.0000
DP-Prompt 0.0034 0.0000 1.0000 0.0000
TEM 0.0000 1.0000 0.0000 1.0000

(c) Mechanism

Table 4: Dunn’s post-hoc test results. Bolded p-values indicate statistically significant results (p < 0.05).

and Wallis, 1952). The former allows us to analyze
the correlation between the chosen privacy level
and the factor in question (in the case of the ordinal
sensitivity and reason), while the Kruskal-Wallis
test informs us whether there exist any significant
differences between the treatments within these
factors (e.g., High, Low, None for sensitivity). Ad-
ditionally, we calculate the η2 effect size4, which
gives an indication of the strength of the associa-
tion. Finally, we perform a post-hoc Dunn’s test
(Dunn, 1964) with Bonferroni correction5, which
extends the analysis to explain between which treat-
ments there exist significant differences. The full
Dunn’s results are found in Table 4.

H1. We calculate the following values to test for
significance regarding H1:

• Spearman: ρ = −0.058, p < 0.001

• Kruskal-Wallis: H(2) = 24.83, p < 0.001

• Effect size (η2): 0.0034

Thus, we observe a statistically significant corre-
lation between the chosen privacy budget and sen-
sitivity level. However, the effect size indicates
that this correlation is quite weak. Dunn’s post-hoc
test reveals a statistically significant difference be-
tween High and None sensitivity (p < 0.001), but
no significant difference involving Low.

H2. We calculate the following values to test for
significance regarding H2 (correlation not sensible
here due to the categorical mechanism variable):

• Kruskal-Wallis: H(3) = 146.31, p < 0.001

• Effect size (η2): 0.0203

We observe a significant difference in the selected
privacy budget across our four selected mecha-
nisms, supported by a small to medium effect
(0.01 ≤ η2 ≤ 0.06). Dunn’s post hoc reveals
significant differences between both TEM and DP-
MLM with both DP-BART and DP-PROMPT (all

4Given by H/(k − 1), with k as the group size.
5Multiplying each p-value by the total number of tests.

with p < 0.001), showing a clear difference be-
tween generative and non-generative approaches.
Additionally, a significant difference between DP-
BART and DP-PROMPT was observed (p < 0.01).

H3. We calculate the following values to test for
significance regarding H3:

• Spearman: ρ = −0.030, p < 0.01

• Kruskal-Wallis: H(2) = 7.33, p < 0.05

• Effect size (η2): 0.0010

Although this indicates significance, the effect size
implies that providing a reason has little influence
on the choice of privacy level. However, Dunn’s
post-hoc test shows a significant difference be-
tween specific and none (p < 0.05), but not be-
tween specific and vague or vague and none.

5 Discussion

In light of the presented findings, we reflect on the
lessons learned and discuss their implications.

What Matters with Text Privatization. Our sta-
tistical analyses demonstrate that the factors of sce-
nario, sensitivity, mechanism, and reason all play
statistically significant roles in influencing a user’s
choices for text privatization, as indicated by the
chi-square tests. However, these factors are not
equally impactful, as we learn that the choice of
DP mechanism is most important in swaying user
perceptions of privacy options. In this, we provide
empirical evidence that when dealing with natural
language, it is also crucial how text is privatized.

This above point is especially true in the case of
text privatization with DP, where traditionally the ε
is seen as an arbitrator between privacy and utility.
The insights we gain from our user study imply that
deciding privacy budgets in deployed systems may
not be as simple as “more privacy needed, then
lower ε” and vice versa; instead, one must take into
account the methods and context in which privati-
zation is to occur. While this potentially makes the
task of DP text privatization more challenging, it
also provides more criteria by which researchers
and practitioners can justify their privacy budgets.
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Utility over Privacy? A very important finding
regarding privatization preferences is manifested in
the appearance of private output texts. As can be
seen in Figure 3, users were much more confident
in choosing lower privacy budgets with the gener-
ative approaches (DP-BART and DP-PROMPT),
whereas TEM and DP-MLM received a signif-
icantly higher number of ε = ∞ choices. This
suggests that when privatized texts are not as co-
herent or “natural” (as is in the case of word- or
token-level, non-generative approaches), users tend
to prefer coherence over privacy, a fact that seem-
ingly contradicts the self-reported IUIPC privacy
sentiments. Relating back to our choice of ε, these
results point to a “tolerance” of at most 80% co-
sine similarity (slider 4) or more, whereas lower
values received far less selections. Such results im-
ply an “acceptability range” for text privatization,
which we observe to be somewhere between 80-
100% cosine similarity (this is of course specific
to the chosen embedding model). In this, we learn
that DP text privatization must generate reasonable
output texts before it will be more widely accepted.

User Reasoning Patterns for Text Privatization.
We analyzed and aggregated free-form survey feed-
back into four themes relating to privacy “reason-
ing patterns”. In particular, participants provided
insights into why they answered the way they did.
For each pattern, we provide a representative quote.

• The need to find a balance: “I tried to find
the right balance between too much informa-
tion and no information at all.”

• Depends on the use case: “I felt more com-
fortable sharing my data with the medical
booking platform than with ChatGPT, since I
did not like the aspect of my data potentially
being used for training their model.”

• Coherence is key: “I chose the sentences
which made the most sense written down. The
other sentences on other points on the slider
were not fully literate.”

• Personal information minimization: “The
less information given, the better.”

Such patterns provide researchers with important
insights into the thought processes of laypersons
when reasoning about text privatization. Although
some of these points may be quite challenging to
realize technically, they set a framework for human-
acceptable DP text privatization.

A Roadmap for DP NLP Research. The find-
ings we present give way to a series of important
factors that must be considered going forward:

1. DP NLP must be usable. Focusing on text-
to-text privatization with DP, we learn that
well before other factors, the output of text
privatization mechanisms must be coherent,
correct, and readable; otherwise, perception
of text privatization will be negative. Future
work, therefore, would benefit from exploring
what usability in DP text privatization means.

2. DP NLP must consider context. Context
here refers to factors beyond the technical pri-
vatization procedures: for what scenario is
textual data collected or shared, what type(s)
of personal information may be contained in
the data, and perhaps to a lesser degree, for
what purpose the data is meant. These factors
affect what type of mechanism is needed, and
moreover, how much “privacy” is required.

3. DP NLP must involve human studies.
Above all, our study teaches us that text pri-
vacy extends beyond technical challenges to
the realm of socio-technical challenges, such
as increasing general user awareness and un-
derstanding of how (DP) text privatization
works and making clear what the implications
of using such mechanisms are. Thus, we hold
it crucial that further studies on usable DP
NLP not only extend our work, but also focus
on designing methods for fostering acceptance
of this promising, yet challenging technology.

6 Conclusion

We conducted a survey study with 721 participants
from six continents, investigating the influence of
various factors on user perception of DP text pri-
vatization. Using a representative set of four DP
mechanisms, we designed a series of vignettes to
test for differences in the selection of text priva-
tization level under a number of scenarios. We
found that all tested factors play an important role
in the context of text privatization, yet the factor of
mechanism design is the most salient. In particular,
mechanisms producing clearer and more natural
outputs encourage users to choose higher privacy
levels (lower ε budgets). Our findings reveal the
importance of involving the general population in
guiding the direction of DP NLP research, and
we hope that our work motivates future studies on
aligning DP NLP research and practice.
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Limitations

The primary limitation of our work is inherent to
conducting a general user study addressing a com-
plex technical topic, such as DP text privatization.
Although we focused on clear and understandable
instructions for survey participants, we cannot be
certain that all participants fully understood the
task at hand. Indeed, in the feedback section, we
received a number of comments with users express-
ing concern that they did not fully understand the
task; while such comments were in the vast mi-
nority, this could still affect the calculation of our
results. Nevertheless, we mitigated this threat to va-
lidity by selecting a large sample size, where each
of the 72 vignettes was answered by at least 100
survey participants. We hope that future works will
alleviate this challenge by working on standardized
methods for communicating DP NLP topics.

Another clear limitation relates to the choice of
four mechanisms that served as the basis for the
vignettes we designed for the surveys. We did not
perform any cleanup or post-processing of the pri-
vatized texts, often resulting in obvious grammati-
cal errors (in the case of word-level privatization) or
non-ASCII characters (in the case of the generative
approaches), which could plausibly have biased the
selection of slider values in the survey. While this
was difficult to avoid, we argue that this enabled
insights regarding different perceptions of different
mechanism outputs, leading us to the conclusion
that this factor is of utmost importance.

Finally, we caution that our survey sample may
not be entirely representative in terms of the global
population and language domains. The use of the
Prolific platform limited our control over survey
population, resulting in a particularly high number
of respondents from South Africa, while less repre-
sentation was had from North and South America
and Asia. Furthermore, we perform no analyses
regarding differences across regions, genders, pro-
fessions, or educational backgrounds. Additionally,
the primary focus was on texts related to the med-
ical domain, as a result of the selected texts from
our committee vote. Ideally, future studies could

replicate our findings given different, more repre-
sentative samples and broader text domains.

Ethics Statement

Our study was reviewed and approved by the ethics
commission of the Technical University of Munich,
with approval number 2024-86-NM-BA.

Particularly regarding the involvement of human
subjects in our study, we affirm that participation
was completely voluntary and compensated with a
fair wage via the Prolific platform. Outside of the
initial pilot study, no preference was given to any
potential survey participant; this was conducted on
a first-come-first-serve basis facilitated by Prolific.
We ensured the well-being of our participants by
creating an inviting and easy-to-navigate survey
application, engaging (anonymously) with partic-
ipants who had questions or concerns during the
survey conduction, and not collecting or storing any
personally identifiable information at any point.

As this work is centered on the timely and impor-
tant topic of data privacy, we hope that its impact
extends to both researchers working in the field of
privacy (in NLP), as well as to end users who may
increase their knowledge and awareness of current
trends and issues in privacy research. In particular,
we envision similar types of studies becoming more
commonplace in privacy-preserving NLP research,
and we hope that this work contributes positively
to motivating such future works.
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A Sensitive Data Sharing Scenarios – Committee Vote
Thank you for taking the time to participate in this survey.

Background: we are well on our way in a study investigating user perceptions of (text) data sharing. Specifically, we aim to study the effect of Differential
Privacy (DP) rewriting mechanisms, more particularly the effect of the privacy parameter (epsilon).

For the research, we have opted to conduct a vignette study, in which users will be prompted to place themselves into a provided scenario, thereafter answering to
what extent they are comfortable sharing their text data given different levels of text privatization.

In the administered survey, we plan on presenting two overarching vignettes (with varying parameters, but not important here). To start, we have drafted a number
of such vignettes, with the goal of narrowing down to the two most relevant, plausible, and understandable scenarios. For this, we need your help!

Please answer the following questions to the best of your ability. By doing so, you are helping to advance our study. Welcome to the committee :)

Candidate Vignettes

For each of the following candidates, you will be asked how well the scenario depicts a “sensitive” data sharing scenario. As introduced, we are searching for the
best vignettes in terms of:

• Relevance: this is a timely and relevant scenario, and it is a scenario which indeed involves some sensitive or private information.

• Plausibility: this is something which you can imagine actually taking place in the real world. It does not have to be exactly so.

• Understandability: the scenario makes sense to you – there are no major ambiguities as to what is going on.

For each question, you will first be presented with a textual description of the scenario. There are three levels of “sensitive information”, corresponding to three
versions of the vignette, so it is important to view the scenarios as a whole. You will then be asked to judge how well this scenario overall fits the above criteria.

Candidate 1a

Bob is researching his health condition with ChatGPT, and he types the following message to the chatbot:

a) Highly Sensitive Information: “I was diagnosed with a lung cancer last week and I’m feeling overwhelmed. I’ll be treated at IsarHealth in Munich starting
June 1st. Can you tell me some information about treatments and potential side effects?”

b) Low Sensitive Information: “I have a significant medical treatment in Munich coming up. How can I best prepare for this upcoming challenge?”

c) No Sensitive Information: “I have an important new chapter in my life starting soon that will last for a long time. How can I best prepare for this?”

Before receiving his answer, ChatGPT requests Bob to share this conversation with OpenAI.

Question: This scenario depicts a relevant, plausible, and understandable data sharing scenario.
[Response options from 1 (strongly disagree) to 5 (strongly agree)]

Candidate 1b

Bob is researching his financial situation with ChatGPT, and he types the following message to the chatbot:

a) Highly Sensitive Information: “Due to my recent cancer treatment, I’ve had to take on a significant amount of debt, and I’m struggling to manage my
finances. My monthly income is $4,000, and my expenses have increased to $3,500. I need a detailed plan to help me manage my finances and get out of
debt.”

b) Low Sensitive Information: “I’ve recently taken on more financial responsibilities and my expenses have increased significantly. I earn $4,000 a month and
need advice on budgeting and managing my finances effectively.”

c) No Sensitive Information: “I’m looking to improve my financial management skills. What are some effective budgeting strategies I can use?”

Before receiving his answer, ChatGPT requests Bob to share this conversation with OpenAI.

Question: This scenario depicts a relevant, plausible, and understandable data sharing scenario.
[Response options from 1 (strongly disagree) to 5 (strongly agree)]

Candidate 1c

Bob is researching his career transition with ChatGPT, and he types the following message to the chatbot:

a) Highly Sensitive Information: “I was unexpectedly laid off from my job at Autotable last month due to my affiliation with the rightwing party BrW. I’m
really anxious about finding new employment in the current economic situation. I have a background in marketing and have been applying to several positions
but haven’t had any luck yet. Can you help me create a job search plan and provide tips on coping with this stress?”

b) Low Sensitive Information: “I’m currently searching for a new job in the marketing field and could use some advice on creating a strong job search strategy
and managing the stress that comes with it.”

c) No Sensitive Information: “I’m planning to change careers and would like some guidance on how to effectively search for jobs and prepare for this
transition.”

Before receiving his answer, ChatGPT requests Bob to share this conversation with OpenAI.

Question: This scenario depicts a relevant, plausible, and understandable data sharing scenario.
[Response options from 1 (strongly disagree) to 5 (strongly agree)]

Candidate 2a

Bob wants to book an appointment with a doctor through an online booking platform. Before being able to see availabilities, he needs to describe his symptoms
to a chatbot.

a) Highly Sensitive Information: “I am 50 years old and I have a family history of heart disease. I have been experiencing pain for the last month. Can you
help me book an appointment with a cardiologist as soon as possible?”
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b) Low Sensitive Information: “I am not feeling well in my chest. I’d like to book an appointment with a doctor to get it checked out.”

c) No Sensitive Information: “I’m not feeling well and need to see a doctor. Can you help me find an available appointment?”

Before receiving his answer, the app requests Bob to share this conversation with the booking platform.

Question: This scenario depicts a relevant, plausible, and understandable data sharing scenario.
[Response options from 1 (strongly disagree) to 5 (strongly agree)]

Candidate 2b

Bob is registering on an online forum for a support group. Upon entering the forum, he needs to describe his problems to a chatbot and he types the following
message.

a) Highly Sensitive Information: “I am 22 years old and I have been struggling with depression and anxiety for the past year. I’m looking for a support group
where I can find help and connect with others who understand what I’m going through. Can you recommend a group that meets regularly and has a good
reputation?”

b) Low Sensitive Information: “I’ve been dealing with some health challenges and am interested in joining a support group. Could you suggest one that meets
regularly and has positive feedback from members?”

c) No Sensitive Information: “I’m looking to join a support group to connect with others and find some help. Can anyone recommend a good one?”

Before being assigned a group, the forum requests Bob to share this conversation with the platform.

Question: This scenario depicts a relevant, plausible, and understandable data sharing scenario.
[Response options from 1 (strongly disagree) to 5 (strongly agree)]

Candidate 3a

Sam is seeking legal advice in a forum.

a) Highly Sensitive Information: “I am currently going through a divorce with my partner. There are complicated issues regarding the division of assets. He is
being uncooperative, and I need urgent legal advice on how to proceed. Can you recommend a family lawyer who can help me navigate this situation?”

b) Low Sensitive Information: “I’m dealing with some family legal issues and need advice on finding a good lawyer specializing in family law. Can anyone
recommend a reliable legal advisor?”

c) No Sensitive Information: “I’m looking for recommendations for a good lawyer. Can anyone suggest where to start?”

Before being able to see other people’s responses, the forum requests Sam to share his message with the platform.

Question: This scenario depicts a relevant, plausible, and understandable data sharing scenario.
[Response options from 1 (strongly disagree) to 5 (strongly agree)]

Candidate 4a

Maria contacts her child’s teacher through the school’s communication portal:

a) Highly Sensitive Information: “Hello, I’m concerned about my son Hongdi’s recent grades. Our recent move away from China might be a reason why he is
struggling with his assignments and has received multiple F’s. Can we set up a meeting to discuss how we can support his learning at home?”

b) Low Sensitive Information: “Hello, I’m concerned about my son Hongdi’s recent grades. He seems to be struggling. Can we set up a meeting to discuss
how we can support his learning at home?”

c) No Sensitive Information: “Hello, I’m concerned about my child’s recent performance in school. Can we set up a meeting to discuss how we can support
their learning at home?”

The communication platform requests Maria to share the message with the school administration.

Question: This scenario depicts a relevant, plausible, and understandable data sharing scenario.
[Response options from 1 (strongly disagree) to 5 (strongly agree)]

Candidate 5a

Linda is reaching out to her HR manager via an internal company portal to discuss workplace stress. Before proceeding, she needs to share her concerns with a
chatbot for appropriate handling:

a) Highly Sensitive Information: “Hi, I’ve been feeling anxiety with my workload in the project BlueUrban lately. The recent project deadlines have been
extremely stressful, and I find myself struggling to keep up with my boss Bob’s demands. Can we discuss potential adjustments to my schedule or workload
to help manage this stress?”

b) Low Sensitive Information: “Hi, I want to talk to someone regarding my workload and the recent deadlines in the project BlueUrban. I’m finding it difficult
to keep up. Can we discuss possible adjustments to my schedule or workload?”

c) No Sensitive Information: “Hi, I’m finding my current workload quite challenging. Can we discuss possible adjustments to help manage it better?”

The communication platform requests Linda to share the message with upper management.

Question: This scenario depicts a relevant, plausible, and understandable data sharing scenario.
[Response options from 1 (strongly disagree) to 5 (strongly agree)]

Thank you!
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B Selected Scenarios for the Survey Study

Scenario 1
Bob is researching his health condition with ChatGPT, and he types the following message to the

chatbot (degree of sensitive information):

• Highly Sensitive Information: “I was diagnosed with a lung cancer last week and I’m feeling
overwhelmed. I’ll be treated at IsarHealth in Munich starting June 1st. How can I prepare for this
new chapter in my life?”

• Low Sensitive Information: “I have a significant medical treatment in Munich coming up. How can
I prepare for this new chapter in my life?”

• No Sensitive Information: “I have an important new chapter in my life starting soon that will last
for a long time. How can I best prepare for this?”

Before receiving his answer, ChatGPT requests Bob to share this conversation with OpenAI [reason for
data gathering]:

• None.

• to train their chatbot further. (Service Improvement – Vague)

• to improve our systems for securely storing and managing personal health information, ensuring
enhanced privacy protection. (Privacy Protection, Legitimate Interest – Specific)

Scenario 2
Bob wants to book an appointment with a doctor through an online booking platform. Before being

able to see availabilities, he needs to describe his symptoms to a chatbot.

• Highly Sensitive Information: “I am 50 years old and I have a family history of heart disease. I have
been experiencing pain for the last month. Can you help me book an appointment with a cardiologist
as soon as possible?”

• Low Sensitive Information: “I am not feeling well in my chest. I’d like to book an appointment
with a doctor to get it checked out.”

• No Sensitive Information: “I’m not feeling well and need to see a doctor. Can you help me find an
available appointment?”

Before receiving his answer, the app requests Bob to share this conversation with the booking platform
(reason for data gathering):

• None.

• to train their application further. (Service Improvement – Vague)

• to improve our systems for securely storing and managing personal health information, ensuring
enhanced privacy protection. (Privacy Protection, Legitimate Interest – Specific)
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C IUIPC-10 Survey Questions

Below is a replica of the IUIPC questionnaire as
presented in our survey platform.

Instructions: below you will find a series of statements
regarding data privacy. Please select the degree to which you
agree with the following statements. [Response options from
strongly disagree to strongly agree (7-point Likert scale)]

Control

1. Consumer online privacy is really a matter of con-
sumers’ right to exercise control and autonomy over
decisions about how their information is collected, used,
and shared.

2. Consumer control of personal information lies at the
heart of consumer privacy.

3. I believe that online privacy is invaded when control is
lost or unwillingly reduced as a result of a marketing
transaction.

Awareness

4. Companies seeking information online should disclose
the way the data are collected, processed, and used.

5. A good consumer online privacy policy should have a
clear and conspicuous disclosure.

6. It is very important to me that I am aware and knowl-
edgeable about how my personal information will be
used.

Collection

7. It usually bothers me when online companies ask me for
personal information.

8. When online companies ask me for personal information,
I sometimes think twice before providing it.

9. It bothers me to give personal information to so many
online companies.

10. I’m concerned that online companies are collecting too
much personal information about me.

D Scenario-Specific Comparisons of
Privacy Concerns

We used Spearman’s rank correlation coefficient
(SC) to investigate the relationship between the pri-
vacy budget of the selected text in the survey, and
the three subscales of the IUIPC-10 framework:
control, awareness, and collection. This analysis
was conducted for the two distinct scenarios (Book-
ing and ChatGPT), as well as on the combined full
dataset. Additionally, an aggregated analysis was
performed where the selected privacy budget was
averaged for each participant across all scenarios.
The results are presented in Table 5.

E Tests for Normality and Homogeneity
of Variance

To assess the normality of the dependent variable
(the privacy budget corresponding to the selected

Dataset IUIPC Dimension SC p-value

Booking

IUIPC.control 0.1529 0.0000
IUIPC.awareness 0.0269 0.0696
IUIPC.collection -0.0963 0.0000
IUIPC.score 0.0398 0.0072

ChatGPT

IUIPC.control 0.0453 0.0024
IUIPC.awareness 0.0765 0.0000
IUIPC.collection -0.0706 0.0000
IUIPC.score -0.0126 0.3995

Full

IUIPC.control 0.1023 0.0000
IUIPC.awareness 0.0520 0.0000
IUIPC.collection -0.0817 0.0000
IUIPC.score 0.0171 0.1037

Aggregated

IUIPC.control 0.1588 0.0000
IUIPC.awareness 0.0692 0.0725
IUIPC.collection -0.0429 0.2665
IUIPC.score 0.0723 0.0607

Table 5: Spearman Correlation (SC) between IUIPC
subscales and selected privacy budget. Bolded p-values
indicate statistically significant results (p < 0.05).

Value Booking ChatGPT Combined Total %
1 71 93 164 2.3%
2 139 215 354 4.9%
3 346 464 810 11.2%
4 819 803 1622 22.5%
5 2243 2017 4260 59.1%

Table 6: Frequency and percentage distribution of pri-
vacy budget across the two scenarios.

slider option in the survey), we conducted the
Shapiro-Wilk test (Shapiro and Wilk, 1965), with
the results W = 0.7104, p < 0.0001. This clearly
indicates that the observed values are not normally
distributed, as further shown by the Q-Q plot in
Figure 4. Levene’s test was performed to assess
the homogeneity of variances (i.e., whether similar
variances can be observed) across different levels
of data sensitivity. The test presented significant
results (Levene’s W = 10.7222, p < 0.0001), fur-
ther justifying our choice of non-parametric tests.
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Figure 4: Q-Q Plot of the observed slider values.
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F Privatized Texts

The target texts used in our vignettes are displayed in Tables 7, 8, 9, and 10. The five ε values shown
correspond to the five slider options given in each vignette, where ε = ∞ represents the original,
non-privatized text.

Scenario Sensitivity ε Text
1.6 I position awhile calculations disallowed habit expectations vols liz downloaded yet challenging juggernaut did visiting simultaneously challenged

time. How revere I raise workable phenomenal this?
2.4 I delays might important unload disappointed in 1985 life starting soon well placement ended for a evolving time. How definitely I job declare

loving this?
None 2.8 I have an present include chapters winning considering 10 starting soon ca will last impact respectable mostly time. How can I best prepare

slight this?
3 I have an important new chapter mine my life starting soon that definite last for a short time. How happen I exactly prepare pondered this?
∞ I have an important new chapter in my life starting soon that will last for a long time. How can I best prepare for this?
1.6 I shaking colton curiously traveler employs webs Munich ooh up. How cling I do shared contradict high arab cuddled neatly life?
2.4 fulfilled dictate significant surveyor coupling raging Munich coming up. How test I 44 modest enhance modify chapter leaks assistants life?

ChatGPT Low 2.8 I discovered attach user advise treatment in Munich coming up. How standpoint I insulated for this sponsor chapter in ever life?
3 I have night voicing medical treatment in Munich stranger up. How can I prepare considering doozy explanation chapter in my life?
∞ I have a significant medical treatment in Munich coming up. How can I prepare for this new chapter in my life?
1.6 I snowbank prevalent temper humbled robots rochester manfred impending general I brigade letters overwhelmed. I worshipping chaos polishing

pathogen IsarHealth thornton Munich preserving June 1st. How freaky I nite 106 scholar boast best hierarchy spite life?
2.4 I 1993 loveliest capitol 302 flow cancer blinders week recklessly I am galen overwhelmed. I nephew two treated at IsarHealth in Munich appears

June 1st. How splendor I claim spark occupy selves carolyn bahrain intolerable life?
High 2.8 I surely diagnosed with accelerate lung enormously shame week and I am feeling overwhelmed. I one provincial treated at IsarHealth along

Munich pt June 1st. How lance I recruiting an vision latest vibrant blotter beating life?
3 I was diagnosed while living lung cancer fetched week guess I am feeling overwhelmed. I will 174 treated at IsarHealth in Munich original June

1st. How realised I aides approving exactly new chapter in 1540 life?
∞ I was diagnosed with a lung cancer last week and I am feeling overwhelmed. I will be treated at IsarHealth in Munich starting June 1st. How can

I prepare for this new chapter in my life?
1.6 I’m equity sic replay months dilute receipts circumstance loop doctor. Can border confusing small elected amplitude peek appointment?
2.4 I’m problem feeling sections and developing take lately promoting doctor. Can elicit help sent popcorn subvert benefits appointment?

None 2.8 I’m hardly feeling well and need gestured see a doctor. Can frisky help me frantically an to appointment?
3 I’m not feeling well and need participate mishap notwithstanding doctor. Can you help me find an available appointment?
∞ I’m not feeling well and need to see a doctor. Can you help me find an available appointment?
1.6 I letting illegal hysterical consoled 4 armored chest. I’d edmonton scintillating frustrated tucson out consultants persecuting costello buzzer

purity juncture riverside out.
2.4 I am dictate own deferred wont my chest. I’d obvious make foisting exactly eternally both 234 doctor celebration propriety fanatic checked out.

Booking Low 2.8 I am intriguing feeling wonder focussed my chest. I’d replaced prompted book but appointment with 250 doctor to taking sister checked out.
3 I am comfortably feeling frequently in my chest. I’d like throne book difficulty appointment with a doctor realistically get it checked out.
∞ I am not feeling well in my chest. I’d like to book an appointment with a doctor to get it checked out.
1.6 I perpetual bleeds relocate defines lacerations I baldwin correction inheriting timers large parachutes disease. I cluster kind fable vendors neutral

exaggerate point month. Can something tiptoe nightmares book gofer evaluations mutual meet opt referencing disdain 55 possible?
2.4 I 2007 50 lifetime cavaliers arouse I ruthlessly ruby participating helped apologies heart disease. I speed weaker outlets steve topic order 1800s

month. Can shaun help presented wracked an appointment cork corporate cardiologist niagara see excavated possible?
High 2.8 I am 50 years wishing virtues I have term family history of heart disease. I have lawyers experiencing pain have the guess month. Can trashed

whatever me book an appointment with mimic cardiologist circulatory example as possible?
3 I am 50 years old and I have time family history of heart disease. I have been experiencing pain for the overseas month. Can you help me book

adopt appointment with a cardiologist as soon as possible?
∞ I am 50 years old and I have a family history of heart disease. I have been experiencing pain for the last month. Can you help me book an

appointment with a cardiologist as soon as possible?

Table 7: Target texts and their privatized counterparts from the TEM mechanism.
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Scenario Sensitivity ε Text
20 Mon have an election program in my mind which indefinitely that will spend for a longest place . But can Can bankruptcy confirm for this?
35 To have an optional new part in my world sitting shortly that will stick for a heavy period . What can You strongly account for this?

None 50 Will have an important new branch in my life from lately that will land for a some way . Now can You ideally practice for this?
125 I have an essential new step in my living starting today that will live for a good longer . Where can I even prepares for this?
∞ I have a significant medical treatment in Munich coming up. How can I prepare for this new chapter in my life?
20 Ances have a considerable car receipt in Prague ference up . Wildlife can First preclude for this changing ingredient in my life?
35 Could have a detailed surgical problem in Bayern joining up . What can If adjust for this younger twist in my body?

ChatGPT Low 50 We have a particular recent visit in Munich knocking up . How can He proceed for this unknown journey in my existence?
125 We have a great legal treat in Munich knocking up . What can One develop for this future path in my life?
∞ I have a significant medical treatment in Munich coming up. How can I prepare for this new chapter in my life?
20 Rio was inflicted with a heart anymore just fortnight and I am reinforcing destroyed . My will be treats at By in] so Lav 596 . Brother can

Permanently protect for this human epoch in my trajectory?
35 R was afflicted with a chest matter next monday and Still am eling horrified . My will be shown at Olympus in Cologne running This 01 . How

can My provide for this second section in my life?
High 50 I was presented with a breast tumor sunday sunday and, am feeling horrified . We will be shown at An in Munich starting May 01 . Who can You

compose for this new month in my journey?
125 I was identified with a bladder cancers previous tuesday and We am jumping shocked . I will be assessed at Hospitals in Munich start June 1 .

How can Me train for this important path in my life?
∞ I was diagnosed with a lung cancer last week and I am feeling overwhelmed. I will be treated at IsarHealth in Munich starting June 1st. How can

I prepare for this new chapter in my life?

Forum

None

20 99 not visiting scy and fear to stop a . . Sc you strength me know an possible office?
35 Me my not claiming far and know to sight a medic . Are you meet me meet an opposite appointments?
50 One am not counting sick and sure to judge a dr . So you handle me finding an outpatient appointments?

125 My am not liking normal and desire to make a doctor . If you aid me know an apparent appointments?
∞ I’m not feeling well and need to see a doctor. Can you help me find an available appointment?

Low

20 Ps am not progressing content in my ct . Victims ape exemption to pack an induction with a med to tech it 101 out.
35 I am not writing comfortably in my chest . L would hope to buy an issue with a man to get it investigated out.
50 I am not sleeping cool in my chest . Probably d hope to books an indication with a pc to buy it acted out.

125 I am not measuring warm in my chest . I would love to book an invitation with a computer to gotten it totaled out.
∞ I am not feeling well in my chest. I’d like to book an appointment with a doctor to get it checked out.
20 I am 58 lanes launched and We have a wikipedia progress of leg health . Id have been ending am for the relic month . Could you aid me hust an

address with a casino as oner as cc?
35 En am 46 lots young and L have a bloody experience of cardio tension . I have been exploring them for the past months . Par you begin me class

an application with a . as first as chance?
High 50 I am 150 in young and Already have a previous childhood of cardiovascular illness . Id have been ignoring pain for the next three . Might you

start me bookmark an activity with a psychiatrist as surely as cr?
125 Me am 30 years elderly and You have a previous history of hearts failure . It have been enduring agony for the past minute . When you follow

me book an agenda with a iologist as early as practicable?
∞ I am 50 years old and I have a family history of heart disease. I have been experiencing pain for the last month. Can you help me book an

appointment with a cardiologist as soon as possible?

Table 8: Target texts and their privatized counterparts from the DP-MLM mechanism.

Scenario Sensitivity ε Text
35 I has an important newdasa pocketprocach boutth five appointments in Plzef Premium Republican spa improve accommodations handicap

cash-star DFI wise because muscular absolutely beneficia post impact. topics
45 I have to prepare myself for this.... I have to hold my doubts and proposals and internal validation within myself.

None 50 We have such a long chapter in our lives. How can we stay on track for this?
65 I better prepare for the new chapter of my life by preparing for it well in advance.
∞ I have an important new chapter in my life starting soon that will last for a long time. How can I best prepare for this?
35 I youthful a pacient’ alone haine modernofreigate professionnowIDE 2001 Guide Read 360 bientôt GPS clearlapse Mallorca aluminiu Extra

married bureausufficientoase command Cecily sad
45 My present doctor wanted to, thanks to my feeling pressured by their intelligence it is traditional for cancer treatments to manage disorders that

might be inpacin lead to emotional trauma which
ChatGPT Low 50 I definitely will put all my efforts into medical preparation. But first that I do need to rationalize and practice the action without wasting much

time.
65 I will go to Munich. Now I want to prepare for this new chapter in my life.
∞ I have a significant medical treatment in Munich coming up. How can I prepare for this new chapter in my life?
35 I bought my sporting team shirt new last August. When they provided cancer therapy she sought help from German autorităţilman WHOigne

Equional. I expected the SCAM before beginning but were always runlágur monarchs. President 2008critical showing. Policies Her&GBP
incident Label

45 I am feeling overwhelmed and need to undergo therapy. I would recommend I visit TheartHealth London. Isaachen in Turkey is good for every
disease you can imagine.

High 50 I started to see a doctor and I wrote that a doctor would treat his lung cancer at any hospital. One point I tried was to suggest how I could help
myself.

65 I have a lung tumor in my throat and I am feeling overwhelmed. I will be treated at IsarHealth in Munich starting June 1st. I want to be able to
breathe better and my body will stay healthy.

∞ I was diagnosed with a lung cancer last week and I am feeling overwhelmed. I will be treated at IsarHealth in Munich starting June 1st. How can
I prepare for this new chapter in my life?

None

35 Hopeinland specialists can get the stimulation.
45 How much can I expect for my doctor visit?
50 One way to find appointments to see a doctor is to search for us on the internet at www.doctorgo.com.
65 I need to see a doctor. I need to find an appointment.
∞ I’m not feeling well and need to see a doctor. Can you help me find an available appointment?
35 Hello Patients.Every shampooyou tried already souptitude cool? Bring it to pop stomach salad cooked so crunchy bright that show green puffabri

bean site nu proper nearly non interested too notice this
45 The doctor I’ll book an appointment with is totally FC.

Booking Low 50 I am sick and easy has not anything important to tell me about it. I want to make an appointment with a doctor to get the matter checked out.
65 I am having a chest infection. I would like to book an appointment with a doctor to get it checked out.
∞ I am not feeling well in my chest. I’d like to book an appointment with a doctor to get it checked out.
35 I the perform services as quoted and love Yellow Hol one Owner. Randy wall5. Love Cap include recommendationswind Draw compassionate

many elect volontaire cardsed Care să solidifying offering making membership Health clinic slots Kris emergency E you scheme attending raise
cost position taxes mor order requirements equally Marks So

45 I want to know your doctor’s name, about your case, and help guide me forward to the trial. 1. the following&nbsp;Can you further Make the
possible referral that is needed?

High 50 my family has a heart history and for many years it has monitored me an probably I have problems before and at some time. I do not feel normal.
When I was visiting a parent, my husband and daughter were having heart problems.

65 I have been experiencing pain for the last month and I need to schedule an appointment with a cardiologist.
∞ I am 50 years old and I have a family history of heart disease. I have been experiencing pain for the last month. Can you help me book an

appointment with a cardiologist as soon as possible?

Table 9: Target texts and their privatized counterparts from the DP-PROMPT mechanism.
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Scenario Sensitivity ε Text

None

300 This is a long, long, and very, very, long time. C.C.D.A.C
400 I have a lot of work ahead of me. I have a big meeting with a friend of mine and I will be starting a new
700 I have a lot of work ahead of me. I have a long, long, and very, very long time to prepare for this

1400 I have an important event coming up in my life. I have a very important event. I am about to start a new chapter in
∞ I have an important new chapter in my life starting soon that will last for a long time. How can I best prepare for this?
300 I have two more weeks of training. I have two other, less than two weeks. I will be on my
400 I have a new doctor in my next year, and a new life in the next three years. I have a
700 I have a significant medical event in the coming days. I have a very significant medical procedure in the near future.

ChatGPT Low 1400 I have a significant medical procedure coming up in the coming days. I have a major medical procedure in Munich.
∞ I have a significant medical treatment in Munich coming up. How can I prepare for this new chapter in my life?
300 All of this is going to be going on for a few more days, and I will not be able to go back to my parents’ home for the first time. All of my children

will be going to my
400 I will be starting a new year at the end of the month. I will be going for a six-month treatment. I have a new start in my new year. I am going to

start a new life
High 700 I was diagnosed with a terminal illness last week and I am now recovering in a hospital. I will be spending the rest of my life in a hotel. I am

very, very excited to be starting a new chapter
1400 I was diagnosed with a lung cancer last week. I will be starting a new phase of my life this coming Monday. I am not prepared for this new

chapter in my life. I have to prepare for a new
∞ I was diagnosed with a lung cancer last week and I am feeling overwhelmed. I will be treated at IsarHealth in Munich starting June 1st. How can

I prepare for this new chapter in my life?

Booking

None

300 A doctor’s advice: What is a blood-based medication?A doctor’s advice: A
400 I’m not a doctor, but I’m not sure what I’m supposed to do.
700 I’m not feeling well and need to go to the doctor. I’m really, really sick.

1400 I’m not feeling well and need to go to the doctor. I need to see a doctor.
∞ I’m not feeling well and need to see a doctor. Can you help me find an available appointment?

Low

300 I have a lot of work to do. I have a very bad case. I can’t get it out of my system
400 I’ve got a strange feeling in my stomach. I’ve got some sort of fever. I’m not sure if it’s
700 I am very, very sick. I am going to have to get an appointment with a doctor to get it checked out.

1400 I am not feeling well. I have a cold. I am having a chest x - ray. I think I have an
∞ I am not feeling well in my chest. I’d like to book an appointment with a doctor to get it checked out.
300 I am an active family of four and I have a family of three children. I can’t carry a child. I’ve been trying to carry an adult for the last three years.
400 I am a young mother of a young man who is about to be married. I am a widow. I have a daughter who is also a mother. I want to be a doctor, not

a card
High 700 I am a registered dietitian. I have a history of heart problems. I am a cardiologist. I live in a nursing home and have been for a few years. I can’t

seem to
1400 I am a registered dietitian. I have a family history of heart disease. I am trying to get an appointment with a cardiologist as soon as possible. My

husband and I have been having a
∞ I am 50 years old and I have a family history of heart disease. I have been experiencing pain for the last month. Can you help me book an

appointment with a cardiologist as soon as possible?

Table 10: Target texts and their privatized counterparts from the DP-BART mechanism.

G Survey Web Application

Figure 5 illustrates an outline of our chosen architecture for the web application used to administer the
survey described in this work.

Figure 5: An architecture diagram of our custom-built survey web application.
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